HIP2121FRTBZ [INTERSIL]

100V, 2A Peak, High Frequency Half-Bridge Drivers with Adjustable Dead Time Control and PWM Input; 100V , 2A峰值,高频半桥,可调节死区时间控制和PWM输入驱动器
HIP2121FRTBZ
型号: HIP2121FRTBZ
厂家: Intersil    Intersil
描述:

100V, 2A Peak, High Frequency Half-Bridge Drivers with Adjustable Dead Time Control and PWM Input
100V , 2A峰值,高频半桥,可调节死区时间控制和PWM输入驱动器

驱动器
文件: 总16页 (文件大小:413K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
100V, 2A Peak, High Frequency Half-Bridge Drivers with  
Adjustable Dead Time Control and PWM Input  
HIP2120, HIP2121  
Features  
• 9 Ld TDFN “B” Package Compliant with 100V Conductor  
Spacing Guidelines per IPC-2221  
The HIP2120 and HIP2121 are 100V, high frequency, half-bridge  
MOSFET driver ICs. They are based on the popular ISL2100A and  
ISL2101A half-bridge drivers.  
• Break-Before-Make Dead-Time Prevents Shoot-through and is  
adjustable up to 220ns  
These drivers have a programmable dead-time to insure  
break-before-make operation between the high-side and low-side  
drivers. The dead-time is adjustable up to 250ns.  
• Bootstrap Supply Max Voltage to 114VDC  
• Wide Supply Voltage Range (8V to 14V)  
• Supply Undervoltage Protection  
A single PWM logic input controls both bridge outputs (HO, LO). An  
enable pin (EN), when low, drives both outputs to a low state. All  
• CMOS Compatible Input Thresholds with Hysteresis (HIP2120)  
• 1.6Ω/1Ω Typical Output Pull-up/Pull-down Resistance  
• On-Chip 1Ω Bootstrap Diode  
logic inputs are V tolerant and the HIP2120 has CMOS inputs  
DD  
with hysteresis for superior operation in noisy environments.  
The HIP2120 has hysteretic inputs with thresholds that are  
proportional to V . The HIP2121 has 3.3V logic/TTL compatible  
inputs.  
DD  
Applications  
• Telecom Half-Bridge DC/DC Converters  
• UPS and Inverters  
Two package options are provided. The 10 Ld 4x4 DFN package has  
standard pinouts. The 9 Ld 4x4 DFN package omits pin 2 to comply  
with 100V conductor spacing per IPC-2221.  
• Motor Drives  
• Class-D Amplifiers  
• Forward Converter with Active Clamp  
Related Literature  
FN7670 “HIP2122, HIP2123 100V, 2A Peak, High Frequency  
Half-Bridge Driver with Delay Timers”  
200  
160  
140  
120  
100  
100V max  
HIP2120/21  
HALF BRIDGE  
VDD  
PWM  
EN  
HB  
SECONDARY  
CIRCUITS  
HO  
HS  
80  
60  
PWM  
CONTROLLER  
RDT  
VSS  
FEEDBACK  
WITH  
ISOLATION  
LO  
40  
EPAD  
20  
8
16  
24  
DT  
32 40 48 56 64 80  
(kΩ)  
R
FIGURE 1. TYPICAL APPLICATION  
FIGURE 2. DEAD-TIME vs TIMING RESISTOR  
December 23, 2011  
FN7668.0  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 |Copyright Intersil Americas Inc. 2011. All Rights Reserved  
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners.  
1
HIP2120, HIP2121  
Block Diagram  
VDD  
HB  
HO  
HS  
HIP2120,  
HIP2121  
UNDER  
LEVEL  
VOLTAGE  
SHIFT  
HIP2121  
HIP2120/21  
PWM  
RDT  
DELAY  
UNDER  
VOLTAGE  
Optional  
inversion  
for future  
part  
LO  
numbers  
DELAY  
VSS  
EN  
EPAD IS  
ELECTRICALLY  
ISOLATED  
HIP2121  
HIP2120/21  
EPAD  
Pin Configurations  
HIP2120, HIP2121  
HIP2120, HIP2121  
(10 LD 4X4 TDFN)  
TOP VIEW  
(9 LD 4X4 TDFN)  
TOP VIEW  
VDD  
1
10 LO  
VDD  
HB  
HO  
HS  
1
2
3
4
5
10 LO  
9
8
7
6
VSS  
PWM  
9
8
7
6
VSS  
EPAD  
EPAD  
HB  
HO  
HS  
3
4
5
PWM  
EN  
EN  
RDT  
NC  
RDT  
FN7668.0  
December 23, 2011  
2
HIP2120, HIP2121  
Pin Descriptions  
10 LD  
9 LD  
SYMBOL  
VDD  
DESCRIPTION  
1
1
Positive supply voltage for lower gate driver. Decouple this pin with a ceramic capacitor to  
VSS.  
2
3
HB  
High-side bootstrap supply voltage referenced to HS. Connect the positive side of the  
bootstrap capacitor to this pin. Bootstrap diode is on-chip.  
3
4
4
5
HO  
HS  
High-side output. Connect to gate of high-side power MOSFET.  
High-side source connection. Connect to source of high-side power MOSFET. Connect  
negative side of bootstrap capacitor to this pin.  
8
7
8
7
PWM  
EN  
PWM input. For PWM = 1, HO = 1 and LO = 0. For PWM = 0, HO = 0 and LO = 1.  
Output enable, when low, HO = LO = 0  
9
9
VSS  
LO  
Negative voltage supply, which will generally be ground.  
Low-side output. Connect to gate of low-side power MOSFET.  
No Connect. This pin is isolated from all other pins.  
10  
5
10  
-
NC  
6
6
RDT  
A resistor connected between this pin and VSS adds additional delay time to the falling and  
rising edges of the PWM input.  
-
-
EPAD  
Exposed pad. Connect to ground or float. The EPAD is electrically isolated from all other  
pins.  
Ordering Information  
PART NUMBER  
PART  
TEMP. RANGE  
(°C)  
PACKAGE  
(Pb-Free)  
PKG.  
DWG. #  
(Notes 1, 2, 4)  
MARKING  
HIP 2120AZ  
HIP 2121AZ  
HIP 2120BZ  
HIP 2121BZ  
INPUT  
CMOS  
HIP2120FRTAZ  
-40 +125  
-40 +125  
-40 +125  
-40 +125  
10 Ld 4x4 TDFN  
L10.4x4  
HIP2121FRTAZ  
3.3V/TTL  
CMOS  
10 Ld 4x4 TDFN  
9 Ld 4x4 TDFN  
9 Ld 4x4 TDFN  
L10.4x4  
L9.4x4  
L9.4x4  
HIP2120FRTBZ (Note 3)  
HIP2121FRTBZ (Note 3)  
NOTES:  
3.3V/TTL  
1. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. “B” package option has alternate pin assignments for compliance with 100V Conductor Spacing Guidelines per IPC-2221. Note that Pin 2 is omitted  
for additional spacing.  
4. For Moisture Sensitivity Level (MSL), please see device information page for HIP2120, HIP2121. For more information on MSL please see tech brief  
TB363.  
FN7668.0  
December 23, 2011  
3
HIP2120, HIP2121  
Table of Contents  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Maximum Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Typical Performance Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Functional Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Selecting the Boot Capacitor Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Typical Application Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Transients on HS Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Power Dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
PC Board Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
EPAD Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
L9.4x4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
L10.4x4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
FN7668.0  
December 23, 2011  
4
HIP2120, HIP2121  
Absolute Maximum Ratings  
Thermal Information  
Supply Voltage, V , V - V (Notes 5, 6) . . . . . . . . . . . . . . . -0.3V to 18V  
Thermal Resistance (Typical)  
θ
JA (°C/W)  
42  
θ
JC (°C/W)  
DD HB HS  
PWM and EN Input Voltage (Note 6) . . . . . . . . . . . . . . .-0.3V to VDD + 0.3V  
Voltage on LO (Note 6). . . . . . . . . . . . . . . . . . . . . . . . . . .-0.3V to VDD + 0.3V  
Voltage on HO (Note 6) . . . . . . . . . . . . . . . . . . . . . VHS - 0.3V to VHB + 0.3V  
Voltage on HS (Continuous) (Note 6) . . . . . . . . . . . . . . . . . . . . . -1V to 110V  
Voltage on HB (Note 6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118V  
10 Ld TDFN (Notes 7, 8) . . . . . . . . . . . . . . .  
9 Ld TDFN (Notes 7, 8) . . . . . . . . . . . . . . . .  
Max Power Dissipation at +25°C in Free Air  
10 Ld TDFN (Notes 7, 8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.0W  
9 Ld TDFN (Notes 7, 8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1W  
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . .-55°C to +150°C  
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
4
4
42  
Average Current in V to HB Diode . . . . . . . . . . . . . . . . . . . . . . . . . 100mA  
DD  
Maximum Recommended Operating  
Conditions  
ESD Ratings  
Human Body Model Class 2 (Tested per JESD22-A114E). . . . . . . . . . 3000V  
Machine Model Class B (Tested per JESD22-A115-A). . . . . . . . . . . . . . 300V  
Charged Device Model Class IV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2000V  
Supply Voltage, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8V to 14V  
DD  
Voltage on HS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -1V to 100V  
Voltage on HS . . . . . . . . . . . . . . . . . . . . . .(Repetitive Transient) -5V to 105V  
Voltage on HB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V + 8V to V + 14V and  
HS  
HS  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V - 1V to V + 100V  
DD DD  
HS Slew Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <50V/ns  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
5. The HIP2120 and HIP2121 are capable of derated operation at supply voltages exceeding 14V. Figure 20 shows the high-side voltage derating curve  
for this mode of operation.  
6. All voltages referenced to V unless otherwise specified.  
SS  
7. θ is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech  
JA  
Brief TB379.  
8. For θ , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
Electrical Specifications  
V
= V = 12V, V = V = 0V, R = 0 , PWM = 0V, No Load on LO or HO, Unless Otherwise Specified.  
HB SS HS DT  
DD  
Boldface limits apply over the operating temperature range, -40°C to +125°C.  
K
T
= +25°C  
T = -40°C to +125°C  
A
A
PARAMETERS  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP MAX MIN (Note 9) MAX (Note 9) UNITS  
SUPPLY CURRENTS  
I
R
R
= 80k  
-
-
-
-
-
-
-
-
470 850  
-
-
-
-
-
-
-
-
900  
2.2  
3
µA  
mA  
mA  
mA  
µA  
DD80  
DT  
DT  
V
V
Quiescent Current  
Operating Current  
DD  
DD  
I
= 8k  
1.0  
2.5  
3.4  
65  
2.1  
3
DD8k  
I
f = 500kHz, R = 80k  
DT  
DDO80k  
I
f = 500kHz, R = 8k  
DT  
4
4
DDO8k  
Total HB Quiescent Current  
Total HB Operating Current  
I
LI = HI = 0V  
f = 500kHz  
115  
2.5  
1.5  
1.5  
150  
3
HB  
I
2.0  
0.05  
1.2  
mA  
µA  
HBO  
HB to V Current, Quiescent  
SS  
I
LI = HI = 0V; V = V = 114V  
HB HS  
10  
1.6  
HBS  
HB to V Current, Operating  
SS  
I
f = 500kHz; V = V = 114V  
mA  
HBSO  
HB  
HS  
INPUT PINS  
Low Level Input Voltage  
Threshold  
V
V
HIP2120 (CMOS)  
HIP2121 (3.3V/TTL)  
HIP2120 (CMOS)  
3.7  
4.4  
1.8  
-
-
2.7  
1.2  
5.3  
-
-
IL  
IL  
V
V
Low Level Input Voltage  
Threshold  
1.4  
-
High Level Input Voltage  
Threshold  
V
V
-
-
6.54 7.93  
8.2  
2.4  
IH  
IH  
V
V
High Level Input Voltage  
Threshold  
HIP2121 ((3.3V/TTL)  
1.8  
2.2  
FN7668.0  
December 23, 2011  
5
HIP2120, HIP2121  
Electrical Specifications  
V
= V = 12V, V = V = 0V, R = 0 , PWM = 0V, No Load on LO or HO, Unless Otherwise Specified.  
DD  
HB  
SS  
HS  
DT  
K
Boldface limits apply over the operating temperature range, -40°C to +125°C. (Continued)  
T
= +25°C  
T = -40°C to +125°C  
A
A
PARAMETERS  
SYMBOL  
TEST CONDITIONS  
HIP2120 (CMOS)  
MIN  
TYP MAX MIN (Note 9) MAX (Note 9) UNITS  
Input Voltage Hysteresis  
V
-
-
2.2  
-
-
-
-
V
IHYS  
Input Pull-down Resistance  
UNDERVOLTAGE PROTECTION  
R
210  
100  
500  
kΩ  
I
V
V
Rising Threshold  
V
V
V
V
6.8  
7.3  
0.6  
6.9  
0.6  
7.8  
6.5  
8.1  
V
V
V
V
DD  
DD  
DDR  
DDH  
HBR  
HBH  
Threshold Hysteresis  
-
6.2  
-
-
7.5  
-
-
5.9  
-
-
7.8  
-
HB Rising Threshold  
HB Threshold Hysteresis  
BOOTSTRAP DIODE  
Low Current Forward Voltage  
High Current Forward Voltage  
Dynamic Resistance  
V
I
I
I
= 100mA  
= 100mA  
= 100mA  
-
-
-
0.6  
0.7  
0.8  
0.7  
0.9  
1
-
-
-
0.8  
1
V
V
DL  
VDD-HB  
VDD-HB  
VDD-HB  
V
DH  
R
1.5  
Ω
D
LO GATE DRIVER  
Low Level Output Voltage  
High Level Output Voltage  
Peak Pull-Up Current  
V
I
I
= 100mA  
-
-
-
-
0.25  
0.25  
2
0.4  
-
-
-
-
0.5  
V
V
A
A
OLL  
OHL  
OHL  
LO  
V
= -100mA, V  
= 0V  
= V - V  
DD LO  
0.4  
0.5  
LO  
OHL  
I
V
V
-
-
-
-
LO  
LO  
Peak Pull-Down Current  
HO GATE DRIVER  
I
= 12V  
2
OLL  
Low Level Output Voltage  
High Level Output Voltage  
Peak Pull-Up Current  
V
I
I
= 100mA  
-
-
-
-
0.25  
0.25  
2
0.4  
-
-
-
-
0.5  
V
V
A
A
OLH  
OHH  
OHH  
HO  
V
= -100mA, V  
= 0V  
= V - V  
HB HO  
0.4  
0.5  
HO  
OHH  
I
V
V
-
-
-
-
HO  
HO  
Peak Pull-Down Current  
I
= 12V  
2
OLH  
Switching Specifications  
V
= V = 12V, V = V = 0V, RDT = 0kΩ, No Load on LO or HO, Unless Otherwise Specified. Boldface  
HB SS HS  
DD  
limits apply over the operating temperature range, -40°C to +125°C.  
T = +25°C  
T = -40°C to +125°C  
J
J
TEST  
MIN  
MAX  
PARAMETERS  
HO Turn-Off Propagation Delay  
SYMBOL  
CONDITIONS  
MIN  
-
TYPE MAX  
(Note 9)  
(Note 9)  
UNITS  
ns  
t
32  
32  
50  
50  
50  
50  
300  
300  
-
-
60  
60  
60  
60  
-
PLHO  
PWM Falling to HO Falling  
LO Turn-Off Propagation Delay  
PWM Rising to LO Falling  
t
-
-
ns  
ns  
ns  
ns  
ns  
ns  
PLLO  
Minimum Dead-Time Delay (see Note 10)  
HO Falling to LO Rising  
R
= 80k,  
DT  
PWM 1 to 0  
t
t
15  
15  
150  
150  
-
35  
10  
DTHLmin  
DTLHmin  
Minimum Dead-Time Delay (see Note 10)  
LO Falling to HO Rising  
R
= 80k  
DT  
PWM 0 to 1  
25  
10  
Maximum Dead-Time Delay (see Note 10)  
HO Falling to LO Rising  
R
= 8k,  
DT  
PWM 1 to 0  
t
t
220  
220  
10  
-
-
-
DTHLmax  
DTLHmax  
Maximum Dead-Time Delay (see Note 10)  
LO Falling to HO Rising  
R
= 8k,  
DT  
PWM 0 to 1  
-
Either Output Rise/Fall Time  
(10% to 90%/90% to 10%)  
t
t
C = 1nF  
-
RC, FC  
L
FN7668.0  
December 23, 2011  
6
HIP2120, HIP2121  
Switching Specifications  
V
= V = 12V, V = V = 0V, RDT = 0kΩ, No Load on LO or HO, Unless Otherwise Specified. Boldface  
DD  
HB  
SS  
HS  
limits apply over the operating temperature range, -40°C to +125°C. (Continued)  
T = +25°C  
T = -40°C to +125°C  
J
J
TEST  
CONDITIONS  
MIN  
(Note 9)  
MAX  
(Note 9)  
PARAMETERS  
Either Output Rise/Fall Time  
SYMBOL  
MIN  
TYPE MAX  
UNITS  
µs  
t
t
C = 0.1mF  
-
-
0.5  
10  
0.6  
-
-
-
0.8  
-
R, F  
L
(3V to 9V/9V to 3V)  
Bootstrap Diode Turn-On or Turn-Off Time  
NOTES:  
t
ns  
BS  
9. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits are established by  
characterization and are not production tested.  
10. Dead-Time is defined as the period of time between the LO falling and HO rising or between HO falling and LO rising.  
Timing Diagram  
tR  
tPLHO  
tPLLO  
tF  
PWM  
HO  
90%  
10%  
90%  
10%  
LO  
EN  
tDTHL  
tDTLH  
FN7668.0  
December 23, 2011  
7
HIP2120, HIP2121  
Typical Performance Curves  
10.0  
10.0  
T = -40°C  
T = -40°C  
T = +25°C  
T = +25°C  
1.0  
1.0  
T = +125°C  
T = +150°C  
T = +125°C  
T = +150°C  
0.1  
0.1  
10k  
100k  
FREQUENCY (Hz)  
1M  
10k  
100k  
FREQUENCY (Hz)  
1M  
FIGURE 4. HIP2121 I OPERATING CURRENT vs FREQUENCY  
DD  
FIGURE 3. HIP2120 I OPERATING CURRENT vs FREQUENCY  
DD  
10.0  
10.0  
T = -40°C  
T = +150°C  
1.0  
1.0  
T = +25°C  
T = -40°C  
T = +150°C  
T = +25°C  
0.1  
0.1  
T = +125°C  
T = +125°C  
0.01  
0.01  
10k  
100k  
1M  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 5. I OPERATING CURRENT vs FREQUENCY  
HB  
FIGURE 6. I  
OPERATING CURRENT vs FREQUENCY  
HBS  
300  
200  
150  
100  
V
= V  
= 14V  
HB  
DD  
250  
200  
150  
100  
50  
V
= V = 14V  
HB  
DD  
V
DD  
= V  
= 8V  
HB  
V
= V  
= 8V  
HB  
DD  
V
= V  
= 12V  
50  
DD  
HB  
V
= V  
50  
= 12V  
HB  
DD  
50  
-50  
0
100  
150  
-50  
0
100  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 8. LOW LEVEL OUTPUT VOLTAGE vs TEMPERATURE  
FIGURE 7. HIGH LEVEL OUTPUT VOLTAGE vs TEMPERATURE  
FN7668.0  
December 23, 2011  
8
HIP2120, HIP2121  
Typical Performance Curves (Continued)  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
6.7  
6.5  
6.3  
6.1  
5.9  
5.7  
5.5  
5.3  
V
DDR  
V
HBH  
V
HBR  
V
DDH  
-50  
0
50  
TEMPERATURE (°C)  
100  
150  
-50  
0
50  
TEMPERATURE (°C)  
100  
150  
FIGURE 10. UNDERVOLTAGE LOCKOUT HYSTERESIS vs  
TEMPERATURE  
FIGURE 9. UNDERVOLTAGE LOCKOUT THRESHOLD vs  
TEMPERATURE  
55  
50  
55  
50  
t
LPLH  
t
LPLH  
45  
40  
35  
30  
25  
45  
40  
35  
30  
25  
t
HPLH  
t
HPLH  
t
LPHL  
t
LPHL  
t
HPHL  
50  
t
HPHL  
-50  
0
100  
150  
-50  
0
50  
100  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 11. HIP2120 PROPAGATION DELAYS vs TEMPERATURE  
FIGURE 12. HIP2121 PROPAGATION DELAYS vs TEMPERATURE  
8.0  
10.0  
9.5  
7.5  
9.0  
t
t
MON  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
MON  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
t
MOFF  
t
MOFF  
-50  
0
50  
TEMPERATURE (°C)  
100  
150  
-50  
0
50  
TEMPERATURE (°C)  
100  
150  
FIGURE 13. HIP2120 DELAY MATCHING vs TEMPERATURE  
FIGURE 14. HIP2121 DELAY MATCHING vs TEMPERATURE  
FN7668.0  
December 23, 2011  
9
HIP2120, HIP2121  
Typical Performance Curves (Continued)  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
V
, V  
(V)  
V
, V  
(V)  
LO HO  
LO HO  
FIGURE 16. PEAK PULL-DOWN CURRENT vs OUTPUT VOLTAGE  
FIGURE 15. PEAK PULL-UP CURRENT vs OUTPUT VOLTAGE  
120  
110  
320  
300  
I
DD  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
I
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
DD  
I
HB  
I
HB  
60  
40  
20  
0
0
5
10  
, V  
15  
20  
0
5
10  
15  
20  
V
(V)  
V
, V  
(V)  
DD HB  
DD HB  
FIGURE 17. HIP2120 QUIESCENT CURRENT vs VOLTAGE  
FIGURE 18. HIP2121 QUIESCENT CURRENT vs VOLTAGE  
1.00  
0.10  
0.01  
120  
100  
80  
60  
40  
20  
0
.
-3  
-4  
-5  
-6  
1 10  
.
1 10  
.
1 10  
.
1 10  
12  
13  
14  
15  
16  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
V
TO V VOLTAGE (V)  
FORWARD VOLTAGE (V)  
HS  
SS  
FIGURE 19. BOOTSTRAP DIODE I-V CHARACTERISTICS  
FIGURE 20. V VOLTAGE vs V VOLTAGE  
HS DD  
FN7668.0  
December 23, 2011  
10  
HIP2120, HIP2121  
gate charge of the driven power FET for approximately a 5% drop  
in voltage after the charge has been transferred from the boot  
capacitor to the gate capacitance.  
Functional Description  
Functional Overview  
When connected to a half bridge, the output of the bridge on the  
HS node follows the PWM input. In other words, when the PWM  
input is high, the high-side bridge FET is turned on and the  
low-side FET is off. When the PWM input is low, the low-side  
bridge FET is turned on and the high-side is turned off. The  
enable pin (EN), when low, drives both outputs to a low state.  
The following parameters are required to calculate the value of  
the boot capacitor for a specific amount of voltage droop. In this  
example, the values used are arbitrary. They should be changed  
to comply with the actual application.  
V
V
= 10V  
V
can be any value between 7 and 14VDC  
DD  
DD  
HB  
= V - 0.6V  
DD  
High side driver bias voltage (V - boot diode  
DD  
When the PWM input transitions high or low, it is necessary to  
insure that both bridge FETS are not on at the same time to  
prevent shoot-through currents (break before make). The internal  
programmable timers delay the rising edge of either output  
resulting with both outputs being off before either of the bridge  
= V  
voltage) referenced to V  
HO  
HS  
Period = 1ms  
This is the longest expected switching period  
I
= 100µA  
Worst case high side driver current when  
xHO = high  
HB  
FETs is driven on. An 8kΩ resistor connected between R and  
DT  
(this value is specified for V = 12V but the  
DD  
VSS results in a nominal dead time of 220ns. An 80kΩ results  
with a minimum nominal dead time of 25ns. Resistors values  
less than 8k and greater than 80k are not recommended.  
error is not significant)  
R
= 100kΩ  
Gate-source resistor  
(usually not needed)  
GS  
The high-side driver bias is established by the boot capacitor  
connected between HB and HS. The charge on the boot capacitor  
is provided by the internal boot diode that is connected to VDD.  
The current path to charge the boot capacitor occurs when the  
low-side bridge FET is on. This charge current is limited in  
amplitude by the inherent resistance of the boot diode and by the  
drain-source voltage of the low-side FET. Assuming that the on  
time of the low-side FET is sufficiently long to fully charge the  
boot capacitor, the boot voltage will charge very close to VDD  
(less the boot diode drop and the low-side FET on voltage).  
Ripple= 5%  
Desired ripple voltage on the boot cap (larger  
ripple is not recommended)  
I
= 100nA  
From the FET vendor’s datasheet  
From Figure 21  
gate_leak  
Qgate80V = 64nC  
12  
I
= 33A  
D
V
= 80V  
DS  
10  
8
When the PWM input transitions high, the high-side bridge FET is  
driven on after the dead time. Because the HS node is connected  
to the source of the high-side FET, the HS node will rise almost to  
the level of the bridge voltage (less the conduction voltage across  
the bridge FET). Because the boot capacitor voltage is referenced  
V
= 50V  
DS  
V
= 20V  
DS  
6
4
to the source voltage of the high-side FET, the HB node is V  
DD  
volts above the HS node and the boot diode is reversed biased.  
Because the high-side driver circuit is referenced to the HS node,  
the HO output is now approximately VHB + VBRIDGE above  
ground.  
2
0
0
10  
20  
30  
40  
50  
60  
70  
80  
QG TOTAL GATE CHARGE (nC)  
During the low to high transition of the HS node, the boot  
capacitor sources the necessary gate charge to fully enhance the  
high-side bridge FET gate. After the gate is fully charged, the boot  
capacitor no longer sources the charge to the gate but continues  
to provide bias current to the high-side driver. It is clear that the  
charge of the boot capacitor must be substantially larger than  
the required charge of the high-side FET and high-side driver  
otherwise the boot voltage will sag excessively. If the boot  
capacitor value is too small for the required maximum of on-time  
of the high-side FET, the high-side UV lockout may engage  
resulting with an unexpected operation.  
FIGURE 21. TYPICAL GATE CHARGE OF A POWER FET  
The following equations calculate the total charge required for  
the Period. This equation assumes that all of the parameters are  
constant during the period duration. The error is insignificant if  
the ripple is small.  
Q = Q  
gate80V  
+ Period x (I + V /R + I  
HB HO GS  
)
gate_leak  
c
C
C
= Q /(Ripple * VDD)  
c
boot  
boot  
= 0.52µF  
If the gate to source resistor is removed (R is usually not needed  
GS  
or recommended), then:  
Application Information  
Selecting the Boot Capacitor Value  
C
= 0.33µF  
boot  
The boot capacitor value is chosen not only to supply the internal  
bias current of the high-side driver but also, and more  
significantly, to provide the gate charge of the driven FET without  
causing the boot voltage to sag excessively. In practice, the boot  
capacitor should have a total charge that is about 20 times the  
FN7668.0  
December 23, 2011  
11  
HIP2120, HIP2121  
8V TO 15V  
100V MAX  
VDD  
HB  
HI  
DRIVER  
HO  
HS  
PWM  
PWM  
CONTROLLER  
EN  
LO  
LO  
DRIVER  
RDT  
VSS  
FIGURE 22. TYPICAL HALF BRIDGE APPLICATION  
Typical Application Circuit  
Figure 22 is an example of how the HIP2120/21 can be  
configured for a half bridge power supply application.  
H O  
H S  
IN D U C T IV E  
L O A D  
Depending on the application, the switching speed of the bridge  
FETs can be reduced by adding series connected resistors  
between the xHO outputs and the FET gates. Gate-Source  
resistors are recommended on the low-side FETs to prevent  
unexpected turn-on of the bridge should the bridge voltage be  
applied before VDD. Gate-source resistors on the high-side FETs  
are not usually required if low-side gate-source resistors are  
used. If relatively small gate-source resistors are used on the  
high-side FETs, be aware that they will load the boot capacitor,  
which will then require a larger value for the boot capacitor.  
-
+
L O  
-
+
V S S  
FIGURE 23. PARASITIC INDUCTANCE CAUSES TRANSIENTS ON HS  
NODE  
There are several ways of reducing the amplitude of this  
transient. If the bridge FETs are turned off more slowly to reduce  
di/dt, the amplitude will be reduced but at the expense of more  
switching losses in the FETs. Careful PCB design will also reduce  
the value of the parasitic inductance. However, these two  
solutions by themselves may not be sufficient. Figure 19  
illustrates a simple method for clamping the negative transient.  
A fast PN junction, 1A diode is connected between xHS and VSS  
as shown. It is important that this diode be placed as close as  
possible to the xHS and VSS pins to minimize the parasitic  
inductance of this current path. Because this clamping diode is  
essentially in parallel with the body diode of the low-side FET, a  
small value resistor is necessary to limit current when the body  
diode of the low-side bridge FET is conducting during the dead  
time.  
Transients on HS Node  
An important operating condition that is frequently overlooked by  
designers is the negative transient on the xHS pins that occurs  
when the high side bridge FET turns off. The Absolute Maximum  
transient allowed on the xHS pin is -6V but it is wise to minimize  
the amplitude to lower levels. This transient is the result of the  
parasitic inductance of the low-side drain-source conductor on  
the PCB. Even the parasitic inductance of the low-side FET  
contributes to this transient.  
When the high-side bridge FET turns off (see Figure 23), because  
of the inductive characteristics the load, the current that was  
flowing in the high-side FET (blue) must rapidly commutate to  
flow through the low-side FET (red). The amplitude of the  
negative transient impressed on the xHS node is (di/dt x L) where  
L is the total parasitic inductance of the low-side FET  
drain-source path and di/dt is the rate at which the high-side FET  
is turned off. With the increasing power levels of power supplies  
and motor, clamping this transient become more and more  
significant for the proper operation of the HIP2120/21.  
Please note that a similar transient with a positive polarity occurs  
when the low-side FET turns off. This is less frequently a problem  
because xHS node is floating up toward the bridge bias voltage. The  
Absolute Max voltage rating for the xHS node does need to be  
observed when the positive transient occurs.  
FN7668.0  
December 23, 2011  
12  
HIP2120, HIP2121  
Power Dissipation  
The dissipation of the HIP2120/21 is dominated by the gate  
charge required by the driven bridge FETs and the switching  
frequency. The internal bias and boot diode also contribute to the  
total dissipation but these losses are usually insignificant  
compared to the gate charge losses.  
• Keep power loops as short as possible by paralleling the  
source and return traces.  
• Use planes where practical; they’re usually more effective than  
parallel traces.  
• Planes can also be non-grounded nodes.  
The calculation of the power dissipation of the HIP2120/21 is  
very simple.  
• Avoid paralleling high di/dt traces with low level signal lines.  
High di/dt will induce currents in the low level signal lines.  
GATE POWER (FOR THE HO AND LO OUTPUTS)  
• When practical, minimize impedances in low level signal  
circuits; the noise, magnetically induced on a 10k resistor, is  
10x larger than the noise on a 1k resistor.  
P
= 4 x Q x Freq x VDD  
gate  
gate  
where  
is the charge of the driven bridge FET at VDD, and  
• Be aware of magnetic fields emanating from transformers and  
inductors. Core gaps in these structures are especially bad for  
emitting flux.  
Q
gate  
Freq is the switching frequency.  
• If you must have traces close to magnetic devices, align the  
traces so that they are parallel to the flux lines.  
BOOT DIODE DISSIPATION  
I
= Q  
gate  
x Freq  
x 0.6V  
diode_avg  
= I  
• The use of low inductance components such as chip resistors  
and chip capacitors is recommended.  
P
diode diode_avg  
where 0.6V is the diode conduction voltage  
• Use decoupling capacitors to reduce the influence of parasitic  
inductors. To be effective, these capacitors must also have the  
shortest possible lead lengths. If vias are used, connect several  
paralleled vias to reduce the inductance of the vias.  
BIAS CURRENT  
P
= I  
x VDD  
is the internal bias current of the HIP2120/21 at the  
bias  
bias  
where I  
• It may be necessary to add resistance to dampen resonating  
parasitic circuits. The most likely circuit will be the HO and LO  
outputs. In PCB designs with long leads on the LI and HI inputs,  
it may also be necessary to add series resistors with the LI and  
HI inputs.  
bias  
switching frequency  
TOTAL POWER DISSIPATION  
P
= P  
gate  
+ P  
+ P  
diode bias  
total  
• Keep high dv/dt nodes away from low level circuits. Guard  
banding can be used to shunt away dv/dt injected currents  
from sensitive circuits. This is especially true for the PWM  
control circuits.  
OPERATING TEMPERATURES  
T = P x θ + T  
j
total  
JA  
amb  
where T is the junction temperature at the operating air  
j
temperature, T  
, in the vicinity of the part.  
x θ + T  
JC PCB  
• Avoid having a signal ground plane under a high dv/dt circuit.  
This will inject high di/dt currents into the signal ground paths.  
amb  
T = P  
j
total  
• Do power dissipation and voltage drop calculations of the  
power traces. Most PCB/CAD programs have built in tools for  
calculation of trace resistance.  
where T is the junction temperature with the operating  
j
temperature of the PCB, T  
soldered.  
, measured where the EPAD is  
PCB  
• Large power components (Power FETs, Electrolytic capacitors,  
power resistors, etc.) will have internal parasitic inductance,  
which cannot be eliminated. This must be accounted for in the  
PCB layout and circuit design.  
PC Board Layout  
The AC performance of the HIP2120/21 depends significantly on  
the design of the PC board. The following layout design  
guidelines are recommended to achieve optimum performance  
from the HIP2120/21:  
• If you simulate your circuits, consider including parasitic  
components.  
• Understand well how power currents flow. The high amplitude  
di/dt currents of the bridge FETs will induce significant voltage  
transients on the associated traces.  
FN7668.0  
December 23, 2011  
13  
HIP2120, HIP2121  
Depending on the amount of power dissipated by the HIP2120/21,  
EPAD Design Considerations  
it may be necessary, to connect the EPAD to one or more ground  
plane layers. A via array, within the area of the EPAD, will conduct  
heat from the EPAD to the gnd plane on the bottom layer. If inner  
PCB layers are available, it is also be desireable to connect these  
additional layers with the plated-through vias.  
The thermal pad of the HIP2120/21 is electrically isolated. It’s  
primary function is to provide heat sinking for the IC. It is  
recommended to tie the EPAD to V (GND).  
SS  
Figure 24 is an example of how to use vias to remove heat from  
the IC substrate.  
The number of vias and the size of the GND planes required for  
adequate heatsinking is determined by the power dissipated by  
the HIP2120/21, the air flow, and the maximum temperature of  
the air around the IC.  
EPAD  
GND  
EPAD  
GND  
PLANE  
PLANE  
It is important that the vias have a low thermal resistance for  
efficient heat transfer. Do not use “thermal relief” patterns to  
connect the vias.  
BOTTOM  
LAYER  
COMPONENT  
LAYER  
FIGURE 24. TYPICAL PCB PATTERN FOR THERMAL VIAS  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you  
have the latest revision.  
DATE  
REVISION  
FN7668.0  
CHANGE  
December 23, 2011  
Initial Release  
Products  
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products  
address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks.  
Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a  
complete list of Intersil product families.  
For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on  
intersil.com: HIP2120, HIP2121  
To report errors or suggestions for this datasheet, please go to: www.intersil.com/askourstaff  
FITs are available from our website at: http://rel.intersil.com/reports/search.php  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7668.0  
December 23, 2011  
14  
HIP2120, HIP2121  
Package Outline Drawing  
L9.4x4  
9 LEAD THIN DUAL FLAT NO-LEAD PLASTIC PACKAGE  
Rev 1, 1/10  
3.2 REF  
4.00  
A
PIN #1 INDEX AREA  
6
6X 0.80 BSC  
B
4
1
9X 0 . 40 ± 0.100  
6
PIN 1  
INDEX AREA  
4.00  
2.20  
1.2 REF  
0.15  
(4X)  
9
5
0.10 M C A B  
C
0.05 M  
9 X 0.30  
4
TOP VIEW  
(3.00)  
3.00  
BOTTOM VIEW  
SEE DETAIL "X"  
0 .75  
(9 X 0.60)  
C
0.10  
C
BASE PLANE  
SEATING PLANE  
0.08  
C
SIDE VIEW  
(3.80)  
(2.20)  
(1.2)  
4
0 . 2 REF  
C
0 . 00 MIN.  
0 . 05 MAX.  
(9X 0.30)  
(6X 0.8)  
DETAIL "X"  
TYPICAL RECOMMENDED LAND PATTERN  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3.  
Unless otherwise specified, tolerance : Decimal ± 0.05  
4. E-Pad is offset from center.  
Tiebar (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
FN7668.0  
December 23, 2011  
15  
HIP2120, HIP2121  
Package Outline Drawing  
L10.4x4  
10 LEAD THIN DUAL FLAT NO-LEAD PLASTIC PACKAGE  
Rev 1, 1/08  
3.2 REF  
4.00  
A
PIN #1 INDEX AREA  
6
8X 0.80 BSC  
B
5
1
10X 0 . 40  
6
PIN 1  
INDEX AREA  
4.00  
2.60  
0.15  
(4X)  
10  
6
0.10 M C A B  
C
0.05 M  
10 X 0.30  
4
TOP VIEW  
( 3.00 )  
3.00  
BOTTOM VIEW  
SEE DETAIL "X"  
0 .75  
( 10 X 0.60 )  
C
0.10  
C
BASE PLANE  
SEATING PLANE  
0.08  
C
SIDE VIEW  
( 3.80)  
( 2.60)  
0 . 2 REF  
C
0 . 00 MIN.  
0 . 05 MAX.  
( 8X 0 . 8 )  
( 10X 0 . 30 )  
DETAIL "X"  
TYPICAL RECOMMENDED LAND PATTERN  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3.  
Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension b applies to the metallized terminal and is measured  
between 0.15mm and 0.30mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
FN7668.0  
December 23, 2011  
16  

相关型号:

HIP2122

100V, 2A Peak, High Frequency Half-Bridge Drivers with Rising Edge Delay Timer
INTERSIL

HIP2122FRTAZ

100V, 2A Peak, High Frequency Half-Bridge Drivers with Rising Edge Delay Timer
INTERSIL

HIP2122FRTBZ

100V, 2A Peak, High Frequency Half-Bridge Drivers with Rising Edge Delay Timer
INTERSIL

HIP2123

100V, 2A Peak, High Frequency Half-Bridge Drivers with Rising Edge Delay Timer
INTERSIL

HIP2123FRTAZ

100V, 2A Peak, High Frequency Half-Bridge Drivers with Rising Edge Delay Timer
INTERSIL

HIP2123FRTBZ

100V, 2A Peak, High Frequency Half-Bridge Drivers with Rising Edge Delay Timer
INTERSIL

HIP2500

Half Bridge 500VDC Driver
HARRIS

HIP2500IB

Half Bridge 500VDC Driver
HARRIS

HIP2500IP

Half Bridge 500VDC Driver
HARRIS

HIP2500IP1

Half Bridge 500VDC Driver
HARRIS

HIP2500IW

HIP2500IW
RENESAS

HIP4010

Interface IC
ETC