ISL23415_11 [INTERSIL]

Single, Low Voltage Digitally Controlled Potentiometer (XDCP?); 单路低电压数字控制电位器( XDCP ? )
ISL23415_11
型号: ISL23415_11
厂家: Intersil    Intersil
描述:

Single, Low Voltage Digitally Controlled Potentiometer (XDCP?)
单路低电压数字控制电位器( XDCP ? )

电位器
文件: 总20页 (文件大小:971K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Single, Low Voltage Digitally Controlled Potentiometer  
(XDCP™)  
ISL23415  
The ISL23415 is a volatile, low voltage, low noise, low power,  
SPI™ bus, 256 taps, single digitally controlled potentiometer  
(DCP), which integrates DCP core, wiper switches and control  
logic on a monolithic CMOS integrated circuit.  
Features  
• 256 resistor taps  
• SPI serial interface  
- No additional level translator for low bus supply  
- Daisy Chaining of multiple DCP  
The digitally controlled potentiometer is implemented with a  
combination of resistor elements and CMOS switches. The  
position of the wipers are controlled by the user through the  
SPI bus interface. The potentiometer has an associated  
volatile Wiper Register (WR) that can be directly written to and  
read by the user. The contents of the WR controls the position  
of the wiper. When powered on, the ISL23415’s wiper will  
always commence at mid-scale (128 tap position).  
• Power supply  
- V = 1.7V to 5.5V analog power supply  
CC  
- V  
LOGIC  
= 1.2V to 5.5V SPI bus/logic power supply  
• Wiper resistance: 70Ω typical @ V = 3.3V  
CC  
• Shutdown Mode - forces the DCP into an end-to-end open  
circuit and RW is shorted to RL internally  
• Power-on preset to mid-scale (128 tap position)  
• Shutdown and standby current <2.8µA max  
The low voltage, low power consumption, and small package  
of the ISL23415 make it an ideal choice for use in battery  
operated equipment. In addition, the ISL23415 has a V  
LOGIC  
• DCP terminal voltage from 0V to V  
CC  
pin allowing down to 1.2V bus operation, independent from the  
value. This allows for low logic levels to be connected  
• 10kΩ, 50kΩ or 100kΩ total resistance  
• Extended industrial temperature range: -40°C to +125°C  
• 10 Ld MSOP or 10 Ld µTQFN packages  
• Pb-free (RoHS compliant)  
V
CC  
directly to the ISL23415 without passing through a voltage  
level shifter.  
The DCP can be used as a three-terminal potentiometer or as a  
two-terminal variable resistor in a wide variety of applications  
including control, parameter adjustments, and signal  
processing.  
Applications  
• Power supply margining  
• RF power amplifier bias compensation  
• LCD bias compensation  
• Gain adjustment in battery powered instruments  
• Portable medical equipment calibration  
10000  
8000  
6000  
4000  
2000  
0
0
50  
100  
150  
200  
250  
TAP POSITION (DECIMAL)  
FIGURE 1. FORWARD AND BACKWARD RESISTANCE vs TAP  
POSITION, 10k  
FIGURE 2. V  
ADJUSTMENT  
REF  
August 16, 2011  
FN7780.1  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Copyright Intersil Americas Inc. 2010, 2011. All Rights Reserved  
Intersil (and design) and XDCP are trademarks owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners.  
1
ISL23415  
Block Diagram  
V
V
CC  
LOGIC  
RH  
SCK  
SDI  
POWER-UP  
INTERFACE,  
CONTROL  
AND  
STATUS  
LOGIC  
I/O BLOCK  
LEVEL  
SHIFTER  
WR  
SDO  
CS  
VOLATILE  
REGISTER  
AND  
WIPER  
CONTROL  
CIRCUITRY  
RL  
RW  
GND  
Pin Configurations  
Pin Descriptions  
ISL23415  
(10 LD MSOP)  
TOP VIEW  
MSOP  
µTQFN  
SYMBOL  
DESCRIPTION  
1
10  
V
SPI bus/logic supply.  
LOGIC  
Range 1.2V to 5.5V  
O
10  
GND  
V
1
2
3
4
5
LOGIC  
SCK  
2
3
1
2
SCK  
SDO  
Logic Pin - Serial bus clock input  
V
9
CC  
Logic Pin - Serial bus data output  
(configurable)  
RH  
SDO  
SDI  
CS  
8
7
RW  
RL  
4
5
6
7
8
9
3
4
5
6
7
8
SDI  
CS  
Logic Pin - Serial bus data input  
Logic Pin - Active low Chip Select  
DCP “low” terminal  
6
RL  
ISL23415  
(10 LD µTQFN)  
TOP VIEW  
RW  
RH  
DCP wiper terminal  
DCP “high” terminal  
V
Analog power supply.  
Range 1.7V to 5.5V  
CC  
O
SCK  
1
9
8
7
6
GND  
10  
9
GND  
Ground pin  
SDO  
SDI  
CS  
2
3
4
V
CC  
RH  
RW  
FN7780.1  
August 16, 2011  
2
ISL23415  
Ordering Information  
RESISTANCE  
PART NUMBER  
(Note 5)  
PART  
MARKING  
OPTION  
(k)  
TEMP. RANGE  
PACKAGE  
(Pb-free)  
PKG.  
DWG. #  
(°C)  
ISL23415TFUZ (Notes 1, 3)  
ISL23415UFUZ (Notes 1, 3)  
ISL23415WFUZ (Notes 1, 3)  
ISL23415TFRUZ-T7A (Notes 2, 4)  
ISL23415TFRUZ-TK (Notes 2, 4)  
ISL23415UFRUZ-T7A (Notes 2, 4)  
ISL23415UFRUZ-TK (Notes 2, 4)  
ISL23415WFRUZ-T7A (Notes 2, 4)  
ISL23415WFRUZ-TK (Notes 2, 4)  
NOTES:  
3415T  
3415U  
100  
50  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
10 Ld MSOP  
M10.118  
10 Ld MSOP  
M10.118  
3415W  
HE  
10  
10 Ld MSOP  
M10.118  
100  
100  
50  
10 Ld µTQFN 2.1x1.6  
10 Ld µTQFN 2.1x1.6  
10 Ld µTQFN 2.1x1.6  
10 Ld µTQFN 2.1x1.6  
10 Ld µTQFN 2.1x1.6  
10 Ld µTQFN 2.1x1.6  
L10.2.1x1.6A  
L10.2.1x1.6A  
L10.2.1x1.6A  
L10.2.1x1.6A  
L10.2.1x1.6A  
L10.2.1x1.6A  
HE  
HD  
HD  
50  
HC  
10  
HC  
10  
1. Add “-TK” or “-T7A” suffix for Tape and Reel option. Please refer to TB347 for details on reel specifications.  
2. Please refer to TB347 for details on reel specifications.  
3. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
4. These Intersil Pb-free plastic packaged products employ special Pb-free material sets; molding compounds/die attach materials and NiPdAu  
plate - e4 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are  
MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
5. For Moisture Sensitivity Level (MSL), please see device information page for ISL23415. For more information on MSL please see techbrief TB363.  
FN7780.1  
August 16, 2011  
3
ISL23415  
Absolute Maximum Ratings  
Thermal Information  
Supply Voltage Range  
Thermal Resistance (Typical)  
10 Ld MSOP Package (Note 6, 7). . . . . . . .  
10 Ld µTQFN Package (Note 6, 7) . . . . . . .  
θ
JA (°C/W)  
170  
θ
JC (°C/W)  
V
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6.0V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6.0V  
70  
90  
CC  
LOGIC  
145  
Voltage on any DCP Terminal Pin . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6.0V  
Voltage on any Digital Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6.0V  
Wiper Current I (10s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±6mA  
W
ESD Rating  
Maximum Junction Temperature (Plastic Package) . . . . . . . . . . . .+150°C  
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
Human Body Model (Tested per JESD22-A114E). . . . . . . . . . . . . . .6.5kV  
CDM Model (Tested per JESD22-A114E) . . . . . . . . . . . . . . . . . . . . . . . 1kV  
Machine Model (Tested per JESD22-A115-A). . . . . . . . . . . . . . . . . . 200V  
Latch Up  
Recommended Operating Conditions  
Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +125°C  
(Tested per JESD-78B; Class 2, Level A) . . . . . . . . . . 100mA @ +125°C  
V
V
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.7V to 5.5V  
CC  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2V to 5.5V  
LOGIC  
DCP Terminal Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 to V  
CC  
Max Wiper Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±3mA  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
6. θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
7. For θ , the “case temp” location is the center top of the package.  
JC  
Analog Specifications  
V
= 2.7V to 5.5V, V  
= 1.2V to 5.5V over recommended operating conditions unless otherwise stated.  
LOGIC  
CC  
Boldface limits apply over the operating temperature range, -40°C to +125°C.  
MIN  
TYP  
MAX  
SYMBOL  
PARAMETER  
to R Resistance  
TEST CONDITIONS  
(Note 20)  
(Note 8)  
(Note 20)  
UNITS  
R
R
W option  
U option  
T option  
10  
50  
k  
TOTAL  
H
L
kΩ  
kΩ  
100  
±2  
R
to R Resistance Tolerance  
-20  
+20  
%
H
L
End-to-End Temperature Coefficient  
W option  
U option  
T option  
175  
85  
ppm/°C  
ppm/°C  
ppm/°C  
V
70  
V
, V  
RH RL  
DCP Terminal Voltage  
Wiper Resistance  
V
or V to GND  
RL  
0
V
CC  
RH  
R
RH - floating, V = 0V, force I current  
RL  
70  
200  
W
W
to the wiper, I = (V - V )/R  
W
CC RL  
TOTAL,  
V
= 2.7V to 5.5V  
CC  
V
= 1.7V  
580  
32  
CC  
C /C /C  
W
Terminal Capacitance  
Leakage on DCP Pins  
Resistor Noise Density  
See “DCP Macro Model” on page 8.  
Voltage at pin from GND to V  
pF  
µA  
H
L
I
-0.4  
<0.1  
16  
0.4  
LkgDCP  
Noise  
CC  
Wiper at middle point, W option  
Wiper at middle point, U option  
Wiper at middle point, T option  
nV/ Hz  
49  
nV/ Hz  
61  
nV/ Hz  
Feed Thru Digital Feedthrough from Bus to Wiper Wiper at middle point  
-65  
-75  
dB  
dB  
PSRR  
Power Supply Reject Ratio  
Wiper output change if V change  
CC  
±10%; wiper at middle point  
FN7780.1  
August 16, 2011  
4
ISL23415  
Analog Specifications  
V
= 2.7V to 5.5V, V  
= 1.2V to 5.5V over recommended operating conditions unless otherwise stated.  
LOGIC  
CC  
Boldface limits apply over the operating temperature range, -40°C to +125°C. (Continued)  
MIN  
TYP  
MAX  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
(Note 20)  
(Note 8)  
(Note 20)  
UNITS  
VOLTAGE DIVIDER MODE (0V @ RL; V @ RH; measured at RW, unloaded)  
CC  
Integral Non-linearity, Guaranteed  
(Note 13) Monotonic  
INL  
W option  
-1.0  
-0.5  
-1  
±0.5  
±0.15  
±0.4  
±0.1  
-2  
+1.0  
+0.5  
+1  
LSB  
(Note 9)  
U, T option  
LSB  
(Note 9)  
DNL  
Differential Non-linearity, Guaranteed W option  
LSB  
(Note 9)  
(Note 12) Monotonic  
U, T option  
W option  
-0.4  
-3.5  
-2  
+0.4  
0
LSB  
(Note 9)  
FSerror  
Full-scale Error  
LSB  
(Note 9)  
(Note 11)  
U, T option  
W option  
-0.5  
2
0
LSB  
(Note 9)  
ZSerror  
Zero-scale Error  
0
3.5  
2
LSB  
(Note 9)  
(Note 10)  
U, T option  
0
0.4  
LSB  
(Note 9)  
TC  
(Note 14)  
Ratiometric Temperature Coefficient  
W option, Wiper Register set to 80 hex  
U option, Wiper Register set to 80 hex  
T option, Wiper Register set to 80 hex  
From code 0 to FF hex  
8
4
ppm/°C  
ppm/°C  
ppm/°C  
ns  
V
2.3  
Large Signal Wiper Settling Time  
-3dB Cutoff Frequency  
300  
1200  
250  
120  
f
Wiper at middle point W option  
Wiper at middle point U option  
Wiper at middle point T option  
kHz  
cutoff  
kHz  
kHz  
RHEOSTAT MODE (Measurements between RW and RL pins with RH not connected, or between RW and RH with RL not connected)  
RINL  
Integral Non-linearity, Guaranteed  
W option; V = 2.7V to 5.5V  
CC  
-2.0  
-1.0  
-1  
±1  
10.5  
±0.3  
2.1  
+2.0  
+1.0  
+1  
MI  
(Note 15)  
(Note 18) Monotonic  
W option; V = 1.7V  
CC  
MI  
(Note 15)  
U, T option; V = 2.7V to 5.5V  
CC  
MI  
(Note 15)  
U, T option; V = 1.7V  
CC  
MI  
(Note 15)  
RDNL  
(Note 17) Monotonic  
Differential Non-linearity, Guaranteed W option; V = 2.7V to 5.5V  
CC  
±0.4  
±0.6  
±0.15  
±0.35  
MI  
(Note 15)  
W option; V = 1.7V  
CC  
MI  
(Note 15)  
U, T option; V = 2.7V to 5.5V  
CC  
-0.5  
+0.5  
MI  
(Note 15)  
U, T option; V = 1.7V  
CC  
MI  
(Note 15)  
FN7780.1  
August 16, 2011  
5
ISL23415  
Analog Specifications  
V
= 2.7V to 5.5V, V  
= 1.2V to 5.5V over recommended operating conditions unless otherwise stated.  
LOGIC  
CC  
Boldface limits apply over the operating temperature range, -40°C to +125°C. (Continued)  
MIN  
TYP  
MAX  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
W option; V = 2.7V to 5.5V  
(Note 20)  
(Note 8)  
(Note 20)  
UNITS  
R
Offset, Wiper at 0 Position  
0
0
3
5.5  
2
MI  
(Note 15)  
offset  
CC  
(Note 16)  
W option; V = 1.7V  
CC  
6.3  
0.5  
1.1  
220  
100  
75  
MI  
(Note 15)  
U, T option; V = 2.7V to 5.5V  
CC  
MI  
(Note 15)  
U, T option; V = 1.7V  
CC  
MI  
(Note 15)  
TCR  
(Note 19)  
Resistance Temperature Coefficient  
W option; Wiper register set between  
32 hex and FF hex  
ppm/°C  
ppm/°C  
ppm/°C  
U option; Wiper register set between  
32 hex and FF hex  
T option; Wiper register set between 32  
hex and FF hex  
Operating Specifications  
V
= 2.7V to 5.5V, V  
= 1.2V to 5.5V over recommended operating conditions unless otherwise stated.  
LOGIC  
CC  
Boldface limits apply over the operating temperature range, -40°C to +125°C.  
MIN  
(Note 20)  
TYP  
(Note 8)  
MAX  
(Note 20)  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
UNITS  
mA  
I
V
Supply Current (Write/Read)  
V
= 5.5V, V = 5.5V,  
1.5  
30  
LOGIC  
LOGIC  
LOGIC  
CC  
f
= 5MHz (for SPI active read and write)  
SCK  
V
= 1.2V, V = 1.7V,  
CC  
µA  
LOGIC  
= 1MHz (for SPI active read and write)  
f
SCK  
I
V
V
Supply Current (Write/Read)  
V
V
V
= 5.5V, V = 5.5V  
CC  
100  
10  
µA  
µA  
µA  
CC  
CC  
LOGIC  
LOGIC  
LOGIC  
= 1.2V, V = 1.7V  
CC  
I
Standby Current  
= 5.5V, V = 5.5V,  
CC  
1.3  
LOGIC SB  
LOGIC  
SPI interface in standby  
V
= 1.2V, V = 1.7V,  
0.4  
1.5  
1
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
LOGIC  
CC  
SPI interface in standby  
I
V
Standby Current  
V = 5.5V, V = 5.5V,  
LOGIC CC  
SPI interface in standby  
CC SB  
CC  
V
= 1.2V, V = 1.7V,  
LOGIC  
CC  
SPI interface in standby  
I
V
Shutdown Current  
V
= 5.5V, V = 5.5V,  
LOGIC CC  
1.3  
0.4  
1.5  
1
LOGIC SHDN LOGIC  
SPI interface in standby  
V
= 1.2V, V = 1.7V,  
LOGIC  
CC  
SPI interface in standby  
I
V
Shutdown Current  
V = V = 5.5V,  
LOGIC CC  
SPI interface in standby  
CC SHDN  
CC  
V
= 1.2V, V = 1.7V,  
LOGIC  
CC  
SPI interface in standby  
I
Leakage Current, at Pins CS, SDO, SDI, SCK Voltage at pin from GND to V  
-0.4  
<0.1  
0.4  
LkgDig  
LOGIC  
FN7780.1  
August 16, 2011  
6
ISL23415  
Operating Specifications  
V
= 2.7V to 5.5V, V  
= 1.2V to 5.5V over recommended operating conditions unless otherwise stated.  
LOGIC  
CC  
Boldface limits apply over the operating temperature range, -40°C to +125°C. (Continued)  
MIN  
TYP  
MAX  
SYMBOL  
PARAMETER  
Wiper Response Time  
TEST CONDITIONS  
(Note 20)  
(Note 8)  
(Note 20)  
UNITS  
µs  
t
W option; CS rising edge to wiper new position,  
from 10% to 90% of final value.  
0.4  
1.5  
3.5  
1.5  
DCP  
U option; CS rising edge to wiper new position,  
from 10% to 90% of final value.  
µs  
µs  
T option; CS rising edge to wiper new position,  
from 10% to 90% of final value.  
tShdnRec DCP Recall Time From Shutdown Mode CS rising edge to wiper recalled position and  
RH connection  
µs  
V
, V  
V
, V  
Ramp Rate  
Ramp monotonic at any level  
0.01  
50  
V/ms  
CC LOGIC CC LOGIC  
Ramp  
Serial Interface Specification For SCK, SDI, SDO, CS Unless Otherwise Noted.  
MIN  
TYP  
MAX  
SYMBOL  
PARAMETER  
Input LOW Voltage  
TEST CONDITIONS  
(Note 20)  
(Note 8)  
(Note 20)  
UNITS  
V
-0.3  
0.3 x V  
V
V
V
IL  
LOGIC  
V
Input HIGH Voltage  
0.7 x V  
V
LOGIC  
+ 0.3  
IH  
LOGIC  
Hysteresis  
SDI and SCK Input Buffer Hysteresis  
V
V
> 2V  
< 2V  
0.05 x V  
LOGIC  
LOGIC  
LOGIC  
0.1 x V  
0
LOGIC  
V
SDO Output Buffer LOW Voltage  
SDO Pull-up Resistor Off-chip  
I
I
= 3mA, V  
> 2V  
0.4  
V
V
OL  
OL  
OL  
LOGIC  
= 1.5mA, V  
< 2V  
0.2 x V  
LOGIC  
LOGIC  
R
Maximum is determined by t and t with  
1.5  
kΩ  
pu  
(Note 19)  
RO  
FO  
= 5MHz  
maximum bus load Cb = 30pF, f  
SCK  
C
SCK, SDO, SDI, CS Pin Capacitance  
SCK Frequency  
10  
pF  
MHz  
MHz  
ns  
pin  
f
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
= 1.7V to 5.5V  
= 1.2V to 1.6V  
1.7V  
5
1
SCK  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
t
SPI Clock Cycle Time  
200  
CYC  
t
SPI Clock High Time  
1.7V  
100  
100  
250  
250  
50  
ns  
WH  
t
SPI Clock Low Time  
1.7V  
ns  
WL  
t
Lead Time  
1.7V  
ns  
LEAD  
t
Lag Time  
1.7V  
ns  
LAG  
t
SDI, SCK and CS Input Setup Time  
SDI, SCK and CS Input Hold Time  
SDI, SCK and CS Input Rise Time  
SDI, SCK and CS Input Fall Time  
SDO Output Disable Time  
SDO Output Setup Time  
SDO Output Valid Time  
SDO Output Hold Time  
SDO Output Rise Time  
SDO Output Fall Time  
1.7V  
ns  
SU  
t
1.7V  
50  
ns  
H
t
1.7V  
10  
ns  
RI  
t
1.7V  
10  
20  
ns  
FI  
t
1.7V  
0
100  
ns  
DIS  
t
1.7V  
50  
ns  
SO  
t
1.7V  
150  
0
ns  
V
t
1.7V  
ns  
HO  
RO  
t
R
= 1.5k, Cbus = 30pF  
= 1.5k, Cbus = 30pF  
60  
60  
ns  
pu  
pu  
t
R
ns  
FO  
FN7780.1  
August 16, 2011  
7
ISL23415  
Serial Interface Specification For SCK, SDI, SDO, CS Unless Otherwise Noted. (Continued)  
MIN  
TYP  
MAX  
SYMBOL  
PARAMETER  
CS Deselect Time  
TEST CONDITIONS  
(Note 20)  
(Note 8)  
(Note 20)  
UNITS  
µs  
t
2
CS  
NOTES:  
8. Typical values are for T = +25°C and 3.3V supply voltages.  
A
9. LSB = [V(RW)  
255  
– V(RW) ]/255. V(RW)  
and V(RW) are V(RW) for the DCP register set to FF hex and 00 hex respectively. LSB is the incremental  
255 0  
0
voltage when changing from one tap to an adjacent tap.  
10. ZS error = V(RW) /LSB.  
0
11. FS error = [V(RW)  
255  
– V ]/LSB.  
CC  
12. DNL = [V(RW) – V(RW) ]/LSB-1, for i = 1 to 255. i is the DCP register setting.  
i-1  
i
13. INL = [V(RW) – i • LSB – V(RW) ]/LSB for i = 1 to 255  
i
0
Max(V(RW) ) Min(V(RW) )  
6
10  
14.  
i
i
for i = 16 to 255 decimal, T = -40°C to +125°C. Max( ) is the maximum value of the wiper voltage  
and Min( ) is the minimum value of the wiper voltage over the temperature range.  
----------------------------------------------------------------------------- ---------------------  
TC  
=
×
V
V(RWi(+25°C))  
+165°C  
15. MI = |RW  
– RW |/255. MI is a minimum increment. RW and RW are the measured resistances for the DCP register set to FF hex and 00  
255 0  
255  
hex respectively.  
0
16. Roffset = RW /MI, when measuring between RW and RL.  
0
Roffset = RW  
/MI, when measuring between RW and RH.  
255  
17. RDNL = (RW – RW )/MI -1, for i = 16 to 255.  
i-1  
i
18. RINL = [RW – (MI • i) – RW ]/MI, for i = 16 to 255.  
i
0
6
[Max(Ri) Min(Ri)]  
10  
19.  
for i = 16 to 255, T = -40°C to +125°C. Max( ) is the maximum value of the resistance and Min( ) is the  
minimum value of the resistance over the temperature range.  
------------------------------------------------------ ---------------------  
TC  
=
×
R
Ri(+25°C)  
+165°C  
20. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
DCP Macro Model  
R
TOTAL  
RH  
RL  
C
L
C
H
C
W
32pF  
32pF  
32pF  
RW  
Timing Diagrams  
Input Timing  
t
CS  
CS  
t
t
t
LAG  
LEAD  
CYC  
SCK  
...  
t
t
t
RI  
FI  
t
t
t
WL  
SU  
H
WH  
...  
MSB  
SDI  
LSB  
SDO  
FN7780.1  
August 16, 2011  
8
ISL23415  
Timing Diagrams (Continued)  
Output Timing  
CS  
SCK  
...  
...  
t
t
t
DIS  
SO  
HO  
MSB  
LSB  
SDO  
SDI  
t
V
ADDR  
XDCP™ Timing (for All Load Instructions)  
CS  
t
DCP  
SCK  
...  
...  
MSB  
LSB  
SDI  
V
W
SDO  
*When CS is HIGH  
SDO at Z or Hi-Z state  
Typical Performance Curves  
0.4  
0.30  
0.2  
0
0.15  
0
-0.2  
-0.4  
-0.15  
-0.30  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
TAP POSITION (DECIMAL)  
TAP POSITION (DECIMAL)  
FIGURE 3. 10k DNL vs TAP POSITION, V = 5V  
CC  
FIGURE 4. 50k DNL vs TAP POSITION, V = 5V  
CC  
FN7780.1  
August 16, 2011  
9
ISL23415  
Typical Performance Curves (Continued)  
0.30  
0.15  
0
0.4  
0.2  
0
-0.15  
-0.30  
-0.2  
-0.4  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
TAP POSITION (DECIMAL)  
TAP POSITION (DECIMAL)  
FIGURE 5. 10k INL vs TAP POSITION, V = 5V  
CC  
FIGURE 6. 50k INL vs TAP POSITION, V = 5V  
CC  
0.4  
0.2  
0
0.30  
0.15  
0
-0.2  
-0.4  
-0.15  
-0.30  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
TAP POSITION (DECIMAL)  
TAP POSITION (DECIMAL)  
FIGURE 7. 10k RDNL vs TAP POSITION, V = 5V  
CC  
FIGURE 8. 50k RDNL vs TAP POSITION, V = 5V  
CC  
0.6  
0.4  
0.2  
0
0.30  
0.15  
0
-0.2  
-0.4  
-0.6  
-0.15  
-0.30  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
TAP POSITION (DECIMAL)  
TAP POSITION (DECIMAL)  
FIGURE 9. 10k RINL vs TAP POSITION, V = 5V  
CC  
FIGURE 10. 50k RINL vs TAP POSITION, V = 5V  
CC  
FN7780.1  
August 16, 2011  
10  
ISL23415  
Typical Performance Curves (Continued)  
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
+125°C  
+125°C  
+25°C  
+25°C  
-40°C  
-40°C  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
TAP POSITION (DECIMAL)  
TAP POSITION (DECIMAL)  
FIGURE 11. 10k WIPER RESISTANCE vs TAP POSITION, V = 5V  
CC  
FIGURE 12. 50k WIPER RESISTANCE vs TAP POSITION, V = 5V  
CC  
300  
250  
200  
150  
100  
50  
70  
60  
50  
40  
30  
20  
10  
0
0
15  
65  
115  
165  
215  
15  
65  
115  
165  
215  
TAP POSITION (DECIMAL)  
TAP POSITION (DECIMAL)  
FIGURE 13. 10k TCv vs TAP POSITION  
FIGURE 14. 50k TCv vs TAP POSITION  
600  
500  
400  
300  
200  
100  
0
200  
150  
100  
50  
0
15  
15  
65  
115  
165  
215  
65  
115  
165  
215  
TAP POSITION (DECIMAL)  
TAP POSITION (DECIMAL)  
FIGURE 15. 10k TCr vs TAP POSITION  
FIGURE 16. 50k TCr vs TAP POSITION  
FN7780.1  
August 16, 2011  
11  
ISL23415  
Typical Performance Curves (Continued)  
120  
90  
60  
30  
0
35  
30  
25  
20  
15  
10  
5
0
15  
65  
115  
165  
215  
15  
65  
115  
165  
215  
TAP POSITION (DECIMAL)  
TAP POSITION (DECIMAL)  
FIGURE 18. 100k TCr vs TAP POSITION  
FIGURE 17. 100k TCv vs TAP POSITION  
SCK CLOCK  
RW PIN  
10mV/DIV  
1µs/DIV  
20mV/DIV  
5µs/DIV  
FIGURE 19. WIPER DIGITAL FEEDTHROUGH  
FIGURE 20. WIPER TRANSITION GLITCH  
1V/DIV  
1V/DIV  
1µs/DIV  
0.1s/DIV  
VRW  
CS RISING EDGE  
FIGURE 22. POWER-ON START-UP IN VOLTAGE DIVIDER MODE  
FIGURE 21. WIPER LARGE SIGNAL SETTLING TIME  
FN7780.1  
August 16, 2011  
12  
ISL23415  
Typical Performance Curves (Continued)  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
CH1: 0.5V/DIV, 0.2µs/DIV RH PIN  
CH2: 0.2V/DIV, 0.2µs/DIV RW PIN  
V
= 5.5V, V  
= 5.5V  
LOGIC  
CC  
V
= 1.7V, V  
= 1.2V  
LOGIC  
CC  
R
= 10k  
TOTAL  
-40  
-15  
10  
35  
60  
85  
110  
-3dB FREQUENCY = 1.4MHz AT MIDDLE TAP  
TEMPERATURE (°C)  
FIGURE 24. STANDBY CURRENT vs TEMPERATURE  
FIGURE 23. 10k -3dB CUT OFF FREQUENCY  
Functional Pin Description  
Potentiometers Pins  
RH AND RL  
The output type is configured through ACR[1] bit for Push-Pull or  
Open Drain operation. Default setting for this pin is Push-Pull. An  
external pull-up resistor is required for Open Drain output  
operation. When CS is HIGH, the SDO pin is in tri-state (Z) or  
high-tri-state (Hi-Z) depends on the selected configuration.  
The high (RH) and low (RL) terminals of the ISL23415 are  
equivalent to the fixed terminals of a mechanical potentiometer.  
The RH and RL are referenced to the relative position of the wiper  
and not the voltage potential on the terminals. With the WR  
register set to 255 decimal, the wiper will be closest to RH, and  
with the WR register set to 0, the wiper is closest to RL.  
CHIP SELECT (CS)  
CS LOW enables the ISL23415, placing it in the active power  
mode. A HIGH to LOW transition on CS is required prior to the  
start of any operation after power-up. When CS is HIGH, the  
ISL23415 is deselected and the SDO pin is at high impedance,  
and the device will be in the standby state.  
RW  
The RW is the wiper terminal, and it is equivalent to the  
moveable terminal of a mechanical potentiometer. The position  
of the wiper within the array is determined by the WR register.  
V
LOGIC  
Digital power source for the logic control section. It supplies an  
internal level translator for 1.2V to 5.5V serial bus operation. Use  
the same supply as the I C logic source.  
Power Pins  
2
V
CC  
Power terminal for the potentiometer section analog power  
source. Can be any value needed to support voltage range of DCP  
Principles of Operation  
The ISL23415 is an integrated circuit incorporating one DCP with  
its associated registers and an SPI serial interface providing  
direct communication between a host and the potentiometer.  
The resistor array is comprised of individual resistors connected  
in series. At either end of the array and between each resistor is  
an electronic switch that transfers the potential at that point to  
the wiper.  
pins, from 1.7V to 5.5V, independent of the V  
voltage.  
LOGIC  
Bus Interface Pins  
SERIAL CLOCK (SCL)  
This input is the serial clock of the SPI serial interface.  
SERIAL DATA INPUT (SDI)  
The electronic switches on the device operate in a “make before  
break” mode when the wiper changes tap positions.  
The SDI is a serial data input pin for SPI interface. It receives  
operation code, wiper address and data from the SPI remote  
host device. The data bits are shifted in at the rising edge of the  
serial clock SCK, while the CS input is low.  
Voltage at any DCP pins, RH, RL or RW, should not exceed V  
CC  
level at any conditions during power-up and normal operation.  
The V pin needs to be connected to the SPI bus supply  
LOGIC  
which allows reliable communication with the wide range of  
SERIAL DATA OUTPUT (SDO)  
The SDO is a serial data output pin. During a read cycle, the data  
bits are shifted out on the falling edge of the serial clock SCK and  
will be available to the master on the following rising edge of SCK.  
microcontrollers and independent of the V level. This is  
extremely important in systems where the digital supply has  
lower levels than the analog supply.  
CC  
FN7780.1  
August 16, 2011  
13  
ISL23415  
DCP Description  
Each DCP is implemented with a combination of resistor  
RH  
elements and CMOS switches. The physical ends of DCP are  
equivalent to the fixed terminals of a mechanical potentiometer  
(RH and RL pins). The RW pin of the DCP is connected to  
intermediate nodes, and is equivalent to the wiper terminal of a  
mechanical potentiometer. The position of the wiper terminal  
within the DCP is controlled by the 8-bit volatile Wiper Register  
(WR). When the WR of a DCP contains all zeroes (WR[7:0] = 00h),  
its wiper terminal (RW) is closest to its “Low” terminal (RL). When  
the WR register of a DCP contains all ones (WR[7:0] = FFh), its  
wiper terminal (RW) is closest to its “High” terminal (RH). As the  
value of the WR increases from all zeroes (0) to all ones (255  
decimal), the wiper moves monotonically from the position  
closest to RL to the position closest to RH. At the same time, the  
resistance between RW and RL increases monotonically, while  
the resistance between RH and RW decreases monotonically.  
RW  
RL  
2k  
FIGURE 25. DCP CONNECTION IN SHUTDOWN MODE  
When the device enters shutdown, all current DCP WR settings are  
maintained. When the device exits shutdown, the wipers will  
return to the previous WR settings after a short settling time  
(see Figure 26).  
While the ISL23415 is being powered up, the WR is reset to 80h  
(128 decimal), which locates RW roughly at the center between  
RL and RH.  
POWER-UP  
MID SCALE = 80H  
The WR can be read or written to directly using the SPI serial  
interface as described in the following sections.  
USER PROGRAMMED  
AFTER SHDN  
Memory Description  
SHDN RELEASED  
The ISL23415 contains two volatile 8-bit registers: the Wiper  
Register (WR) and the Access Control Register (ACR). Memory map  
of ISL23415 is in Table 1. The Wiper Register WR at address 0  
contains current wiper position of the DCP. The Access Control  
Register (ACR) at address 10h contains information and control  
bits described in Table 2.  
SHDN ACTIVATED  
WIPER RESTORE TO  
THE ORIGINAL POSITION  
SHDN MODE  
TIME (s)  
0
FIGURE 26. SHUTDOWN MODE WIPER RESPONSE  
TABLE 1. MEMORY MAP  
SPI Serial Interface  
ADDRESS  
(hex)  
DEFAULT SETTING  
(hex)  
VOLATILE  
ACR  
The ISL23415 supports an SPI serial protocol, mode 0. The  
device is accessed via the SDI input and SDO output with data  
clocked in on the rising edge of SCK, and clocked out on the  
falling edge of SCK. CS must be LOW during communication with  
the ISL23415. The SCK and CS lines are controlled by the host or  
master. The ISL23415 operates only as a slave device.  
10  
0
40  
80  
WR  
TABLE 2. ACCESS CONTROL REGISTER (ACR)  
BIT #  
7
6
5
0
4
0
3
0
2
0
1
0
0
All communication over the SPI interface is conducted by  
sending the MSB of each byte of data first.  
NAME  
0
SHDN  
SDO  
The SDO bit (ACR[1]) configures type of SDO output pin. The  
Protocol Conventions  
The SPI protocol contains Instruction Byte followed by one or more  
Data Bytes. A valid Instruction Byte contains instruction as the three  
MSBs, with the following five register address bits (see Table 3).  
default value of SDO bit is 0 for Push-Pull output. The SDO pin  
can be configured as Open Drain output for some applications. In  
this case, an external pull-up resistor is required, reference the  
“Serial Interface Specification” on page 7.  
The next byte sent to the ISL23415 is the Data Byte.  
TABLE 3. INSTRUCTION BYTE FORMAT  
Shutdown Function  
The SHDN bit (ACR[6]) disables or enables shutdown mode for all  
DCP channels simultaneously. When this bit is 0, i.e., each DCP is  
forced to end-to-end open circuit and each RW shorted to RL  
through a 2kserial resistor, as shown in Figure 25. Default value  
of the SHDN bit is 1.  
BIT #  
7
6
5
4
3
2
1
0
I2  
I1  
I0  
R4  
R3  
R2  
R1  
R0  
Table 4 contains a valid instruction set for ISL23415.  
If the [R4:R0] bits are zero or one, then the read or write is to the  
WRi register. If the [R4:R0] are 10000, then the operation is to  
the ACR.  
FN7780.1  
August 16, 2011  
14  
ISL23415  
TABLE 4. INSTRUCTION SET  
INSTRUCTION SET  
I2  
0
0
0
1
1
I1  
0
0
1
0
1
I0  
0
1
1
0
0
R4  
X
R3  
X
R2  
X
R1  
X
R0  
X
OPERATION  
NOP  
X
X
X
X
X
ACR READ  
X
X
X
X
X
ACR WRTE  
R4  
R4  
R3  
R3  
R2  
R2  
R1  
R1  
R0  
R0  
WRi or ACR READ  
WRi or ACR WRTE  
Where X means “do not care”.  
CS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
SCK  
DATA BYTE  
WR INSTRUCTION  
ADDR  
SDI  
SDO  
FIGURE 27. TWO BYTE WRITE SEQUENCE  
1
8
16  
24  
32  
CS  
SCK  
NOP  
RD  
ADDR  
SDI  
RD  
ADDR  
READ DATA  
SDO  
FIGURE 28. FOUR BYTE READ SEQUENCE  
Write Operation  
Read Operation  
A write operation to the ISL23415 is a two or more bytes  
operation. It requires first, the CS transition from HIGH-to-LOW.  
Then the host sends a valid Instruction Byte, followed by one or  
more Data Bytes to the SDI pin. The host terminates the write  
operation by pulling the CS pin from LOW-to-HIGH. Instruction is  
executed on the rising edge of CS (see Figure 27).  
A Read operation to the ISL23415 is a four byte operation. It  
requires first, the CS transition from HIGH-to-LOW. Then the host  
sends a valid Instruction Byte, followed by a “dummy” Data Byte,  
NOP Instruction Byte and another “dummy” Data Byte to SDI pin.  
The SPI host receives the Instruction Byte (instruction code +  
register address) and requested Data Byte from SDO pin on the  
rising edge of SCK during third and fourth bytes, respectively. The  
host terminates the read by pulling the CS pin from LOW-to-HIGH  
(see Figure 28).  
FN7780.1  
August 16, 2011  
15  
ISL23415  
The first part starts by HIGH-to-LOW transition on CS line,  
Applications Information  
Communicating with ISL23415  
Communication with ISL23415 proceeds using SPI interface  
through the ACR (address 10000b) and WR (addresses 00000b)  
registers.  
followed by N two bytes read instruction on SDI line with reversed  
chain access sequence: the instruction byte + dummy data byte  
for the last DCP in chain is going first, followed by LOW-to-HIGH  
transition on CS line. The read instructions are executed during  
second part of read sequence. It also starts by HIGH-to-LOW  
transition on CS line, followed by N number of two bytes NOP  
instructions on SDI line and LOW-to-HIGH transition of CS. The  
data is read on every even byte during second part of read  
sequence while every odd byte contains code 111b followed by  
address from which the data is being read.  
The wiper of the potentiometer is controlled by the WR register.  
Writes and reads can be made directly to these register to control  
and monitor the wiper position.  
Daisy Chain Configuration  
Wiper Transition  
When application needs more than one ISL23415, it can  
communicate with all of them without additional CS lines by  
daisy chaining the DCPs as shown on Figure 29. In Daisy Chain  
configuration, the SDO pin of the previous chip is connected to  
the SDI pin of the following chip, and each CS and SCK pins are  
connected to the corresponding microcontroller pins in parallel,  
like regular SPI interface implementation. The Daisy Chain  
configuration can also be used for simultaneous setting of  
multiple DCPs. Note, the number of daisy chained DCPs is  
limited only by the driving capabilities of SCK and CS pins of  
microcontroller; for larger number of SPI devices buffering of  
SCK and CS lines is required.  
When stepping up through each tap in voltage divider mode,  
some tap transition points can result in noticeable voltage  
transients, or overshoot/undershoot, resulting from the sudden  
transition from a very low impedance “make” to a much higher  
impedance “break within a short period of time (<1µs). There are  
several code transitions such as 0Fh to 10h, 1Fh to 20h,..., EFh to  
FFh, which have higher transient glitch. Note, that all switching  
transients will settle well within the settling time as stated in the  
datasheet. A small capacitor can be added externally to reduce  
the amplitude of these voltage transients, but that will also  
reduce the useful bandwidth of the circuit, thus may not be a  
good solution for some applications. It may be a good idea, in  
that case, to use fast amplifiers in a signal chain for fast  
recovery.  
Daisy Chain Write Operation  
The write operation starts by HIGH-to-LOW transition on CS line,  
followed by N number of two bytes write instructions on SDI line  
with reversed chain access sequence: the instruction byte + data  
byte for the last DCP in chain is going first, as shown in Figure 30,  
where N is a number of DCPs in chain. The serial data is going  
through DCPs from DCP0 to DCP(N-1) as follow: DCP0 --> DCP1 -->  
DCP2 --> ... --> DCP(N-1). The write instruction is executed on the  
rising edge of CS for all N DCPs simultaneously.  
V
Requirements  
LOGIC  
It is recommended to keep V  
normal operation. In a case where turning V  
LOGIC  
necessary, it is recommended to ground the V  
ISL23415. Grounding the V  
not affect other devices on the same bus. It is good practice to put  
a 1µF capacitor in parallel with 0.1µF decoupling capacitor close to  
powered all the time during  
OFF is  
pin of the  
LOGIC  
LOGIC  
and V does  
pin or both V  
LOGIC  
LOGIC  
CC  
Daisy Chain Read Operation  
the V pin.  
LOGIC  
The read operation consists of two parts: first, send the read  
instructions (N two bytes operation) with valid address; second,  
read the requested data while sending NOP instructions (N two  
bytes operation) as shown in Figures 31 and 32.  
V
Requirements and Placement  
CC  
It is recommended to put a 1µF capacitor in parallel with 0.1µF  
decoupling capacitor close to the V pin.  
CC  
N DCP IN A CHAIN  
CS  
SCK  
DCP0  
DCP1  
DCP2  
DCP(N-1)  
CS  
MOSI  
MISO  
CS  
CS  
CS  
SCK  
SDI  
SCK  
SDI  
SCK  
SDI  
SCK  
SDI  
µC  
SDO  
SDO  
SDO  
SDO  
FIGURE 29. DAISY CHAIN CONFIGURATION  
FN7780.1  
August 16, 2011  
16  
ISL23415  
CS  
SCK  
16 CLKS  
C P0  
16 CLKLS  
C P2  
16 CLKS  
WR  
D
WR  
WR  
D
D
C P1  
C P2  
WR  
WR  
D
SDI  
D
C P1  
C P2  
SDO 0  
WR  
D
SDO 1  
SDO 2  
FIGURE 30. DAISY CHAIN WRITE SEQUENCE OF N = 3 DCP  
CS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
SCK  
SDI  
INSTRUCTION  
ADDR  
DATA IN  
SDO  
DATA OUT  
FIGURE 31. TWO BYTE READ INSTRUCTION  
CS  
SCK  
SDI  
16 CLKS  
RD DCP2  
16 CLKS  
RD DCP1  
16 CLKS  
RD DCP0  
16 CLKS  
NOP  
16 CLKS  
NOP  
16 CLKS  
NOP  
DCP0 OUT  
DCP2 OUT  
DCP1 OUT  
SDO  
FIGURE 32. DAISY CHAIN READ SEQUENCE OF N = 3 DCP  
FN7780.1  
August 16, 2011  
17  
ISL23415  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make  
sure you have the latest Rev.  
DATE  
REVISION  
FN7780.0  
FN7780.1  
CHANGE  
12/15/10  
7/28/11  
Initial Release.  
Added “Shutdown Function” section and revised “V  
page 6.  
Standby Current”and “V Shutdown Current” limits on  
CC  
LOGIC  
On page 7, split “Wiper Response Time” up into 3 separate conditions for each option (W, U, T).  
Products  
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products address  
some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks. Intersil's product  
families address power management and analog signal processing functions. Go to www.intersil.com/products for a complete list of Intersil  
product families.  
For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on  
intersil.com: ISL23415  
To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff  
FITs are available from our website at http://rel.intersil.com/reports/search.php  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7780.1  
August 16, 2011  
18  
ISL23415  
Mini Small Outline Plastic Packages (MSOP)  
N
M10.118 (JEDEC MO-187BA)  
10 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE  
INCHES  
MILLIMETERS  
E1  
E
SYMBOL  
MIN  
MAX  
MIN  
0.94  
0.05  
0.75  
0.18  
0.09  
2.95  
2.95  
MAX  
1.10  
0.15  
0.95  
0.27  
0.20  
3.05  
3.05  
NOTES  
A
A1  
A2  
b
0.037  
0.002  
0.030  
0.007  
0.004  
0.116  
0.116  
0.043  
0.006  
0.037  
0.011  
0.008  
0.120  
0.120  
-
-B-  
0.20 (0.008)  
INDEX  
AREA  
1 2  
A
B
C
-
-
TOP VIEW  
4X θ  
9
0.25  
(0.010)  
R1  
c
-
R
GAUGE  
PLANE  
D
3
E1  
e
4
SEATING  
PLANE  
L
0.020 BSC  
0.50 BSC  
-
-C-  
4X θ  
L1  
A
A2  
E
0.187  
0.016  
0.199  
0.028  
4.75  
0.40  
5.05  
0.70  
-
L
6
SEATING  
PLANE  
L1  
N
0.037 REF  
10  
0.95 REF  
10  
-
0.10 (0.004)  
-A-  
C
C
b
7
-H-  
A1  
e
R
0.003  
0.003  
-
-
0.07  
0.07  
-
-
-
D
0.20 (0.008)  
C
R1  
θ
-
o
o
o
o
a
SIDE VIEW  
5
15  
5
15  
-
C
L
o
o
o
o
0
6
0
6
-
α
E
1
-B-  
Rev. 0 12/02  
0.20 (0.008)  
C
D
END VIEW  
NOTES:  
1. These package dimensions are within allowable dimensions of  
JEDEC MO-187BA.  
2. Dimensioning and tolerancing per ANSI Y14.5M-1994.  
3. Dimension “D” does not include mold flash, protrusions or gate  
burrs and are measured at Datum Plane. Mold flash, protrusion  
and gate burrs shall not exceed 0.15mm (0.006 inch) per side.  
4. Dimension “E1” does not include interlead flash or protrusions  
- H -  
and are measured at Datum Plane.  
Interlead flash and  
protrusions shall not exceed 0.15mm (0.006 inch) per side.  
5. Formed leads shall be planar with respect to one another within  
0.10mm (.004) at seating Plane.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. Dimension “b” does not include dambar protrusion. Allowable  
dambar protrusion shall be 0.08mm (0.003 inch) total in excess  
of “b” dimension at maximum material condition. Minimum space  
between protrusion and adjacent lead is 0.07mm (0.0027 inch).  
- B -  
-A -  
10. Datums  
and  
to be determined at Datum plane  
.
- H -  
11. Controlling dimension: MILLIMETER. Converted inch dimen-  
sions are for reference only  
FN7780.1  
August 16, 2011  
19  
ISL23415  
Package Outline Drawing  
L10.2.1x1.6A  
10 LEAD ULTRA THIN QUAD FLAT NO-LEAD PLASTIC PACKAGE  
Rev 5, 3/10  
8.  
PIN 1  
INDEX AREA  
2.10  
A
PIN #1 ID  
8.  
0.05 MIN.  
B
1
4
1
4X 0.20 MIN.  
0.10 MIN.  
10  
5
0.80  
10X 0.40  
10 X 0.20  
0.10  
6
9
2X  
6X 0.50  
4
TOP VIEW  
(10 X 0.20)  
0.10 M C A B  
M C  
BOTTOM VIEW  
SEE DETAIL "X"  
(0.05 MIN)  
(0.10 MIN.)  
MAX. 0.55  
PACKAGE  
OUTLINE  
1
0.10 C  
C
(10X 0.60)  
SEATING PLANE  
0.08 C  
(2.00)  
SIDE VIEW  
0 . 125 REF  
(0.80)  
(1.30)  
C
(6X 0.50 )  
(2.50)  
0-0.05  
TYPICAL RECOMMENDED LAND PATTERN  
DETAIL "X"  
NOTES:  
1. Dimensioning and tolerancing conform to ASME Y14.5M-1994.  
2. All Dimensions are in millimeters. Angles are in degrees.  
Dimensions in ( ) for Reference Only.  
3. Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Lead width dimension applies to the metallized terminal and is measured  
between 0.15mm and 0.30mm from the terminal tip.  
5. Maximum package warpage is 0.05mm.  
6. Maximum allowable burrs is 0.076mm in all directions.  
7. Same as JEDEC MO-255UABD except:  
No lead-pull-back, MIN. Package thickness = 0.45 not 0.50mm  
Lead Length dim. = 0.45mm max. not 0.42mm.  
8. The configuration of the pin #1 identifier is optional, but must be located within  
the zone indicated. The pin #1 identifier may be either a mold or mark feature.  
FN7780.1  
August 16, 2011  
20  

相关型号:

ISL23418

Providing high-performance solutions for every link in the signal chain
INTERSIL

ISL23418TFRUZ-T7A

Single, 128-Tap, Low Voltage Digitally Controlled Potentiometer (XDCP™)
INTERSIL

ISL23418TFRUZ-T7A

Single, 128-Tap, Low Voltage Digitally Controlled Potentiometer (XDCP&trade;); MSOP10, uTQFN10; Temp Range: -40&deg; to 125&deg;C
RENESAS

ISL23418TFRUZ-TK

Single, 128-Tap, Low Voltage Digitally Controlled Potentiometer (XDCP™)
INTERSIL

ISL23418TFUZ

Single, 128-Tap, Low Voltage Digitally Controlled Potentiometer (XDCP™)
INTERSIL

ISL23418TFUZ

Single, 128-Tap, Low Voltage Digitally Controlled Potentiometer (XDCP&trade;); MSOP10, uTQFN10; Temp Range: -40&deg; to 125&deg;C
RENESAS

ISL23418TFUZ-T

Digital Potentiometer, 1 Func, 100000ohm, 3-wire Serial Control Interface, 128 Positions, CMOS, PDSO10
RENESAS

ISL23418TFUZ-T7A

Single, 128-Tap, Low Voltage Digitally Controlled Potentiometer (XDCP&trade;); MSOP10, uTQFN10; Temp Range: -40&deg; to 125&deg;C
RENESAS

ISL23418TFUZ-TK

Single, 128-Tap, Low Voltage Digitally Controlled Potentiometer (XDCP&trade;); MSOP10, uTQFN10; Temp Range: -40&deg; to 125&deg;C
RENESAS

ISL23418UFRUZ-T7A

Single, 128-Tap, Low Voltage Digitally Controlled Potentiometer (XDCP™)
INTERSIL

ISL23418UFRUZ-TK

Single, 128-Tap, Low Voltage Digitally Controlled Potentiometer (XDCP™)
INTERSIL

ISL23418UFUZ

Single, 128-Tap, Low Voltage Digitally Controlled Potentiometer (XDCP™)
INTERSIL