HI20203JCB [INTERSIL]

8-Bit, 160 MSPS, Ultra High-Speed D/A Converter; 8位, 160 MSPS ,超高速D / A转换器
HI20203JCB
型号: HI20203JCB
厂家: Intersil    Intersil
描述:

8-Bit, 160 MSPS, Ultra High-Speed D/A Converter
8位, 160 MSPS ,超高速D / A转换器

转换器 光电二极管
文件: 总10页 (文件大小:82K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HI20203  
8-Bit, 160 MSPS,  
Ultra High-Speed D/A Converter  
August 1997  
Features  
Description  
• Throughput Rate . . . . . . . . . . . . . . . . . . . . . . . . 160MHz The HI20203 is an 8-bit, 160MHz ultra high speed D/A con-  
verter. The converter is based on an R2R switched current  
source architecture that includes an input data register with  
• 8-Bit (HI20203) Resolution  
a complement feature and is Emitter Coupled Logic (ECL)  
compatible.  
• Differential Linearity Error . . . . . . . . . . . . . . . . 0.5 LSB  
• Low Glitch Noise  
The HI20203 is an 8-bit accurate D/A with a linearity error of  
0.5 LSB.  
• Analog Multiplying Function  
• Low Power Consumption . . . . . . . . . . . . . . . . . .420mW  
• Evaluation Board Available  
For 10-bit resolution, please refer to the HI20201 data sheet.  
Ordering Information  
• Direct Replacement for the Sony CX20201-3, CX20202-3  
PART  
NUMBER  
TEMP.  
RANGE ( C)  
o
PACKAGE  
28 Ld SOIC  
28 Ld PDIP  
PKG. NO.  
M28.3A-S  
E28.6A-S  
Applications  
HI20203JCB  
HI20203JCP  
-20 to 75  
• Wireless Communications  
• Signal Reconstruction  
• Direct Digital Synthesis  
• High Definition Video Systems  
• Digital Measurement Systems  
• Radar  
-20 to 75  
Pinout  
HI20203  
(PDIP, SOIC)  
TOP VIEW  
1
2
28 AV  
SS  
(MSB) D7  
D6  
27  
V
REF  
3
26 AV  
EE  
D5  
25 NC  
24 NC  
23 NC  
22 NC  
21 NC  
4
D4  
5
D3  
6
D2  
7
D1  
8
D0  
9
20  
I
NC  
OUT  
10  
11  
12  
13  
14  
19 NC  
18 AV  
NC  
NC  
SS  
17 DV  
NC  
SS  
16 COMPL  
CLK  
CLK  
15 DV  
EE  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999  
File Number 4096.1  
10-1  
HI20203  
Typical Application Circuit  
HI20203  
.
(28) AV  
SS  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7 (MSB) (1)  
1.5k  
1kΩ  
D6 (2)  
~2.7V  
D5 (3)  
D4 (4)  
D3 (5)  
D2 (6)  
D1 (7)  
D0 (8)  
(9)  
(27) V  
REF  
2kΩ  
DIGITAL  
DATA  
(ECL)  
TL431CP  
-5.2V  
(26) AV  
EE  
0.047µF  
1.0µF  
(10)  
(11)  
(12)  
75COAX CABLE  
D/A OUT  
(20) I  
OUT  
(18, 19, 21-25) NC  
8282Ω  
(17) DV  
SS  
CLK (13)  
CLK (14)  
CLK  
1.0µF  
3.6kΩ  
(16) COMPL  
-1.3V  
0.047µF  
-5.2V  
131Ω  
(15) DV  
EE  
131Ω  
-5.2V  
Functional Block Diagram  
4 LSBs  
CURRENT  
CELLS  
(LSB) D0  
D1  
R2R  
NETWORK  
D2  
D3  
INPUT  
8-BIT  
REGISTER  
BUFFER  
D4  
D5  
UPPER  
4-BIT  
ENCODER  
D6  
15  
I
OUT  
15  
(MSB) D7  
SWITCHED  
CURRENT  
CELLS  
COMPL  
BIAS CURRENT  
GENERATOR  
CLK  
CLK  
CLOCK  
BUFFER  
V
REF  
AV  
AV  
DV  
EE  
DV  
SS  
EE  
SS  
10-2  
HI20203  
o
Absolute Maximum Ratings T = 25 C  
Thermal Information  
A
o
Digital Supply Voltage DV to DV  
. . . . . . . . . . . . . . . . . . . -7.0V  
. . . . . . . . . . . . . . . . . . -7.0V  
Thermal Resistance (Typical, Note 5)  
θ
( C/W)  
EE  
SS  
to AV  
JA  
Analog Supply Voltage AV  
DD  
SS  
SOIC Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
PDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
67  
58  
Digital Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . +0.3 to DV  
Reference Input Voltage . . . . . . . . . . . . . . . . . . . . . . +0.3 to AV  
Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20mA  
V
V
EE  
o
EE  
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . 150 C  
Maximum Storage Temperature Range . . . . . . . . . .-65 C to 150 C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . 300 C  
o
o
o
(SOIC - Lead Tips Only)  
Operating Conditions  
Supply Voltage  
Reference Input Voltage, V  
. . . . . . . . V + 0.5V to V + 1.4V  
EE EE  
REE  
AV , DV  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . -4.75V to -5.45V Load Resistance, R . . . . . . . . . . . . . . . . . . . . . . . . . . . . Above 75Ω  
EE  
EE  
L
AV - DV . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.05V to +0.05V Output Voltage, V  
. . . . . . . . . . . . . . . . . . . . . . . . . 0.8V to 1.2V  
EE EE  
O(FS)  
o
o
Digital Input Voltage  
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . .-20 C to 75 C  
V
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -1.0V to -0.7V  
IH  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -1.9V to -1.6V  
IL  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation  
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
o
Electrical Specifications AV = -5.2V, DV = -5.2V, AGND = 0V, DGND = 0V, R = , V  
= -1V, T = 25 C  
A
EE  
EE  
L
OUT  
HI20203JCB/JCP  
TYP  
PARAMETER  
SYSTEM PERFORMANCE  
Resolution  
TEST CONDITION  
MIN  
MAX  
UNITS  
8
-
-
-
-
±0.5  
±0.50  
-
Bits  
LSB  
LSB  
LSB  
Integral Linearity Error, INL  
Differential Linearity Error, DNL  
f
= 160MHz (End Point)  
= 160MHz  
S
f
-
-
S
Offset Error, V  
OS  
(Note 3)  
-
1.8  
(Adjustable to Zero)  
Full Scale Error, FSE  
(Adjustable to Zero)  
(Note 3)  
-
-
-
-
±26  
LSB  
mA  
Full Scale Output Current, I  
20  
FS  
DYNAMIC CHARACTERISTICS  
Throughput Rate  
See Figure 11  
160  
-
-
-
-
MHz  
pV/s  
Glitch Energy, GE  
R
= 75Ω  
15  
OUT  
REFERENCE INPUT  
Voltage Reference Input Range  
Reference Input Current  
With respect to AV  
+0.5  
-0.1  
-
-
+1.4  
-3.0  
-
V
EE  
V
= -4.58V  
-0.4  
14.0  
µA  
REF  
Voltage Reference to Output Small  
Signal Bandwidth  
-3dB point 1V  
P-P  
Input  
MHz  
Output Rise Time, t  
R
R
= 75Ω  
-
-
1.5  
1.5  
-
-
ns  
ns  
r
LOAD  
LOAD  
Output Fall Time, t  
= 75Ω  
f
DIGITAL INPUTS  
Input Logic High Voltage, V  
IH  
(Note 2)  
(Note 2)  
-1.0  
-0.89  
-1.75  
V
V
Input Logic Low Voltage, V  
-1.6  
IL  
10-3  
HI20203  
o
Electrical Specifications AV = -5.2V, DV = -5.2V, AGND = 0V, DGND = 0V, R = , V  
= -1V, T = 25 C (Continued)  
A
EE  
EE  
L
OUT  
HI20203JCB/JCP  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNITS  
Input Logic Current, I , I  
IL IH  
(For D9 thru D6, COMPL)  
V
= -0.89V, V = -1.75V  
IL  
0.1  
1.5  
6.0  
µA  
IH  
(Note 2)  
Input Logic Current, I , I  
IL IH  
(For D5 thru D0)  
V
= -0.89V, V = -1.75V  
IL  
0.1  
0.75  
3.0  
µA  
IH  
(Note 2)  
TIMING CHARACTERISTICS  
Data Setup Time, t  
See Figure 11  
See Figure 11  
See Figure 11  
See Figure 11  
5
1
-
-
-
-
-
-
ns  
ns  
ns  
ns  
SU  
Data Hold Time, t  
-
HLD  
Propagation Delay Time, t  
1
3.8  
4.3  
PD  
Settling Time, t  
(to / LSB)  
-
SET  
2
POWER SUPPLY CHARACTERISITICS  
I
-60  
-
-75  
-90  
mA  
EE  
Power Dissipation  
75load  
420  
470  
mW  
NOTES:  
2. Parameter guaranteed by design or characterization and not production tested.  
3. Excludes error due to reference drift.  
4. Electrical specifications guaranteed only under the stated operating conditions.  
Timing Diagram  
CLK  
CLK  
DATA  
t
t
HD  
SU  
N
N + 1  
t
t
D
D
0V  
N + 1  
90%  
N
D/A OUT  
-1V  
50%  
10%  
t
t
f
r
FIGURE 1. LADDER SETTLING TIME FULL POWER BANDWIDTH (LS)  
10-4  
HI20203  
Typical Performance Curves  
-2.0  
1.05  
1.00  
0.95  
o
= 25 C, V = -5.2V  
T
A
EE  
LINEAR AREA  
R
= 10kΩ  
L
R
= 10kΩ  
L
-1.0  
R
= 75Ω  
L
R
= 75Ω  
L
0
0.5  
1.0  
1.5  
-20  
0
20  
40  
60  
80  
o
V
- V (V)  
EE  
REF  
AMBIENT TEMPERATURE ( C)  
FIGURE 2. V  
O(FS)  
RATIO vs (V  
REF  
- V  
EE  
)
FIGURE 3. FULL SCALE OUTPUT VOLTAGE vs AMBIENT  
TEMPERATURE  
0
-10  
-20  
f
= 100MHz  
CLK  
10.0  
8.0  
6.0  
4.0  
2.0  
GAIN  
0
PHASE  
-90  
-180  
10K  
100K  
1M  
10M  
100M  
-50  
0
50  
100  
o
MULTIPLYING INPUT SIGNAL FREQUENCY (Hz)  
CASE TEMPERATURE ( C)  
FIGURE 4. OUTPUT CHARACTERISTICS vs MULTIPLYING  
INPUT SIGNAL FREQUENCY  
FIGURE 5. GLITCH ENERGY vs CASE TEMPERATURE  
(FULL SCALE - 1023mV)  
Pin Descriptions  
28 PIN SOIC  
PIN NAME  
PIN DESCRIPTION  
1-8  
D0 (LSB) - D7 (MSB) Digital Data Bit 0, the Least Significant Bit thru Digital Data Bit 7, the Most Significant Bit.  
11, 12, 19,  
21-25  
NC  
No connect, not used.  
13  
14  
15  
16  
Negative Differential Clock Input.  
Positive Differential Clock Input  
CLK  
CLK  
DV  
EE  
Digital (ECL) Power Supply -4.75V to -7V.  
COMPL  
Data Complement Pin. When set to a (ECL) logic High the input data is complemented in the input  
buffer. When cleared to a (ECL) logic Low the input data is not complemented.  
17  
18  
20  
26  
27  
28  
DV  
AV  
Digital Ground.  
SS  
Analog Ground.  
SS  
I
Current Output Pin.  
OUT  
AV  
Analog Supply -4.75V to -7V.  
Input Reference Voltage used to set the output full scale range.  
Analog Ground  
EE  
V
REF  
AV  
SS  
10-5  
HI20203  
Detailed Description  
The HI20203 is an 8-bit, current-output D/A converter. The the entire output range. By making the glitch a constant size  
converter has 10 data bits but yields 8-bit performance.  
over the entire output range this effectively integrates this  
error out of the end application.  
Architecture  
In measuring the output glitch of the HI20203 the output is  
terminated into a 75load. The glitch is measured at the  
major carry’s throughout the DACs output range.  
The HI20203 is a combined R2R/segmented current source  
design. The 6 least significant bits of the converter are derived by  
a traditional R2R network to binary weight the 1mA current  
sources. The upper 4 most significant bits are implemented as The glitch energy is calculated by measuring the area under  
segmented or thermometer encoded current sources. The the voltage-time curve. Figure 7 shows the area considered  
encoder converts the incoming 4 bits to 15 control lines to enable as glitch when changing the DAC output. Units are typically  
the most significant current sources. The thermometer encoder specified in picoVolt/seconds (pV/s).  
will convert binary to individual control lines. See Table 1.  
TABLE 1. THERMOMETER ENCODER  
HI20203  
THERMOMETER CODE  
34MHz  
LOW PASS  
FILTER  
SCOPE  
1 = ON, 0 = OFF  
- I  
(20) I  
OUT  
MSB  
0
BIT 6  
BIT 5  
BIT 4  
I
15  
0
50Ω  
75Ω  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
000 0000 0000 0000  
000 0000 0000 0001  
000 0000 0000 0011  
000 0000 0000 0111  
000 0000 0000 1111  
000 0000 0001 1111  
000 0000 0011 1111  
000 0000 0111 1111  
000 0000 1111 1111  
000 0001 1111 1111  
000 0011 1111 1111  
000 0111 1111 1111  
000 1111 1111 1111  
001 1111 1111 1111  
011 1111 1111 1111  
111 1111 1111 1111  
0
0
FIGURE 6. HI20203 GLITCH TEST CIRCUIT  
0
0
0
0
0
1
1
1
A (mV)  
GLITCH ENERGY = (a x t)/2  
1
1
1
1
t (ns)  
1
FIGURE 7. GLITCH ENERGY  
The architecture of the HI20203 is designed to minimize glitch  
while providing a manufacturable 10-bit design that does not  
require laser trimming to achieve good linearity.  
Setting Full Scale  
The Full Scale output voltage is set by the Voltage Refer-  
ence pin (27). The output voltage performance will vary as  
shown in Figure 2.  
Glitch  
Glitch is caused by the time skew between bits of the  
incoming digital data. Typically the switching time of digital  
inputs are asymmetrical meaning that the turn off time is  
faster than the turn on time (TTL designs). In an ECL system  
where the logic levels switch from one non-saturated level to  
another, the switching times can be considered close to  
symmetrical. This helps to reduce glitch in the D/A. Unequal  
delay paths through the device can also cause one current  
source to change before another. To minimize this the Intersil  
HI20203 employs an internal register, just prior to the current  
sources, that is updated on the clock edge. Lastly the worst  
case glitch usually happens at the major transition i.e.,  
01 1111 1111 to 10 0000 0000. But in the HI20203 the glitch  
is moved to the 00 0001 1111 to 11 1110 0000 transition. This  
is achieved by the split R2R/segmented current source  
architecture. This decreases the amount of current switching  
at any one time and makes the glitch practically constant over  
The output structure of the HI20203 can handle down to a  
75load effectively. To drive a 50load Figure 8 is  
suggested. Note the equivalent output load is ~75.  
HI20203  
50COAX CABLE  
39Ω  
D/A OUT  
(20) I  
OUT  
100Ω  
(18, 19, 21-25) NC  
FIGURE 8. HI20203 DRIVING A 50LOAD  
10-6  
HI20203  
Variable Attenuator Capability  
The HI20203 can be used in a multiplying mode with a variable The HI20203 incorporates a data register as shown in the  
frequency input on the V pin. In order for the part to operate Functional Block Diagram. This register is updated on the  
Internal Data Register  
REF  
correctly a DC bias must be applied and the incoming AC sig- rising edge of the CLK line. The state of the Complement bit  
nal should be coupled to the V pin. See Figure 13 for the (COMPL) will determine the data coding. See Table 2.  
REF  
application circuit. The user must first adjust the DC reference  
voltage. The incoming signal must be attenuated so as not to  
exceed the maximum (+1.4V) and minimum (+0.5V) reference  
input. The typical output Small Signal Bandwidth is 14MHz.  
TABLE 2. INPUT CODING TABLE  
OUTPUT CODE  
INPUT CODE  
00 0000 0000  
10 0000 0000  
11 1111 1111  
COMPL = 1  
COMPL = 0  
Integral Linearity  
0
-0.5  
-1  
-1  
-0.5  
0
The Integral Linearity is measured using the End Point  
method. In the End Point method the gain is adjusted. A line  
is then established from the zero point to the end point or  
Full Scale of the converter. All codes along the transfer curve  
must fall within an error band of 1 LSB of the line. Figure 10  
shows the linearity test circuit.  
Thermal Considerations  
The temperature coefficient of the full scale output voltage  
and zero offset voltage depend on the load resistance con-  
nected to I  
. The larger the load resistor the better (i.e.,  
Differential Linearity  
OUT  
smaller) the temperature coefficient of the D/A. See Figure 3  
in the performance curves section.  
The Differential Linearity is the difference from the ideal step.  
To guarantee monotonicity a maximum of 1 LSB differential  
error is allowed. When more than 1 LSB is specified the con-  
verter is considered to be missing codes. Figure 10 shows  
the linearity test circuit.  
Noise Reduction  
Digital switching noise must be minimized to guarantee system  
specifications. Since 1 LSB corresponds to 1mV for 10-bit  
resolution, care must be taken in the layout of a circuit board.  
Clock Phase Relationship  
Separate ground planes should be used for DV  
SS  
and  
The HI20203 is designed to be operated at very high speed  
(i.e., 160MHz). The clock lines should be driven with  
ECL100K logic for full performance. Any external data  
drivers and clock drivers should be terminated with 50to  
minimize reflections and ringing.  
AV . They should be connected back at the power supply.  
SS  
Separate power planes should be used for DV and AV  
EE  
.
EE  
They should be decoupled with a 1µF tantalum capacitor  
and a ceramic 0.047µF capacitor positioned as close to the  
body of the IC as possible.  
Test Circuits and Waveforms  
S1  
a
b
1
28  
S2  
a
a
b
a
2
27  
S20  
S16  
a
b
b
I6  
S3  
a
3
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
I1  
5.2V  
b
a
b
b
S4  
4.56V  
4
S5  
a
5
6
I2  
b
a
b
a
b
a
b
S11  
b
S6  
S7  
S8  
a
7
-0.89V  
-1.75V  
8
1mA  
S19  
a
9
-0.89V OR  
-1.75V  
b
10  
11  
12  
13  
14  
V1  
S17  
a
b
S12  
a
b
a
S18  
S14  
I3  
I4  
a
b
a
I5  
a
b
S13  
S15  
b
5.2V  
b
-0.89V  
-1.75V  
FIGURE 9. CURRENT CONSUMPTION, INPUT CURRENT AND OUTPUT RESISTANCE  
10-7  
HI20203  
Test Circuits and Waveforms (Continued)  
LINEARITY ERRORS ARE MEASURED AS FOLLOWS  
• • • •  
• • • •  
• • • •  
• • • •  
D/A OUT  
S1  
0
S2  
0
S3  
0
S7  
0
S8  
0
V
V
V
0
1
2
“1”  
S1  
S2  
S3  
1
2
28  
0
0
0
0
1
0
0
0
1
0
*
27  
“0”  
10K  
0.89V  
1.75V  
3
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
5.2V  
S4  
S5  
S6  
S7  
S8  
1
1
1
• • • •  
1
1
V
255  
4
5
INTEGRAL  
DIFFERENTIAL  
LINEARITY ERROR  
LINEARITY ERROR  
6
8-BIT  
DATA  
V
0
7
V
V
V
V
V
V
V
V
V
V
V
V
- V  
- V  
- V  
- V  
- V  
- V  
- V  
- V  
1
1
2
4
8
0
D/A  
OUT  
8
2
1
4
3
9
8
7
V
V0  
10  
11  
12  
13  
14  
16  
32  
64  
128  
16  
32  
64  
15  
31  
63  
127  
V
V
V
128  
1.3V  
5.2V  
V
255  
1 SHOT  
CLK  
Error at individual measurement points are calculated  
according to the following definition.  
(V  
- V )/1023 = V  
/255 1 LSB.  
0(FS)  
255  
0
FIGURE 10. DIFFERENTIAL LINEARITY ERROR AND LINEARITY ERROR  
1
B
/
HD100151  
6
10kΩ  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
MSB  
82  
82  
3
D
Q
Q
4
131  
131  
-5.2V  
5
-5.2V CLKF  
-5.2V  
TO PG  
6
-1.3V  
7
50Ω  
8
C
1
50Ω  
39  
CLKF  
9
OUT  
HD100116  
TO SCOPE  
82  
10  
11  
12  
13  
14  
LSB  
100  
1
470  
131  
82  
82  
A
DL  
CLK  
CLK  
1
-5.2V  
131  
131  
131  
DL: Delay line  
Capacitors are 0.047µF ceramic chip capacitors unless otherwise specified.  
-1.3V  
-5.2V  
FIGURE 11. MAXIMUM CONVERSION RATE, RISE TIME, FALL TIME, PROPAGATION DELAY, SETUP TIME, HOLD TIME AND  
SETTLING TIME  
10-8  
HI20203  
Test Circuits and Waveforms (Continued)  
Measuring Settling Time  
Settling time is measured as follows. The relationship  
between V and V as shown in the D/A output waveform  
0(FS)  
in Figure 12 is expressed as  
-tτ  
V = V  
(1 - e ).  
0(FS)  
The settling time for respective accuracy of 10, 9 and 8-bit is  
specified as  
τ
V = 0.9995 V  
0(FS)  
0(FS)  
0(FS)  
V = 0.999 V  
V = 0.999 V  
which results in the following:  
V
= 1V  
0(FS)  
V
t
t
t
= 7.60τ for 10-bit,  
= 6.93τ for 9-bit, and  
= 6.24τ for 8-bit,  
S
S
S
Rise time (t ) and fall time (t ) are defined as the time interval  
r
f
t
to slew from 10% to 90% of full scale voltage (V  
):  
0(FS)  
V = 0.1 V  
V = 0.9 V  
0(FS)  
0(FS)  
FIGURE 12. D/A OUTPUT WAVEFORM  
and calculated as t = t = 2.20τ.  
r
f
The settling time is obtained by combining these expressions:  
t
t
t
= 3.45t for 10-bit,  
r
S
S
S
= 3.15t for 9-bit, and  
r
= 6.24t for 8-bit  
r
10-9  
HI20203  
Test Circuits and Waveforms (Continued)  
Adjust so that the voltage at point B  
becomes -1V with no AC input.  
“1”  
10kΩ  
0.1µF  
OSC  
1
28  
27  
26  
25  
24  
23  
22  
21  
2
3
0.047µ  
51  
A
4
-5.2V  
5
6
7
8
B
TO SCOPE  
9
20  
19  
18  
17  
16  
15  
10  
11  
12  
CLK  
CLK  
13  
14  
A GND  
D GND  
-5.2V  
FIGURE 13A.  
V
V
-0.62V  
WAVEFORM AT POINT A  
EE  
EE  
-0.31V  
FIGURE 13B.  
1V  
AT 1MHz  
-1V  
P-P  
WAVEFORM AT POINT B  
FIGURE 13C.  
FIGURE 13. MULTIPLYING BANDWIDTH  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate  
and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which  
may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
10-10  

相关型号:

HI20203JCP

8-Bit, 160 MSPS, Ultra High-Speed D/A Converter
INTERSIL

HI20203_00

8-Bit, 160 MSPS, Ultra High-Speed D/A Converter
INTERSIL

HI20206

Triple 8-Bit, 35 MSPS, RGB, 3-Channel D/A Converter
INTERSIL

HI20206JCP

Triple 8-Bit, 35 MSPS, RGB, 3-Channel D/A Converter
INTERSIL

HI20206JCP

TRIPLE, PARALLEL, 8 BITS INPUT LOADING, 0.016 us SETTLING TIME, 8-BIT DAC, PDIP42
ROCHESTER

HI20412

8位, 50个中型项目,视频A / D转换器与钳位功能
INTERSIL

HI210

PNP EPITAXIAL PLANAR TRANSISTOR
HSMC

HI21002000J0G

Barrier Strip Terminal Block
AMPHENOL

HI21002200J0G

Barrier Strip Terminal Block
AMPHENOL

HI21004300J0G

Barrier Strip Terminal Block
AMPHENOL

HI21008300J0G

Barrier Strip Terminal Block
AMPHENOL

HI21010200J0G

Barrier Strip Terminal Block
AMPHENOL