HI5812JIB [INTERSIL]

CMOS 20 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold; CMOS 20微秒, 12位,采样A / D转换器,内置跟踪保持
HI5812JIB
型号: HI5812JIB
厂家: Intersil    Intersil
描述:

CMOS 20 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
CMOS 20微秒, 12位,采样A / D转换器,内置跟踪保持

转换器
文件: 总13页 (文件大小:429K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Semiconductor  
HI5812  
CMOS 20 Microsecond, 12-Bit, Sampling A/D  
Converter with Internal Track and Hold  
August 1997  
Features  
Description  
• Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 20µs The HI5812 is a fast, low power, 12-bit, successive  
approximation analog-to-digital converter. It can operate from  
a single 3V to 6V supply and typically draws just 1.9mA when  
• Throughput Rate . . . . . . . . . . . . . . . . . . . . . . . .50 KSPS  
operating at 5V. The HI5812 features a built-in track and hold.  
• Built-In Track and Hold  
The conversion time is as low as 15µs with a 5V supply.  
• Guaranteed No Missing Codes Over Temperature  
• Single Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . .+5V  
• Maximum Power Consumption. . . . . . . . . . . . . . .25mW  
• Internal or External Clock  
The twelve data outputs feature full high speed CMOS three-  
state bus driver capability, and are latched and held through a  
full conversion cycle. The output is user selectable: (i.e.) 12-  
bit, 8-bit (MSBs), and/or 4-bit (LSBs). A data ready flag, and  
conversion-start inputs complete the digital interface.  
An internal clock is provided and is available as an output.  
The clock may also be over-driven by an external source.  
Applications  
• Remote Low Power Data Acquisition Systems  
• Digital Audio  
Ordering Information  
INL (LSB)  
(MAX OVER RANGE  
TEMP.  
• DSP Modems  
PART  
NUMBER  
PKG.  
NO.  
o
• General Purpose DSP Front End  
µP Controlled Measurement System  
• Professional Audio Positioner/Fader  
TEMP.)  
±1.5  
±1.0  
±1.5  
±1.0  
±1.5  
±1.0  
( C)  
PACKAGE  
HI5812JIP  
HI5812KIP  
HI5812JIB  
HI5812KIB  
HI5812JIJ  
HI5812KIJ  
-40 to 85 24 Ld PDIP  
-40 to 85 24 Ld PDIP  
-40 to 85 24 Ld SOIC  
-40 to 85 24 Ld SOIC  
E24.3  
E24.3  
M24.3  
M24.3  
-40 to 85 24 Ld CERDIP F24.3  
-40 to 85 24 Ld CERDIP F24.3  
Pinout  
HI5812  
(PDIP, CERDIP, SOIC)  
TOP VIEW  
DRDY  
(LSB) D0  
D1  
1
2
3
4
5
6
7
8
9
24  
V
DD  
23 OEL  
22 CLK  
21 STRT  
D2  
D3  
20 V  
19 V  
-
REF  
REF  
D4  
+
D5  
18  
V
IN  
D6  
17 V  
+
AA  
D7  
16  
V
-
AA  
D8 10  
D9 11  
15 OEM  
14 D11 (MSB)  
13 D10  
V
12  
SS  
CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.  
File Number 3214.4  
Copyright © Harris Corporation 1997  
6-1789  
HI5812  
Functional Block Diagram  
STRT  
V
DD  
TO INTERNAL LOGIC  
V
SS  
V
IN  
CLK  
CLOCK  
CONTROL  
+
TIMING  
DRDY  
32C  
OEM  
V
+
REF  
16C  
8C  
D11 (MSB)  
50  
SUBSTRATE  
D10  
D9  
D8  
D7  
D6  
4C  
2C  
V
+
AA  
C
V
-
32C  
AA  
64C  
63  
16C  
12-BIT  
12-BIT EDGE  
TRIGGERED  
“D” LATCHED  
SUCCESSIVE  
APPROXIMATION  
REGISTER  
8C  
4C  
2C  
D5  
D4  
D3  
C
C
P1  
D2  
D1  
V
-
REF  
D0 (LSB)  
OEL  
6-1790  
HI5812  
Absolute Maximum Ratings  
Thermal Information  
o
o
Supply Voltage  
Thermal Resistance (Typical, Note 1)  
CERDIP Package . . . . . . . . . . . . . . . .  
PDIP Package . . . . . . . . . . . . . . . . . . .  
SOIC Package. . . . . . . . . . . . . . . . . . .  
Maximum Junction Temperature  
θ
( C/W)  
θ
( C/W)  
JA  
JC  
V
to V  
. . . . . . . . . . . . . . . . . . . .(V -0.5V) < V < +6.5V  
SS DD  
60  
80  
75  
12  
N/A  
N/A  
DD  
SS  
V
+ to V -. . . . . . . . . . . . . . . . . . . . (V -0.5V) to (V +6.5V)  
AA AA SS SS  
V
+ to V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±0.3V  
DD  
AA  
Analog and Reference Inputs  
, V +, V -. . . . . . . . . (V -0.3V) < V  
o
V
< (V  
+0.3V)  
+0.3V)  
Plastic Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 C  
Ceramic Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 C  
Maximum Storage Temperature Range . . . . . . . . . .-65 C to 150 C  
Maximum Lead Temperature (Soldering, 10s) . . . . . . . . . . . . 300 C  
IN REF SS INA  
REF  
DD  
DD  
o
Digital I/O Pins . . . . . . . . . . . . . . (V -0.3V) < VI/O < (V  
SS  
ο
o
o
Operating Conditions  
(SOIC - Lead Tips Only)  
Temperature Range  
PDIP, SOIC, and CERDIP Packages . . . . . . . . . . . . . -40 C to 85 C  
o
o
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation  
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
Electrical Specifications  
V
= V + = 5V, V  
AA  
+ = +4.608V, V = V - = V  
- = GND, CLK = External 750kHz,  
REF  
DD  
REF  
SS  
AA  
Unless Otherwise Specified  
o
o
o
25 C  
-40 C TO 85 C  
MIN  
TYP  
MAX  
MIN  
MAX  
PARAMETER  
ACCURACY  
TEST CONDITIONS  
UNITS  
Resolution  
12  
-
-
-
-
-
-
-
-
-
-
-
12  
-
-
Bits  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
Integral Linearity Error, INL  
(End Point)  
J
±1.5  
±1.0  
±2.0  
±1.0  
±3.0  
±2.5  
±2.0  
±1.0  
±1.5  
±1.0  
±2.0  
±1.0  
±3.0  
±2.5  
±2.0  
±1.0  
K
J
-
-
Differential Linearity Error, DNL  
-
-
K
J
-
-
Gain Error, FSE  
(Adjustable to Zero)  
-
-
K
J
-
-
Offset Error, V  
OS  
(Adjustable to Zero)  
-
-
K
-
-
Power Supply Rejection, PSRR  
Offset Error PSRR  
Gain Error PSRR  
V
V
V
= 4V  
REF  
= V + = 5V ±5%  
0.1  
0.1  
±0.5  
±0.5  
±0.5  
±0.5  
LSB  
LSB  
DD  
DD  
AA  
= V + = 5V ±5%  
AA  
DYNAMIC CHARACTERISTICS  
Signal to Noise Ratio, SINAD  
RMS Signal  
J
f
f
= Internal Clock, f = 1kHz  
IN  
-
-
-
-
-
68.8  
69.2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
dB  
dB  
S
S
= 750kHz, f = 1kHz  
IN  
K
J
f
f
= Internal Clock, f = 1kHz  
IN  
71.0  
71.5  
dB  
dB  
RMS Noise + Distortion  
S
S
= 750kHz, f = 1kHz  
IN  
Signal to Noise Ratio, SNR  
RMS Signal  
f
f
= Internal Clock, f = 1kHz  
IN  
70.5  
71.1  
dB  
dB  
S
S
= 750kHz, f = 1kHz  
IN  
K
J
f
f
= Internal Clock, f = 1kHz  
IN  
71.5  
72.1  
dB  
dB  
RMS Noise  
S
S
= 750kHz, f = 1kHz  
IN  
Total Harmonic Distortion, THD  
f
f
= Internal Clock, f = 1kHz  
IN  
-73.9  
-73.8  
dBc  
dBc  
S
S
= 750kHz, f = 1kHz  
IN  
K
J
f
f
= Internal Clock, f = 1kHz  
IN  
-80.3  
-79.0  
dBc  
dBc  
S
S
= 750kHz, f = 1kHz  
IN  
Spurious Free Dynamic Range,  
SFDR  
f
f
=Internal Clock, f = 1kHz  
IN  
-
-
-75.4  
-75.1  
dB  
dB  
S
S
= 750kHz, f = 1kHz  
IN  
K
f
f
= Internal Clock, f = 1kHz  
IN  
-80.9  
-79.6  
dB  
dB  
S
S
= 750kHz, f = 1kHz  
IN  
6-1791  
HI5812  
Electrical Specifications  
V
= V + = 5V, V  
AA  
+ = +4.608V, V = V - = V  
- = GND, CLK = External 750kHz,  
REF  
DD  
REF  
SS  
AA  
Unless Otherwise Specified (Continued)  
o
o
o
25 C  
-40 C TO 85 C  
MIN  
TYP  
MAX  
MIN  
MAX  
PARAMETER  
ANALOG INPUT  
TEST CONDITIONS  
UNITS  
Input Current, Dynamic  
Input Current, Static  
At V = V  
IN  
+, 0V  
-
-
-
-
-
-
-
±50  
±0.4  
1
±100  
-
-
-
-
-
-
-
±100  
µA  
µA  
MHz  
µA  
REF  
Conversion Stopped  
±10  
±10  
Input Bandwidth -3dB  
Reference Input Current  
-
-
-
-
-
-
-
-
-
-
160  
420  
380  
20  
Input Series Resistance, R  
In Series with Input C  
During Sample State  
During Hold State  
S
SAMPLE  
HOLD  
SAMPLE  
Input Capacitance, C  
Input Capacitance, C  
pF  
pF  
DIGITAL INPUTS OEL, OEM, STRT  
High-Level Input Voltage, V  
2.4  
-
-
-
0.8  
±10  
-
2.4  
-
0.8  
±10  
-
V
V
IH  
Low-Level Input Voltage, V  
-
-
-
-
-
-
IL  
Input Leakage Current, I  
IL  
Except CLK, V = 0V, 5V  
IN  
-
µA  
pF  
Input Capacitance, C  
10  
IN  
DIGITAL OUTPUTS  
High-Level Output Voltage, V  
I
I
= -400µA  
4.6  
-
-
-
0.4  
±10  
-
4.6  
-
0.4  
±10  
-
V
V
OH  
SOURCE  
Low-Level Output Voltage, V  
= 1.6mA  
-
-
-
-
-
-
OL  
SINK  
Three-State Leakage, I  
Except DRDY, V  
Except DRDY  
= 0V, 5V  
OUT  
-
µA  
pF  
OZ  
Output Capacitance, C  
20  
OUT  
CLOCK  
High-Level Output Voltage, V  
I
I
= -100µA (Note 2)  
4
-
-
-
-
-
4
-
-
V
V
OH  
SOURCE  
Low-Level Output Voltage, V  
Input Current  
= 100µA (Note 2)  
1
1
OL  
SINK  
CLK Only, V = 0V, 5V  
IN  
-
±5  
-
±5  
mA  
TIMING  
Conversion Time (t  
+ t  
)
20  
-
-
20  
-
µs  
CONV  
ACQ  
(Includes Acquisition Time)  
Clock Frequency  
Internal Clock, (CLK = Open)  
External CLK (Note 2)  
External CLK (Note 2)  
(Note 2)  
200  
300  
2
400  
1.5  
-
150  
500  
1.5  
-
kHz  
MHz  
ns  
0.05  
0.05  
Clock Pulse Width, t  
, t  
LOW HIGH  
100  
-
100  
Aperture Delay, t APR  
-
-
35  
105  
100  
30  
60  
4
50  
150  
160  
-
-
70  
180  
195  
-
ns  
D
Clock to Data Ready Delay, t DRDY  
D1  
(Note 2)  
-
ns  
Clock to Data Ready Delay, t DRDY  
D2  
(Note 2)  
-
-
75  
100  
15  
-
ns  
Start Removal Time, t STRT  
(Note 2)  
75  
85  
10  
-
ns  
R
Start Setup Time, t STRT  
SU  
(Note 2)  
-
-
ns  
Start Pulse Width, t STRT  
(Note 2)  
-
-
ns  
W
Start to Data Ready Delay, t DRDY  
D3  
(Note 2)  
65  
60  
20  
80  
105  
-
120  
-
ns  
Clock Delay from Start, t STRT  
(Note 2)  
-
-
ns  
D
Output Enable Delay, t  
(Note 2)  
-
30  
95  
-
50  
120  
ns  
EN  
Output Disabled Delay, t  
(Note 2)  
-
-
ns  
DIS  
POWER SUPPLY CHARACTERISTICS  
Supply Current, I  
NOTE:  
+ I  
AA  
-
1.9  
5
-
8
mA  
DD  
2. Parameter guaranteed by design or characterization, not production tested.  
6-1792  
HI5812  
Timing Diagrams  
5 - 14  
4
15  
1
3
1
2
2
3
CLK  
(EXTERNAL  
OR INTERNAL)  
t
LOW  
t
DRDY  
D1  
t
HIGH  
STRT  
DRDY  
t
DRDY  
D2  
DATA N - 1  
D0 - D11  
DATA N  
HOLD N  
V
IN  
TRACK N  
TRACK N + 1  
OEL = OEM = V  
SS  
FIGURE 1. CONTINUOUS CONVERSION MODE  
2
2
3
15  
2
4
1
5
CLK  
(EXTERNAL)  
t
STRT  
t STRT  
SU  
R
t
STRT  
W
STRT  
DRDY  
t
DRDY  
D3  
HOLD  
HOLD  
TRACK  
V
IN  
FIGURE 2. SINGLE SHOT MODE EXTERNAL CLOCK  
6-1793  
HI5812  
Timing Diagrams (Continued)  
15  
1
2
3
4
5
CLK  
(INTERNAL)  
t STRT  
t STRT  
R
D
t
STRT  
W
STRT  
DON’T CARE  
t
DRDY  
D3  
DRDY  
HOLD  
HOLD  
TRACK  
V
IN  
FIGURE 3. SINGLE SHOT MODE INTERNAL CLOCK  
OEL OR OEM  
t
1.6mA  
t
DIS  
EN  
90%  
50%  
50%  
D0 - D3 OR D4 - D11  
HIGH IMPEDANCE  
TO HIGH  
+2.1V  
TO  
OUTPUT  
PIN  
50pF  
HIGH  
IMPEDANCE  
TO LOW  
-1.6mA  
10%  
FIGURE 4B.  
FIGURE 4A.  
FIGURE 4. OUTPUT ENABLE/DISABLE TIMING DIAGRAM  
1.6mA  
+2.1V  
50pF  
-400µA  
FIGURE 5. GENERAL TIMING LOAD CIRCUIT  
6-1794  
HI5812  
Typical Performance Curves  
1.0  
1.5  
V
V
= V + = 5V  
AA  
A. CLK = INTERNAL  
B. CLK = 750kHz  
C. CLK = 1MHz  
DD  
V
= V + = 5V, V  
AA  
+ = 4.608V  
REF  
DD  
+ = 4.608V  
REF  
C
0.75  
0.5  
0.25  
0
1
C
B
A
0.5  
A
A. CLK = INTERNAL  
B. CLK = 750kHz  
C. CLK = 1MHz  
B
0
-60  
-20  
0
20  
40  
60  
o
80 100 120 140  
-40  
-60  
-20  
0
20  
40  
60  
o
80 100 120 140  
-40  
TEMPERATURE ( C)  
TEMPERATURE ( C)  
FIGURE 6. INL vs TEMPERATURE  
FIGURE 7. OFFSET VOLTAGE vs TEMPERATURE  
1.0  
0.75  
0.5  
2
o
C
V
= V + = 5V, T = 25 C  
V
= V + = 5V, V  
AA  
+ = 4.608V  
REF  
DD  
AA  
A
DD  
CLK = 750kHz  
1.5  
1
B
FSE  
A
DNL  
INL  
0.25  
0
0.5  
0
A. CLK = INTERNAL  
B. CLK = 750kHz  
C. CLK = 1MHz  
V
OS  
3
3.2  
3.4  
3.6  
3.8  
4
4.2  
(V)  
4.4  
4.6  
-60  
-20  
0
20  
40  
60  
o
80 100 120 140  
-40  
REFERENCE VOLTAGE, V  
REF  
TEMPERATURE ( C)  
FIGURE 9. ACCURACY vs REFERENCE VOLTAGE  
FIGURE 8. DNL vs TEMPERATURE  
2
1.5  
1
0.5  
V
= V + = 5V,  
AA  
A. CLK = INTERNAL  
B. CLK = 750kHz  
C. CLK = 1MHz  
DD  
V
= V + = 5V ±5%  
AA  
DD  
V
+ = 4.608V  
REF  
CLK = 750kHz  
+ = 4.0V  
V
REF  
0.375  
0.25  
0.125  
0
C
B
0.5  
0
PSRR V  
OS  
A
PSRR FSE  
-60  
-20  
0
20  
40  
60  
o
80 100 120 140  
-60  
-20  
0
20  
40  
60  
o
80 100 120 140  
-40  
-40  
TEMPERATURE ( C)  
TEMPERATURE ( C)  
FIGURE 10. FULL SCALE ERROR vs TEMPERATURE  
FIGURE 11. POWER SUPPLY REJECTION vs TEMPERATURE  
6-1795  
HI5812  
Typical Performance Curves (Continued)  
8
INPUT FREQUENCY = 1kHz  
SAMPLING RATE = 50kHz  
SNR = 72.1dB  
SINAD = 71.4dB  
EFFECTIVE BITS = 11.5  
THD = -79.1dBc  
0.0  
V
= V + = 5V, V  
AA  
+ = 4.608V  
REF  
DD  
-10.0  
-20.0  
-30.0  
7
6
5
4
-40.0  
-50.0  
-60.0  
-70.0  
-80.0  
-90.0  
-100.0  
PEAK NOISE = -80.9dB  
SFDR = -80.9dB  
INTERNAL CLOCK  
3
2
1
0
-110.0  
-120.0  
-130.0  
-140.0  
-60  
-20  
0
20  
40  
60  
o
80 100 120 140  
-40  
0
500  
1000  
FREQUENCY BINS  
1500  
2000  
TEMPERATURE ( C)  
FIGURE 12. SUPPLY CURRENT vs TEMPERATURE  
FIGURE 13. FFT SPECTRUM  
500  
12  
V
= V + = 5V, V  
AA  
+ = 4.608V  
REF  
DD  
450  
400  
350  
300  
250  
200  
150  
11  
10  
B
V
= V + = 5V  
AA  
DD  
V
+ = 4.608V  
o
REF  
9
8
T
= 25 C  
A
A. CLK = INTERNAL  
B. CLK = 750kHz  
C. CLK = 1MHz  
C
A
7
-60  
-20  
0
20  
40  
60  
80 100 120 140  
-40  
0.1  
1
10  
100  
o
TEMPERATURE ( C)  
INPUT FREQUENCY (kHz)  
FIGURE 14. INTERNAL CLOCK FREQUENCY vs TEMPERATURE  
FIGURE 15. EFFECTIVE BITS vs INPUT FREQUENCY  
75  
-80  
-70  
70  
65  
B
C
V
V
= V + = 5V  
AA  
DD  
V
V
= V + = 5V  
AA  
DD  
+ = 4.608V  
o
REF  
+ = 4.608V  
o
REF  
A
T
= 25 C  
A
60  
T
= 25 C  
A
-60  
-50  
A. CLK =INTERNAL  
B. CLK = 750kHz  
C. CLK = 1MHz  
A. CLK = INTERNAL  
B. CLK = 750kHz  
C. CLK = 1MHz  
B
55  
50  
C
A
0.1  
1
10  
100  
0.1  
1
10  
100  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
FIGURE 16. TOTAL HARMONIC DISTORTION vs INPUT  
FREQUENCY  
FIGURE 17. SIGNAL NOISE RATIO vs INPUT FREQUENCY  
6-1796  
HI5812  
During the first three clock periods of a conversion cycle, the  
TABLE 1. PIN DESCRIPTIONS  
switchable end of every capacitor is connected to the input  
and the comparator is being auto-balanced at the capacitor  
common node.  
PIN NO. NAME  
DESCRIPTION  
1
DRDY Output flag signifying new data is available.  
Goes high at end of clock period 15. Goes low  
when new conversion is started.  
During the fourth period, all capacitors are disconnected  
from the input; the one representing the MSB (D11) is  
connected to the V  
+ terminal; and the remaining  
REF  
-. The capacitor-common node, after the  
2
3
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
Bit 0 (Least Significant Bit, LSB).  
capacitors to V  
REF  
charges balance out, will indicate whether the input was  
Bit 1.  
1
above  
period, the comparator output is stored and the MSB  
capacitor is either left connected to V + (if the comparator  
/
of (V  
+ - V  
-). At the end of the fourth  
2
REF  
REF  
4
Bit 2.  
5
Bit 3.  
REF  
-. This allows the next  
was high) or returned to V  
comparison to be at either / or / of (V  
REF  
6
Bit 4.  
3
1
+ - V  
-).  
4
4
REF  
REF  
7
Bit 5.  
At the end of periods 5 through 14, capacitors representing  
D10 through D1 are tested, the result stored, and each  
capacitor either left at V  
8
Bit 6.  
+ or at V  
-.  
REF  
REF  
9
Bit 7.  
At the end of the 15th period, when the LSB (D0) capacitor is  
tested, (D0) and all the previous results are shifted to the  
output registers and drivers. The capacitors are reconnected  
to the input, the comparator returns to the balance state, and  
the data-ready output goes active. The conversion cycle is  
now complete.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
Bit 8.  
Bit 9.  
V
Digital Ground (0V).  
Bit 10.  
SS  
D10  
Analog Input  
D11  
Bit 11 (Most Significant Bit, MSB).  
The analog input pin is a predominately capacitive load that  
changes between the track and hold periods of the  
conversion cycle. During hold, clock period 4 through 15, the  
input loading is leakage and stray capacitance, typically less  
than 5µA and 20pF.  
OEM Three-State Enable for D4-D11. Active low input.  
V
V
-
Analog Ground, (0V).  
AA  
+
Analog Positive Supply. (+5V) (See text.)  
Analog Input.  
AA  
V
At the start of input tracking, clock period 1, some charge is  
dumped back to the input pin. The input source must have  
low enough impedance to dissipate the current spike by the  
end of the tracking period as shown in Figure 18. The  
amount of charge is dependent on supply and input  
voltages. The average current is also proportional to clock  
frequency.  
IN  
V
+
Reference Voltage Positive Input, sets 4095  
code end of input range.  
REF  
20  
21  
22  
V
-
Reference Voltage Negative Input, sets 0 code  
end of input range.  
REF  
STRT Start Conversion Input Active Low, recognized  
after end of clock period 15.  
CLK  
CLK Input or Output. Conversion functions are  
synchronized to positive going edge. (See  
text.)  
20mA  
I
IN  
10mA  
0mA  
23  
24  
OEL  
Three-State Enable for D0 D3. Active Low Input.  
Digital Positive Supply (+5V).  
V
DD  
CLK  
5V  
Theory of Operation  
0V  
5V  
HI5812 is a CMOS 12-Bit Analog-to-Digital Converter that  
uses capacitor-charge balancing to successively approximate  
the analog input. A binarily weighted capacitor network forms  
the A/D heart of the device. See the block diagram for the  
HI5812.  
DRDY  
0V  
200ns/DIV.  
CONDITIONS: V  
= V + = 5.0V, V  
AA  
+ = 4.608V,  
REF  
DD  
= 4.608V, CLK = 750kHz, T = 25 C  
o
The capacitor network has a common node which is  
connected to a comparator. The second terminal of each  
V
IN  
A
FIGURE 18. TYPICAL ANALOG INPUT CURRENT  
capacitor is individually switchable to the input, V  
+ or  
REF  
V
-.  
REF  
6-1797  
HI5812  
As long as these current spikes settle completely by end of The HI5812 is specified with a 4.608V reference, however, it  
the signal acquisition period, converter accuracy will be will operate with a reference down to 3V having a slight  
preserved. The analog input is tracked for 3 clock cycles. degradation in performance. A typical graph of accuracy vs  
With an external clock of 750kHz the track period is 4µs.  
reference voltage is presented.  
Full Scale and Offset Adjustment  
A simplified analog input model is presented in Figure 19.  
During tracking, the A/D input (V ) typically appears as a  
IN  
In many applications the accuracy of the HI5812 would be  
sufficient without any adjustments. In applications where  
accuracy is of utmost importance full scale and offset errors  
may be adjusted to zero.  
380pF capacitor being charged through a 420internal  
switch resistance. The time constant is 160ns. To charge this  
capacitor from an external “zero ” source to 0.5 LSB  
(1/8192), the charging time must be at least 9 time constants  
The V  
REF  
+ and V - pins reference the two ends of the  
REF  
or 1.4µs. The maximum source impedance (R  
Max)  
SOURCE  
analog input range and may be used for offset and full scale  
for a 4µs acquisition time settling to within 0.5LSB is 750.  
adjustments. In a typical system the V - might be  
REF  
returned to a clean ground, and the offset adjustment done  
on an input amplifier. V + would then be adjusted to null  
If the clock frequency was slower, or the converter was not  
restarted immediately (causing a longer sample time), a  
higher source impedance could be tolerated.  
REF  
out the full scale error. When this is not possible, the V  
input can be adjusted to null the offset error, however, V  
must be well decoupled.  
-
-
REF  
REF  
V
IN  
R
420Ω  
SW  
Full scale and offset error can also be adjusted to zero in the  
C
380pF  
SAMPLE  
R
signal conditioning amplifier driving the analog input (V ).  
SOURCE  
IN  
t  
ACQ  
-------------------------------------------------------------  
R  
SW  
R
=
Control Signal  
SOURCE(MAX)  
(N + 1)  
C
In[2  
]
SAMPLE  
The HI5812 may be synchronized from an external source  
by using the STRT (Start Conversion) input to initiate conver-  
sion, or if STRT is tied low, may be allowed to free run. Each  
conversion cycle takes 15 clock periods.  
FIGURE 19. ANALOG INPUT MODEL IN TRACK MODE  
Reference Input  
The input is tracked from clock period 1 through period 3,  
then disconnected as the successive approximation takes  
The reference input V  
impedance source and be well decoupled.  
+ should be driven from a low  
REF  
place. After the start of the next period 1 (specified by t  
data), the output is updated.  
D
As shown in Figure 20, current spikes are generated on the  
reference pin during each bit test of the successive approxi-  
mation part of the conversion cycle as the charge-balancing  
capacitors are switched between V  
periods 5 - 14). These current spikes must settle completely  
during each bit test of the conversion to not degrade the  
accuracy of the converter. Therefore V  
should be well bypassed. Reference input V - is normally  
connected directly to the analog ground plane. If V - is  
The DRDY (Data Ready) status output goes high (specified  
by t DRDY) after the start of clock period 1, and returns  
D1  
- and V  
+ (clock  
REF  
REF  
low (specified by t DRDY) after the start of clock period 2.  
D2  
The 12 data bits are available in parallel on three-state bus  
driver outputs. When low, the OEM input enables the most  
significant byte (D4 through D11) while the OEL input  
+ and V -  
REF  
REF  
REF  
enables the four least significant bits (D0 - D3). t  
specify the output enable and disable times.  
and t  
EN  
DIS  
REF  
biased for nulling the converters offset it must be stable  
during the conversion cycle.  
If the output data is to be latched externally, either the trailing  
edge of data ready or the next falling edge of the clock after  
data ready goes high can be used.  
20mA  
When STRT input is used to initiate conversions, operation is  
slightly different depending on whether an internal or  
external clock is used.  
I
10mA  
0mA  
REF+  
CLK  
Figure 3 illustrates operation with an internal clock. If the  
STRT signal is removed (at least t STRT) before clock  
R
5V  
0V  
period 1, and is not reapplied during that period, the clock  
will shut off after entering period 2. The input will continue to  
track and the DRDY output will remain high during this time.  
5V  
0V  
DRDY  
A low signal applied to STRT (at least t STRT wide) can  
W
now initiate a new conversion. The STRT signal (after a  
delay of (t STRT)) causes the clock to restart.  
D
2µs/DIV.  
Depending on how long the clock was shut off, the low  
portion of clock period 2 may be longer than during the  
remaining cycles.  
CONDITIONS: V  
= V + = 5.0V, V  
AA REF  
= 2.3V, CLK = 750kHz, T = 25 C  
A
+ = 4.608V,  
o
DD  
V
IN  
FIGURE 20. TYPICAL REFERENCE INPUT CURRENT  
6-1798  
HI5812  
The input will continue to track until the end of period 3, the Except for V +, which is a substrate connection to V , all  
AA  
DD  
and V  
same as when free running.  
pins have protection diodes connected to V  
.
DD  
SS  
Input transients above V  
the digital supplies.  
or below V will get steered to  
DD  
SS  
Figure 2 illustrates the same operation as above but with an  
external clock. If STRT is removed (at least t STRT) before  
R
clock period 2, a low signal applied to STRT will drop the The V + and V - terminals supply the charge-balancing  
AA AA  
DRDY flag as before, and with the first positive-going clock comparator only. Because the comparator is autobalanced  
edge that meets the (t STRT) setup time, the converter will between conversions, it has good low-frequency supply  
SU  
continue with clock period 3.  
rejection. It does not reject well at high frequencies however;  
V
- should be returned to a clean analog ground and V  
+
AA AA  
Clock  
should be RC decoupled from the digital supply as shown in  
Figure 22.  
The HI5812 can operate either from its internal clock or from  
one externally supplied. The CLK pin functions either as the  
clock output or input. All converter functions are synchro-  
nized with the rising edge of the clock signal.  
There is approximately 50of substrate impedance  
between V  
part of a low-pass RC filter to attenuate switching supply  
and V +. This can be used, for example, as  
DD  
AA  
noise. A 10µF capacitor from V + to ground would  
attenuate 30kHz noise by approximately 40dB. Note that  
Figure 21 shows the configuration of the internal clock. The  
clock output drive is low power: if used as an output, it  
should not have more than 1 CMOS gate load applied, and  
stray wiring capacitance should be kept to a minimum.  
AA  
back-to-back diodes should be placed from V  
to V + to  
DD  
AA  
handle supply to capacitor turn-on or turn-off current spikes.  
Dynamic Performance  
The internal clock will shut down if the A/D is not restarted  
after a conversion. The clock could also be shut down with  
an open collector driver applied to the CLK pin. This should  
only be done during the sample portion (the first three clock  
periods) of a conversion cycle, and might be useful for using  
the device as a digital sample and hold.  
Fast Fourier Transform (FFT) techniques are used to  
evaluate the dynamic performance of the A/D. A low distor-  
tion sine wave is applied to the input of the A/D converter.  
The input is sampled by the A/D and its output stored in  
RAM. The data is than transformed into the frequency  
domain with a 4096 point FFT and analyzed to evaluate the  
converters dynamic performance such as SNR and THD.  
See typical performance characteristics.  
If an external clock is supplied to the CLK pin, it must have  
sufficient drive to overcome the internal clock source. The  
external clock can be shut off, but again, only during the  
sample portion of a conversion cycle. At other times, it must  
be above the minium frequency shown in the specifications.  
Signal-To-Noise Ratio  
In the above two cases, a further restriction applies in that The signal to noise ratio (SNR) is the measured RMS signal  
the clock should not be shut off during the third sample to RMS sum of noise at a specified input and sampling  
period for more than 1ms. This might cause an internal frequency. The noise is the RMS sum of all except the  
charge-pump voltage to decay.  
fundamental and the first five harmonic signals. The SNR is  
dependent on the number of quantization levels used in the  
converter. The theoretical SNR for an N-bit converter with no  
differential or integral linearity error is: SNR = (6.02N + 1.76)  
dB. For an ideal 12-bit converter the SNR is 74dB.  
Differential and integral linearity errors will degrade SNR.  
If the internal or external clock was shut off during the  
conversion time (clock cycles 4 through 15) of the A/D, the  
output might be invalid due to balancing capacitor droop.  
An external clock must also meet the minimum t  
and  
LOW  
times shown in the specifications. A violation may  
t
HIGH  
cause an internal miscount and invalidate the results.  
Sinewave Signal Power  
SNR = 10 Log  
Total Noise Power  
Signal-To-Noise + Distortion Ratio  
INTERNAL  
ENABLE  
SINAD is the measured RMS signal to RMS sum of noise  
plus harmonic power and is expressed by the following:  
CLOCK  
CLK  
OPTIONAL  
EXTERNAL  
CLOCK  
Sinewave Signal Power  
SINAD = 10 Log  
100kΩ  
18pF  
Noise + Harmonic Power (2nd - 6th)  
Effective Number of Bits  
FIGURE 21. INTERNAL CLOCK CIRCUITRY  
The effective number of bits (ENOB) is derived from the  
SINAD data;  
Power Supplies and Grounding  
and V are the digital supply pins: they power all  
V
SINAD - 1.76  
DD  
SS  
internal logic and the output drivers. Because the output  
drivers can cause fast current spikes in the V and V  
ENOB =  
6.02  
DD  
SS  
lines, V  
should have a low impedance path to digital  
SS  
ground and V  
should be well bypassed.  
DD  
6-1799  
HI5812  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
The total harmonic distortion (THD) is the ratio of the RMS The spurious-free dynamic range (SFDR) is the ratio of the  
sum of the second through sixth harmonic components to fundamental RMS amplitude to the RMS amplitude of the  
the fundamental RMS signal for a specified input and next largest spur or spectral component. If the harmonics  
sampling frequency.  
are buried in the noise floor it is the largest peak.  
Total Harmonic Power (2nd - 6th Harmonic)  
Sinewave Signal Power  
SFDR = 10 Log  
THD = 10 Log  
Sinewave Signal Power  
Highest Spurious Signal Power  
TABLE 2. CODE TABLE  
BINARY OUTPUT CODE  
INPUT VOLTAGE  
= 4.608V  
V
MSB  
LSB  
REF+  
CODE  
DESCRIPTION  
V
= 0.0V  
DECIMAL  
COUNT  
REF-  
(V)  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Full Scale (FS)  
4.6069  
4.6058  
3.4560  
2.3040  
1.1520  
0.001125  
0
4095  
4094  
3072  
2048  
1024  
1
1
1
1
1
0
0
0
1
1
1
0
1
0
0
1
1
0
0
0
0
0
1
1
0
0
0
0
0
1
1
0
0
0
0
0
1
1
0
0
0
0
0
1
1
0
0
0
0
0
1
1
0
0
0
0
0
1
1
0
0
0
0
0
1
1
0
0
0
0
0
1
1
0
0
0
0
0
1
0
0
0
0
1
0
FS - 1 LSB  
3
/
/
/
FS  
FS  
FS  
4
2
4
1
1
1 LSB  
Zero  
0
The voltages listed above represent the ideal lower transition of each output code shown as a function of the reference voltage.  
+5V  
0.1µF  
4.7µF  
10µF  
0.1µF  
0.1µF  
0.01µF  
V
+
V
DD  
AA  
D11  
.
.
.
OUTPUT  
DATA  
D0  
V
REF  
V
REF+  
4.7µF  
0.001µF  
DRDY  
OEM  
OEL  
ANALOG  
INPUT  
V
V
IN  
STRT  
CLK  
750kHz CLOCK  
V
V
SS  
REF-  
AA-  
FIGURE 22. GROUND AND SUPPLY DECOUPLING  
6-1800  
HI5812  
Die Characteristics  
DIE DIMENSIONS:  
3200µm x 3940µm  
METALLIZATION:  
PASSIVATION:  
Type: PSG  
Thickness: 13kÅ ±2.5kÅ  
WORST CASE CURRENT DENSITY:  
Type: AlSi  
Thickness: 11kÅ ±1kÅ  
5
2
1.84 x 10 A/cm  
Metallization Mask Layout  
HI5812  
D0  
(LSB)  
D1  
DRDY  
V
OEL  
DD  
CLK  
D2  
D3  
STRT  
V
-
REF  
D4  
D5  
D6  
V
V
+
REF  
D7  
D8  
IN  
V
+
-
AA  
V
AA  
D9  
V
D10  
D11  
(MSB)  
OEM  
SS  
6-1801  

相关型号:

HI5812JIBZ

CMOS 20 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
INTERSIL

HI5812JIJ

CMOS 20 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
INTERSIL

HI5812JIP

CMOS 20 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
INTERSIL

HI5812JIPZ

CMOS 20 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
INTERSIL

HI5812KIB

CMOS 20 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
INTERSIL

HI5812KIBZ

CMOS 20 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
INTERSIL

HI5812KIJ

CMOS 20 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
INTERSIL

HI5812KIP

CMOS 20 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
INTERSIL

HI5812_05

CMOS 20 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
INTERSIL

HI5813

CMOS 3.3V, 25 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
INTERSIL

HI5813JIB

CMOS 3.3V, 25 Microsecond, 12-Bit, Sampling A/D Converter with Internal Track and Hold
INTERSIL

HI5813JIB

1-CH 12-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, PDSO24, SOIC-24
RENESAS