HS-1412RH [INTERSIL]

Radiation Hardened, Quad, High Speed, Low Power, Video Closed Loop Buffer; 抗辐射,四路,高速,低功耗,视频闭环缓冲器
HS-1412RH
型号: HS-1412RH
厂家: Intersil    Intersil
描述:

Radiation Hardened, Quad, High Speed, Low Power, Video Closed Loop Buffer
抗辐射,四路,高速,低功耗,视频闭环缓冲器

文件: 总11页 (文件大小:177K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HS-1412RH  
Data Sheet  
August 1999  
File Number 4230.1  
Radiation Hardened, Quad, High Speed,  
Low Power, Video Closed Loop Buffer  
Features  
• Electrically Screened to SMD # 5962-96834  
• QML Qualified per MIL-PRF-38535 Requirements  
• MIL-PRF-38535 Class V Compliant  
The HS-1412RH is a radiation hardened quad closed loop  
buffer featuring user programmable gain and high speed  
performance. Manufactured on Intersil’s proprietary  
complementary bipolar UHF-1 (DI bonded wafer) process,  
this device offers wide -3dB bandwidth of 340MHz, very fast  
slew rate, excellent gain flatness and high output current.  
These devices are QML approved and are processed and  
screened in full compliance with MIL-PRF-38535.  
• User Programmable For Closed-Loop Gains of +1, -1 or  
+2 Without Use of External Resistors  
• Standard Operational Amplifier Pinout  
• Low Supply Current . . . . . . . . . . . . 5.9mA/Op Amp (Typ)  
• Excellent Gain Accuracy . . . . . . . . . . . . . . . 0.99V/V (Typ)  
• Wide -3dB Bandwidth. . . . . . . . . . . . . . . . . .340MHz (Typ)  
• Fast Slew Rate . . . . . . . . . . . . . . . . . . . . . .1155V/µs (Typ)  
• High Input Impedance . . . . . . . . . . . . . . . . . . . 1M(Typ)  
• Excellent Gain Flatness (to 50MHz). . . . . . ±0.02dB (Typ)  
• Fast Overdrive Recovery . . . . . . . . . . . . . . . . <10ns (Typ)  
Total Gamma Dose. . . . . . . . . . . . . . . . . . . . 300kRAD(Si)  
• Latch Up. . . . . . . . . . . . . . . . . . . . . None (DI Technology)  
A unique feature of the pinout allows the user to select a  
voltage gain of +1, -1, or +2, without the use of any external  
components. Gain selection is accomplished via  
connections to the inputs, as described in the “Application  
Information” section. The result is a more flexible product,  
fewer part types in inventory, and more efficient use of board  
space.  
Compatibility with existing op amp pinouts provides flexibility  
to upgrade low gain amplifiers, while decreasing component  
count. Unlike most buffers, the standard pinout provides an  
upgrade path should a higher closed loop gain be needed at  
a future date.  
Applications  
Specifications for Rad Hard QML devices are controlled  
by the Defense Supply Center in Columbus (DSCC). The  
SMD numbers listed here must be used when ordering.  
• Flash A/D Driver  
• Video Switching and Routing  
• Pulse and Video Amplifiers  
• Wideband Amplifiers  
• RF/IF Signal Processing  
• Imaging Systems  
Detailed Electrical Specifications for these devices are  
contained in SMD 5962-96834. A “hot-link” is provided  
on our homepage for downloading.  
www.intersil.com/spacedefense/space.asp  
Ordering Information  
Pinout  
INTERNAL  
TEMP. RANGE  
o
HS-1412RH (CERDIP) GDIP1-T14  
ORDERING NUMBER  
5962F9683401VCA  
5962F9683401VCC  
MKT. NUMBER  
( C)  
OR  
HS1-1412RH-Q  
HS1B-1412RH-Q  
-55 to 125  
-55 to 125  
HS-1412RH (SBDIP) CDIP2-T14  
TOP VIEW  
OUT1  
-IN1  
1
2
3
4
5
6
7
14 OUT4  
13 -IN4  
12 +IN4  
11 V-  
+IN1  
V+  
+IN2  
-IN2  
10 +IN3  
9
8
-IN3  
OUT3  
OUT2  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 1999  
1
HS-1412RH  
Unity Gain Considerations  
Application Information  
Unity gain selection is accomplished by floating the -Input of  
the HS-1412RH. Anything that tends to short the -Input to  
GND, such as stray capacitance at high frequencies, will  
cause the amplifier gain to increase toward a gain of +2. The  
result is excessive high frequency peaking, and possible  
instability. Even the minimal amount of capacitance  
associated with attaching the -Input lead to the PCB results  
in approximately 6dB of gain peaking. At a minimum this  
requires due care to ensure the minimum capacitance at the  
-Input connection.  
HS-1412RH Advantages  
The HS-1412RH features a novel design which allows the  
user to select from three closed loop gains, without any  
external components. The result is a more flexible product,  
fewer part types in inventory, and more efficient use of board  
space. Implementing a quad, gain of 2, cable driver with this  
IC eliminates the eight gain setting resistors, which frees up  
board space for termination resistors.  
Like most newer high performance amplifiers, the HS-1412RH  
is a current feedback amplifier (CFA). CFAs offer high  
bandwidth and slew rate at low supply currents, but can be  
difficult to use because of their sensitivity to feedback  
capacitance and parasitics on the inverting input (summing  
node). The HS-1412RH eliminates these concerns by bringing  
the gain setting resistors on-chip. This yields the optimum  
placement and value of the feedback resistor, while minimizing  
feedback and summing node parasitics. Because there is no  
access to the summing node, the PCB parasitics do not impact  
performance at gains of +2 or -1 (see “Unity Gain  
Table 1 lists five alternate methods for configuring the  
HS-1412RH as a unity gain buffer, and the corresponding  
performance. The implementations vary in complexity and  
involve performance trade-offs. The easiest approach to  
implement is simply shorting the two input pins together,  
and applying the input signal to this common node. The  
amplifier bandwidth decreases from 550MHz to 370MHz,  
but excellent gain flatness is the benefit. A drawback to this  
approach is that the amplifier input noise voltage and input  
offset voltage terms see a gain of +2, resulting in higher  
noise and output offset voltages. Alternately, a 100pF  
capacitor between the inputs shorts them only at high  
frequencies, which prevents the increased output offset  
voltage but delivers less gain flatness.  
Considerations” for discussion of parasitic impact on unity gain  
performance).  
The HS-1412RH’s closed loop gain implementation provides  
better gain accuracy, lower offset and output impedance,  
and better distortion compared with open loop buffers.  
Another straightforward approach is to add a 620resistor  
in series with the amplifier’s positive input. This resistor and  
the HS-1412RH input capacitance form a low pass filter  
which rolls off the signal bandwidth before gain peaking  
occurs. This configuration was employed to obtain the data  
sheet AC and transient parameters for a gain of +1.  
Closed Loop Gain Selection  
This “buffer” operates in closed loop gains of -1, +1, or +2,  
with gain selection accomplished via connections to the  
±inputs. Applying the input signal to +IN and floating -IN  
selects a gain of +1 (see next section for layout caveats),  
while grounding -IN selects a gain of +2. A gain of -1 is  
obtained by applying the input signal to -IN with +IN  
grounded through a 50resistor.  
Pulse Overshoot  
The HS-1412RH utilizes a quasi-complementary output stage  
to achieve high output current while minimizing quiescent  
supply current. In this approach, a composite device replaces  
the traditional PNP pulldown transistor. The composite device  
switches modes after crossing 0V, resulting in added  
distortion for signals swinging below ground, and an  
increased overshoot on the negative portion of the output  
waveform (see Figure 5, Figure 7, and Figure 9). This  
overshoot isn’t present for small bipolar signals (see Figure 4,  
Figure 6, and Figure 8) or large positive signals. Figure 28  
through Figure 31 illustrate the amplifier’s overshoot  
dependency on input transition time, and signal polarity.  
The table below summarizes these connections:  
CONNECTIONS  
GAIN  
(A  
CL  
)
+INPUT  
50to GND  
Input  
-INPUT  
Input  
-1  
+1  
+2  
NC (Floating)  
GND  
Input  
TABLE 1. UNITY GAIN PERFORMANCE FOR VARIOUS IMPLEMENTATIONS  
APPROACH  
PEAKING (dB)  
BW (MHz)  
550  
SR (V/µs)  
1300  
1000  
1000  
500  
±0.1dB GAIN FLATNESS (MHz)  
Remove -IN Pin  
+R = 620Ω  
5.0  
1.0  
0.7  
0.1  
0.3  
18  
25  
230  
S
+R = 620and Remove -IN Pin  
225  
28  
S
Short +IN to -IN (e.g., Pins 2 and 3)  
100pF Capacitor Between +IN and -IN  
370  
170  
130  
380  
550  
2
HS-1412RH  
PC Board Layout  
Evaluation Board  
This amplifier’s frequency response depends greatly on the  
care taken in designing the PC board (PCB). The use of low  
inductance components such as chip resistors and chip  
capacitors is strongly recommended, while a solid  
ground plane is a must!  
The performance of the HS-1412RH may be evaluated using  
the HA5025 Evaluation Board, slightly modified as follows:  
1. Remove the four feedback resistors, and leave the  
connections open.  
2. a. For A = +1 evaluation, remove the gain setting  
V
Attention should be given to decoupling the power supplies.  
A large value (10µF) tantalum in parallel with a small value  
(0.1µF) chip capacitor works well in most cases.  
resistors (R ), and leave pins 2, 6, 9, and 13 floating.  
1
b. For A = +2, replace the gain setting resistors (R ) with  
V
1
0resistors to GND.  
The modified schematic for amplifier 1, and the board layout  
are shown in Figures 2 and 3.  
Terminated microstrip signal lines are recommended at the  
input and output of the device. Capacitance directly on the  
output must be minimized, or isolated as discussed in the  
next section.  
To order evaluation boards (part number HA5025EVAL),  
please contact your local sales office.  
An example of a good high frequency layout is the  
Evaluation Board shown in Figure 3.  
50  
OUT  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
R
(A = +1)  
V
NOTE: R  
=
(NOTE)  
1
1
or 0(A = +2)  
V
-
Driving Capacitive Loads  
+
IN  
Capacitive loads, such as an A/D input, or an improperly  
terminated transmission line will degrade the amplifier’s  
phase margin resulting in frequency response peaking and  
possible oscillations. In most cases, the oscillation can be  
50Ω  
-5V  
0.1µF  
10µF  
+5V  
10µF  
0.1µF  
avoided by placing a resistor (R ) in series with the output  
S
GND  
8
prior to the capacitance.  
GND  
Figure 1 details starting points for the selection of this  
FIGURE 2. MODIFIED EVALUATION BOARD SCHEMATIC  
resistor. The points on the curve indicate the R and C  
S
L
combinations for the optimum bandwidth, stability, and  
settling time, but experimental fine tuning is recommended.  
Picking a point above or to the right of the curve yields an  
overdamped response, while points below or left of the curve  
indicate areas of underdamped performance.  
50  
40  
30  
20  
A
= +1  
V
FIGURE 3A. TOP LAYOUT  
A
= +2  
150  
V
10  
0
0
100  
200  
300  
400  
50  
250  
350  
LOAD CAPACITANCE (pF)  
FIGURE 1. RECOMMENDED SERIES RESISTOR vs LOAD  
CAPACITANCE  
R and C form a low pass network at the output, thus limiting  
S
L
system bandwidth well below the amplifier bandwidth of  
350MHz. By decreasing R as C increases (as illustrated in  
S
L
the curves), the maximum bandwidth is obtained without  
sacrificing stability. In spite of this, bandwidth decreases as  
the load capacitance increases. For example, at A = +2,  
V
R = 22, C = 100pF, the overall bandwidth is 125MHz, and  
FIGURE 3B. BOTTOM LAYOUT  
S
L
FIGURE 3. EVALUATION BOARD LAYOUT  
bandwidth drops to 100MHz at R = 12, C = 220pF.  
S
L
3
HS-1412RH  
o
Typical Performance Curves V  
= ±5V, T = 25 C, R = 100, Unless Otherwise Specified  
SUPPLY  
A
L
2.0  
1.5  
200  
A
= +2  
A
= +2  
V
V
150  
100  
50  
1.0  
0.5  
0
0
-0.5  
-1.0  
-1.5  
-2.0  
-50  
-100  
-150  
-200  
TIME (5ns/DIV.)  
TIME (5ns/DIV.)  
FIGURE 4. SMALL SIGNAL PULSE RESPONSE  
FIGURE 5. LARGE SIGNAL PULSE RESPONSE  
2.0  
1.5  
1.0  
0.5  
0
200  
150  
A
= +1  
V
A
= +1  
V
100  
50  
0
-0.5  
-1.0  
-50  
-100  
-150  
-200  
-1.5  
-2.0  
TIME (5ns/DIV.)  
TIME (5ns/DIV.)  
FIGURE 6. SMALL SIGNAL PULSE RESPONSE  
FIGURE 7. LARGE SIGNAL PULSE RESPONSE  
200  
150  
100  
50  
2.0  
1.5  
A
= -1  
A = -1  
V
V
1.0  
0.5  
0
0
-50  
-100  
-0.5  
-1.0  
-1.5  
-2.0  
-150  
-200  
TIME (5ns/DIV.)  
TIME (5ns/DIV.)  
FIGURE 8. SMALL SIGNAL PULSE RESPONSE  
FIGURE 9. LARGE SIGNAL PULSE RESPONSE  
4
HS-1412RH  
o
Typical Performance Curves V  
= ±5V, T = 25 C, R = 100, Unless Otherwise Specified (Continued)  
SUPPLY  
A
L
A
= +2, V = 200mV  
OUT P-P  
V
= 200mV  
P-P  
V
OUT  
9
6
6
3
GAIN  
A
= +2  
V
R
R
R
= 1kΩ  
= 100Ω  
= 50Ω  
3
0
0
-3  
-6  
L
L
L
GAIN  
A
= -1  
V
A
= +1  
V
0
0
A
= +2  
V
PHASE  
PHASE  
90  
90  
R
R
R
= 1kΩ  
= 100Ω  
= 50Ω  
L
L
L
A
= -1  
180  
270  
180  
270  
V
A
= +1  
V
0.3  
1
10  
FREQUENCY (MHz)  
100  
500  
0.3  
1
10  
FREQUENCY (MHz)  
100  
500  
FIGURE 10. FREQUENCY RESPONSE  
FIGURE 11. FREQUENCY RESPONSE FOR VARIOUS LOAD  
RESISTORS  
A
= +1, V = 200mV  
OUT P-P  
A
= -1, V = 200mV  
OUT P-P  
V
V
3
0
3
0
GAIN  
GAIN  
-3  
-6  
-3  
-6  
R
R
R
= 1kΩ  
=100Ω  
= 50Ω  
L
L
L
R
R
R
= 1kΩ  
= 100Ω  
= 50Ω  
L
L
L
0
180  
90  
0
PHASE  
PHASE  
90  
R
R
R
= 1kΩ  
= 100Ω  
= 50Ω  
R
R
R
= 1kΩ  
= 100Ω  
= 50Ω  
L
L
L
L
L
L
180  
270  
-90  
0.3  
1
10  
FREQUENCY (MHz)  
100  
500  
0.3  
1
10  
FREQUENCY (MHz)  
100  
500  
FIGURE 12. FREQUENCY RESPONSE FOR VARIOUS LOAD  
RESISTORS  
FIGURE 13. FREQUENCY RESPONSE FOR VARIOUS LOAD  
RESISTORS  
A
= +1  
V
A
= +2  
V
9
6
3
0
GAIN  
GAIN  
1V  
P-P  
2.5V  
3
0
-3  
-6  
P-P  
1V  
P-P  
4V  
P-P  
2.5V  
P-P  
4V  
P-P  
0
0
PHASE  
PHASE  
90  
90  
1V  
P-P  
2.5V  
180  
270  
360  
180  
270  
360  
P-P  
1V  
P-P  
4V  
P-P  
2.5V  
P-P  
4V  
P-P  
0.3  
1
10  
FREQUENCY (MHz)  
100  
500  
0.3  
1
10  
FREQUENCY (MHz)  
100  
500  
FIGURE14. FREQUENCYRESPONSEFORVARIOUSOUTPUT  
VOLTAGES  
FIGURE15. FREQUENCYRESPONSEFORVARIOUSOUTPUT  
VOLTAGES  
5
HS-1412RH  
o
Typical Performance Curves V  
= ±5V, T = 25 C, R = 100, Unless Otherwise Specified (Continued)  
SUPPLY  
A
L
A
= -1  
V
= 5V  
V
OUT P-P  
3
0
6
3
GAIN  
-3  
-6  
0
-3  
1V  
P-P  
2.5V  
4V  
P-P  
A
= +2  
= +1  
= -1  
V
P-P  
-6  
A
V
A
V
-9  
180  
90  
0
1V  
P-P  
PHASE  
-12  
-15  
-18  
-21  
4V  
P-P  
2.5V  
P-P  
-90  
0.3  
1
10  
FREQUENCY (MHz)  
100  
500  
0.3  
1
10  
FREQUENCY (MHz)  
100  
500  
FIGURE16. FREQUENCYRESPONSEFORVARIOUSOUTPUT  
VOLTAGES  
FIGURE 17. FULL POWER BANDWIDTH  
0.5  
450  
400  
V
= 200mV  
P-P  
OUT  
0.4  
0.3  
0.2  
0.1  
0
A
= +2  
V
A
= +1  
V
350  
300  
A
= -1  
V
A
= +2  
V
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
A
= -1  
V
250  
200  
A
= +1  
V
-50  
-25  
0
25  
50  
75  
100  
125  
1
10  
FREQUENCY (MHz)  
100  
200  
o
TEMPERATURE ( C)  
FIGURE 18. -3dB BANDWIDTH vs TEMPERATURE  
FIGURE 19. GAIN FLATNESS  
-40  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
A
= +2  
= -1  
= +1  
V
A
V
A
V
R
= 100Ω  
L
R
=  
L
0.3  
1
10  
100  
500  
0.3  
1
10  
FREQUENCY (MHz)  
100  
FREQUENCY (MHz)  
FIGURE 20. REVERSE ISOLATION (S  
)
FIGURE 21. ALL HOSTILE CROSSTALK  
12  
6
HS-1412RH  
o
Typical Performance Curves V  
= ±5V, T = 25 C, R = 100, Unless Otherwise Specified (Continued)  
SUPPLY  
A
L
-40  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
A
= +2  
A
= +2  
V
V
-45  
-50  
-55  
20MHz  
20MHz  
10MHz  
-60  
-65  
-70  
-75  
-80  
10MHz  
-80  
-5  
-2  
1
4
7
10  
13  
-5  
-2  
1
4
7
10  
13  
OUTPUT POWER (dBm)  
OUTPUT POWER (dBm)  
FIGURE 22. 2nd HARMONIC DISTORTION vs P  
FIGURE 23. 3rd HARMONIC DISTORTION vs P  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
A
= +1  
A
= +1  
V
V
20MHz  
20MHz  
10MHz  
10MHz  
-75  
-80  
-5  
-2  
1
4
7
10  
13  
-5  
-2  
1
4
7
10  
13  
OUTPUT POWER (dBm)  
OUTPUT POWER (dBm)  
FIGURE 24. 2nd HARMONIC DISTORTION vs P  
FIGURE 25. 3rd HARMONIC DISTORTION vs P  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
A
= -1  
A
= -1  
V
V
20MHz  
20MHz  
10MHz  
10MHz  
-5  
-2  
1
4
7
10  
13  
-5  
-2  
1
4
7
10  
13  
OUTPUT POWER (dBm)  
OUTPUT POWER (dBm)  
FIGURE 26. 2nd HARMONIC DISTORTION vs P  
FIGURE 27. 3rd HARMONIC DISTORTION vs P  
7
HS-1412RH  
o
Typical Performance Curves V  
= ±5V, T = 25 C, R = 100, Unless Otherwise Specified (Continued)  
SUPPLY  
A
L
20  
15  
10  
5
20  
V
= +1V  
OUT  
V
= +0.5V  
OUT  
15  
10  
A
= +1  
V
A
= +1  
V
5
0
A
= +2  
V
A
= +2  
V
A
= -1  
A
= -1  
V
V
0
100  
500  
900  
1300  
1700  
2100  
100  
500  
900  
1300  
1700  
2100  
INPUT TRANSITION TIME (ps)  
INPUT TRANSITION TIME (ps)  
FIGURE 28. OVERSHOOT vs TRANSITION TIME  
FIGURE 29. OVERSHOOT vs TRANSITION TIME  
20  
20  
15  
10  
5
V
= 1V  
P-P  
OUT  
V
= 0.5V  
P-P  
OUT  
A
= +1  
V
A
= +2  
= -1  
V
15  
10  
5
A
= +1  
V
A
V
A
= +2  
V
A
= -1  
V
0
100  
0
100  
500  
900  
1300  
1700  
2100  
500  
900  
1300  
1700  
2100  
INPUT TRANSITION TIME (ps)  
INPUT TRANSITION TIME (ps)  
FIGURE 30. OVERSHOOT vs TRANSITION TIME  
FIGURE 31. OVERSHOOT vs TRANSITION TIME  
0.02  
0.01  
0
A
= -1  
V
0.2  
A
= +2  
V
A
= +1  
V
0.1  
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
-0.06  
0.05  
0
A
= +2  
V
-0.05  
-0.1  
-0.2  
-1.5  
-1.0  
-0.5  
0
0.5  
1.0  
1.5  
10  
20  
30  
40  
50  
60  
70  
80  
90  
INPUT VOLTAGE (V)  
TIME (ns)  
FIGURE 32. INTEGRAL LINEARITY ERROR  
FIGURE 33. SETTLING RESPONSE  
8
HS-1412RH  
o
Typical Performance Curves V  
= ±5V, T = 25 C, R = 100, Unless Otherwise Specified (Continued)  
SUPPLY  
A
L
6.6  
6.5  
6.4  
3.6  
3.5  
A
= -1  
|-V | (R = 100Ω)  
OUT L  
V
+V  
OUT  
(R = 100Ω)  
L
3.4  
3.3  
3.2  
3.1  
6.3  
6.2  
6.1  
6.0  
5.9  
5.8  
5.7  
|-V  
OUT  
| (R = 50Ω)  
L
+V  
OUT  
(R = 50Ω)  
L
3.0  
2.9  
2.8  
2.7  
2.6  
5.6  
5.5  
-50  
-25  
0
25  
50  
75  
100  
125  
4.5  
5
5.5  
6
6.5  
7
o
SUPPLY VOLTAGE (±V)  
TEMPERATURE ( C)  
FIGURE 34. SUPPLY CURRENT vs SUPPLY VOLTAGE  
FIGURE 35. OUTPUT VOLTAGE vs TEMPERATURE  
50  
40  
30  
20  
10  
20  
16  
12  
8
I
NI  
4
E
NI  
0
0
0.1  
1
10  
100  
FREQUENCY (kHz)  
FIGURE 36. INPUT NOISE CHARACTERISTICS  
9
HS-1412RH  
Burn-In Circuit  
HS-1412RH CERDIP  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
R1  
R1  
R1  
R1  
D3  
D4  
V+  
V-  
D1  
C1  
C2  
D2  
8
NOTES:  
1. R1 = 1k, ±5%, 1/4W [Per Socket].  
2. C1 = C2 = 0.01µF [Per Socket] or 0.1µF (Per Row) Minimum.  
3. D1 = D2 = 1N4002 or Equivalent [Per Board].  
4. D3 = D4 = 1N4002 or Equivalent [Per Socket].  
5. (-V) + (+V) = 11V ±1.0V.  
6. 20mA < (I , I ) < 32mA.  
CC EE  
7. -50mV < V < +50mV.  
OUT  
Irradiation Circuit  
HS-1412RH CERDIP  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
R1  
R1  
R1  
V-  
V+  
R1  
C1  
C1  
8
NOTES:  
8. R1 = 1kΩ ±5%  
9. C1 = 0.1µF  
10. V+ = +5.0V ±0.5V  
11. V- = -5.0V ±0.5V  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
10  
HS-1412RH  
Die Characteristics  
DIE DIMENSIONS:  
ASSEMBLY RELATED INFORMATION:  
79 mils x 118 mils x 19 mils  
(2000µm x 3000µm x 483µm)  
Substrate Potential (Powered Up):  
Floating (Recommend Connection to V-)  
INTERFACE MATERIALS:  
Glassivation:  
ADDITIONAL INFORMATION:  
Transistor Count:  
Type: Nitride  
Thickness: 4kÅ ±0.5kÅ  
320  
Top Metallization:  
Type: Metal 1: AICu(2%)/TiW  
Thickness: Metal 1: 8kÅ ±0.4kÅ  
Type: Metal 2: AICu(2%)  
Thickness: Thickness: Metal 2: 16kÅ ±0.8kÅ  
Substrate:  
UHF-1X. Bonded Wafer, DI  
Backside Finish:  
Silicon  
Metallization Mask Layout  
HS-1412RH  
-IN1  
OUT1  
OUT4  
-IN4  
+IN1  
+IN4  
V+  
V-  
+IN2  
+IN3  
-IN2  
OUT2  
V-  
OUT3  
-IN3  
11  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY