HS-1145RH [INTERSIL]

Radiation Hardened, High Speed, Low Power, Current Feedback Video Operational Amplifier with Output Disable; 抗辐射,高速,低功耗,输出禁用电流反馈型视频运算放大器
HS-1145RH
型号: HS-1145RH
厂家: Intersil    Intersil
描述:

Radiation Hardened, High Speed, Low Power, Current Feedback Video Operational Amplifier with Output Disable
抗辐射,高速,低功耗,输出禁用电流反馈型视频运算放大器

运算放大器
文件: 总9页 (文件大小:148K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HS-1145RH  
Data Sheet  
August 1999  
File Number 4227.1  
Radiation Hardened, High Speed, Low  
Power, Current Feedback Video  
Operational Amplifier with Output Disable  
Features  
• Electrically Screened to SMD # 5962-96830  
• QML Qualified per MIL-PRF-38535 Requirements  
The HS-1145RH is a high speed, low power current  
feedback amplifier built with Intersil’s proprietary  
complementary bipolar UHF-1 (DI bonded wafer) process.  
These devices are QML approved and are processed and  
screened in full compliance with MIL-PRF-38535.  
• Low Supply Current . . . . . . . . . . . . . . . . . . . . 5.9mA (Typ)  
• Wide -3dB Bandwidth. . . . . . . . . . . . . . . . . .360MHz (Typ)  
• High Slew Rate. . . . . . . . . . . . . . . . . . . . . .1000V/µs (Typ)  
• Excellent Gain Flatness (to 50MHz). . . . . . ±0.07dB (Typ)  
• Excellent Differential Gain . . . . . . . . . . . . . . . 0.02% (Typ)  
• Excellent Differential Phase . . . . . . . . 0.03 Degrees (Typ)  
• High Output Current . . . . . . . . . . . . . . . . . . . .60mA (Typ)  
• Output Enable/Disable Time . . . . . . . . . 180ns/35ns (Typ)  
Total Gamma Dose. . . . . . . . . . . . . . . . . . . . 300kRAD(Si)  
• Latch Up. . . . . . . . . . . . . . . . . . . . . None (DI Technology)  
This amplifier features a TTL/CMOS compatible disable  
control, pin 8, which when pulled low, reduces the supply  
current and forces the output into a high impedance state.  
This allows easy implementation of simple, low power video  
switching and routing systems. Component and composite  
video systems also benefit from this op amp’s excellent gain  
flatness, and good differential gain and phase specifications.  
Multiplexed A/D applications will also find the HS-1145RH  
useful as the A/D driver/multiplexer.  
Specifications for Rad Hard QML devices are controlled  
by the Defense Supply Center in Columbus (DSCC). The  
SMD numbers listed here must be used when ordering.  
Applications  
• Multiplexed Flash A/D Driver  
• RGB Multiplexers/Preamps  
• Video Switching and Routing  
• Pulse and Video Amplifiers  
• Wideband Amplifiers  
Detailed Electrical Specifications for these devices are  
contained in SMD 5962-96830. A “hot-link” is provided  
on our homepage for downloading.  
http://www.intersil.com/spacedefense/space.htm  
Ordering Information  
• RF/IF Signal Processing  
• Imaging Systems  
INTERNAL  
MKT. NUMBER  
TEMP. RANGE  
o
ORDERING NUMBER  
5962F9683001VPA  
5962F9683001VPC  
( C)  
HS7-1145RH-Q  
HS7B-1145RH-Q  
-55 to 125  
-55 to 125  
Pinout  
HS-1145RH  
GDIP1-T8 (CERDIP)  
OR CDIP2-T8 (SBDIP)  
TOP VIEW  
NC  
-IN  
+IN  
V-  
1
2
3
4
8
7
6
5
DISABLE  
V+  
-
+
OUT  
NC  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 1999  
1
HS-1145RH  
Optional GND Pad (Die Use Only) for TTL  
Compatibility  
Application Information  
Optimum Feedback Resistor  
The die version of the HS-1145RH provides the user with a  
GND pad for setting the disable circuitry GND reference.  
With symmetrical supplies the GND pad may be left  
unconnected, or tied directly to GND. If asymmetrical  
supplies (e.g., +10V, 0V) are utilized, and TTL compatibility  
is desired, die users must connect the GND pad to GND.  
With an external GND, the DISABLE input is TTL compatible  
regardless of supply voltage utilized.  
Although a current feedback amplifier’s bandwidth  
dependency on closed loop gain isn’t as severe as that of a  
voltage feedback amplifier, there can be an appreciable  
decrease in bandwidth at higher gains. This decrease may  
be minimized by taking advantage of the current feedback  
amplifier’s unique relationship between bandwidth and R .  
All current feedback amplifiers require a feedback resistor,  
F
even for unity gain applications, and R , in conjunction with  
F
Pulse Undershoot and Asymmetrical Slew Rates  
the internal compensation capacitor, sets the dominant pole  
of the frequency response. Thus, the amplifier’s bandwidth is  
The HS-1145RH utilizes a quasi-complementary output  
stage to achieve high output current while minimizing  
quiescent supply current. In this approach, a composite  
device replaces the traditional PNP pulldown transistor. The  
composite device switches modes after crossing 0V,  
resulting in added distortion for signals swinging below  
ground, and an increased undershoot on the negative  
portion of the output waveform (See Figures 5, 8, and 11).  
This undershoot isn’t present for small bipolar signals, or  
large positive signals. Another artifact of the composite  
device is asymmetrical slew rates for output signals with a  
negative voltage component. The slew rate degrades as the  
output signal crosses through 0V (See Figures 5, 8, and 11),  
resulting in a slower overall negative slew rate. Positive only  
signals have symmetrical slew rates as illustrated in the  
large signal positive pulse response graphs (See Figures 4,  
7, and 10).  
inversely proportional to R . The HS-1145RH design is  
F
optimized for R = 510at a gain of +2. Decreasing R  
F
F
decreases stability, resulting in excessive peaking and  
overshoot (Note: Capacitive feedback will cause the same  
problems due to the feedback impedance decrease at higher  
frequencies). At higher gains, however, the amplifier is more  
stable so R can be decreased in a trade-off of stability for  
F
bandwidth.  
The table below lists recommended R values for various  
F
gains, and the expected bandwidth. For a gain of +1, a  
resistor (+R ) in series with +IN is required to reduce gain  
S
peaking and increase stability.  
GAIN  
(A  
BANDWIDTH  
(MHz)  
)
R ()  
F
CL  
-1  
+1  
425  
300  
270  
330  
300  
130  
510 (+R = 510)  
PC Board Layout  
S
+2  
510  
200  
180  
This amplifier’s frequency response depends greatly on the  
care taken in designing the PC board. The use of low  
inductance components such as chip resistors and chip  
capacitors is strongly recommended, while a solid  
ground plane is a must!  
+5  
+10  
Non-Inverting Input Source Impedance  
Attention should be given to decoupling the power supplies.  
A large value (10µF) tantalum in parallel with a small value  
(0.1µF) chip capacitor works well in most cases.  
For best operation, the DC source impedance seen by the  
non-inverting input should be 50Ω. This is especially  
important in inverting gain configurations where the non-  
inverting input would normally be connected directly to GND.  
Terminated microstrip signal lines are recommended at the  
device’s input and output connections. Capacitance,  
parasitic or planned, connected to the output must be  
minimized, or isolated as discussed in the next section.  
DISABLE Input TTL Compatibility  
The HS-1145RH derives an internal GND reference for the  
digital circuitry as long as the power supplies are symmetrical  
about GND. With symmetrical supplies the digital switching  
Care must also be taken to minimize the capacitance to  
ground at the amplifier’s inverting input (-IN), as this  
capacitance causes gain peaking, pulse overshoot, and if  
large enough, instability. To reduce this capacitance, the  
designer should remove the ground plane under traces  
connected to -IN, and keep connections to -IN as short as  
possible.  
threshold (V = (V + V )/2 = (2.0 + 0.8)/2) is 1.4V, which  
TH IH IL  
ensures the TTL compatibility of the DISABLE input. If  
asymmetrical supplies (e.g., +10V, 0V) are utilized, the  
switching threshold becomes:  
V+ + V-  
V
= ------------------- + 1.4V  
TH  
2
An example of a good high frequency layout is the  
Evaluation Board shown in Figure 2.  
and the V and V levels will be V ± 0.6V, respectively.  
IH IL TH  
2
HS-1145RH  
Driving Capacitive Loads  
Capacitive loads, such as an A/D input, or an improperly  
terminated transmission line will degrade the amplifier’s  
V
H
phase margin resulting in frequency response peaking and  
possible oscillations. In most cases, the oscillation can be  
1
avoided by placing a resistor (R ) in series with the output  
S
+IN  
prior to the capacitance.  
OUT  
V-  
V+  
V
Figure 1 details starting points for the selection of this  
resistor. The points on the curve indicate the R and C  
L
GND  
S
L
combinations for the optimum bandwidth, stability, and  
settling time, but experimental fine tuning is recommended.  
Picking a point above or to the right of the curve yields an  
overdamped response, while points below or left of the curve  
indicate areas of underdamped performance.  
FIGURE 2A. TOP LAYOUT  
R
and C form a low pass network at the output, thus  
L
S
limiting system bandwidth well below the amplifier bandwidth  
of 270MHz (for A = +1). By decreasing R as C increases  
V
S
L
(as illustrated in the curves), the maximum bandwidth is  
obtained without sacrificing stability. In spite of this, the  
bandwidth decreases as the load capacitance increases. For  
example, at A = +1, R = 62, C = 40pF, the overall  
V
S
L
bandwidth is limited to 180MHz, and bandwidth drops to  
75MHz at A = +1, R = 8, C = 400pF.  
V
S
L
50  
40  
30  
20  
10  
0
FIGURE 2B. BOTTOM LAYOUT  
510  
510  
V
H
A
= +1  
V
R
1
A
= +2  
V
1
2
3
4
8
7
6
5
10µF  
+5V  
0.1µF  
50Ω  
50Ω  
IN  
OUT  
0
100  
200  
300  
400  
50  
150  
250  
350  
V
L
GND  
0.1µF  
10µF  
LOAD CAPACITANCE (pF)  
-5V  
GND  
FIGURE 1. RECOMMENDED SERIES OUTPUT RESISTOR vs  
LOAD CAPACITANCE  
FIGURE 2C. SCHEMATIC  
FIGURE 2. EVALUATION BOARD SCHEMATIC AND LAYOUT  
Evaluation Board  
The performance of the HS-1145RH may be evaluated using  
the HFA11XX Evaluation Board.  
The layout and schematic of the board are shown in Figure 2.  
The V connection may be used to exercise the DISABLE  
H
pin, but note that this connection has no 50termination. To  
order evaluation boards (part number HFA11XXEVAL),  
please contact your local sales office.  
3
HS-1145RH  
o
Typical Performance Curves V  
= ±5V, R = 510, T = 25 C, R = 100, Unless Otherwise Specified  
F A L  
SUPPLY  
200  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
A
= +1  
A
= +1  
V
V
+R = 510Ω  
+R = 510Ω  
S
150  
100  
50  
S
0
-50  
-100  
-0.5  
-1.0  
-150  
-200  
5ns/DIV.  
5ns/DIV.  
FIGURE 3. SMALL SIGNAL PULSE RESPONSE  
FIGURE 4. LARGE SIGNAL POSITIVE PULSE RESPONSE  
2.0  
1.5  
1.0  
0.5  
0
200  
A
= +1  
A
= +2  
V
V
+R = 510Ω  
S
150  
100  
50  
0
-0.5  
-1.0  
-50  
-100  
-1.5  
-2.0  
-150  
-200  
5ns/DIV.  
5ns/DIV.  
FIGURE 5. LARGE SIGNAL BIPOLAR PULSE RESPONSE  
FIGURE 6. SMALL SIGNAL PULSE RESPONSE  
3.0  
2.0  
1.5  
1.0  
0.5  
0
A
= +2  
A = +2  
V
V
2.5  
2.0  
1.5  
1.0  
0.5  
0
-0.5  
-1.0  
-0.5  
-1.0  
-1.5  
-2.0  
5ns/DIV.  
5ns/DIV.  
FIGURE 7. LARGE SIGNAL POSITIVE PULSE RESPONSE  
FIGURE 8. LARGE SIGNAL BIPOLAR PULSE RESPONSE  
4
HS-1145RH  
o
Typical Performance Curves V  
= ±5V, R = 510, T = 25 C, R = 100, Unless Otherwise Specified (Continued)  
F A L  
SUPPLY  
200  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
A
= +10  
V
A
= +10  
V
R
= 180Ω  
F
R
= 180Ω  
150  
100  
50  
F
0
-50  
-100  
-0.5  
-1.0  
-150  
-200  
5ns/DIV.  
5ns/DIV.  
FIGURE 9. SMALL SIGNAL PULSE RESPONSE  
FIGURE 10. LARGE SIGNAL POSITIVE PULSE RESPONSE  
2.0  
1.5  
1.0  
0.5  
0
A
= +10  
V
R
= 180Ω  
F
DISABLE  
800mV/DIV.  
(0.4V to 2.4V)  
OUT  
400mV/DIV.  
-0.5  
-1.0  
0V  
-1.5  
-2.0  
A
= +1, V = 1V  
IN  
V
5ns/DIV.  
50ns/DIV.  
FIGURE 11. LARGE SIGNAL BIPOLAR PULSE RESPONSE  
FIGURE 12. OUTPUT ENABLE AND DISABLE RESPONSE  
V
= 200mV  
P-P  
OUT  
+R = 510(+1)  
A
= +2  
V
3
3
0
S
A
= +1  
= -1  
V
+R = 0(-1)  
S
0
A
= +10  
A
V
-3  
V
-3  
A
= +5  
V
A
= +2  
V
0
0
A
= -1  
V
90  
90  
A
= +5  
V
= 200mV  
P-P  
V
OUT  
180  
270  
R
R
R
= 510(+2)  
= 200(+5)  
= 180(+10)  
180  
270  
F
F
F
A
= +10  
100  
V
A
= +1  
V
0.3  
1
10  
FREQUENCY (MHz)  
500  
0.3  
1
10  
100  
500  
FREQUENCY (MHz)  
FIGURE 13. FREQUENCY RESPONSE  
FIGURE 14. FREQUENCY RESPONSE  
5
HS-1145RH  
o
Typical Performance Curves V  
= ±5V, R = 510, T = 25 C, R = 100, Unless Otherwise Specified (Continued)  
F A L  
SUPPLY  
A
= +2  
V
V
= 200mV  
P-P  
OUT  
3
0
3
0
A
= -1  
V
V
= 4V  
= 5V  
(+1)  
(-1, +2)  
OUT  
P-P  
V
= 1.5V  
-3  
-3  
OUT  
P-P  
V
A
= +1  
OUT  
P-P  
V
V
= 5V  
OUT  
P-P  
+R = 510(+1)  
S
A
= +2  
V
V
= 200mV  
P-P  
OUT  
0
90  
V
= 1.5V  
180  
270  
OUT  
P-P  
V
= 5V  
P-P  
OUT  
1
10  
100  
200  
0.3  
1
10  
FREQUENCY (MHz)  
100  
500  
FREQUENCY (MHz)  
FIGURE15. FREQUENCYRESPONSEFORVARIOUSOUTPUT  
VOLTAGES  
FIGURE 16. FULL POWER BANDWIDTH  
V
= 200mV  
P-P  
R
= 1kΩ  
OUT  
= +2  
500  
400  
300  
200  
100  
0
L
R
= 500Ω  
3
L
A
= +2  
A
V
R
= 200mV  
V
V
OUT  
P-P  
= 180(+10)  
F
0
+R = 510(+1)  
S
R
= 50Ω  
L
-3  
R
= 100Ω  
L
A
= +1  
V
R
= 50Ω  
L
= 100Ω  
R
0
L
90  
R
= 1kΩ  
A
= +10  
L
L
V
R
= 500Ω  
180  
270  
-100  
-50  
0
50  
100  
150  
0.3  
1
10  
FREQUENCY (MHz)  
100  
500  
o
TEMPERATURE ( C)  
FIGURE 17. FREQUENCY RESPONSE FOR VARIOUS LOAD  
RESISTORS  
FIGURE 18. -3dB BANDWIDTH vs TEMPERATURE  
-30  
V
= 200mV  
P-P  
OUT  
+R = 510(+1)  
A
= +2  
V
-40  
-50  
-60  
-70  
-80  
-90  
S
V
= 1V  
P-P  
IN  
0.25  
0.20  
0.15  
0.10  
0.05  
0
A
= +2  
V
A
= +1  
V
-0.05  
-0.10  
0.3  
1
10  
100  
1
10  
75  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 19. GAIN FLATNESS  
FIGURE 20. OFF ISOLATION  
6
HS-1145RH  
o
Typical Performance Curves V  
= ±5V, R = 510, T = 25 C, R = 100, Unless Otherwise Specified (Continued)  
SUPPLY  
F
A
L
-40  
A = +2  
V
V
= 2V  
P-P  
OUT  
A
= +1, +2  
-50  
-60  
-70  
-80  
-90  
V
1K  
100  
10  
A
= -1  
V
1
0.1  
0.01  
0.3  
1
10  
100  
0.3  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 21. REVERSE ISOLATION  
FIGURE 22. ENABLED OUTPUT IMPEDANCE  
-30  
-40  
-50  
-60  
-70  
A
= +2  
V
0.8  
0.6  
0.4  
V
= 2V  
A
= +2  
OUT  
V
20MHz  
0.2  
0.1  
0
10MHz  
-0.2  
-0.4  
-0.6  
-0.8  
-5  
0
5
10  
15  
3
8
13  
18  
23  
28  
33  
38  
43  
48  
TIME (ns)  
OUTPUT POWER (dBm)  
FIGURE 23. SETTLING RESPONSE  
FIGURE 24. SECOND HARMONIC DISTORTION vs P  
OUT  
-30  
-40  
-50  
-60  
-70  
3.6  
A
= -1  
|-V | (R = 100)  
OUT L  
V
A
= +2  
V
3.5  
+V  
OUT  
(R = 100)  
L
3.4  
3.3  
3.2  
3.1  
+V  
OUT  
(R = 50)  
L
3.0  
2.9  
2.8  
|-V  
| (R = 50)  
L
OUT  
2.7  
2.6  
-50  
-25  
0
25  
50  
o
75  
100  
125  
-5  
0
5
10  
15  
OUTPUT POWER (dBm)  
TEMPERATURE ( C)  
FIGURE 25. THIRD HARMONIC DISTORTION vs P  
FIGURE 26. OUTPUT VOLTAGE vs TEMPERATURE  
OUT  
7
HS-1145RH  
o
Typical Performance Curves V  
= ±5V, R = 510, T = 25 C, R = 100, Unless Otherwise Specified (Continued)  
SUPPLY  
F
A
L
6.1  
6.0  
5.9  
5.8  
5.7  
5.6  
100  
100  
I
NI-  
10  
10  
E
NI  
I
NI+  
1
100  
1
0.1  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
1
10  
POWER SUPPLY VOLTAGE (±V)  
FREQUENCY (kHz)  
FIGURE 27. INPUT NOISE CHARACTERISTICS  
FIGURE 28. SUPPLY CURRENT vs SUPPLY VOLTAGE  
Burn-In Circuit  
Irradiation Circuit  
HS-1145RH CERDIP  
HS-1145RH CERDIP  
R2  
R2  
1
8
7
6
5
1
2
3
4
8
7
6
5
D2  
C1  
R1  
R1  
R1  
R1  
2
3
4
V+  
V+  
-
-
+
+
D1  
C1  
D2  
V-  
D1  
V-  
C1  
C2  
NOTES:  
NOTES:  
1. R1 = 1k, ±5% (Per Socket)  
2. R2 = 10k, ±5% (Per Socket)  
8. R1 = 1k, ±5%  
9. R2 = 10k, ±5%  
3. C1 = 0.01µF (Per Socket) or 0.1µF (Per Row) Minimum  
4. D1 = 1N4002 or Equivalent (Per Board)  
5. D2 = 1N4002 or Equivalent (Per Socket)  
6. V+ = +5.5V ± 0.5V  
10. C1 = C2 = 0.01µF  
11. V+ = +5.0V ± 0.5V  
12. V- = -5.0V ± 0.5V  
7. V- = -5.5V ± 0.5V  
8
HS-1145RH  
Die Characteristics  
DIE DIMENSIONS:  
Substrate:  
UHF-1, Bonded Wafer, DI  
59 mils x 59 mils x 19 mils ±1 mil  
(1500µm x 1500µm x 483µm ± 25.4µm)  
ASSEMBLY RELATED INFORMATION:  
INTERFACE MATERIALS:  
Glassivation:  
Substrate Potential:  
Floating (Recommend Connection to V-)  
Type: Nitride  
Thickness: 4kÅ ±0.5kÅ  
ADDITIONAL INFORMATION:  
Transistor Count:  
Top Metallization:  
75  
Type: Metal 1: AICu(2%)/TiW  
Thickness: Metal 1: 8kÅ ±0.4kÅ  
Type: Metal 2: AICu(2%)  
Thickness: Metal 2: 16kÅ ±0.8kÅ  
Metallization Mask Layout  
HS-1145RH  
DISABLE  
-IN  
V+  
OUT  
+IN  
V-  
OPTIONAL GND (NOTE)  
NOTE: This pad is not bonded out on packaged units. Die users may set a GND reference, via this pad, to ensure the TTL compatibility of the DIS  
input when using asymmetrical supplies (e.g. V+ = 10V, V- = 0V). See the “Application Information” section for details.  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
9

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY