HI1-7151T-2 [INTERSIL]

10-Bit, High Speed, A/D Converter with Track and Hold; 10位,高速,A / D转换器和跟踪保持
HI1-7151T-2
型号: HI1-7151T-2
厂家: Intersil    Intersil
描述:

10-Bit, High Speed, A/D Converter with Track and Hold
10位,高速,A / D转换器和跟踪保持

转换器
文件: 总17页 (文件大小:829K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
HI-7151  
10-Bit, High Speed, A/D Converter  
with Track and Hold  
December 1997  
Features  
Description  
• Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 10µs The Intersil HI-7151 is a high speed 10-bit A/D converter  
which uses a 2-Step Flash algorithm to achieve throughput  
rates of 100kHz. A unique switched capacitor technique  
• Continuous Throughput Rate. . . . . . . . . . . . . . . 100kHz  
allows a new input voltage to be sampled while a conversion  
is taking place.  
• No Offset or Gain Adjustments Necessary  
• Internal Track and Hold Amplifier  
A Track and Hold amplifier is included on the chip, consisting  
of two high speed amplifiers and an internal hold capacitor.  
• Analog and Reference Inputs Fully Buffered  
µP Compatible Byte Organized Outputs  
Microprocessor bus interfacing is simplified by the use of  
standard Chip Select, Read, and Write control signals. The  
digital three-state outputs are byte organized for interfacing  
the either 8- or 16-bit systems. An Over-Range pin, together  
with the MSB, can be used to indicate an out-of-range  
condition.  
• Low Power Consumption . . . . . . . . . . . . . . . . . .150mW  
• Uses a Single 2.5V Reference for ±2.5 V Input Range  
Applications  
The HI-7151 operates with ±5V supplies. A single +2.5V  
reference is required to provide a bipolar input range from  
-2.5V to +2.5V.  
µP Controlled Data Acquisition Systems  
• DSP  
Internal high speed CMOS buffers at both the analog and  
reference inputs simplify external drive requirements.  
- Avionics  
- Sonar  
Ordering Information  
• Process Control  
PART  
NUMBER  
LINEARITY  
(MAX. DLE) RANGE ( C)  
TEMP.  
- Automotive Transducer Sensing  
- Industrial  
o
PACKAGE  
28 Ld PDIP  
HI3-7151J-5  
HI3-7151K-5  
HI3-7151A-9  
HI3-7151B-9  
HI1-7151S-2  
HI1-7151T-2  
±1 LSB  
0 to 75  
0 to 75  
0 to 85  
0 to 85  
• Robotics  
1
± / LSB  
28 Ld PDIP  
28 Ld PDIP  
28 Ld PDIP  
2
• Digital Communications  
• Image Processing  
±1 LSB  
1
± / LSB  
2
±1 LSB  
-55 to 125 28 Ld CERDIP  
-55 to 125 28 Ld CERDIP  
1
± / LSB  
2
HI-7151  
(PDIP, CERDIP)  
TOP VIEW  
Pinout  
28 V+  
27 OVR  
26 D9  
25 D8  
24 D7  
23 D6  
22 D5  
21 D4  
GND  
V-  
1
2
3
4
5
6
7
8
9
V
REF  
AG  
V
IN  
SET  
BUSY  
CLK  
HOLD  
20  
D3  
19 D2  
WR 10  
CS 11  
18 D1  
RD 12  
17 D0  
SMODE 13  
DG 14  
16 HBE  
15 BUS  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
File Number 3099.1  
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2002. All Rights Reserved  
1
HI-7151  
Functional Diagram  
(+)  
(-)  
REF  
AMP  
(33)  
17  
D0  
DATA  
V
REF  
REF  
3
4
5
INVERT  
OUTPUTS  
LATCHES  
AND  
OUTPUT  
BUFFERS  
TWO  
STEP  
FLASH  
AG  
RESISTOR  
LADDER  
(ANALOG GROUND)  
D9  
26  
27  
7
OVR  
INPUT  
BUFFER  
AMP  
V
BUSY  
IN  
(ANALOG INPUT)  
BUS  
HBE  
BUS  
CTRL  
15  
16  
(1)  
TRACK  
HOLD  
AMP  
HOLD  
RD  
9
12  
10  
11  
13  
V+  
V-  
WR  
CS  
28  
2
POWER  
SUPPLY  
DISTRIBUTION  
CONTROL  
LOGIC  
GND  
1
SMODE  
DG  
14  
(DIGITAL GROUND)  
CLK  
SET  
8
6
2
HI-7151  
Pin Descriptions  
PIN  
1
NAME  
GND  
V-  
DESCRIPTION  
Ground return for comparators (0V).  
Negative supply voltage input (-5V).  
Reference voltage input (+2.5V).  
Analog ground reference (0V).  
Analog Input Voltage.  
2
3
V
REF  
4
AG  
5
V
IN  
6
SET  
Connect to V+ for proper operation.  
7
BUSY Output High-Conversion complete. Output Low - Conversion in progress. Output floats when chip is not selected (RD  
and CS both high).  
8
CLK  
Clock input.  
9
HOLD Indicates start of conversion. Active low.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
WR  
CS  
RD  
Write input. With CS low, starts conversion when pulsed low; continuous conversions when kept low.  
Chip select input. Active low.  
Read input. With CS low, enables output buffers when pulsed low; outputs updated at end of conversion when kept low.  
SMODE Slow memory mode input. Active high.  
DG  
BUS  
HBE  
D0  
Digital ground (0V).  
Bus select input. High = all outputs enabled together D0 - D9, OVR. Low = outputs enabled by HBE.  
Byte select (HBE/LBE) input for 8-bit bus. Input high-High byte select, D8-D9, OVR Input low-low byte select, D0-D7.  
Bit 0 (Least significant, LSB).  
D1  
Bit 1.  
Bit 2.  
D2  
D3‘  
D4  
Bit 3.  
Low  
Byte  
Bit 4.  
Output Data Bits  
(High = True)  
D5  
Bit 5.  
D6  
Bit 6.  
D7  
Bit 7.  
D8  
Bit 8 (Most Significant).  
High  
Byte  
D9  
Bit 9 (Sign).  
OVR  
V+  
Out of Range flag. Valid at end of conversion when output exceeds full scale.  
Positive supply voltage input (+5V).  
3
HI-7151  
Absolute Maximum Ratings (Note 1)  
Thermal Information  
o
o
Supply Voltage  
Thermal Resistance (Typical)  
θ
( C/W)  
θ
( C/W)  
JA  
JC  
V+ to Gnd (DG/AG/GND) . . . . . . . . . . . . . . . . -0.3V < V+ < +5.7V  
V- to Gnd (DG/AG/GND). . . . . . . . . . . . . . . . . .-5.7V < V- < +0.3V  
PDIP Package . . . . . . . . . . . . . . . . . . .  
CERDIP Package . . . . . . . . . . . . . . . .  
__  
__  
N/A  
__  
Analog Input Pins . . . . . . . . . . . . . . . . . V- -0.3V < V  
Digital I/O Pins . . . . . . . . . . . . . . . . . . .DG - 0.3V < V < V+ +0.3V  
< V+ +0.3V  
Maximum Power Dissipation (Note 2). . . . . . . . . . . . . . . . . <500mW  
INA  
I/O  
o
o
Maximum Storage Temperature Range . . . . . . . . . .-65 C to 150 C  
o
Maximum Lead Temperature (Soldering, 10s) . . . . . . . . . . . . 300 C  
Operating Conditions  
Temperature Range  
HI3-7151X-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 C to 75 C  
HI3-7151X-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40 C to 85 C  
o
o
o
o
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation  
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. Input voltages may exceed the supply voltage provided the inputs current is limited to ±1mA.  
o
o
2. Dissipation rating assumes device is mounted with all leads soldered to printed circuit board (derate above 75 C at -10mW/ C).  
Electrical Specifications V+ = +5V, V- = -5V, V  
= 2.5V, f = 300kHz, 50% Duty Cycle, Unless Otherwise Specified (Note 4)  
CLK  
REF  
J, A GRADE  
K, B GRADE  
TYP  
(NOTE 3)  
TEMPERATURE  
PARAMETER  
ACCURACY  
SYMBOL  
RES  
MIN  
TYP  
MAX  
MIN  
MAX  
UNITS  
o
Resolution (Note 5) (With  
no missing codes)  
T
T
T
T
T
T
T
T
T
T
= -25 C  
10  
10  
-
-
-
-
10  
10  
-
-
-
Bits  
Bits  
A
to T  
o
-
-
-
MIN  
MAX  
Integral Linearity Error  
Differential Linearity Error  
Bipolar Offset Error  
Unadjusted Gain Error  
NOTE:  
ILE  
= 25 C  
±0.5  
±0.75  
-
±1.0  
±1.0  
±1.0  
±1.0  
±2.5  
±3.0  
±2.5  
±3.0  
±0.3  
±0.5  
-
±-0.5  
±0.75  
±0.5  
±0.75  
±1.5  
±2.0  
±1.5  
±2.0  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
A
to T  
o
-
-
MIN  
MAX  
DLE  
= 25 C  
-
-
A
to T  
o
-
-
-
-
MIN  
MAX  
V
= 25 C  
-
±1.0  
±1.5  
±1.0  
±1.5  
-
±0.6  
±1.0  
±0.6  
±1.0  
OS  
A
to T  
o
-
-
MIN  
MAX  
eG+ and  
eG-  
= 25 C  
-
-
A
to T  
-
-
MIN  
MAX  
3. T  
to T : See Ordering Information Table.  
MAX  
MIN  
o
DC Electrical Specifications V+ = 5V, V- = -5V, V  
= 2.5V, T = 25 C, f  
= 300kHz, 50% Duty Cycle,  
REF  
A
CLK  
Unless Otherwise Specified  
o
o
o
o
o
25 C  
0 C to 75 C  
-40 C to 85 C  
(NOTE 4)  
PARAMETER  
ANALOG INPUT  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
MIN MAX  
MIN MAX  
UNITS  
Analog Input Range  
V
V
= 0V  
-V  
REF  
-
0.01  
8
V
-V  
REF  
V
-V  
REF  
V
REF  
V
IR  
IN  
REF  
REF  
Analog INput Bias Current  
I
-
-
100  
20  
-
-
100  
-
-
-
100  
-
nA  
pF  
BI  
Analog Input Capacitance  
(Note 5)  
CV  
IN  
REFERENCE INPUT  
Reference Input Range  
(Note 6)  
V
V
= 2.5V  
2.2  
2.5  
2.6  
2.2  
2.6  
2.2  
2.6  
V
RR  
REF  
Reference Input Bias Current  
I
-
-
0.01  
7
100  
20  
-
-
100  
-
-
-
100  
-
nA  
pF  
BR  
Reference Input Capacitance  
(Note 5)  
CV  
R
4
HI-7151  
o
DC Electrical Specifications V+ = 5V, V- = -5V, V  
= 2.5V, T = 25 C, f = 300kHz, 50% Duty Cycle,  
CLK  
REF  
A
Unless Otherwise Specified (Continued)  
o
o
o
o
o
25 C  
0 C to 75 C  
-40 C to 85 C  
(NOTE 4)  
PARAMETER  
TRACK AND HOLD (See Text)  
Slew Rate  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
MAX  
MIN  
MAX  
UNITS  
SR  
-
-
-
-
-
-
9
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
V/µs  
MHz  
ns  
Bandwidth  
BW  
1.5  
30  
2
Aperture Time  
Aperture Uncertainty  
Feedthrough in HOLD  
Acquisition Time  
ns  
f
= 100kHz  
-80  
1.5  
dB  
IN  
µs  
LOGIC INPUTS  
Input High Voltage  
Input Low Voltage  
Logic Input Current  
Input Capacitance (Note 5)  
LOGIC OUTPUTS  
Output High Voltage  
Output Low Voltage  
Output Leakage Current  
V
2.0  
-
-
-
2.0  
-
0.8  
1
2.0  
-
0.8  
1
V
V
IH  
V
-
-
-
0.8  
1
-
-
-
-
-
-
IL  
IL  
I
V
= 0V, V+  
0.05  
5
µA  
pF  
IN  
C
17  
-
-
IN  
V
I
I
= -200µA  
2.4  
-
-
-
0.4  
1
2.4  
-
0.4  
10  
-
2.4  
-
0.4  
10  
-
V
OH  
OH  
V
= 1.6mA  
-
-
-
-
-
-
V
OL  
OL  
OL  
I
RD = V+, V  
RD = V+, V  
= V+  
= 0V  
0.04  
-0.01  
7
µA  
µA  
pF  
OUT  
OUT  
-1  
-
-
-10  
-
-10  
-
Output Capacitance (Note 5)  
C
High-Z State  
15  
-
-
OUT  
POWER SUPPLY VOLTAGE RANGE  
(Note 7)  
V+  
V-  
Function Operation  
Only  
4.5  
5.0  
5.5  
4.5  
5.5  
4.5  
5.5  
V
V
(Note 7)  
-4.5  
-5.0  
-5.5  
-4.5  
-5.5  
-4.5  
-5.5  
POWER SUPPLY REJECTION  
V+, V- Gain Coefficient  
eGVS  
V+ = 5V, V- = -4.75V,  
-5.25V  
-
-
-
-
±0.1  
±0.1  
±0.1  
±0.1  
±0.05  
±0.5  
±0.5  
±0.5  
-
-
-
-
±0.6  
±0.6  
±0.6  
±0.6  
-
-
-
-
±0.6  
±0.6  
±0.6  
±0.6  
LSB  
LSB  
LSB  
LSB  
V- = -5V, V+ = 4.75V,  
5.25V  
V+, V- Offset Coefficient  
VOSVS V+ = 5V, V- = -4.75V,  
-5.25V  
V- = -5V, V+ = 4.75V,  
5.25V  
SUPPLY CURRENTS  
V+ Supply Current  
V- Supply Current  
GND Current  
I+  
I-  
V+ = 5V ±10%  
V- = -5V ±10%  
-
-
-
-
-
20  
-10  
-8  
30  
-15  
-15  
-3  
-
-
-
-
-
30  
-15  
-15  
-3  
-
-
-
-
-
30  
-15  
-15  
-3  
mA  
mA  
mA  
mA  
µA  
V
= 0V, Digital  
IN  
Outputs are  
Unloaded  
I
GND  
DG Current  
I
-2  
DG  
AG  
AG Current  
I
0.02  
10  
10  
10  
NOTES:  
4. FSR (Full Scale Range) = 2 X V  
(5V at V  
REF  
= 2.5V). LSB (Least Significant Bit) = FSR/1024 (4.88mV at V  
= 2.5V)  
REF  
REF  
5. Parameter not tested. Parameter guaranteed by design, simulation, or characterization.  
6. Only V and GAIN ERROR functionality tested at 2.2V and 2.6V.  
OS  
7. Guaranteed by functionality test.  
5
HI-7151  
o
AC Electrical Specifications V+ = 5V ±10%, V- = -5V ±10%, V  
= 2.5V, T = 25 C, f  
= 300kHz, 50% Duty Cycle,  
REF  
A
CLK  
C
= 100pF (including stray for D0 - D9, OVR, HOLD, BUSY), Unless Otherwise Specified (Note 11)  
L
o
o
o
o
o
25 C  
0 C to 75 C  
-40 C to 85 C  
PARAMETER  
Clock Input Duty Cycle  
SYMBOL NOTES MIN  
TYP  
MAX  
55  
MIN  
45  
-
MAX  
55  
MIN  
45  
-
MAX  
55  
UNITS  
%
D
5
9
45  
-
50  
-
Continuous Conversion Time  
t
3tck  
10  
3tck  
10  
3tck  
10  
µs  
SPS  
9
60  
-
-
60  
-
60  
-
µs  
Slow Memory Mode Conversion  
Time  
t
CONV  
5, 8  
-
4tck  
+0.9  
4tck  
+0.9  
4tck  
+0.9  
µs  
Continuous Throughput  
t
9
-
-
f
/3  
-
f
/3  
-
f
/3/  
sps  
CYC  
CLK  
CLK  
CLK  
3
CLOCK Period  
t
-
5
-
1/f  
CLK  
-
-
-
-
-
CK  
CLOCK to HOLD Rise Delay  
WR Pulse Width  
WR to HOLD Delay  
Busy to Data  
t
CKHR  
150  
290  
500  
tck/2  
170  
200  
-
140  
525  
tck/2  
200  
230  
-
120  
525  
tck/2  
200  
230  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
5, 8, 10  
5, 8  
5, 8  
5, 8  
5, 9  
5, 9  
5, 13  
5, 14  
5
200  
113  
80  
40  
-
225  
225  
WRL  
t
-
-
-
HOLD  
t
-
-
-
BD  
WR to RD Active  
CLOCK to HOLD Fall Delay  
HOLD to DATA change  
RD LO to Active  
RD HI to Inactive  
HBE to DATA  
t
100  
100  
100  
WRD  
CKHF  
DATA  
t
t
50  
125  
200  
75  
25  
70  
95  
35  
50  
45  
250  
400  
150  
60  
40  
90  
-
275  
550  
190  
80  
25  
70  
-
275  
550  
190  
80  
100  
t
-
-
-
-
-
-
-
RD  
t
-
-
RX  
AD  
CD  
t
150  
180  
200  
100  
100  
-
165  
210  
200  
125  
120  
-
165  
210  
200  
125  
120  
CS to DATA  
t
5
-
-
RD to BUSY  
t
5
-
-
BUSY  
Rise Time  
t
5, 12  
5, 12  
-
-
r
f
Fall Time  
t
-
-
NOTES:  
8. Slow memory mode timing.  
9. Fast memory or DMA mode of operation, except the first conversion which is equal to t  
10. Maximum specification to prevent multiple triggering with WR.  
.
CONV  
11. All input drive signals are specified with t = t 20ns and shall swing from V -0.4V to V +0.4V for all timing specifications. A signal is  
IL IH  
r
f
considered to change state as it crosses a 1.4V threshold (except t  
and t ).  
RD  
RX  
12. t and t load is C = 100pF (including stray capacitance) to DG and is measured from the 10 - 90% point.  
r
f
L
13. t  
is the time required for the data output level to change by 10% in response to RD crossing a voltage level of 1.4V. High-Z to V  
is  
RD  
OH  
is measured with R = 2.5kto V+ and C = 100pF  
measured with R = 2.5kand C = 100pF (including stray) to DG. High-Z to V  
L
L
OL  
L
L
(including stray) to DG.  
14. trx is the time required for the data output level to change by 10% in response to RD crossing a voltage level of 1.4V. V  
to High-Z is  
to High-Z is measured with R = 2.5 kto V+ and C = 10pF  
OH  
measured with R = 2.5kand C = 10pF (including stray) to DG. V  
L
L
OL  
L
L
(including stray) to DG.  
6
HI-7151  
Timing Diagrams  
SMODE = +V, BUS = V+, HBE = V+ OR DG  
0
t
CK  
1
2
3
4
5
6
7
CLOCK  
CS  
WR  
t
t
CKHR  
WRL  
HOLD  
TRACK N  
HOLD N  
HOLD  
TRACK N+1  
t
INTERNAL  
DATA  
N DATA  
RD  
t
WRD  
t
BUSY  
BUSY  
t
BD  
D0-D9, OVR  
DATA  
N DATA  
t
CONV  
FIGURE 1A. SLOW MEMORY MODE (16-BIT DATA BUS)  
7
HI-7151  
Timing Diagrams (Continued)  
SMODE = DG, BUS = DG  
0
1
2
3
4
5
6
7
CLOCK  
t
CD  
CS  
t
SPS  
WR  
(WR MAY BE WIRED LOW)  
t
t
t
CKHF  
CKHR  
TRACK N+2  
HOLD  
HOLD N  
HOLD N+1  
HOLD N+2  
HOLD  
TRACK N  
TRACK N+1  
TRACK N+3  
t
DATA  
INTERNAL  
DATA  
N DATA  
N+1 DATA  
RD  
HBE  
(HBE/LBE)  
t
RD  
t
AD  
t
RX  
D0-D9, OVR  
DATA  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
N DATA  
N+1 DATA  
BUSY  
FIGURE 1B. FAST MEMORY MODE (8-BIT DATA BUS)  
SMODE = +V: RD, WR, AND CS = DG  
0
1
2
3
4
5
6
7
CLOCK  
TRACK N  
HOLD N  
TRACK N+1  
N-1 DATA  
HOLD N+1  
TRACK N+2  
N DATA  
HOLD N+2  
HOLD  
INTERNAL  
DATA  
N+1 DATA  
BUSY  
D0-D9, OVR  
DATA  
N-1 DATA  
N DATA  
N+1 DATA  
FIGURE 1C. DMA MODE  
8
HI-7151  
5 TO 32  
DECODER  
(+V  
)
REF  
AZ  
AZ  
-
33  
LATCH  
LATCH  
AZ  
AZ  
V
+
REF  
17  
26  
3
DO  
DATA  
AZ  
32  
REF(+)  
AMP  
1R  
OUTPUTS  
LATCHES  
AND  
AZ  
AZ  
32 TO 5  
ENCODER  
OUTPUT  
OUTPUT  
BUFFERS  
D9  
BUFFERS  
AZ  
AZ  
OVR  
1R  
27  
7
-
BUSY  
2
1
LATCH  
LATCH  
AZ  
AZ  
AG  
+
4
BUS  
HBE  
BUS  
CTRL  
REF(+)  
AMP  
15  
16  
AZ  
SCAZ  
SCAZ  
(-V  
)
REF  
HOLD  
RD  
SCAZ  
9
SCAZ  
(AG)  
12  
10  
11  
13  
WR  
CS  
C
-
CONTROL  
LOGIC  
HOLD  
-
-
+
SCAZ 32C  
(-V  
SMODE  
+
V
+
HOLD  
AMP  
IN  
C
H
SWITCHED  
5
TRACK  
BUFFER  
AMP  
CAP  
AMP  
(ANALOG INPUT)  
)
CLK  
SET  
(AG)  
REF  
8
6
V+  
28  
2
V-  
GND  
DG  
POWER  
SUPPLY  
DISTRIBUTION  
1
14  
(DIGITAL GROUND)  
FIGURE 2. DETAILED BLOCK DIAGRAM  
9
HI-7151  
The 5-bit result of the first flash conversion is latched into the  
Detailed Description  
upper five bits of double buffered latches. It is also converted  
back into an analog signal by choosing the ladder voltage  
which is closest to but less than the input voltage. The  
selected voltage (VTAP) is then subtracted from the input  
voltage. This residue is amplified by a factor of 32 and  
The HI-7151 is a high speed 10-bit A/D converter which  
achieves throughput rates of 100kHz by use of a Two Step  
Flash algorithm. A pipelined operation has been achieved  
through the use of switched capacitor techniques which  
allow the device to sample a new input voltage while a  
conversion is taking place. The HI-7151 requires a single  
reference input of +2.5V, which is internally inverted to -  
2.5V, thereby allowing an input range of -2.5V to +2.5V. 10  
bits including sign are two’s complement coded. The analog  
and reference inputs are internally buffered by high speed  
CMOS buffers, which greatly simplifies the external analog  
drive requirements for the device.  
referenced to the negative reference voltage (VSCA = (V  
-
IN  
-). This subtraction and amplification  
VTAP) X 32 + V  
REF  
operation is performed by a Switched Capacitor Amplifier  
(SCA). The output of the SCA falls between the positive and  
negative reference voltages and can therefore be digitized  
by the original 5-bit flash converter (second flash  
conversion).  
The 5-bit result of the second flash conversion is latched into  
the lower five bits of double buffered latches. At the end of a  
conversion, 10 bits of data plus an Out of Range bit are  
latched into the second level of latches and can then be put  
on the digital output pins.  
A/D Section  
The HI-7151 uses a conversion algorithm which is generally  
called a “Two Step Flash” algorithm. This algorithm enables  
very fast conversion rates without the penalty of high power  
dissipation or high cost. A detailed functional diagram is  
presented in Figure 2.  
The conversion takes place in three clock cycles and is  
illustrated in Figure 3. When the conversion begins, the track  
and hold goes into its hold mode for 1 clock cycle. During the  
first half clock cycle the comparator array is in its auto-zero  
mode and it samples the input voltage. During the second  
half clock cycle, the comparators make a comparison  
between the input voltage and the ladder voltages. At the  
beginning of the third half clock cycle, the first most  
significant 5-bit result becomes available. During the first  
clock cycle, the SCA was sampling the input voltage. After  
the first flash result becomes available and a ladder tap  
voltage has been selected the SCA amplifies the residue  
between the input and ladder tap voltages. During the next  
three half clock cycles, while the SCA output is settling to its  
required accuracy, the comparators go into their auto-zero  
mode and sample this voltage. During the sixth half clock  
cycle, the comparators perform another comparison whose  
5-bit result becomes available on the next clock edge.  
The input voltage is first converted into a 5-bit result (plus  
Out of Range information) by the flash converter. This flash  
converter consists of an array of 33 auto-zeroed compara-  
tors which perform a comparison between the input voltage  
and subdivisions of the reference voltage. These subdivi-  
sions of the reference voltage are formed by forcing the ref-  
erence voltage and its negative on the two ends of a string of  
32 resistors.  
The reference input to the HI-7151 is buffered by a high  
speed CMOS amplifier which is used to drive one end of the  
resistor string. Another high speed amplifier configured in  
the inverting unity gain mode inverts the reference voltage  
with respect to analog ground and forces in onto the other  
end of the resistor string. Both reference amplifiers are offset  
trimmed at the factory in order to increase the accuracy of  
the HI-7151 and to simplify its usage.  
T CONVERSION  
T + 1 CONVERSION  
CLOCK  
1
2
3
4
5
6
TRACK & HOLD  
HOLD V (T)  
IN  
TRACK V (T + 1)  
IN  
HOLD V (T + 1)  
IN  
CONVERT  
UPPER  
5 BITS  
CONVERT  
LOWER  
5 BITS  
COMPARATOR  
AUTO-ZERO  
(AZ)  
SAMPLE  
(T)  
SAMPLE RESIDUAL  
SAMPLE  
V
V
(T + 1)  
IN  
IN  
SCA AUTO-ZERO  
(SCAZ)  
SAMPLE V (T)  
IN  
AMPLIFY RESIDUAL  
SAMPLE V (T + 1)  
IN  
INTERNAL DATA  
10-BITS + OVR  
V
(T) DATA  
IN  
FIGURE 3. INTERNAL ADC TIMING DIAGRAM  
10  
HI-7151  
TABLE 1. A/D OUTPUT CODE TABLE  
ANALOG INPUT  
) / 1024  
OUTPUT DATA  
LSB = 2 (V  
V
= 2.500V  
OVR  
SIGN 9 MSB 8  
7
0
1
0
0
1
0
0
6
0
1
0
0
1
0
0
5
0
1
0
0
1
0
0
4
0
1
0
0
1
0
0
3
0
1
0
0
1
0
0
2
0
1
0
0
1
0
0
1
0
1
0
0
1
0
0
LSB 0  
REF  
REF  
+V  
2.500V to V+ (+OVR)  
2.49512V (+Full Scale)  
0.00488V  
1
0
0
0
0
0
1
0
0
0
0
1
1
1
0
1
0
0
1
0
0
0
1
1
0
1
0
0
REF  
+V  
- 1 LSB  
REF  
+1 LSB  
0
0.000V  
-1 LSB  
-0.00488V  
-V  
-2.500V (-Full Scale)  
-2.50488V to V- (-OVR)  
REF  
REF  
-V  
- 1 LSB  
All of the internal amplifiers are offset trimmed at the factory  
to give improved accuracy and to minimize the number of  
external components. If necessary, offset error can be  
adjusted either at an external interface buffer or by using  
digital post correction.  
Track and Hold Analog Input  
A Track and Hold amplifier has been fully integrated on the  
front end of the A/D converter. Because of the sampling  
nature of this A/D converter, the input is required to stay  
constant only during the first clock cycle. Therefore, the  
Track and Hold (T/H) amplifier “holds” the input voltage only  
during the first clock cycle and it acquires the input voltage  
for the next conversion during the remaining two clock  
cycles. The high input impedance of the T/H input amplifier  
Reference Input  
The reference input to the HI-7151 is buffered by a high  
speed CMOS amplifier. The reference input range is 2.2V to  
2.6V.  
simplifies analog interfacing. Input signals up to ±V  
can  
REF  
be directly connected to the A/D without buffering. The A/D  
output code table is shown in Table 1.  
Power Requirements  
The timing signals for the Track and Hold amplifier are  
generated internally, and are also provided externally  
(HOLD) for synchronization purposes. The T/H amplifier  
consists of two high speed CMOS amplifiers and an internal  
hold capacitor. Its typical slew rate and bandwidth are 9V/µs  
and 1.5MHz respectively. It is configured to give a very small  
hold pedestal without the use of an external hold capacitor.  
The hold pedestal is typically less than 100µV.  
Power to the chip should be applied in the following order:  
V-, V+, and V  
. In applications where V+ is supplied prior  
REF  
to V-, the positive supply current will be approximately 2  
times its nominal value until V- is applied (this is not a  
latchup condition).  
Initialization  
In fast memory and DMA modes (after proper power, V  
,
Acquisition of the analog input signal is the time required by  
the T/H for its output to reach its final value within a specified  
error band. This time is a function of the logic delay time, op  
amp slewing time, and settling time. The T/H is in the track  
mode for 2 clock cycles (6.7µs at CLK = 300kHz) but the out-  
REF  
and clock) up to 6 clock cycles are required for circuit initial-  
ization. After circuit initialization, valid data will be available  
in 3 clock cycles.  
1
put typically settles to within / LSB in 1.5µs.  
Microprocessor Interface  
4
Aperture delay time is the time required for the T/H switch to  
open following the internal hold command. This is the delay  
with respect to falling edge of WR and the internal hold  
command. It is equal to Thold (type) - 50ns (typ) which is  
typically 30ns.  
The HI-7151 can be interfaced to microprocessors through  
the use of standard Write, Read, Chip Select, and HBE  
control pins. The digital outputs are two’s complement  
coded, three-state gated, and byte organized for bus  
interface with 8- and 16-bit systems. The digital outputs (D0 -  
D9, OVR, and BUSY) may be accessed under control of  
BUS, byte enable input HBE, chip select, and read inputs for  
a simple parallel bus interface. The microprocessor can read  
the current data in the output latches in typically 75ns/byte  
(trd). An over range pin (OVR) together with the MSB (D9)  
pin set to either a logic 0 or 1 will indicate a positive or  
negative over-range condition respectively. All digital output  
buffers are capable of driving one TTL load.  
Aperture uncertainty (jitter) is a range of variation in the  
aperture time. The greater the aperture time the larger the  
uncertainty in the analog voltage being converted. If the  
aperture time is nulled out by advancing the hold command  
(WR) or the signal is repetitively sampled, aperture uncer-  
tainty becomes the major source of time error. The aperture  
uncertainty for the T/H is typically 2ns which sets the maxi-  
mum input bandwidth to 77.7kHz for 1 LSB resolution.  
n
f
= 1/(π X 2 X ta),  
The HI-7151 can be interfaced to a microprocessor using  
one of three modes: slow memory, fast memory, and DMA  
mode.  
MAX  
where n = resolution in bits,  
ta = aperture uncertainty  
11  
HI-7151  
TABLE 3. FAST MEMORY MODE I/O TRUTH TABLE  
Slow Memory Mode  
(SMODE = DG)  
In slow memory mode, the conversion will be initiated by the  
microprocessor by selecting the chip (CS) and pulsing WR  
low. This mode is selected by hardwiring the SMODE pin to  
V+. This mode is intended for use with microprocessors  
(such as the 8086) which can be forced into a WAIT state.  
For example, in configuration where the BUSY output is tied  
to the 8086 READY input, an attempt to read the data before  
the conversion is complete will force the processor into a  
WAIT state until BUSY goes high, at which time the data at  
the output is valid. This resembles a 10µs access time RAM.  
It allows the processor to initiate a conversion, WAIT, and  
READ data with a single READ instruction. When the 8-bit  
bus operation is selected, high and low byte data may be  
accessed in either order. An I/O truth table is presented in  
Table 2 for the slow memory mode of operation.  
CS WR RD BUS HBE  
FUNCTION  
X
0
X
X
X
Continuous Conversion, WR  
May Be Tied to DG  
1
X
X
X
X
Disables Only The RD  
Command  
0
0
X
X
0
0
1
0
X
1
D0 - D9 & OVR Enabled  
High Byte Enabled: D8 - D9,  
OVR (Enable 1st)  
0
X
X
0
1
0
0
Low Byte Enabled: D0 - D7  
(Must Enable 2nd)  
X
X
X
Disables All Outputs  
(High Impedance)  
TABLE 2. SLOW MEMORY MODE I/O TRUTH TABLE  
(SMODE = V+)  
NOTE: X = Don’t Care  
DMA Mode  
CS WR RD BUS HBE  
FUNCTION  
This mode is a complete hardware mode where the HI-7151  
continuously converts. The user implements hardware to  
store the results in memory, bypassing the microprocessor.  
This mode is recognized by the chip when SMODE is  
hardwired to V+ and CS, RD, WR are hardwired to DG.  
When 8-bit bus operation is selected, high and low byte data  
may be accessed in either order. BUSY is continuously low  
when accessed with a read command in this mode. An I/O  
truth table is presented in Table 4 for the DMA mode of  
operation.  
0
1
0
0
0
0
X
X
X
X
X
X
0
0
0
X
X
1
0
0
X
X
X
0
Initiates a Conversion  
Disables All Chip Commands  
D0 - D9 and OVR Enabled  
Low Byte Enabled: D0 - D7.  
1
High Byte Enabled: D8 - D9,  
OVR  
X
X
1
X
X
Disables All Outputs  
(High Impedance)  
TABLE 4. DMA MODE I/O TRUTH TABLE  
(SMODE = V+, CS = WR, RD = DG)  
NOTE: X = Don’t Care  
BUS  
HBE  
FUNCTION  
Fast Memory Mode  
1
0
0
X
0
1
D0 - D9 and OVR Enabled  
Low Byte Enabled: D0 - D7  
High Byte Enabled: D8 - D9, OVR  
The fast memory mode of operation is selected by tying the  
SMODE and WR pins to DG. In this mode, the chip performs  
continuous conversions and only CS and RD are required to  
read the data. Whenever the SMODE pin is low, WR is  
independent of CS in starting a conversion cycle. During the  
first conversion cycle, HOLD follows WR going low.  
NOTE: X = Don’t Care  
Optimizing System Performance  
Data can be read a byte at a time or all 11 bits at once. The  
internal logic disables the output latches from being updated  
during a read after the high byte data is accessed. It will  
continue to be disabled until after the low byte data is  
accessed. THEREFORE, WHEN 8-BIT BUS OPERATION  
IS SELECTED, THE DATA MUST BE ACCESSED HIGH  
BYTE FIRST, LOW BYTE NEXT. If the low byte is accessed  
first followed by high byte, the results from the next conver-  
sion cycle will be lost because the updating of the output  
latch is disabled. BUSY is continuously low when accessed  
with a read command in this mode. An I/O truth table is pre-  
sented in Table 3 for the fast memory mode of operation.  
The HI-7151 has three ground pins (AG, DG, GND) for  
improved system accuracy. Proper grounding and bypassing  
is illustrated in Figure 4. The AG pin is a ground pin that  
does not carry any current and is used internally as a refer-  
ence ground. The reference input and analog input should  
be referenced to the analog ground (AG) pin. The digital  
inputs and outputs should be referenced to the digital ground  
(DG) pin. The GND pin is a return point for the supply current  
of the comparator array. The comparator array is designed  
such that this current is approximately constant at all times  
and does not vary with input voltage. By virtue of the  
switched capacitor nature of the comparators, it is necessary  
to hold GND firmly at zero volts at all times. Therefore, the  
system ground star connection should be located as close to  
this pin as possible.  
The data can be defined in time by monitoring the HOLD pin.  
The conversion data can be read after HOLD has gone low.  
12  
HI-7151  
As in any analog system, good supply bypassing is Figure 8 illustrates an application where the HI-7151 is used  
necessary in order to achieve optimum system performance with an analog multiplexer to form a multi-channel data  
(minimize conversion errors). The power supplies should be acquisition system. Either slow memory or fast memory  
bypassed with at least a 20µF tantalum and 0.1µF ceramic modes of operation can be selected. Fast memory mode  
capacitors to GND. The reference input should be bypassed should be selected for maximum throughput. Multiplexer  
with a 0.1µF ceramic capacitor to AG. The capacitor leads channel acquisition should occur approximately 500ns after  
should be as short as possible.  
HOLD goes high. This allows 2 clocks minus 0.5µs for the  
input to settle. With a 300kHz clock the input has up to 6.2µs  
to settle.  
The pins on the HI-7151 are arranged such that the analog  
pins are well isolated from the digital pins. In spite of this  
arrangement, there is always pin to pin coupling. Therefore An intelligent system which performs  
a scale factor  
the analog inputs to the device should not be driven from adjustment under software control with the addition of a  
very high output impedance sources. PC board layout programmable gain block between the multiplexer and  
should screen the analog and reference inputs with AG. HI-7151 is illustrated in Figure 9. The microprocessor first  
Using a soldier mask is good practice and helps reduce performs a conversion and then checks the over-range  
leakage due to moisture contamination on the PC board.  
status (OVR) bit. If the OVR bit is high, the microprocessor  
addresses a precision gain circuit for scale factor adjustment  
and initiates another conversion. The microprocessor must  
keep track of the selected scale factor.  
Applications  
Typical applications are illustrated in Figures 5 through 7 for  
the slow memory, fast memory, and DMA modes of  
operation. The output data is configured for 16-bit bus oper-  
ation of these three applications. By tying BUS and DG and  
connecting the HBE input to the system address decoder,  
the output data can be configured for 8-bit bus systems.  
The accuracy of the programmable gain amplifier should be  
better than 0.05%. For optimum system performance, op  
amp frequency response, settling time, and charge injection  
of the analog switch must be considered.  
Figure 10 illustrates the HI-7151 interfaced to FIFO  
memories for use in DMA applications.  
20µF  
-
0.1µF  
5V  
P.S.  
+
+
+
HI-7151  
2.5V  
P.S.  
-5V  
P.S.  
V+ 28  
OVR 27  
D9 26  
D8 25  
D7 24  
D6 23  
D5 22  
D4 21  
1 GND  
2 V-  
0.1µF  
20µF  
-
-
3
V
REF  
4 AG  
5 V  
0.1µF  
ANALOG INPUT  
V+  
IN  
6 SET  
7 BUSY  
8 CLK  
20  
9 HOLD  
10 WR  
D3  
D2 19  
D1 18  
D0 17  
11 CS  
12 RD  
16  
13 SMODE  
14 DG  
HBE  
BUS 15  
FIGURE 4. GROUND AND POWER SUPPLY DECOUPLING  
13  
HI-7151  
HI-7151  
+5V  
V+ 28  
OVR 27  
D9 26  
D8 25  
D7 24  
D6 23  
D5 22  
D4 21  
1 GND  
2 V-  
-5V  
+2.56V  
0V  
3
V
REF  
4 AG  
5 V  
IN  
ANALOG INPUT  
V+  
6 SET  
7 BUSY  
8 CLK  
9 HOLD  
10 WR  
11 CS  
300kHz CLOCK  
20  
D3  
D2 19  
D1 18  
D0 17  
12 RD  
16  
13 SMODE  
14 DG  
HBE  
BUS 15  
CS  
WR  
HOLD  
TRACK N  
HOLD N  
TRACK N+1  
INTERNAL  
DATA  
N DATA  
RD  
BUSY  
D0-D9, OVR  
DATA  
N DATA  
FIGURE 5. SLOW MEMORY MODE APPLICATION  
14  
HI-7151  
HI-7151  
+5V  
V+ 28  
OVR 27  
D9 26  
D8 25  
D7 24  
D6 23  
D5 22  
D4 21  
1 GND  
2 V-  
-5V  
+2.56V  
0V  
3
V
REF  
4 AG  
5 V  
IN  
ANALOG INPUT  
V+  
6 SET  
7 BUSY  
8 CLK  
300kHz CLOCK  
20  
9 HOLD  
10 WR  
D3  
D2 19  
D1 18  
D0 17  
11 CS  
12 RD  
16  
13 SMODE  
14 DG  
HBE  
BUS 15  
DATA  
CS  
WR  
(WR MAY BE WIRED LOW)  
HOLD N  
HOLD N+1  
HOLD N+2  
HOLD  
TRACK N  
TRACK N+1  
TRACK N+2  
TRACK N+3  
INTERNAL  
DATA  
N DATA  
N+1 DATA  
RD  
D0-D9, OVR  
DATA  
N DATA  
N+1 DATA  
BUSY  
FIGURE 6. FAST MEMORY MODE APPLICATION  
15  
HI-7151  
HI-7151  
+5V  
1 GND  
2 V-  
V+ 28  
OVR 27  
D9 26  
D8 25  
D7 24  
D6 23  
-5V  
+2.56V  
0V  
3
V
REF  
4 AG  
5 V  
IN  
ANALOG INPUT  
V+  
6 SET  
7 BUSY  
8 CLK  
9 HOLD  
10 WR  
D5  
22  
D4 21  
20  
300kHz CLOCK  
D3  
D2 19  
D1 18  
11 CS  
V+  
D0 17  
12 RD  
13 SMODE  
14 DG  
HBE 16  
BUS 15  
TRACK N  
HOLD N  
TRACK N+1  
HOLD N+1  
TRACK N+2  
N DATA  
HOLD N+2  
HOLD  
INTERNAL  
DATA  
D0-D9, OVR  
N-1 DATA  
N+1 DATA  
10µs  
FIGURE 7. DMA MODE APPLICATION  
ADDRESS BUS  
DG  
ADDRESS  
DECODER  
ADDRESS  
DECODER  
BUS  
HBE  
ANALOG  
INPUTS  
WR  
V
IN  
CS  
RD  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
V+  
V-  
DG  
V
REF  
AG  
V+  
+2.56V  
WR  
HI-7151  
ADC  
(SLOW MEMORY MODE)  
MICROPROCESSOR  
DG528  
MUX  
SIGNAL  
GROUND  
SMOD  
HOLD  
BUSY  
CLK  
V+  
+5V  
-5V  
RS  
SYSTEM  
RESET  
V-  
DG  
300kHz  
CLOCK  
A0-A2, EN  
SET  
GND  
V+  
D0-D7  
D8-D9, OVR  
8-BIT DATA BUS  
FIGURE 8. MULTI-CHANNEL DATA ACQUISITION SYSTEM  
16  
ADDRESS BUS  
ADDRESS  
DECODER  
ADDRESS  
DECODER  
DG  
BUS  
HBE  
CS  
ANALOG  
INPUTS  
WR  
V
IN  
CS  
RD  
D
PROGRAMMBLE  
GAIN AMP  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
V+  
V-  
DG  
V
REF  
AG  
V+  
+2.56V  
WR  
HI-7151  
ADC  
(SLOW MEMORY MODE)  
MICROPROCESSOR  
DG528  
MUX  
SIGNAL  
GROUND  
SMOD  
HOLD  
BUSY  
CLK  
V+  
+5V  
-5V  
RS  
SYSTEM  
RESET  
V-  
DG  
300kHz  
CLOCK  
D0-D2, EN  
SET  
GND  
V+  
D0-D7  
D8-D9, OVR  
8-BIT DATA BUS  
FIGURE 9. MULTI-CHANNEL DATA ACQUISITION SYSTEM WITH PROGRAMMABLE GAIN  
V+  
BUS  
HBE  
SMODE  
TO PARALLEL  
DATA BUS  
D0-D3  
64 x 4-BIT  
FIFO  
V
IN  
ANALOG INPUT  
D8-D9, OVR  
V
REF  
AG  
V+  
+2.56V  
SET  
HI-7151  
ADC  
V+  
SIGNAL  
GROUND  
CLK  
D4-D7  
64 x 4-BIT  
FIFO  
COMPOSITE  
OUTPUT  
READY  
300kHz  
HOLD  
+5V  
-5V  
V-  
BUSY  
DG  
RD  
WR  
CS  
D8-D9, OVR  
64 x 4-BIT  
FIFO  
GND  
SHIFT IN  
SHIFT  
OUT  
DG  
FIGURE 10. DMA/FIFO DATA ACQUISITION SYSTEM  
17  

相关型号:

HI1-7152A-9

HI1-7152A-9
RENESAS

HI1-7152B-9

HI1-7152B-9
RENESAS

HI1-7152S-2

10-Bit High Speed A/D Converter with Track and Hold
INTERSIL

HI1-774AK5

Converter IC
ETC

HI1-774AKD-5

IC,A/D CONVERTER,SINGLE,12-BIT,DIP,28PIN
RENESAS

HI1-774ATD-2

IC,A/D CONVERTER,SINGLE,12-BIT,DIP,28PIN
RENESAS

HI1-774J-5

Complete, 12-Bit A/D Converters with Microprocessor Interface
INTERSIL

HI1-774J5

Converter IC
ETC

HI1-774JD-5

IC,A/D CONVERTER,SINGLE,12-BIT,DIP,28PIN
RENESAS

HI1-774K-5

Complete, 12-Bit A/D Converters with Microprocessor Interface
INTERSIL

HI1-774LD-5

IC,A/D CONVERTER,SINGLE,12-BIT,DIP,28PIN
RENESAS

HI1-774S-2

12-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, CDIP28
RENESAS