ISL21080DIH310Z-TK [INTERSIL]

300nA NanoPower Voltage References; 300nA的纳安级功耗电压参考
ISL21080DIH310Z-TK
型号: ISL21080DIH310Z-TK
厂家: Intersil    Intersil
描述:

300nA NanoPower Voltage References
300nA的纳安级功耗电压参考

光电二极管
文件: 总17页 (文件大小:654K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
300nA NanoPower Voltage References  
ISL21080  
Features  
• Reference Output Voltage 0.900V, 1.024V, 1.250V,  
1.500V, 2.048V, 2.500V, 3.000V, 3.300V, 4.096V,  
5.000V  
The ISL21080 analog voltage references feature low  
supply voltage operation at ultra-low 310nA typ, 1.5µA  
max operating current. Additionally, the ISL21080 family  
features guaranteed initial accuracy as low as ±0.2%  
and 50ppm/°C temperature coefficient.  
• Initial Accuracy:  
- ISL21080-09 and -10. . . . . . . . . . . . . . ±0.7%  
- ISL21080-12 . . . . . . . . . . . . . . . . . . . ±0.6%  
- ISL21080-15. . . . . . . . . . . . . . . . . . . . ±0.5%  
- ISL21080-20 and -25. . . . . . . . . . . . . . ±0.3%  
- ISL21080-30, -33, -41, and -50 . . . . . . ±0.2%  
These references are ideal for general purpose portable  
applications to extend battery life at lower cost. The  
ISL21080 is provided in the industry standard 3 Ld  
SOT-23 pinout.  
The ISL21080 output voltages can be used as precision  
voltage sources for voltage monitors, control loops,  
standby voltages for low power states for DSP, FPGA,  
Datapath Controllers, microcontrollers and other core  
voltages: 0.9V, 1.024V, 1.25V, 1.5V, 2.048V, 2.5V, 3.0V,  
3.3V, 4.096V and 5.0V.  
• Input Voltage Range:  
- ISL21080-09, -10, -12, -15, -20,  
and -25 . . . . . . . . . . . . . . . . . . . . . 2.7V to 5.5V  
- ISL21080-09 (Coming Soon)  
- ISL21080-30. . . . . . . . . . . . . . . . 3.2V to 5.5V  
- ISL21080-33. . . . . . . . . . . . . . . . 3.5V to 5.5V  
- ISL21080-41. . . . . . . . . . . . . . . . 4.5V to 8.0V  
- ISL21080-50. . . . . . . . . . . . . . . . 5.5V to 8.0V  
Pin Configuration  
ISL21080  
(3 LD SOT-23)  
TOP VIEW  
• Output Voltage Noise . . . 30µV  
(0.1Hz to 10Hz)  
P-P  
• Supply Current. . . . . . . . . . . . . . . . 1.5µA (Max)  
Tempco . . . . . . . . . . . . . . . . . . . . . . . 50ppm/°C  
• Output Current Capability . . . . . . . . . . . . . ±7mA  
• Operating Temperature Range . . . -40°C to +85°C  
• Package . . . . . . . . . . . . . . . . . . . . .3 Ld SOT-23  
• Pb-Free (RoHS compliant)  
1
2
V
IN  
3
GND  
V
OUT  
Pin Descriptions  
Applications  
PIN  
• Energy Harvesting Applications  
• Wireless Sensor Network Applications  
NUMBER  
PIN NAME  
DESCRIPTION  
Input Voltage Connection.  
Voltage Reference Output  
Ground Connection  
1
2
3
V
IN  
• Low Power Voltage Sources for Controllers, FPGA,  
ASICs or Logic Devices  
V
OUT  
• Battery Management/Monitoring  
• Low Power Standby Voltages  
• Portable Instrumentation  
GND  
• Consumer/Medical Electronics  
• Wearable Electronics  
• Lower Cost Industrial and Instrumentation  
• Power Regulation Circuits  
• Control Loops and Compensation Networks  
• LED/Diode Supply  
October 14, 2009  
FN6934.2  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
FGA is a trademark of Intersil Corporation. Copyright Intersil Americas Inc. 2009. All Rights Reserved  
All other trademarks mentioned are the property of their respective owners.  
1
ISL21080  
Ordering Information  
PACKAGE  
Tape & Reel  
(Pb-Free)  
PART NUMBER  
(Notes 1, 2)  
PART  
MARKING  
V
OPTION  
(V)  
GRADE  
(%)  
TEMP. RANGE  
(°C)  
PKG.  
DWG. #  
OUT  
Coming Soon  
ISL21080DIH309Z-TK  
ISL21080DIH310Z-TK  
ISL21080DIH312Z-TK  
ISL21080CIH315Z-TK  
ISL21080CIH320Z-TK  
ISL21080CIH325Z-TK  
ISL21080CIH330Z-TK  
ISL21080CIH333Z-TK  
ISL21080CIH341Z-TK  
ISL21080CIH350Z-TK  
NOTES:  
BCLA  
BCMA  
BCNA  
BCDA  
BCPA  
BCRA  
BCSA  
BCTA  
BCVA  
BCWA  
0.9  
±0.7  
±0.7  
±0.6  
±0.5  
±0.3  
±0.3  
±0.2  
±0.2  
±0.2  
±0.2  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
3 Ld SOT-23  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
1.024  
1.25  
1.5  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
2.048  
2.5  
3.0  
3.3  
4.096  
5.0  
1. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach  
materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both  
SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that  
meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL21080. For more information on MSL please  
see techbrief TB363.  
FN6934.2  
October 14, 2009  
2
ISL21080  
Absolute Maximum Ratings  
Thermal Information  
Max Voltage  
Thermal Resistance (Typical)  
θ
JA (°C/W)  
170  
V
V
to GND. . . . . . . . . . . . . . . . . . . . . . . -0.5V to +6.5V  
to GND (ISL21080-41 and 50 only . . . .-0.5V to +10V  
IN  
IN  
3 Ld SOT-23 Package (Note 4).....................  
Continuous Power Dissipation (T = +85°C). . . . . . . . 99mW  
Storage Temperature Range. . . . . . . . . . . -65°C to +150°C  
Pb-Free Reflow Profile (Note 5). . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
A
V
V
to GND (10s). . . . . . . . . . . . . . -0.5V to VOUT +1V  
to GND (10s)  
(ISL21080-41 and 50 only . . . . . . . . . -0.5V to +5.1V  
OUT  
OUT  
ESD Rating  
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . 5500V  
Machine Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 500V  
Charged Device Model . . . . . . . . . . . . . . . . . . . . . . . 2kV  
Recommended Operating Conditions  
Temperature. . . . . . . . . . . . . . . . . . . . . . . -40°C to +85°C  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . .2.7V to 5.5V  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact  
product reliability and result in failures not covered by warranty.  
NOTES:  
4. θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief  
TB379 for details.  
5. Post-reflow drift for the ISL21080 devices will range from 100µV to 1.0mV based on experimental results with devices on FR4  
double sided boards. The design engineer must take this into account when considering the reference voltage after assembly.  
6. Post-assembly x-ray inspection may also lead to permanent changes in device output voltage and should be minimized or  
avoided. Most inspection equipment will not affect the FGA reference voltage, but if x-ray inspection is required, it is advisable  
to monitor the reference output voltage to verify excessive shift has not occurred.  
Electrical Specifications (ISL21080-09, V  
= 0.9V) V = 3.0V, T = -40°C to +85°C, I  
= 0, unless otherwise  
OUT  
IN  
A
OUT  
specified.  
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN TYP MAX UNIT  
V
V
Output Voltage  
Accuracy @ T = +25°C (Notes 5, 6)  
0.9  
V
%
OUT  
OA  
V
-0.7  
2.7  
+0.7  
50  
OUT  
A
TC V  
Output Voltage Temperature Coefficient  
(Note 7)  
ppm/°C  
OUT  
V
Input Voltage Range  
Supply Current  
5.5  
V
IN  
I
0.31 1.5  
µA  
IN  
ΔV  
ΔV  
/ΔV  
Line Regulation  
Load Regulation  
2.7 V < V < 5.5V  
IN  
80  
25  
50  
50  
4
350  
µV/V  
OUT  
OUT  
IN  
/ΔI  
Sourcing: 0mA I  
7mA  
0mA  
100 µV/mA  
OUT  
OUT  
OUT  
Sinking: -7mA I  
350 µV/mA  
I
Short Circuit Current  
Turn-on Settling Time  
Ripple Rejection  
T = +25°C, V  
tied to GND  
mA  
ms  
dB  
SC  
A
OUT  
t
V
OUT  
= ±0.1% with no load  
R
f = 120Hz  
-30  
30  
52  
1.1  
100  
50  
e
Output Voltage Noise  
Broadband Voltage Noise  
Noise Density  
0.1Hz f 10Hz  
10Hz f 1kHz  
f = 1kHz  
µV  
P-P  
N
V
µV  
RMS  
N
µV/Hz  
ppm  
ΔV  
ΔV  
/ΔT  
Thermal Hysteresis (Note 8)  
Long Term Stability (Note 9)  
ΔT = +165°C  
A
OUT  
A
/Δt  
T = +25°C  
ppm  
OUT  
A
Electrical Specifications (ISL21080-10, V  
= 1.024V) V = 3.0V, T = -40°C to +85°C, I  
= 0, unless  
OUT  
IN  
A
OUT  
otherwise specified.  
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN TYP MAX UNIT  
V
V
Output Voltage  
1.024  
V
OUT  
OA  
V
Accuracy @ T = +25°C (Notes 5, 6)  
A
-0.7  
+0.7  
%
OUT  
FN6934.2  
October 14, 2009  
3
ISL21080  
Electrical Specifications (ISL21080-10, V  
= 1.024V) V = 3.0V, T = -40°C to +85°C, I  
otherwise specified. (Continued)  
= 0, unless  
OUT  
IN  
A
OUT  
PARAMETER  
TC V  
DESCRIPTION  
CONDITIONS  
MIN TYP MAX UNIT  
Output Voltage Temperature Coefficient  
50  
ppm/°C  
OUT  
(Note 7)  
V
Input Voltage Range  
Supply Current  
Line Regulation  
Load Regulation  
2.7  
5.5  
V
IN  
I
0.31 1.5  
µA  
IN  
ΔV  
ΔV  
/ΔV  
2.7 V < V < 5.5V  
IN  
80  
25  
50  
50  
4
350  
µV/V  
OUT  
OUT  
IN  
/ΔI  
Sourcing: 0mA I  
7mA  
0mA  
100 µV/mA  
OUT  
OUT  
OUT  
Sinking: -7mA I  
350 µV/mA  
I
Short Circuit Current  
Turn-on Settling Time  
Ripple Rejection  
T = +25°C, V  
tied to GND  
mA  
ms  
dB  
SC  
A
OUT  
t
V
OUT  
= ±0.1% with no load  
R
f = 120Hz  
-30  
30  
52  
1.1  
100  
50  
e
Output Voltage Noise  
Broadband Voltage Noise  
Noise Density  
0.1Hz f 10Hz  
10Hz f 1kHz  
f = 1kHz  
µV  
P-P  
N
V
µV  
RMS  
N
µV/Hz  
ppm  
ΔV  
ΔV  
/ΔT  
Thermal Hysteresis (Note 8)  
Long Term Stability (Note 9)  
ΔT = +165°C  
A
OUT  
OUT  
A
/Δt  
T = +25°C  
ppm  
A
Electrical Specifications (ISL21080-12, V  
= 1.25V) V = 3.0V, T = -40°C to +85°C, I  
= 0, unless otherwise  
OUT  
IN  
A
OUT  
specified.  
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN TYP MAX UNIT  
V
V
Output Voltage  
Accuracy @ T = +25°C (Notes 5, 6)  
1.25  
V
%
OUT  
OA  
V
-0.6  
2.7  
+0.6  
50  
OUT  
A
TC V  
Output Voltage Temperature Coefficient  
(Note 7)  
ppm/°C  
OUT  
V
Input Voltage Range  
Supply Current  
5.5  
V
IN  
I
0.31 1.5  
µA  
IN  
ΔV  
ΔV  
/ΔV  
Line Regulation  
Load Regulation  
2.7 V < V < 5.5V  
IN  
80  
25  
50  
50  
4
350  
µV/V  
OUT  
OUT  
IN  
/ΔI  
Sourcing: 0mA I  
7mA  
0mA  
100 µV/mA  
OUT  
OUT  
OUT  
Sinking: -7mA I  
350 µV/mA  
I
Short Circuit Current  
Turn-on Settling Time  
Ripple Rejection  
T = +25°C, V  
tied to GND  
mA  
ms  
dB  
SC  
A
OUT  
t
V
OUT  
= ±0.1% with no load  
R
f = 120Hz  
-30  
30  
52  
1.1  
100  
50  
e
Output Voltage Noise  
Broadband Voltage Noise  
Noise Density  
0.1Hz f 10Hz  
10Hz f 1kHz  
f = 1kHz  
µV  
P-P  
N
V
µV  
RMS  
N
µV/Hz  
ppm  
ΔV  
ΔV  
/ΔT  
Thermal Hysteresis (Note 8)  
Long Term Stability (Note 9)  
ΔT = +165°C  
A
OUT  
A
/Δt  
T = +25°C  
ppm  
OUT  
A
Electrical Specifications (ISL21080-15, V  
= 1.5V) V = 3.0V, T = -40°C to +85°C, I  
= 0, unless otherwise  
OUT  
IN  
A
OUT  
specified.  
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN TYP MAX UNIT  
V
V
Output Voltage  
1.5  
V
OUT  
OA  
V
Accuracy @ T = +25°C (Notes 5, 6)  
A
-0.5  
+0.5  
%
OUT  
FN6934.2  
October 14, 2009  
4
ISL21080  
Electrical Specifications (ISL21080-15, V  
= 1.5V) V = 3.0V, T = -40°C to +85°C, I  
specified. (Continued)  
= 0, unless otherwise  
OUT  
IN  
A
OUT  
PARAMETER  
TC V  
DESCRIPTION  
CONDITIONS  
MIN TYP MAX UNIT  
Output Voltage Temperature Coefficient  
(Note 7)  
50  
ppm/°C  
OUT  
V
Input Voltage Range  
Supply Current  
2.7  
5.5  
V
IN  
I
0.31 1.5  
µA  
IN  
ΔV  
ΔV  
/ΔV  
Line Regulation  
Load Regulation  
2.7 V < V < 5.5V  
IN  
80  
10  
50  
50  
4
350  
µV/V  
OUT  
OUT  
IN  
/ΔI  
Sourcing: 0mA I  
7mA  
0mA  
100 µV/mA  
OUT  
OUT  
OUT  
Sinking: -7mA I  
350 µV/mA  
I
Short Circuit Current  
Turn-on Settling Time  
Ripple Rejection  
T = +25°C, V  
tied to GND  
mA  
ms  
dB  
SC  
A
OUT  
t
V
OUT  
= ±0.1% with no load  
R
f = 120Hz  
-30  
30  
52  
1.1  
100  
50  
e
Output Voltage Noise  
Broadband Voltage Noise  
Noise Density  
0.1Hz f 10Hz  
10Hz f 1kHz  
f = 1kHz  
µV  
P-P  
N
V
µV  
RMS  
N
µV/Hz  
ppm  
ΔV  
ΔV  
/ΔT  
Thermal Hysteresis (Note 8)  
Long Term Stability (Note 9)  
ΔT = +165°C  
A
OUT  
OUT  
A
/Δt  
T = +25°C  
ppm  
A
Electrical Specifications (ISL21080-20, V  
= 2.048V) V = 3.0V, T = -40°C to +85°C, I  
= 0, unless  
OUT  
OUT  
IN  
A
otherwise specified.  
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN TYP MAX UNIT  
V
V
Output Voltage  
Accuracy @ T = +25°C (Notes 5, 6)  
2.048  
V
%
OUT  
OA  
V
-0.3  
2.7  
+0.3  
50  
OUT  
A
TC V  
Output Voltage Temperature Coefficient  
(Note 7)  
ppm/°C  
OUT  
V
Input Voltage Range  
Supply Current  
5.5  
V
IN  
I
0.31 1.5  
µA  
IN  
ΔV  
ΔV  
/ΔV  
Line Regulation  
Load Regulation  
2.7 V < V < 5.5V  
IN  
80  
25  
50  
50  
4
350  
µV/V  
OUT  
OUT  
IN  
/ΔI  
Sourcing: 0mA I  
7mA  
0mA  
100 µV/mA  
OUT  
OUT  
OUT  
Sinking: -7mA I  
350 µV/mA  
I
Short Circuit Current  
Turn-on Settling Time  
Ripple Rejection  
T = +25°C, V  
tied to GND  
mA  
ms  
dB  
SC  
A
OUT  
t
V
OUT  
= ±0.1% with no load  
R
f = 120Hz  
-30  
30  
52  
1.1  
100  
50  
e
Output Voltage Noise  
Broadband Voltage Noise  
Noise Density  
0.1Hz f 10Hz  
10Hz f 1kHz  
f = 1kHz  
µV  
P-P  
N
V
µV  
RMS  
N
µV/Hz  
ppm  
ΔV  
ΔV  
/ΔT  
Thermal Hysteresis (Note 8)  
Long Term Stability (Note 9)  
ΔT = +165°C  
A
OUT  
OUT  
A
/Δt  
T = +25°C  
ppm  
A
Electrical Specifications (ISL21080-25, V  
= 2.5V) V = 3.0V, T = -40°C to +85°C, I  
= 0, unless otherwise  
OUT  
IN  
A
OUT  
specified.  
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN TYP MAX UNIT  
V
V
Output Voltage  
2.5  
V
OUT  
OA  
V
Accuracy @ T = +25°C (Notes 5, 6)  
A
-0.3  
+0.3  
%
OUT  
FN6934.2  
October 14, 2009  
5
ISL21080  
Electrical Specifications (ISL21080-25, V  
= 2.5V) V = 3.0V, T = -40°C to +85°C, I  
specified. (Continued)  
= 0, unless otherwise  
OUT  
IN  
A
OUT  
PARAMETER  
TC V  
DESCRIPTION  
CONDITIONS  
MIN TYP MAX UNIT  
Output Voltage Temperature Coefficient  
(Note 7)  
50  
ppm/°C  
OUT  
V
Input Voltage Range  
Supply Current  
2.7  
5.5  
V
IN  
I
0.31 1.5  
µA  
IN  
ΔV  
ΔV  
/ΔV  
Line Regulation  
Load Regulation  
2.7 V < V < 5.5V  
IN  
80  
25  
50  
50  
4
350  
µV/V  
OUT  
OUT  
IN  
/ΔI  
Sourcing: 0mA I  
7mA  
0mA  
100 µV/mA  
OUT  
OUT  
OUT  
Sinking: -7mA I  
350 µV/mA  
I
Short Circuit Current  
Turn-on Settling Time  
Ripple Rejection  
T = +25°C, V  
tied to GND  
mA  
ms  
dB  
SC  
A
OUT  
t
V
OUT  
= ±0.1% with no load  
R
f = 120Hz  
-30  
30  
52  
1.1  
100  
50  
e
Output Voltage Noise  
Broadband Voltage Noise  
Noise Density  
0.1Hz f 10Hz  
10Hz f 1kHz  
f = 1kHz  
µV  
P-P  
N
V
µV  
RMS  
N
µV/Hz  
ppm  
ΔV  
ΔV  
/ΔT  
Thermal Hysteresis (Note 8)  
Long Term Stability (Note 9)  
ΔT = +165°C  
A
OUT  
OUT  
A
/Δt  
T = +25°C  
ppm  
A
Electrical Specifications (ISL21080-30, V  
= 3.0V) V = 5.0V, T = -40°C to +85°C, I  
= 0, unless otherwise  
OUT  
IN  
A
OUT  
specified.  
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN TYP MAX UNIT  
V
V
Output Voltage  
Accuracy @ T = +25°C (Notes 5, 6)  
3.0  
V
%
OUT  
OA  
V
-0.2  
3.2  
+0.2  
50  
OUT  
A
TC V  
Output Voltage Temperature Coefficient  
(Note 7)  
ppm/°C  
OUT  
V
Input Voltage Range  
Supply Current  
5.5  
V
IN  
I
0.31 1.5  
µA  
IN  
ΔV  
ΔV  
/ΔV  
Line Regulation  
Load Regulation  
3.2 V < V < 5.5V  
IN  
80  
25  
50  
50  
4
350  
µV/V  
OUT  
OUT  
IN  
/ΔI  
Sourcing: 0mA I  
7mA  
0mA  
100 µV/mA  
OUT  
OUT  
OUT  
Sinking: -7mA I  
350 µV/mA  
I
Short Circuit Current  
Turn-on Settling Time  
Ripple Rejection  
T = +25°C, V  
tied to GND  
mA  
ms  
dB  
SC  
A
OUT  
t
V
OUT  
= ±0.1% with no load  
R
f = 120Hz  
-30  
30  
52  
1.1  
100  
50  
e
Output Voltage Noise  
Broadband Voltage Noise  
Noise Density  
0.1Hz f 10Hz  
10Hz f 1kHz  
f = 1kHz  
µV  
P-P  
N
V
µV  
RMS  
N
µV/Hz  
ppm  
ΔV  
ΔV  
/ΔT  
Thermal Hysteresis (Note 8)  
Long Term Stability (Note 9)  
ΔT = +165°C  
A
OUT  
A
/Δt  
T = +25°C  
ppm  
OUT  
A
Electrical Specifications (ISL21080-33, V  
= 3.3V) V = 5.0V, T = -40°C to +85°C, I  
= 0, unless otherwise  
OUT  
IN  
A
OUT  
specified.  
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN TYP MAX UNIT  
V
V
Output Voltage  
3.3  
V
OUT  
OA  
V
Accuracy @ T = +25°C (Note 5, 6)  
A
-0.2  
+0.2  
%
OUT  
FN6934.2  
October 14, 2009  
6
ISL21080  
Electrical Specifications (ISL21080-33, V  
= 3.3V) V = 5.0V, T = -40°C to +85°C, I  
specified. (Continued)  
= 0, unless otherwise  
OUT  
IN  
A
OUT  
PARAMETER  
TC V  
DESCRIPTION  
CONDITIONS  
MIN TYP MAX UNIT  
Output Voltage Temperature Coefficient  
(Note 7)  
50  
ppm/°C  
OUT  
V
Input Voltage Range  
Supply Current  
3.5  
5.5  
V
IN  
I
0.31 1.5  
µA  
IN  
ΔV  
ΔV  
/ΔV  
Line Regulation  
Load Regulation  
3.5 V < V < 5.5V  
IN  
80  
25  
50  
50  
4
350  
µV/V  
OUT  
OUT  
IN  
/ΔI  
Sourcing: 0mA I  
OUT  
10mA  
0mA  
100 µV/mA  
OUT  
Sinking: -10mA I  
OUT  
350 µV/mA  
I
Short Circuit Current  
Turn-on Settling Time  
Ripple Rejection  
T = +25°C, V  
tied to GND  
mA  
ms  
dB  
SC  
A
OUT  
t
V
OUT  
= ±0.1% with no load  
R
f = 120Hz  
-30  
30  
52  
1.1  
100  
50  
e
Output Voltage Noise  
Broadband Voltage Noise  
Noise Density  
0.1Hz f 10Hz  
10Hz f 1kHz  
f = 1kHz  
µV  
P-P  
N
V
µV  
RMS  
N
µV/Hz  
ppm  
ΔV  
ΔV  
/ΔT  
Thermal Hysteresis (Note 8)  
Long Term Stability (Note 9)  
ΔT = +165°C  
A
OUT  
A
/Δt  
T = +25°C  
ppm  
OUT  
A
Electrical Specifications (ISL21080-41 V  
= 4.096V) V = 5.0V, T = -40°C to +85°C, I  
= 0, unless otherwise  
OUT  
IN  
A
OUT  
specified.  
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN TYP MAX UNIT  
V
V
Output Voltage  
Accuracy @ T = +25°C (Note 5, 6)  
4.096  
V
%
OUT  
OA  
V
-0.2  
4.5  
+0.2  
50  
OUT  
A
TC V  
Output Voltage Temperature Coefficient  
(Note 7)  
ppm/°C  
OUT  
V
Input Voltage Range  
Supply Current  
8.0  
1.5  
350  
V
IN  
I
0.5  
80  
10  
20  
80  
4
µA  
IN  
ΔV  
ΔV  
/ΔV  
Line Regulation  
Load Regulation  
4.5 V < V < 8.0V  
IN  
µV/V  
OUT  
OUT  
IN  
/ΔI  
Sourcing: 0mA I  
OUT  
10mA  
0mA  
100 µV/mA  
OUT  
Sinking: -10mA I  
350 µV/mA  
OUT  
I
Short Circuit Current  
Turn-on Settling Time  
Ripple Rejection  
T = +25°C, V  
tied to GND  
= ±0.1% with no load  
mA  
ms  
dB  
SC  
A
OUT  
t
V
OUT  
R
f = 120Hz  
-30  
30  
52  
1.1  
100  
50  
e
Output Voltage Noise  
Broadband Voltage Noise  
Noise Density  
0.1Hz f 10Hz  
10Hz f 1kHz  
f = 1kHz  
µV  
P-P  
N
V
µV  
RMS  
N
µV/Hz  
ppm  
ΔV  
ΔV  
/ΔT  
Thermal Hysteresis (Note 8)  
Long Term Stability (Note 9)  
ΔT = +165°C  
A
OUT  
OUT  
A
/Δt  
T = +25°C  
ppm  
A
Electrical Specifications (ISL21080-50 V  
= 5.0V) V = 6.5V, T = -40°C to +85°C, I  
= 0, unless otherwise  
OUT  
IN  
A
OUT  
specified.  
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN TYP MAX UNIT  
V
V
Output Voltage  
5.0  
V
OUT  
OA  
V
Accuracy @ T = +25°C (Note 5, 6)  
A
-0.2  
+0.2  
%
OUT  
FN6934.2  
October 14, 2009  
7
ISL21080  
Electrical Specifications (ISL21080-50 V  
= 5.0V) V = 6.5V, T = -40°C to +85°C, I  
specified. (Continued)  
= 0, unless otherwise  
OUT  
IN  
A
OUT  
PARAMETER  
TC V  
DESCRIPTION  
CONDITIONS  
MIN TYP MAX UNIT  
Output Voltage Temperature Coefficient  
(Note 7)  
50  
ppm/°C  
OUT  
V
Input Voltage Range  
Supply Current  
5.5  
8.0  
1.5  
350  
V
IN  
I
0.5  
80  
10  
20  
80  
4
µA  
IN  
ΔV  
ΔV  
/ΔV  
Line Regulation  
Load Regulation  
5.5 V < V < 8.0V  
IN  
µV/V  
OUT  
OUT  
IN  
/ΔI  
Sourcing: 0mA I  
10mA  
0mA  
100 µV/mA  
OUT  
OUT  
Sinking: -10mA I  
350 µV/mA  
OUT  
I
Short Circuit Current  
Turn-on Settling Time  
Ripple Rejection  
T = +25°C, V  
tied to GND  
= ±0.1% with no load  
mA  
ms  
dB  
SC  
A
OUT  
t
V
OUT  
R
f = 120Hz  
-30  
30  
52  
1.1  
100  
50  
e
Output Voltage Noise  
Broadband Voltage Noise  
Noise Density  
0.1Hz f 10Hz  
10Hz f 1kHz  
f = 1kHz  
µV  
P-P  
N
V
µV  
RMS  
N
µV/Hz  
ppm  
ΔV  
ΔV  
/ΔT  
Thermal Hysteresis (Note 8)  
Long Term Stability (Note 9)  
ΔT = +165°C  
A
OUT  
OUT  
A
/Δt  
T = +25°C  
ppm  
A
NOTES:  
7. Over the specified temperature range. Temperature coefficient is measured by the box method whereby the change in V  
is divided by the temperature range; in this case, -40°C to +85°C = +125°C.  
OUT  
8. Thermal Hysteresis is the change of V  
measured @ T = +25°C after temperature cycling over a specified range, ΔT . V  
OUT  
OUT  
A
A
is read initially at T = +25°C for the device under test. The device is temperature cycled and a second V  
measurement  
A
OUT  
reading is then expressed in ppm.  
is taken at +25°C. The difference between the initial V  
reading and the second V  
OUT  
OUT  
For Δ T = +125°C, the device under test is cycled from +25°C to +85°C to -40°C to +25°C.  
A
9. Long term drift is logarithmic in nature and diminishes over time. Drift after the first 1000 hours will be approximately  
10ppm/1khrs  
Typical Performance Characteristics Curves  
V
= 1.5V, V = 3.0V, I = 0mA,  
IN OUT  
OUT  
T = +25°C unless otherwise specified.  
A
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
UNIT 1  
+85°C  
UNIT 2  
UNIT 3  
-40°C  
+25°C  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
(V)  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
(V)  
V
V
IN  
IN  
FIGURE 2. I  
vs V OVER-TEMPERATURE  
IN  
FIGURE 1. I  
vs V , 3 UNITS  
IN  
IN  
IN  
FN6934.2  
October 14, 2009  
8
ISL21080  
Typical Performance Characteristics Curves  
V
= 1.5V, V = 3.0V, I = 0mA,  
IN OUT  
OUT  
T = +25°C unless otherwise specified.  
A
150  
125  
100  
75  
1.50020  
1.50015  
1.50010  
1.50005  
50  
+25°C  
+85°C  
UNIT 2  
UNIT 1  
25  
0
1.50000  
1.49995  
-25  
-50  
-75  
-100  
-125  
-150  
UNIT 3  
1.49990  
1.49985  
1.49980  
-40°C  
2.72.93.13.33.53.73.94.14.34.54.74.95.15.35.5  
2.72.93.13.33.53.73.94.14.34.54.74.95.15.35.5  
(V)  
V
(V)  
IN  
V
IN  
FIGURE 3. LINE REGULATION, 3 UNITS  
FIGURE 4. LINE REGULATION OVER-TEMPERATURE  
1.5005  
1.5004  
1.5003  
1.5002  
1.5001  
1.5000  
1.4999  
1.4998  
1.4997  
1.4996  
1.4995  
CL = 500pF  
UNIT 2  
ΔVIN = 0.3V  
UNIT 1  
UNIT 3  
ΔVIN = -0.3V  
-40 -30 -20-10 0 10 20 30 40  
60 70 80  
50  
V
(V)  
IN  
1ms/DIV  
FIGURE 6. LINE TRANSIENT RESPONSE, WITH  
CAPACITIVE LOAD  
FIGURE 5. V  
vs TEMPERATURE NORMALIZED to  
+25°C  
OUT  
900  
700  
CL = 0pF  
ΔVIN = 0.3V  
+25°C  
500  
300  
100  
0
-40°C  
-100  
-300  
-500  
ΔVIN = -0.3V  
+85°C  
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
1ms/DIV  
SINKING OUTPUT CURRENT  
SOURCING  
FIGURE 7. LINE TRANSIENT RESPONSE  
FIGURE 8. LOAD REGULATION OVER-TEMPERATURE  
FN6934.2  
October 14, 2009  
9
ISL21080  
Typical Performance Characteristics Curves  
V
= 1.5V, V = 3.0V, I = 0mA,  
IN OUT  
OUT  
T = +25°C unless otherwise specified.  
A
IL = 7mA  
IL = 50μA  
IL = -50μA  
IL = -7mA  
2ms/DIV  
1ms/DIV  
FIGURE 9. LOAD TRANSIENT RESPONSE  
FIGURE 10. LOAD TRANSIENT RESPONSE  
3.5  
1.52  
NO LOAD  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.50  
1.48  
1.46  
1.44  
1.42  
1.40  
1.38  
VIN  
7mA LOAD  
UNIT 1  
UNIT 3  
UNIT 2  
1.5  
2.0 2.5  
3.0 3.5  
(V)  
4.0 4.5  
5.0 5.5  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
TIME (ms)  
V
IN  
FIGURE 12. TURN-ON TIME  
FIGURE 11. DROPOUT  
160  
140  
120  
100  
80  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
NO LOAD  
NO LOAD  
1nF  
1nF  
10nF  
10nF  
60  
40  
100nF  
20  
100nF  
10k  
0
10  
100  
1k  
100k  
1M  
1M  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 14. PSRR vs FREQUENCY  
FIGURE 13. Z  
vs FREQUENCY  
OUT  
FN6934.2  
October 14, 2009  
10  
ISL21080  
High Current Application  
1.502  
1.502  
1.500  
1.498  
1.496  
1.494  
1.492  
V
= 5V  
IN  
V
= 5V  
IN  
1.500  
1.498  
1.496  
1.494  
1.492  
V
= 3.5V  
IN  
V
= 3.5V  
IN  
V
= 3.3V  
IN  
V
= 3.3V  
25  
IN  
35  
0
5
10  
15  
20  
(mA)  
30  
0
5
10  
15  
20  
(mA)  
25  
30  
35  
I
I
LOAD  
LOAD  
FIGURE 15. DIFFERENT V  
AT ROOM TEMPERATURE  
FIGURE 16. DIFFERENT V  
AT HIGH TEMPERATURE  
IN  
IN  
(+85°C)  
devices. Application circuits using battery power will  
benefit greatly from having an accurate, stable  
reference, which essentially presents no load to the  
battery.  
Applications Information  
FGA Technology  
The ISL21080 series of voltage references use the  
floating gate technology to create references with very  
low drift and supply current. Essentially, the charge  
stored on a floating gate cell is set precisely in  
manufacturing. The reference voltage output itself is a  
buffered version of the floating gate voltage. The  
resulting reference device has excellent characteristics  
which are unique in the industry: very low temperature  
drift, high initial accuracy, and almost zero supply  
current. Also, the reference voltage itself is not limited by  
voltage bandgaps or zener settings, so a wide range of  
reference voltages can be programmed (standard  
voltage settings are provided, but customer-specific  
voltages are available).  
In particular, battery powered data converter circuits that  
would normally require the entire circuit to be disabled  
when not in use can remain powered up between  
conversions as shown in Figure 17. Data acquisition  
circuits providing 12 bits to 24 bits of accuracy can  
operate with the reference device continuously biased  
with no power penalty, providing the highest accuracy  
and lowest possible long term drift.  
Other reference devices consuming higher supply  
currents will need to be disabled in between conversions  
to conserve battery capacity. Absolute accuracy will  
suffer as the device is biased and requires time to settle  
to its final value, or, may not actually settle to a final  
value as power on time may be short. Table 1 shows an  
example of battery life in years for ISL21080 in various  
power on condition with 1.5µA maximum current  
consumption.  
The process used for these reference devices is a floating  
gate CMOS process, and the amplifier circuitry uses  
CMOS transistors for amplifier and output transistor  
circuitry. While providing excellent accuracy, there are  
limitations in output noise level and load regulation due  
to the MOS device characteristics. These limitations are  
addressed with circuit techniques discussed in other  
sections.  
TABLE 1. EXAMPLE OF BATTERY LIFE IN YEARS FOR  
ISL21080 IN VARIOUS POWER ON  
CONDITIONS WITH 1.5µA MAX CURRENT  
BATTERY  
RATING  
(mAH)  
50% DUTY 10% DUTY  
Nanopower Operation  
CONTINUOUS  
CYCLE  
CYCLE  
Reference devices achieve their highest accuracy when  
powered up continuously, and after initial stabilization  
has taken place. This drift can be eliminated by leaving  
the power on continuously.  
40  
3
6
30*  
225  
16.3*  
32.6*  
163*  
NOTE: *Typical Li-ion battery has a shelf life of up to 10  
years.  
The ISL21080 is the first high precision voltage reference  
with ultra low power consumption that makes it possible  
to leave power on continuously in battery operated  
circuits. The ISL21080 consumes extremely low supply  
current due to the proprietary FGA technology. Supply  
current at room temperature is typically 350nA, which is  
1 to 2 orders of magnitude lower than competitive  
FN6934.2  
October 14, 2009  
11  
ISL21080  
of 100µV to 1mV can be expected with Pb-free reflow  
V
= +3.0V  
IN  
profiles or wave solder on multi-layer FR4 PC boards.  
Precautions should be taken to avoid excessive heat or  
extended exposure to high reflow or wave solder  
temperatures, this may reduce device initial accuracy.  
10µF  
0.01µF  
V
IN  
V
OUT  
ISL21080  
Post-assembly x-ray inspection may also lead to  
permanent changes in device output voltage and should  
be minimized or avoided. If x-ray inspection is required,  
it is advisable to monitor the reference output voltage to  
verify excessive shift has not occurred. If large amounts  
of shift are observed, it is best to add an X-ray shield  
consisting of thin zinc (300µm) sheeting to allow clear  
imaging, yet block x-ray energy that affects the FGA  
reference.  
GND  
0.001µF TO 0.01µF  
REF IN  
ENABLE  
SCK  
SDAT  
SERIAL  
BUS  
12 TO 24-BIT  
A/D CONVERTER  
Special Applications Considerations  
FIGURE 17. REFERENCE INPUT FOR ADC CONVERTER  
In addition to post-assembly examination, there are also  
other X-ray sources that may affect the FGA reference  
long term accuracy. Airport screening machines contain  
X-rays and will have a cumulative effect on the voltage  
reference output accuracy. Carry-on luggage screening  
uses low level X-rays and is not a major source of output  
voltage shift, however, if a product is expected to pass  
through that type of screening over 100 times, it may  
need to consider shielding with copper or aluminum.  
Checked luggage X-rays are higher intensity and can  
cause output voltage shift in much fewer passes, thus  
devices expected to go through those machines should  
definitely consider shielding. Note that just two layers of  
1/2 ounce copper planes will reduce the received dose by  
over 90%. The leadframe for the device which is on the  
bottom also provides similar shielding.  
ISL21080 Used as a Low Cost Precision  
Current Source  
Using an N-JET and a Nanopower voltage reference,  
ISL21080, a precision, low cost, high impedance current  
source can be created. The precision of the current  
source is largely dependent on the tempco and accuracy  
of the reference. The current setting resistor contributes  
less than 20% of the error.  
Board Mounting Considerations  
For applications requiring the highest accuracy, board  
mounting location should be reviewed. Placing the device  
in areas subject to slight twisting can cause degradation  
of the accuracy of the reference voltage due to die  
stresses. It is normally best to place the device near the  
edge of a board, or the shortest side, as the axis of  
bending is most limited at that location. Obviously,  
mounting the device on flexprint or extremely thin PC  
material will likewise cause loss of reference accuracy.  
If a device is expected to pass through luggage X-ray  
machines numerous times, it is advised to mount a  
2-layer (minimum) PC board on the top, and along with a  
ground plane underneath will effectively shield it from  
from 50 to 100 passes through the machine. Since these  
machines vary in X-ray dose delivered, it is difficult to  
produce an accurate maximum pass recommendation.  
V
OUT  
+8V TO 28V  
I
SET =  
R
SET  
I
= I  
SET +  
IR  
SET  
L
Noise Performance and Reduction  
The output noise voltage in a 0.1Hz to 10Hz bandwidth is  
typically 30µV . This is shown in the plot in the “Typical  
Performance Characteristics Curves” which begin on  
page 8. The noise measurement is made with a  
bandpass filter made of a 1 pole high-pass filter with a  
corner frequency at 0.1Hz and a 2-pole low-pass filter  
with a corner frequency at 12.6Hz to create a filter with a  
9.9Hz bandwidth. Noise in the 10kHz to 1MHz bandwidth  
V
P-P  
IN  
V
OUT  
R
SET  
0.01µF  
10kΩ  
0.1%  
10ppm/°C  
ISL21080-1.5  
Z
> 100MΩ  
OUT  
V
= 1.5V  
OUT  
GND  
I
~ 0.31µA  
SY  
is approximately 400µV  
output, as shown in Figure 19. These noise  
with no capacitance on the  
P-P  
I
SET  
IL AT 0.1% ACCURACY  
~150.3µA  
measurements are made with a 2 decade bandpass filter  
made of a 1-pole high-pass filter with a corner frequency  
at 1/10 of the center frequency and 1-pole low-pass filter  
with a corner frequency at 10 times the center frequency.  
Figure 19 also shows the noise in the 10kHz to 1MHz  
FIGURE 18. ISL21080 USED AS A LOW COST  
PRECISION CURRENT SOURCE  
Board Assembly Considerations  
band can be reduced to about 50µV  
using a 0.001µF  
P-P  
capacitor on the output. Noise in the 1kHz to 100kHz  
band can be further reduced using a 0.1µF capacitor on  
the output, but noise in the 1Hz to 100Hz band increases  
FGA references provide high accuracy and low  
temperature drift but some PC board assembly  
precautions are necessary. Normal Output voltage shifts  
FN6934.2  
October 14, 2009  
12  
ISL21080  
due to instability of the very low power amplifier with a  
Turn-On Time  
0.1µF capacitance load. For load capacitances above  
0.001µF, the noise reduction network shown in Figure 20  
is recommended. This network reduces noise  
The ISL21080 devices have ultra-low supply current and  
thus, the time to bias-up internal circuitry to final values  
will be longer than with higher power references. Normal  
turn-on time is typically 7ms. This is shown in Figure 18.  
Since devices can vary in supply current down to  
>300nA, turn-on time can last up to about 12ms. Care  
should be taken in system design to include this delay  
before measurements or conversions are started.  
significantly over the full bandwidth. As shown in  
Figure 19, noise is reduced to less than 40µV  
1Hz to 1MHz using this network with a 0.01µF capacitor  
from  
P-P  
and a 2kΩ resistor in series with a 10µF capacitor.  
400  
CL = 0  
CL = 0.001µF  
350  
300  
250  
200  
150  
100  
Temperature Coefficient  
CL = 0.1µF  
CL = 0.01µF AND 10µF + 2kΩ  
The limits stated for temperature coefficient (tempco)  
are governed by the method of measurement. The  
overwhelming standard for specifying the temperature  
drift of a reference, is to measure the reference voltage  
at two temperatures, take the total variation, (V  
-
HIGH  
V
), and divide by the temperature extremes of  
LOW  
measurement (T  
the nominal reference voltage (at T = +25°C) and  
multiplied by 10 to yield ppm/°C. This is the “Box”  
– T ). The result is divided by  
HIGH  
LOW  
6
50  
0
method for specifying temperature coefficient.  
1
10  
100  
1k  
10k  
100k  
FIGURE 19. NOISE REDUCTION  
V
= 3.0V  
0.1µF  
IN  
V
10µF  
IN  
V
O
ISL21080  
GND  
2kΩ  
0.01µF  
10µF  
FIGURE 20. NOISE REDUCTION NETWORK  
Typical Application Circuits  
V
= 3.0V  
IN  
R = 200Ω  
2N2905  
V
IN  
V
2.5V/50mA  
0.001µF  
OUT  
ISL21080  
GND  
FIGURE 21. PRECISION 2.5V 50mA REFERENCE  
FN6934.2  
October 14, 2009  
13  
ISL21080  
Typical Application Circuits(Continued)  
2.7V TO 5.5V  
0.1µF  
10µF  
V
IN  
V
OUT  
ISL21080  
GND  
0.001µF  
V
R
CC  
V
H
OUT  
X9119  
+
SDA  
SCL  
2-WIRE BUS  
V
OUT  
(BUFFERED)  
V
R
L
SS  
FIGURE 22. 2.5V FULL SCALE LOW-DRIFT 10-BIT ADJUSTABLE VOLTAGE SOURCE  
2.7V TO 5.5V  
0.1µF  
10µF  
V
IN  
+
V
SENSE  
OUT  
V
OUT  
ISL21080  
GND  
LOAD  
FIGURE 23. KELVIN SENSED LOAD  
FN6934.2  
October 14, 2009  
14  
ISL21080  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to  
web to make sure you have the latest Rev.  
DATE  
REVISION  
CHANGE  
10/14/09  
FN6934.2  
1. Removed "Coming Soon" on page 1 and 2 for -10, -20, -41, and -50 options.  
2. Page 1. Moved "ISL21080-50  
5.5V to 8.0V" from bullet to sub-bullet.  
3. Update package outline drawing P3.064 to most recent revision. Updates to package were  
to add land pattern and move dimensions from table onto drawing (no change to package  
dimensions)  
09/04/09  
FN6934.1  
Converted to new Intersil template. Added Revision History and Products Information.  
Updated Ordering Information to match Intrepid, numbered all notes and added Moisture  
Sensitivity Note with links. Moved Pin Descriptions to page 1 to follow pinout  
Changed in Features Section  
From: Reference Output Voltage  
To: Reference Output Voltage  
1.25V, 1.5V, 2.500V, 3.300V  
0.900V, 1.024V, 1.250V, 1.500V, 2.048V, 2.500V, 3.000V,  
3.300V, 4.096V, 5.000V  
From: Initial Accuracy: 1.5V  
To: Initial Accuracy:  
±0.5%  
ISL21080-09 and -10  
ISL21080-12  
ISL21080-15  
±0.7%  
±0.6%  
±0.5%  
±0.3%  
±0.2%  
ISL21080-20 and -25  
ISL21080-30, -33, -41, and -50  
FROM: Input Voltage Range  
ISL21080-12 (Coming Soon)  
ISL21080-15  
ISL21080-25 (Coming Soon)  
ISL21080-33 (Coming Soon)  
TO: Input Voltage Range:  
2.7V to 5.5V  
2.7V to 5.5V  
2.7V to 5.5V  
3.5V to 5.5V  
ISL21080-09, -10, -12, -15, -20, and -25  
ISL21080-09, -10, and 20 (Coming Soon)  
ISL21080-30  
2.7V to 5.5V  
3.2V to 5.5V  
3.5V to 5.5V  
ISL21080-33  
ISL21080-41 (Coming Soon)  
Added: ISL21080-50 (Coming Soon)  
4.5V to 8.0V  
5.5V to 8.0V Output Voltage Noise  
30µVP-P (0.1Hz to 10Hz)  
Updated Electrical Spec Tables by Tables with Voltage References 9, 10, 12, 20, 25, 30, 33  
and 41.  
Added to Abs Max Ratings:  
VIN to GND (ISL21080-41 and 50 only  
VOUT to GND (10s)  
(ISL21080-41 and 50 only  
-0.5V to +10V  
-0.5V to +5.1V  
Changed Tja in Thermal information from "202.70" to "170" to match ASYD in Intrepid  
Added Note:  
Post-assembly x-ray inspection may also lead to permanent changes in device output voltage  
and should be minimized or avoided. Most inspection equipment will not affect the FGA  
reference voltage, but if x-ray inspection is required, it is advisable to monitor the reference  
output voltage to verify excessive shift has not occurred.  
Added Special Applications Considerations Section on page 12.  
07/28/09  
FN6934.0  
Initial Release.  
FN6934.2  
October 14, 2009  
15  
ISL21080  
Products  
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The  
Company's products address some of the industry's fastest growing markets, such as, flat panel displays, cell phones,  
handheld products, and notebooks. Intersil's product families address power management and analog signal  
processing functions. Go to www.intersil.com/products for a complete list of Intersil product families.  
*For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device  
information page on intersil.com: ISL21080  
To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff  
FITs are available from our website at http://rel.intersil.com/reports/search.php  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications  
at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by  
Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any  
infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any  
patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6934.2  
October 14, 2009  
16  
ISL21080  
Package Outline Drawing  
P3.064  
3 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE (SOT23-3)  
Rev 2, 9/09  
4
2.92±0.12  
DETAIL "A"  
C
L
2.37±0.27  
1.30±0.10  
4
C
L
0.950  
0.435±0.065  
0.20 M C  
0 - 8 deg.  
TOP VIEW  
10° TYP  
(2 plcs)  
0.25  
0.91±0.03  
GAUGE PLANE  
1.00±0.12  
SEATING PLANE  
C
SEATING PLANE  
0.10 C  
0.31±0.10  
5
0.013(MIN)  
0.100(MAX)  
SIDE VIEW  
DETAIL "A"  
(0.60)  
NOTES:  
(2.15)  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSEY14.5m-1994.  
3. Reference JEDEC TO-236.  
(1.25)  
4. Dimension does not include interlead flash or protrusions.  
Interlead flash or protrusions shall not exceed 0.25mm per side.  
5. Footlength is measured at reference to gauge plane.  
(0.95 typ.)  
TYPICAL RECOMMENDED LAND PATTERN  
FN6934.2  
October 14, 2009  
17  

相关型号:

ISL21080DIH312Z-TK

300nA NanoPower Voltage References
INTERSIL

ISL21080_09

300nA NanoPower Voltage References
INTERSIL

ISL21080_10

300nA NanoPower Voltage References
INTERSIL

ISL21090

Ultra Low Noise, Precision Voltage Reference Output Current Capability 20mA
INTERSIL

ISL21090AFB825Z-TK

Ultra Low Noise, Precision Voltage Reference
INTERSIL

ISL21090B

Providing high-performance solutions for every link in the signal chain
INTERSIL

ISL21090BFB812Z-TK

Ultra Low Noise, Precision Voltage Reference
INTERSIL

ISL21090BFB812Z-TK_13

Ultra Low Noise, Precision Voltage Reference
INTERSIL

ISL21090BFB825Z-TK

Ultra Low Noise, Precision Voltage Reference Output Current Capability 20mA
INTERSIL

ISL21090BFB850Z-TK

Ultra Low Noise, Precision Voltage Reference
INTERSIL

ISL21090BFB875Z-TK

Ultra Low Noise, Precision Voltage Reference
INTERSIL

ISL21090_12

Ultra Low Noise, Precision Voltage Reference
INTERSIL