HI1-774J-5 [INTERSIL]

Complete, 12-Bit A/D Converters with Microprocessor Interface; 完整的12位与微处理器接口的A / D转换器
HI1-774J-5
型号: HI1-774J-5
厂家: Intersil    Intersil
描述:

Complete, 12-Bit A/D Converters with Microprocessor Interface
完整的12位与微处理器接口的A / D转换器

转换器 微处理器
文件: 总18页 (文件大小:202K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HI-574A, HI-674A,  
HI-774  
Complete, 12-Bit A/D Converters  
with Microprocessor Interface  
August 1997  
Features  
Description  
• Complete 12-Bit A/D Converter with Reference and Clock  
• Full 8-Bit, 12-Bit or 16-Bit Microprocessor Bus Interface  
• Bus Access Time . . . . . . . . . . . . . . . . . . . . . . . . . . 150ns  
• No Missing Codes Over Temperature  
The HI-X74(A) is a complete 12-bit, Analog-to-Digital  
Converter, including a +10V reference clock, three-state out-  
puts and a digital interface for microprocessor control. Succes-  
sive approximation conversion is performed by two monolithic  
dice housed in a 28 lead package. The bipolar analog die fea-  
tures the Intersil Dielectric Isolation process, which provides  
enhanced AC performance and freedom from latch-up.  
• Minimal Setup Time for Control Signals  
• Fast Conversion Times  
Custom design of each IC (bipolar analog and CMOS digital)  
has yielded improved performance over existing versions of  
this converter. The voltage comparator features high PSRR  
plus a high speed current-mode latch, and provides precise  
decisions down to 0.1 LSB of input overdrive. More than 2X  
reduction in noise has been achieved by using current  
instead of voltage for transmission of all signals between the  
analog and digital ICs. Also, the clock oscillator is current  
controlled for excellent stability over temperature.  
- HI-574A (Max) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25µs  
- HI-674A (Max) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15µs  
- HI-774 (Max) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9µs  
• Digital Error Correction (HI-774)  
• Low Noise, via Current-Mode Signal  
Transmission Between Chips  
• Byte Enable/Short Cycle (A Input)  
O
- Guaranteed Break-Before-Make Action, Eliminating  
Bus Contention During Read Operation. Latched by  
Start Convert Input (To Set the Conversion Length)  
The HI-X74(A) offers standard unipolar and bipolar input  
ranges, laser trimmed for specified linearity, gain and offset  
accuracy. The low noise buried zener reference circuit is  
trimmed for minimum temperature coefficient.  
• Supply Voltage . . . . . . . . . . . . . . . . . . . . . ±12V to ±15V  
Power requirements are +5V and ±12V to ±15V, with typical  
dissipation of 385mW (HI-574A/674A) and 390mW (HI-774) at  
12V. All models are available in sidebrazed DIP, PDIP, and  
CLCC. For additional HI-Rel screening including 160 hour burn-  
in, specify “-8” suffix. For MIL-STD-883 compliant parts, request  
HI-574A/883, HI-674A/883, and HI-774/883 data sheets.  
Applications  
• Military and Industrial Data Acquisition Systems  
• Electronic Test and Scientific Instrumentation  
• Process Control Systems  
Pinouts  
(PDIP, SBDIP)  
TOP VIEW  
(CLCC)  
TOP VIEW  
+5V SUPPLY, V  
LOGIC  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
STATUS, STS  
DB11 MSB  
DB10  
DATA MODE SEL, 12/8  
3
CHIP SEL, CS  
BYTE ADDR/SHORT  
4
DB9  
CYCLE, A  
O
44  
43 42 41 40  
6
5
4
3
2
1
5
DB8  
READ/CONVERT, R/C  
CHIP ENABLE, CE  
7
39  
38  
NC  
NC  
NC  
NC  
6
DB7  
8
DIGITAL  
+12V/+15V SUPPLY, V  
CC  
7
DATA  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
READ CONVERT, R/C  
9
37 DB9  
OUTPUTS  
10  
11  
12  
DB8  
DB7  
DB6  
DB5  
DB4  
DB3  
NC  
+10V REF, REF OUT  
8
CHIP ENABLE, CE  
36  
35  
34  
33  
32  
31  
30  
29  
+15V SUPPLY, V  
CC  
+10V REFERENCE,  
REF OUT  
ANALOG  
COMMON, AC  
9
10  
11  
12  
REFERENCE INPUT  
ANALOG COMMON, AC 13  
-12V/-15V SUPPLY, V  
EE  
REFERENCE INPUT,  
14  
REF IN  
-15V SUPPLY, V  
EE  
BIPOLAR OFFSET  
BIP OFF  
15  
10V INPUT 13  
NC 16  
BIPOLAR OFFSET,  
LSB  
DIG COMMON,  
DC  
17  
DB2  
14  
20V INPUT  
BIP OFF  
18 19 20 21 22 23 24 25 26 27 28  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
File Number 3096.4  
1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 1999  
6-952  
HI-574A, HI-674A, HI-774  
Ordering Information  
TEMPERATURE RANGE  
o
PART NUMBER  
HI3-574AJN-5  
HI3-574AKN-5  
HI3-574ALN-5  
HI1-574AJD-5  
HI1-574AKD-5  
HI1-574ALD-5  
HI1-574ASD-2  
HI1-574ATD-2  
HI1-574AUD-2  
HI1-574ASD/883  
HI1-574ATD/883  
HI1-574AUD/883  
HI4-574ASE/883  
HI4-574ATE/883  
HI4-574AUE/883  
HI3-674AJN-5  
HI3-674AKN-5  
HI3-674ALN-5  
HI1-674AJD-5  
HI1-674AKD-5  
HI1-674ALD-5  
HI1-674ASD-2  
HI1-674ATD-2  
HI1-674AUD-2  
HI1-674ASD/883  
HI1-674ATD/883  
HI1-674AUD/883  
HI4-674ASE/883  
HI4-674ATE/883  
HI4-674AUE/883  
HI3-774J-5  
INL  
( C)  
PACKAGE  
28 Ld PDIP  
PKG. NO.  
E28.6  
±1.0 LSB  
±0.5 LSB  
±0.5 LSB  
±1.0 LSB  
±0.5 LSB  
±0.5 LSB  
±1.0 LSB  
±0.5 LSB  
±0.5 LSB  
±1.0 LSB  
±0.5 LSB  
±0.5 LSB  
±1.0 LSB  
±0.5 LSB  
±0.5 LSB  
±1.0 LSB  
±0.5 LSB  
±0.5 LSB  
±1.0 LSB  
±0.5 LSB  
±0.5 LSB  
±1.0 LSB  
±0.5 LSB  
±0.5 LSB  
±1.0 LSB  
±0.5 LSB  
±0.5 LSB  
±1.0 LSB  
±0.5 LSB  
±0.5 LSB  
±1.0 LSB  
±0.5 LSB  
±1.0 LSB  
±0.5 LSB  
±0.5 LSB  
±0.5 LSB  
±1.0 LSB  
±0.5 LSB  
±0.5 LSB  
0 to 75  
0 to 75  
28 Ld PDIP  
E28.6  
E28.6  
D28.6  
D28.6  
D28.6  
D28.6  
D28.6  
D28.6  
D28.6  
D28.6  
D28.6  
J44.A  
J44.A  
J44.A  
E28.6  
E28.6  
E28.6  
D28.6  
D28.6  
D28.6  
D28.6  
D28.6  
D28.6  
D28.6  
D28.6  
D28.6  
J44.A  
J44.A  
J44.A  
E28.6  
E28.6  
D28.6  
D28.6  
D28.6  
D28.6  
J44.A  
J44.A  
J44.A  
0 to 70  
28 Ld PDIP  
0 to 75  
28 Ld SBDIP  
28 Ld SBDIP  
28 Ld SBDIP  
28 Ld SBDIP  
28 Ld SBDIP  
28 Ld SBDIP  
28 Ld SBDIP  
28 Ld SBDIP  
28 Ld SBDIP  
44 Ld CLCC  
44 Ld CLCC  
44 Ld CLCC  
28 Ld PDIP  
0 to 75  
0 to 75  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
0 to 75  
0 to 75  
28 Ld PDIP  
0 to 75  
28 Ld PDIP  
0 to 75  
28 Ld SBDIP  
28 Ld SBDIP  
28 Ld SBDIP  
28 Ld SBDIP  
28 Ld SBDIP  
28 Ld SBDIP  
28 Ld SBDIP  
28 Ld SBDIP  
28 Ld SBDIP  
44 Ld CLCC  
44 Ld CLCC  
44 Ld CLCC  
28 Ld PDIP  
28 Ld PDIP  
28 Ld SBDIP  
28 Ld SBDIP  
28 Ld SBDIP  
28 Ld SBDIP  
44 Ld CLCC  
44 Ld CLCC  
44 Ld CLCC  
0 to 75  
0 to 75  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
0 to 75  
HI3-774K-5  
0 to 75  
HI1-774J-5  
0 to 75  
HI1-774K-5  
0 to 75  
HI1-774U-2  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
HI1-774T/883  
HI4-774S/883  
HI4-774T/883  
HI4-774U/883  
6-953  
HI-574A, HI-674A, HI-774  
Functional Block Diagram  
BIT OUTPUTS  
MSB  
LSB  
12/8  
NIBBLE A (NOTE)  
NIBBLE B (NOTE)  
NIBBLE C (NOTE)  
CS  
CONTROL  
LOGIC  
THREE-STATE BUFFERS AND CONTROL  
A
O
R/C  
CE  
V
LOGIC  
POWER-UP RESET  
DIGITAL  
COMMON  
12 BITS  
SAR  
STS  
CLK  
OSCILLATOR  
STROBE  
DIGITAL CHIP  
ANALOG CHIP  
12 BITS  
V
V
CC  
EE  
COMP  
V
IN  
REF  
DAC  
-
10K  
V
OUT  
REF  
5K  
+
2.5K  
+10V  
REF  
5K  
10K  
-
5K  
ANALOG  
COMMON  
BIP  
20V  
10V  
OFF INPUT INPUT  
NOTE: “Nibble” is a 4-bit digital word.  
6-954  
HI-574A, HI-674A, HI-774  
Absolute Maximum Ratings  
Thermal Information  
o
o
Supply Voltage  
Thermal Resistance (Typical, Note 1)  
CLCC Package . . . . . . . . . . . . . . . . . .  
SBDIP Package. . . . . . . . . . . . . . . . . .  
θ
( C/W)  
θ
( C/W)  
JA  
JC  
V
V
V
to Digital Common . . . . . . . . . . . . . . . . . . . . . . 0V to +16.5V  
to Digital Common. . . . . . . . . . . . . . . . . . . . . . . 0V to -16.5V  
65  
60  
14  
18  
N/A  
CC  
EE  
to Digital Common. . . . . . . . . . . . . . . . . . . . . . 0V to +7V  
HI3-574AxN-5, HI3-674AxN-5, HI3-774xN-5 65  
Maximum Junction Temperature  
HI3-574AxN-5, HI3-674AxN-5, HI3-774xN-5. . . . . . . . . . . . 150 C  
HI1-574AxD-2, HI1-574AxD-5. . . . . . . . . . . . . . . . . . . . . . . 175 C  
HI1-674AxD-2, HI1-674AxD-5. . . . . . . . . . . . . . . . . . . . . . . 175 C  
LOGIC  
Analog Common to Digital Common±1V  
Control Inputs  
o
o
(CE, CS, A , 12/8, R/C) to Digital Common . . -0.5V to V  
+0.5V  
O
LOGIC  
o
Analog Inputs  
o
(REFIN, BIPOFF, 10VIN) to Analog Common. . . . . . . . . . ±16.5V  
HI1-774xD-2, HI1-774xD-5 . . . . . . . . . . . . . . . . . . . . . . . . . 175 C  
20VIN to Analog Common . . . . . . . . . . . . . . . . . . . . . . . . . . ±24V Maximum Storage Temperature Range  
o
o
REFOUT . . . . Indefinite Short To Common, Momentary Short To V  
HI3-574AxN-5, HI3-674AxN-5, HI3-774xN-5. . . . . .-40 C to 85 C  
CC  
o
o
HI1-574AxD-2, HI1-574AxD-5. . . . . . . . . . . . . . . .-65 C to 150 C  
o
o
HI1-674AxD-2, HI1-674AxD-5. . . . . . . . . . . . . . . .-65 C to 150 C  
HI1-774xD-2, HI1-774xD-5 . . . . . . . . . . . . . . . . . .-65 C to 150 C  
Maximum Lead Temperature (Soldering, 10s) . . . . . . . . . . . . 300 C  
Operating Conditions  
o
o
Temperature Range  
o
o
o
HI3-574AxN-5, HI1-574AxD-5 . . . . . . . . . . . . . . . . . .0 C to 75 C  
o
o
HI3-674AxN-5, HI1-674AxD-5 . . . . . . . . . . . . . . . . . .0 C to 75 C  
HI3-774xN-5, HI1-774xD-5 . . . . . . . . . . . . . . . . . . . . .0 C to 75 C  
HI1-574AxD-2, HI1-674AxD-2, HI1-774xD-2 . . . . -55 C to 125 C  
Die Characteristics  
o
o
Transistor Count  
HI-574A, HI-674A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1117  
HI-774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2117  
o
o
o
DC and Transfer Accuracy Specifications Typical at 25 C with V  
= +15V or +12V, V  
LOGIC  
= +5V, V  
= -15V or -12V,  
CC  
EE  
Unless Otherwise Specified  
TEMPERATURE RANGE  
o
o
-5 (0 C to 75 C)  
PARAMETER  
DYNAMIC CHARACTERISTICS  
J SUFFIX  
K SUFFIX  
L SUFFIX  
UNITS  
Resolution (Max)  
Linearity Error  
12  
12  
1
12  
1
Bits  
o
25 C (Max)  
±1  
±1  
± /  
± /  
LSB  
LSB  
2
2
o
o
1
1
0 C to 75 C (Max)  
± /  
± /  
2
2
Max Resolution For Which No Missing Codes Is Guaranteed  
o
25 C  
HI-574A, HI-674A  
HI-774  
12  
11  
11  
11  
12  
12  
12  
12  
12  
12  
12  
12  
Bits  
Bits  
Bits  
Bits  
T
to T  
HI-574A, HI-674A  
HI-774  
MIN  
MAX  
Unipolar Offset (Max)  
Adjustable to Zero  
±2  
±1.5  
±1  
LSB  
Bipolar Offset (Max)  
V
V
= 0V (Adjustable to Zero)  
±4  
±4  
±3  
LSB  
IN  
IN  
= -10V  
±0.15  
±0.1  
±0.1  
% of FS  
Full Scale Calibration Error  
o
25 C (Max), With Fixed 50Resistor From REF OUT To REF IN  
±0.25  
±0.25  
±0.15  
% of FS  
(Adjustable to Zero)  
o
T
T
to T  
to T  
(No Adjustment At 25 C)  
±0.475  
±0.22  
±0.375  
±0.12  
±0.20  
±0.05  
% of FS  
% of FS  
MIN  
MIN  
MAX  
MAX  
o
(With Adjustment To Zero 25 C)  
6-955  
HI-574A, HI-674A, HI-774  
o
DC and Transfer Accuracy Specifications Typical at 25 C with V  
= +15V or +12V, V  
LOGIC  
= +5V, V  
= -15V or -12V,  
CC  
EE  
Unless Otherwise Specified (Continued)  
TEMPERATURE RANGE  
o
o
-5 (0 C to 75 C)  
PARAMETER  
J SUFFIX  
K SUFFIX  
L SUFFIX  
UNITS  
Temperature Coefficients  
Guaranteed Max Change, T  
to T  
(Using Internal Reference)  
MAX  
MIN  
Unipolar Offset  
HI-574A, HI-674A  
±2  
±2  
±2  
±2  
±9  
±9  
±1  
±1  
±1  
±2  
±2  
±5  
±1  
±1  
±1  
±1  
±2  
±2  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
HI-774  
Bipolar Offset  
HI-574A, HI-674A  
HI-774  
Full Scale Calibration  
Power Supply Rejection  
HI-574A, HI-674A  
HI-774  
Max Change In Full Scale Calibration  
+13.5V < V  
< +16.5V or +11.4V < V  
< +12.6V  
CC  
±2  
±1  
±1  
LSB  
LSB  
LSB  
CC  
1
1
1
+4.5V < V  
< +5.5V  
± /  
± /  
± /  
LOGIC  
2
2
2
-16.5V < V < -13.5V or -12.6V < V < -11.4V  
±2  
±1  
±1  
EE  
EE  
ANALOG INPUTS  
Input Ranges  
Bipolar  
-5 to +5  
-10 to +10  
0 to +10  
0 to +20  
V
V
V
V
Unipolar  
Input Impedance  
10V Span  
5K, ±25%  
20V Span  
10K, ±25%  
POWER SUPPLIES  
Operating Voltage Range  
V
V
V
+4.5 to +5.5  
+11.4 to +16.5  
-11.4 to -16.5  
V
V
V
LOGIC  
CC  
EE  
Operating Current  
I
I
I
7 Typ, 15 Max  
11 Typ, 15 Max  
21 Typ, 28 Max  
mA  
mA  
mA  
LOGIC  
+15V Supply  
CC  
EE  
-15V Supply  
Power Dissipation  
±15V, +15V  
515 Typ, 720 Max  
385 Typ  
mW  
mW  
±12V, +5V  
Internal Reference Voltage  
T
to T  
+10.00 ±0.05 Max  
V
MIN  
MAX  
Output Current, Available For External Loads (External Load Should  
Not Change During Conversion).  
2.0 Max  
mA  
6-956  
HI-574A, HI-674A, HI-774  
o
DC and Transfer Accuracy Specifications Typical at 25 C with V  
= +15V or +12V, V  
= +5V, V = -15V or -12V,  
EE  
CC  
LOGIC  
Unless Otherwise Specified  
TEMPERATURE RANGE  
o
o
-2 (-55 C to 125 C)  
PARAMETER  
DYNAMIC CHARACTERISTICS  
S SUFFIX  
T SUFFIX  
U SUFFIX  
UNITS  
Resolution (Max)  
Linearity Error  
12  
12  
1
12  
1
Bits  
o
25 C  
±1  
±1  
± /  
± /  
LSB  
LSB  
2
2
o
o
-55 C to 125 C (Max)  
±1  
±1  
Max Resolution For Which No Missing Codes Is Guaranteed  
o
25 C  
HI-574A, HI-674A  
HI-774  
12  
11  
11  
11  
12  
12  
12  
12  
12  
12  
12  
12  
Bits  
Bits  
Bits  
Bits  
T
to T  
HI-574A, HI-674A  
HI-774  
MIN  
MAX  
Unipolar Offset (Max)  
Adjustable to Zero  
HI-574A, HI-674A  
HI-774  
±2  
±2  
±1.5  
±2  
±1  
±1  
LSB  
LSB  
Bipolar Offset (Max)  
V
V
= 0V (Adjustable to Zero)  
±4  
±4  
±3  
LSB  
IN  
IN  
= -10V  
±0.15  
±0.1  
±0.1  
% of FS  
Full Scale Calibration Error  
o
25 C (Max), With Fixed 50Resistor From REF OUT To REF IN  
±0.25  
±0.25  
±0.15  
% of FS  
(Adjustable To Zero)  
o
T
T
to T  
to T  
(No Adjustment At 25 C)  
±0.75  
±0.50  
±0.50  
±0.25  
±0.275  
±0.125  
% of FS  
% of FS  
MIN  
MIN  
MAX  
MAX  
o
(With Adjustment To Zero At 25 C)  
Temperature Coefficients  
Guaranteed Max Change, T  
to T  
(Using Internal Reference)  
MAX  
MIN  
Unipolar Offset  
Bipolar Offset  
±2  
±2  
±1  
±2  
±1  
±1  
±5  
LSB  
LSB  
LSB  
Full Scale Calibration  
Power Supply Rejection  
±20  
±10  
Max Change In Full Scale Calibration  
+13.5V < V  
< +16.5V or +11.4V < V  
< +12.6V  
CC  
±2  
±1  
±1  
LSB  
LSB  
LSB  
CC  
1
1
1
+4.5V < V  
< +5.5V  
± /  
± /  
± /  
LOGIC  
2
2
2
-16.5V < V < -13.5V or -12.6V < V < -11.4V  
±2  
±1  
±1  
EE  
EE  
ANALOG INPUTS  
Input Ranges  
Bipolar  
-5 to +5  
-10 to +10  
0 to +10  
0 to +20  
V
V
V
V
Unipolar  
6-957  
HI-574A, HI-674A, HI-774  
o
DC and Transfer Accuracy Specifications Typical at 25 C with V  
= +15V or +12V, V  
LOGIC  
= +5V, V  
= -15V or -12V,  
CC  
EE  
Unless Otherwise Specified (Continued)  
TEMPERATURE RANGE  
o
o
-2 (-55 C to 125 C)  
PARAMETER  
S SUFFIX  
T SUFFIX  
U SUFFIX  
UNITS  
Input Impedance  
10V Span  
5K, ±25%  
20V Span  
10K, ±25%  
POWER SUPPLIES  
Operating Voltage Range  
V
V
V
+4.5 to +5.5  
+11.4 to +16.5  
-11.4 to -16.5  
V
V
V
LOGIC  
CC  
EE  
Operating Current  
I
I
I
7 Typ, 15 Max  
11 Typ, 15 Max  
21 Typ, 28 Max  
mA  
mA  
mA  
LOGIC  
+15V Supply  
CC  
EE  
-15V Supply  
Power Dissipation  
±15V, +15V  
515 Typ, 720 Max  
385 Typ  
mW  
mW  
±12V, +5V  
Internal Reference Voltage  
T
to T  
+10.00 ±0.05 Max  
V
MIN  
MAX  
Output current, available for external loads (External load should not  
change during conversion).  
2.0 Max  
mA  
Digital Specifications All Models, Over Full Temperature Range  
PARAMETER  
MIN  
TYP  
MAX  
Logic Inputs (CE, CS, R/C, A , 412/8)  
O
Logic “1”  
+2.4V  
-
-
+5.5V  
+0.8V  
±5µA  
-
Logic “0”  
-0.5V  
Current  
-
-
±0.1µA  
5pF  
Capacitance  
Logic Outputs (DB11-DB0, STS)  
Logic “0” (I  
Logic “1” (I  
Logic “1” (I  
- 1.6mA)  
-
-
+0.4V  
SINK  
- 500µA)  
- 10µA)  
+2.4V  
-
-
-
SOURCE  
SOURCE  
+4.5V  
-
±5µA  
-
Leakage (High-Z State, DB11-DB0 Only)  
Capacitance  
-
-
±0.1µA  
5pF  
o
Timing Specifications (HI-574A) 25 C, Note 2, Unless Otherwise Specified  
SYMBOL  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
CONVERT MODE  
t
STS Delay from CE  
-
-
200  
ns  
DSC  
6-958  
HI-574A, HI-674A, HI-774  
o
Timing Specifications (HI-574A) 25 C, Note 2, Unless Otherwise Specified (Continued)  
SYMBOL  
PARAMETER  
MIN  
50  
50  
50  
50  
50  
0
TYP  
MAX  
UNITS  
ns  
t
CE Pulse Width  
-
-
-
-
HEC  
t
CS to CE Setup  
ns  
SSC  
HSC  
SRC  
HRC  
t
t
CS Low During CE High  
R/C to CE Setup  
-
-
ns  
-
-
ns  
t
R/C Low During CE High  
-
-
ns  
t
A
A
to CE Setup  
-
-
ns  
SAC  
O
t
Valid During CE High  
50  
15  
10  
-
-
ns  
HAC  
O
t
Conversion Time  
12-Bit Cycle T  
MIN  
to T  
20  
13  
25  
17  
µs  
C
MAX  
8-Bit Cycle T  
MIN  
to T  
µs  
MAX  
READ MODE  
t
t
Access Time from CE  
Data Valid After CE Low  
Output Float Delay  
CS to CE Setup  
-
25  
-
75  
150  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DD  
-
-
HD  
t
100  
150  
HL  
t
50  
0
-
-
-
-
-
-
-
-
SSR  
SRR  
t
R/C to CE Setup  
-
t
A
to CE Setup  
50  
0
-
SAR  
HSR  
HRR  
O
t
CS Valid After CE Low  
R/C High After CE Low  
-
t
0
-
-
t
A
Valid After CE Low  
50  
300  
HAR  
O
t
STS Delay After Data Valid  
1200  
HS  
o
Timing Specifications (HI-674A) 25 C, Note 2, Unless Otherwise Specified  
SYMBOL  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
CONVERT MODE  
t
t
STS Delay from CE  
CE Pulse Width  
-
-
-
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
DSC  
50  
50  
50  
50  
50  
0
-
-
HEC  
t
CS to CE Setup  
-
SSC  
HSC  
SRC  
HRC  
t
t
CS Low During CE High  
R/C to CE Setup  
-
-
-
-
t
R/C Low During CE High  
-
-
t
A
A
to CE Setup  
-
-
SAC  
O
t
Valid During CE High  
50  
9
-
-
HAC  
O
t
Conversion Time  
12-Bit Cycle T  
MIN  
to T  
12  
8
15  
10  
C
MAX  
8-Bit Cycle T  
MIN  
to T  
6
MAX  
READ MODE  
t
t
Access Time from CE  
Data Valid After CE Low  
Output Float Delay  
-
25  
-
75  
-
150  
-
ns  
ns  
ns  
DD  
HD  
t
100  
150  
HL  
6-959  
HI-574A, HI-674A, HI-774  
o
Timing Specifications (HI-674A) 25 C, Note 2, Unless Otherwise Specified (Continued)  
SYMBOL  
PARAMETER  
MIN  
50  
0
TYP  
MAX  
UNITS  
ns  
t
CS to CE Setup  
R/C to CE Setup  
-
-
-
-
-
-
-
-
SSR  
t
-
ns  
SRR  
t
A
to CE Setup  
50  
0
-
ns  
SAR  
HSR  
HRR  
O
t
CS Valid After CE Low  
R/C High After CE Low  
-
ns  
t
0
-
-
ns  
t
A
Valid After CE Low  
50  
25  
ns  
HAR  
O
t
STS Delay After Data Valid  
850  
ns  
HS  
o
Timing Specifications (HI-774) 25 C, Into a load with R = 3kand C = 50pF, Note 2, Unless Otherwise Specified  
L
L
SYMBOL  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
CONVERT MODE  
t
t
STS Delay from CE  
CE Pulse Width  
-
50  
50  
50  
50  
50  
0
100  
30  
20  
20  
0
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
DSC  
-
-
HEC  
t
CS to CE Setup  
SSC  
HSC  
SRC  
HRC  
t
t
CS Low During CE High  
R/C to CE Setup  
-
-
t
R/C Low During CE High  
20  
0
-
t
A
A
to CE Setup  
-
SAC  
O
t
Valid During CE High  
50  
-
30  
8.0  
6.4  
9
-
HAC  
O
t
Conversion Time  
12-Bit Cycle T  
to T  
(-5)  
9
C
MIN  
MAX  
8-Bit Cycle T  
to T  
(-5)  
MAX  
-
6.8  
11  
8.3  
MIN  
12-Bit Cycle T  
MIN  
to T  
(-2)  
-
MAX  
8-Bit Cycle T  
MIN  
to T  
(-2)  
-
6.8  
MAX  
READ MODE  
t
t
Access Time from CE  
Data Valid After CE Low  
Output Float Delay  
CS to CE Setup  
-
25  
-
75  
35  
70  
0
150  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DD  
-
HD  
t
150  
HL  
t
50  
0
-
SSR  
SRR  
t
R/C to CE Setup  
0
-
t
A
to CE Setup  
50  
0
25  
0
-
SAR  
HSR  
HRR  
O
t
CS Valid After CE Low  
R/C High After CE Low  
-
t
0
0
-
-
t
A
Valid After CE Low  
50  
-
25  
90  
HAR  
O
t
STS Delay After Data Valid  
300  
HS  
NOTES:  
1. Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.  
2. Time is measured from 50% level of digital transitions. Tested with a 50pF and 3kload.  
6-960  
HI-574A, HI-674A, HI-774  
Definitions of Specifications  
Pin Descriptions  
Linearity Error  
PIN  
1
SYMBOL  
DESCRIPTION  
Logic supply pin (+5V)  
Linearity error refers to the deviation of each individual code  
from a line drawn from “zero” through “full scale”. The point  
used as “zero” occurs / LSB (1.22mV for 10V span) before  
2
the first code transition (all zeros to only the LSB “on”). “Full  
V
LOGIC  
1
2
12/8  
Data Mode Select - Selects between  
12-bit and 8-bit output modes.  
1
scale” is defined as a level 1 / LSB beyond the last code tran-  
2
sition (to all ones). The deviation of a code from the true straight  
line is measured from the middle of each particular code.  
3
4
5
6
CS  
Chip Select - Chip Select high disables  
the device.  
The HI-X74(A)K and L grades are guaranteed for maximum  
1
A
Byte Address/Short Cycle - See Table  
1 for operation.  
O
nonlinearity of ± / LSB. For these grades, this means that an  
2
analog value which falls exactly in the center of a given code  
width will result in the correct digital output code. Values nearer  
the upper or lower transition of the code width may produce the  
next upper or lower digital output code. The HI-X74(A)J is  
guaranteed to ±1 LSB max error. For this grade, an analog  
value which falls within a given code width will result in either  
the correct code for that region or either adjacent one.  
R/C  
CE  
Read/Convert - See Table 1 for  
operation.  
Chip Enable - Chip Enable low disables  
the device.  
7
8
V
Positive Supply (+12V/+15V)  
+10V Reference  
CC  
Note that the linearity error is not user-adjustable.  
REF OUT  
AC  
Differential Linearity Error (No Missing Codes)  
A specification which guarantees no missing codes requires  
that every code combination appear in a monotonic increas-  
ing sequence as the analog input level is increased. Thus  
every code must have a finite width. For the HI-X74(A)K and L  
grades, which guarantee no missing codes to 12-bit resolu-  
tion, all 4096 codes must be present over the entire operating  
temperature ranges. The HI-X74(A)J grade guarantees no  
missing codes to 11-bit resolution over temperature; this  
means that all code combinations of the upper 11 bits must be  
present; in practice very few of the 12-bit codes are missing.  
9
Analog Common  
10  
11  
12  
13  
REF IN  
Reference Input  
V
Negative Supply (-12V/-15V).  
Bipolar Offset  
EE  
BIP OFF  
10V Input  
10V Input - Used for 0V to 10V and -5V  
to +5V input ranges.  
14  
20V Input  
20V Input - Used for 0V to 20V and -10V  
to +10V input ranges.  
Unipolar Offset  
1
The first transition should occur at a level / LSB above analog  
2
common. Unipolar offset is defined as the deviation of the  
actual transition from that point. This offset can be adjusted as  
discussed on the following pages. The unipolar offset tempera-  
ture coefficient specifies the maximum change of the transition  
point over temperature, with or without external adjustment.  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
DC  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
DB8  
DB9  
DB10  
DB11  
STS  
Digital Common  
Data Bit 0 (LSB)  
Data Bit 1  
Bipolar Offset  
Data Bit 2  
Similarly, in the bipolar mode, the major carry transition  
Data Bit 3  
(0111 1111 1111 to 1000 0000 0000) should occur for an  
1
analog value  
/ LSB below analog common. The bipolar  
2
Data Bit 4  
offset error and temperature coefficient specify the initial  
deviation and maximum change in the error over tempera-  
ture.  
Data Bit 5  
Data Bit 6  
Full Scale Calibration Error  
Data Bit 7  
The last transition (from 1111 1111 1110 to 1111 1111  
1
1111) should occur for an analog value 1 / LSB below the  
2
Data Bit 8  
nominal full scale (9.9963V for 10.000V full scale). The full  
scale calibration error is the deviation of the actual level at  
the last transition from the ideal level. This error, which is  
typically 0.05 to 0.1% of full scale, can be trimmed out as  
shown in Figures 2 and 3. The full scale calibration error  
over temperature is given with and without the initial error  
trimmed out. The temperature coefficients for each grade  
indicate the maximum change in the full scale gain from the  
initial value using the internal 10V reference.  
Data Bit 9  
Data Bit 10  
Data Bit 11 (MSB)  
Status Bit - Status high implies a  
conversion is in progress.  
6-961  
HI-574A, HI-674A, HI-774  
Temperature Coefficients  
Power Supplies  
The temperature coefficients for full-scale calibration, unipo- Supply voltages to the HI-X74(A) (+15V, -15V and +5V) must  
lar offset, and bipolar offset specify the maximum change be “quiet” and well regulated. Voltage spikes on these lines can  
o
from the initial (25 C) value to the value at T  
or T  
.
MAX  
affect the converter’s accuracy, causing several LSBs to flicker  
when a constant input is applied. Digital noise and spikes from  
a switching power supply are especially troublesome. If switch-  
ing supplies must be used, outputs should be carefully filtered  
to assure “quiet” DC voltage at the converter terminals.  
MIN  
Power Supply Rejection  
The standard specifications for the HI-X74A assume use of  
+5.00V and ±15.00V or ±12.00V supplies. The only effect of  
power supply error on the performance of the device will be  
a small change in the full scale calibration. This will result in  
a linear change in all lower order codes. The specifications  
show the maximum change in calibration from the initial  
value with the supplies at the various limits.  
Further, a bypass capacitor pair on each supply voltage  
terminal is necessary to counter the effect of variations in  
supply current. Connect one pair from pin 1 to 15 (V  
LOGIC  
supply), one from pin 7 to 9 (V  
to Analog Common) and  
CC  
to Analog Common). For each  
one from pin 11 to 9 (V  
EE  
capacitor pair, a 10µF tantalum type in parallel with a 0.1µF  
ceramic type is recommended.  
Code Width  
A fundamental quantity for A/D converter specifications is  
the code width. This is defined as the range of analog input  
values for which a given digital output code will occur. The  
nominal value of a code width is equivalent to 1 least signifi-  
cant bit (LSB) of the full scale range or 2.44mV out of 10V for  
a 12-bit ADC.  
Ground Connections  
Pins 9 and 15 should be tied together at the package to  
guarantee specified performance for the converter. In  
addition, a wide PC trace should run directly from pin 9 to  
(usually) +15V common, and from pin 15 to (usually) the +5V  
Logic Common. If the converter is located some distance from  
the system’s “single point” ground, make only these connec-  
tions to pins 9 and 15: Tie them together at the package, and  
back to the system ground with a single path. This path  
should have low resistance. (Code dependent currents flow in  
Quantization Uncertainty  
Analog-to-digital converters exhibit an inherent quantization  
1
uncertainty of ± / LSB. This uncertainty is a fundamental  
2
characteristic of the quantization process and cannot be  
reduced for a converter of given resolution.  
the V , V  
and V  
terminals, but not through the  
HI-X74(A)’s Analog Common or Digital Common).  
CC EE  
LOGIC  
Left-justified Data  
The data format used in the HI-X74(A) is left-justified. This Analog Signal Source  
means that the data represents the analog input as a frac-  
HI-574A and HI-674A  
4095  
tion of full-scale, ranging from 0 to  
binary point to the left of the MSB.  
. This implies a  
4096  
The device chosen to drive the HI-X74A analog input will see a  
nominal load of 5k(10V range) or 10k(20V range).  
However, the other end of these input resistors may change  
±400mV with each bit decision, creating abrupt changes in cur-  
rent at the analog input. Thus, the signal source must maintain  
its output voltage while furnishing these step changes in load  
current, which occur at 1.6µs and 950ns intervals for the  
HI-574A and HI-674A, respectively. This requires low output  
impedance and fast settling by the signal source.  
Applying the HI-X74(A)  
For each application of this converter, the ground  
connections, power supply bypassing, analog signal source,  
digital timing and signal routing on the circuit board must be  
optimized to assure maximum performance. These areas  
are reviewed in the following sections, along with basic oper-  
ating modes and calibration requirements.  
The output impedance of an op amp, for example, has an open  
loop value which, in a closed loop, is divided by the loop gain  
available at a frequency of interest. The amplifier should have  
acceptable loop gain at 600KHz for use with the HI-X74A. To  
check whether the output properties of a signal source are  
suitable, monitor the HI-X74A’s input (pin 13 or 14) with an oscil-  
loscope while a conversion is in progress. Each of the twelve  
disturbances should subside in 1µs or less for the HI-574A and  
500ns or less for the HI-674A. (The comparator decision is  
made about 1.5µs and 850ns after each code change from the  
SAR for the HI-574A and HI-674A, respectively.)  
Physical Mounting and Layout Considerations  
Layout  
Unwanted, parasitic circuit components, (L, R, and C) can  
make 12-bit accuracy impossible, even with a perfect A/D  
converter. The best policy is to eliminate or minimize these  
parasitics through proper circuit layout, rather than try to  
quantify their effects.  
The recommended construction is a double-sided printed  
circuit board with a ground plane on the component side.  
Other techniques, such as wire-wrapping or point-to-point  
wiring on vector board, will have an unpredictable effect on  
accuracy.  
If the application calls for a Sample/Hold to precede the  
converter, it should be noted that not all Sample/Holds are  
compatible with the HI-574A in the manner described above.  
These will require an additional wideband buffer amplifier to  
lower their output impedance. A simpler solution is to use the  
Intersil HA-5320 Sample/Hold, which was designed for use  
with the HI-574A.  
In general, sensitive analog signals should be routed between  
ground traces and kept well away from digital lines. If analog  
and digital lines must cross, they should do so at right angles.  
6-962  
HI-574A, HI-674A, HI-774  
HI-774  
direction by up to 15 LSBs. This results in a total correction  
range of +31 to -32 LSBs. When an 8-bit conversion is per-  
The device driving the HI-774 analog input will see a nominal  
load of 5k(10V range) or 10k(20V range). However, the  
other end of these input resistors may change as much as  
1
formed, the input must settle to within ± / LSB at 8-bit resolu-  
2
tion (which equals ±8 LSBs at 12-bit resolution).  
±400mV with each bit decision. These input disturbances With the HI-774 a conversion can be initiated before the  
are caused by the internal DAC changing codes which input has completely settled, as long as it meets the con-  
causes a glitch on the summing junction. This creates abrupt straints of the Figure 1 window. This allows the user to start  
changes in current at the analog input causing a “kick back” conversion up to 4.8µs earlier than with a typical analog to  
glitch from the input. Because the algorithm starts with the digital converter. A typical successive approximation type  
MSB, the first glitches will be the largest and get smaller as ADC must have a constant input during a conversion  
the conversion proceeds. These glitches can occur at 350ns because once a bit decision is made it is locked in and can-  
intervals so an op amp with a low output impedance and fast not change.  
settling is desirable. Ultimately the input must settle to within  
the window of Figure 1 at the bit decision points in order to  
achieve 12-bit accuracy.  
32  
The HI-774 differs from the most high-speed successive  
approximation type ADC’s in that it does not require a high  
performance buffer or sample and hold. With error correction  
the input can settle while the conversion is underway, but  
only during the first 4.8µs. The input must be within 10.76%  
of the final value when the MSB decision is made. This  
occurs approximately 650ns after the conversion has been  
initiated. Digital error correction also loosens the bandwidth  
requirements of the buffer or sample and hold. As long as  
the input “kick back” disturbances settle within the window of  
Figure 1 the device will remain accurate. The combined  
effect of settling and the “kick back” disturbances must  
remain in the Figure 1 window.  
8-BIT CONVERSION  
END OF  
CONVERSION  
(12 BIT)  
16  
8
1
BIT DECISION POINTS  
± / LSB  
2
0
~ 4.8µs  
-8  
LAST BIT  
DECISION  
(12-BIT)  
-16  
MSB BIT DECISION  
~ 650ns  
12-BIT CONVERSION  
-31  
1
2
3
4
5
6
7
8
CONVERSION  
INITIATED  
TIME (µs)  
If the design is being optimized for speed, the input device  
should have closed loop bandwidth to 3MHz, and a low out-  
put impedance (calculated by dividing the open loop output  
resistance by the open loop gain). If the application requires  
a high speed sample and hold the Intersil HA-5330 or  
HA-5320 are recommended.  
FIGURE 1. HI-774 ERROR CORRECTION WINDOW vs TIME  
STS 28  
2 12/8  
In any design the input (pin 13 or 14) should be checked  
during a conversion to make sure that the input stays within  
the correctable window of Figure 1.  
HIGH BITS  
24-27  
3
4
5
CS  
A
O
MIDDLE BITS  
20-23  
Digital Error Correction  
OFFSET  
R1  
R/C  
CE  
100K  
HI-774  
LOW BITS  
16-19  
+15V  
GAIN  
-15V  
6
The HI-774 features the smart successive approximation  
register (SSAR) which includes digital error correction. This  
has the advantage of allowing the initial input to vary within a  
+31 to -32 LSB window about the final value. The input can  
R2  
10 REF IN  
REF OUT  
100K  
100Ω  
move during the first 4.8µs, after which it must remain stable  
8
1
100Ω  
within ± / LSB. With this feature a conversion can start  
2
+5V  
1
7
before the input has settled completely; however, it must be  
within the window as described in Figure 1.  
12 BIP OFF  
13 10V  
0V TO +10V  
ANALOG  
+15V  
IN  
The conversion cycle starts by making the first 8-bit decisions  
very quickly, allowing the internal DAC to settle only to 8-bit  
INPUTS  
-15V 11  
14 20VIN  
0V TO +20V  
accuracy. Then the converter goes through two error correc-  
DIG COM 15  
9 ANA  
COM  
1
tion cycles. At this point the input must be stable within ± /  
2
LSB. These cycles correct the 8-bit word to 12-bit accuracy for  
any errors made (up to +16 or -32 LSBs). This is up one count  
or down two counts at 8-bit resolution. The converter then  
continues to make the 4 LSB decisions, settling out to 12-bit  
accuracy. The last four bits can adjust the code in the positive  
When driving the 20V (pin 14) input, minimize capacitance on pin 13.  
FIGURE 2. UNIPOLAR CONNECTIONS  
6-963  
HI-574A, HI-674A, HI-774  
adjustment is complete. Therefore, calibration is performed  
STS 28  
in terms of the observable code changes instead of the  
midpoint between code changes.  
2 12/8  
HIGH BITS  
24-27  
3
4
5
CS  
For example, midpoint of the first LSB increment should be  
A
O
MIDDLE BITS  
20-23  
positioned at the origin, with an output code of all 0’s. To do  
1
this, apply an input of + / LSB (+1.22mV for the 10V range;  
2
R/C  
CE  
+2.44mV for the 20V range). Adjust the Offset potentiometer  
R1 until the first code transition flickers between  
0000 0000 0000 and 0000 0000 0001.  
LOW BITS  
16-19  
6
GAIN  
R2  
Next, perform a Gain Adjust at positive full scale. Again, the  
10 REF IN  
REF OUT  
12 BIP OFF  
ideal input corresponding to the last code change is applied.  
100Ω  
100Ω  
R1  
1
8
This is 1 / LSBs below the nominal full scale (+9.9963V for  
2
10V range; +19.9927V for 20V range). Adjust the Gain  
potentiometer R2 for flicker between codes 1111 1111 1110  
and 1111 1111 1111.  
+5V 1  
±5V  
OFFSET  
+15V 7  
-15V 11  
13 10V  
IN  
ANALOG  
INPUTS  
Bipolar Connections and Calibration  
14 20V †  
IN  
±10V  
Refer to Figure 3. The gain and offset errors listed under  
Specifications may be adjusted to zero using potentiome-  
ters R1 and R2 (see Note). If this isn’t required, either or  
both pots may be replaced by a 50, 1% metal film resistor.  
DIG COM 15  
9 ANA  
COM  
Connect the Analog signal to pin 13 for a ±5V range, or to  
pin 14 for a ±10V range. Calibration of offset and gain is sim-  
When driving the 20V (pin 14) input, minimize capacitance on pin 13.  
FIGURE 3. BIPOLAR CONNECTIONS  
ilar to that for the unipolar ranges as discussed above. First  
1
apply a DC input voltage / LSB above negative full scale  
2
Range Connections and Calibration Procedures  
(i.e., -4.9988V for the ±5V range, or -9.9976V for the ±10V  
range). Adjust the offset potentiometer R1 for flicker between  
The HI-X74(A) is a “complete” A/D converter, meaning it is  
fully operational with addition of the power supply voltages, a  
Start Convert signal, and a few external components as  
shown in Figure 2 and Figure 3. Nothing more is required for  
most applications.  
output codes 0000 0000 0000 and 0000 0000 0001. Next,  
1
apply a DC input voltage 1 / LSBs below positive full scale  
2
(+4.9963V for ±5V range; +9.9927V for ±10V range). Adjust  
the Gain potentiometer R2 for flicker between codes 1111  
1111 1110 and 1111 1111 1111.  
Whether controlled by a processor or operating in the stand-  
alone mode, the HI-X74(A) offers four standard input ranges:  
0V to +10V, 0V to +20V, ±5V and ±10V. The maximum errors  
for gain and offset are listed under Specifications. If required,  
however, these errors may be adjusted to zero as explained  
below. Power supply and ground connections have been dis-  
cussed in an earlier section.  
NOTE: The 100potentiometer R2 provides Gain Adjust for the 10V  
and 20V ranges. In some applications, a full scale of 10.24V (LSB  
equals 2.5mV) or 20.48V (LSB equals 5.0mV) is more convenient.  
For these, replace R2 by a 50, 1% metal film resistor. Then, to pro-  
vide Gain Adjust for the 10.24V range, add a 200potentiometer in  
series with pin 13. For the 20.48V range, add a 500potentiometer  
in series with pin 14.  
Unipolar Connections and Calibration  
Controlling the HI-X74(A)  
Refer to Figure 2. The resistors shown (see Note) are for  
calibration of offset and gain. If this is not required, replace  
R2 with a 50, 1% metal film resistor and remove the net-  
work on pin 12. Connect pin 12 to pin 9. Then, connect the  
analog signal to pin 13 for the 0V to 10V range, or to pin 14  
for the 0V to 20V range. Inputs to +20V (5V over the power  
supply) are no problem - the converter operates normally.  
The HI-X74(A) includes logic for direct interface to most  
microprocessor systems. The processor may take full con-  
trol of each conversion, or the converter may operate in the  
“stand-alone” mode, controlled only by the R/C input. Full  
control consists of selecting an 8-bit or 12-bit conversion  
cycle, initiating the conversion, and reading the output data  
when ready-choosing either 12 bits at once or 8 followed by  
4, in a left-justified format. The five control inputs are all  
Calibration consists of adjusting the converter’s most  
negative output to its ideal value (offset adjustment), then,  
adjusting the most positive output to its ideal value (gain  
adjustment). To understand the procedure, note that in  
principle, one is setting the output with respect to the mid-  
point of an increment of analog input, as denoted by two  
adjacent code changes. Nominal value of an increment is  
one LSB. However, this approach is impractical because  
nothing “happens” at a midpoint to indicate that an  
TTL/CMOS-compatible: (12/8, CS, A , R/C and CE). Table  
O
1 illustrates the use of these inputs in controlling the  
converter’s operations. Also, a simplified schematic of the  
internal control logic is shown in Figure 7.  
6-964  
HI-574A, HI-674A, HI-774  
“Stand-Alone Operation”  
Conversion Length  
A Convert Start transition (see Table 1) latches the state of  
A , which determines whether the conversion continues for  
The simplest control interface calls for a singe control line  
connected to R/C. Also, CE and 12/8 are wired high, CS and  
O
12 bits (A low) or stops with 8 bits (A high). If all 12 bits are  
O
O
A
are wired low, and the output data appears in words of  
O
read following an 8-bit conversion, the last three LSBs will  
12 bits each.  
read ZERO and DB3 will read ONE. A is latched because it  
O
The R/C signal may have any duty cycle within (and is also involved in enabling the output buffers (see “Reading  
including) the extremes shown in Figures 8 and 9. In gen- the Output Data”). No other control inputs are latched.  
eral, data may be read when R/C is high unless STS is also  
TABLE 1. TRUTH TABLE FOR HI-X74(A) CONTROL INPUTS  
high, indicating a conversion is in progress. Timing parame-  
ters particular to this mode of operation are listed below  
under “Stand-Alone Mode Timing”.  
CE  
0
CS R/C 12/8  
A
OPERATION  
O
X
1
0
0
X
X
0
0
0
0
X
X
X
X
X
X
X
X
1
X
None  
None  
HI-574A STAND-ALONE MODE TIMING  
PARAMETER MIN TYP MAX UNITS  
Low R/C Pulse Width  
X
X
0
1
0
1
0
1
X
0
1
SYMBOL  
Initiate 12-bit conversion  
Initiate 8-bit conversion  
Initiate 12-bit conversion  
Initiate 8-bit conversion  
Initiate 12-bit conversion  
Initiate 8-bit conversion  
Enable 12-bit Output  
t
50  
-
-
-
-
-
-
-
-
200  
-
ns  
ns  
ns  
ns  
ns  
ns  
HRL  
t
STS Delay from R/C  
DS  
1
t
Data Valid after R/C Low  
25  
HDR  
1
t
STS Delay after Data Valid 300  
1200  
-
HS  
1
0
0
0
0
0
t
t
High R/C Pulse Width  
Data Access Time  
150  
-
HRH  
DDR  
1
150  
1
1
1
1
Time is measured from 50% level of digital transitions. Tested with a  
50pF and 3kload.  
1
0
Enable 8 MSBs Only  
1
0
Enable 4 LSBs Plus 4 Trailing  
Zeroes  
HI-674A STAND-ALONE MODE TIMING  
SYMBOL  
PARAMETER  
Low R/C Pulse Width  
STS Delay from R/C  
Data Valid after R/C Low  
MIN TYP MAX UNITS  
Conversion Start  
t
50  
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
HRL  
A conversion may be initiated as shown in Table 1 by a logic  
transition on any of three inputs: CE, CS or R/C. The last of  
the three to reach the correct state starts the conversion, so  
one, two or all three may be dynamically controlled. The  
nominal delay from each is the same, and if necessary, all  
three may change state simultaneously. However, to ensure  
that a particular input controls the start of conversion, the  
other two should be set up at least 50ns earlier. See the  
HI-774 Timing Specifications, Convert Mode.  
t
200  
-
DS  
t
25  
HDR  
t
STS Delay after Data Valid 25  
850  
-
HS  
t
t
High R/C Pulse Width  
Data Access Time  
150  
-
HRH  
DDR  
150  
Time is measured from 50% level of digital transitions. Tested with a  
50pF and 3kload.  
This variety of HI-X74(A) control modes allows a simple  
interface in most system applications. The Convert Start  
timing relationships are illustrated in Figure 4.  
HI-774 STAND-ALONE MODE TIMING  
The output signal STS indicates status of the converter by  
going high only while a conversion is in progress. While STS  
is high, the output buffers remain in a high impedance state  
and data cannot be read. Also, an additional Start Convert  
will not reset the converter or reinitiate a conversion while  
STS is high.  
SYMBOL  
PARAMETER  
Low R/C Pulse Width  
STS Delay from R/C  
Data Valid after R/C Low  
STS Delay after Data Valid  
High R/C Pulse Width  
Data Access Time  
MIN TYP MAX UNITS  
t
50  
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
HRL  
t
200  
-
DS  
t
20  
-
HDR  
Reading the Output Data  
t
850  
-
The output data buffers remain in a high impedance state  
until four conditions are met: R/C high, STS low, CE high and  
CS low. At that time, data lines become active according to  
HS  
t
t
150  
-
HRH  
DDR  
the state of inputs 12/8 and A . Timing constraints are  
150  
O
illustrated in Figure 5.  
6-965  
HI-574A, HI-674A, HI-774  
The 12/8 input will be tied high or low in most applications,  
though it is fully TTL/CMOS-compatible. With 12/8 high, all  
12 output lines become active simultaneously, for interface to  
a 12-bit or 16-bit data bus. The A input is ignored.  
O
CE  
CS  
t
t
t
HSR  
SSR  
With 12/8 low, the output is organized in two 8-bit bytes,  
selected one at a time by A . This allows an 8-bit data bus  
O
to be connected as shown in Figure 6. A is usually tied to  
O
t
HRR  
the least significant bit of the address bus, for storing the  
HI-X74(A) output in two consecutive memory locations.  
(With A low, the 8 MSBs only are enabled. With A high, 4  
MSBs are disabled, bits 4 through 7 are forced low, and the 4  
LSBs are enabled). This two byte format is considered “left  
justified data,” for which a decimal (or binary!) point is  
assumed to the left of byte 1:  
R/C  
O
O
SRR  
A
O
t
t
SAR  
HAR  
STS  
t
BYTE 1  
BYTE 2  
HS  
t
HD  
DATA  
VALID  
X
X
X
X
X
X
X
X
X
X
X
X
0
0
0
0
DB11-DB0  
HIGH IMPEDANCE  
t
t
HL  
DD  
MSB  
LSB  
Further, A may be toggled at any time without damage to  
O
See HI-774 Timing Specifications for more information.  
the converter. Break-before-make action is guaranteed  
between the two data bytes, which assures that the outputs  
strapped together in Figure 6 will never be enabled at the  
same time.  
FIGURE 5. READ CYCLE TIMING  
A read operation usually begins after the conversion is  
complete and STS is low. For earliest access to the data,  
however, the read should begin no later than (t  
before STS goes low. See Figure 5.  
+ t )  
DD  
HS  
A
ADDRESS BUS  
O
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
STS  
DB11 (MSB)  
t
HEC  
CE  
CS  
12/8  
t
SSC  
3
4
A
O
t
HSC  
t
SRC  
5
R/C  
DATA  
BUS  
6
t
HRC  
7
A
O
HI-774  
8
t
SAC  
9
t
HAC  
10  
11  
12  
13  
14  
STS  
t
C
t
DSC  
HIGH IMPEDANCE  
DB11-DB0  
DB0 (LSB) 16  
DIG.  
15  
COM.  
See HI-774 Timing Specifications for more information.  
FIGURE 4. CONVERT START TIMING  
FIGURE 6. INTERFACE TO AN 8-BIT DATA BUS  
6-966  
HI-574A, HI-674A, HI-774  
NIBBLE B ZERO  
OVERRIDE  
NIBBLE A, B  
NIBBLE C  
INPUT BUFFERS  
12/8  
READ CONTROL  
CS  
A
O
STATUS  
R/C  
CE  
CURRENT  
CONTROLLED  
OSCILLATOR  
STROBE  
CLOCK  
CONVERT  
CONTROL  
EOC9  
CK  
POWER UP  
RESET  
Q
D
RESET  
Q
A
LATCH  
O
EOC13  
FIGURE 7. HI-774 CONTROL LOGIC  
t
HRL  
R/C  
t
DS  
STS  
t
C
t
HDR  
t
HS  
DATA  
VALID  
DATA  
VALID  
DB11-DB0  
FIGURE 8. LOW PULSE FOR R/C - OUTPUTS ENABLED AFTER CONVERSION  
R/C  
t
t
DS  
HRH  
STS  
t
C
t
HDR  
t
DDR  
HIGH-Z  
HIGH-Z  
DB11-DB0  
DATA  
VALID  
FIGURE 9. HIGH PULSE FOR R/C - OUTPUTS ENABLED WHILE R/C HIGH, OTHERWISE HIGH-Z  
6-967  
HI-574A, HI-674A, HI-774  
Die Characteristics  
DIE DIMENSIONS:  
PASSIVATION:  
Analog: 3070mm x 4610mm  
Digital: 1900mm x 4510mm  
Type: Nitride Over Silox  
Nitride Thickness: 3.5kÅ ±0.5kÅ  
Silox Thickness: 12kÅ ±1.5kÅ  
METALLIZATION:  
WORST CASE CURRENT DENSITY:  
Digital Type: Nitrox  
Thickness: 10kÅ ±2kÅ  
5
2
1.3 x 10 A/cm  
Metal 1: AlSiCu  
Thickness: 8kÅ ±1kÅ  
Metal 2: AlSiCu  
Thickness: 16kÅ ±2kÅ  
Analog Type: Al  
Thickness: 16kÅ ±2kÅ  
Metallization Mask Layout  
HI-574A, HI-674A, HI-774  
R/C  
CE  
DB10  
DB9  
V
CC  
V
REFOUT  
ANALOG  
COMMON  
DB8  
DB7  
DB6  
DB5  
ANALOG  
COMMON  
ANALOG  
COMMON  
V
REFIN  
DB4  
DB3  
DB2  
V
EE  
6-968  
HI-574A, HI-674A, HI-774  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate  
and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which  
may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
Sales Office Headquarters  
NORTH AMERICA  
EUROPE  
ASIA  
Intersil Corporation  
Intersil SA  
Mercure Center  
100, Rue de la Fusee  
1130 Brussels, Belgium  
TEL: (32) 2.724.2111  
FAX: (32) 2.724.22.05  
Intersil (Taiwan) Ltd.  
Taiwan Limited  
7F-6, No. 101 Fu Hsing North Road  
Taipei, Taiwan  
Republic of China  
TEL: (886) 2 2716 9310  
FAX: (886) 2 2715 3029  
P. O. Box 883, Mail Stop 53-204  
Melbourne, FL 32902  
TEL: (321) 724-7000  
FAX: (321) 724-7240  
6-969  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY