ISL23418UFRUZ-TK [INTERSIL]

Single, 128-Tap, Low Voltage Digitally Controlled Potentiometer (XDCP™); 单, 128抽头,低电压数字控制电位器( XDCPâ ?? ¢ )
ISL23418UFRUZ-TK
型号: ISL23418UFRUZ-TK
厂家: Intersil    Intersil
描述:

Single, 128-Tap, Low Voltage Digitally Controlled Potentiometer (XDCP™)
单, 128抽头,低电压数字控制电位器( XDCPâ ?? ¢ )

电位器
文件: 总20页 (文件大小:927K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Single, 128-Tap, Low Voltage Digitally Controlled  
Potentiometer (XDCP™)  
ISL23418  
The ISL23418 is a volatile, low voltage, low noise, low power,  
SPI™ bus, 128 taps, single digitally controlled potentiometer  
(DCP), which integrates DCP core, wiper switches, and control  
logic on a monolithic CMOS integrated circuit.  
Features  
• 128 Resistor Taps  
• SPI Serial Interface  
- No Additional Level Translator for Low Bus Supply  
- Daisy Chaining of Multiple DCP  
The digitally controlled potentiometer is implemented with a  
combination of resistor elements and CMOS switches. The  
position of the wiper is controlled by the user through the SPI  
bus interface. The potentiometer has an associated volatile  
Wiper Register (WR) that can be directly written to and read by  
the user. The contents of the WR controls the position of the  
wiper. When powered on, the ISL23418 wiper always  
commences at mid-scale (64-tap position).  
• Wiper Resistance: 70Ω Typical @ V = 3.3V  
CC  
• Shutdown Mode: Forces DCP into End-to-end Open Circuit;  
RW Shorted to RL Internally  
• Power-on Preset to Mid-scale (64-tap Position)  
• Shutdown and Standby Current <2.8µA Max  
• Power Supply  
- V = 1.7V to 5.5V Analog Power Supply  
CC  
The low voltage, low power consumption, and small package  
size of the ISL23418 make it an ideal choice for use in battery  
- V  
LOGIC  
= 1.2V to 5.5V SPI Bus/Logic Power Supply  
operated equipment. The ISL23418 has a V  
down to 1.2V bus operation, independent from the V value.  
pin allowing  
LOGIC  
• DCP Terminal Voltage from 0V to V  
CC  
CC  
• 10kΩ, 50kΩ or 100kΩ Total Resistance  
• Extended Industrial Temperature Range: -40°C to +125°C  
• 10 Ld MSOP or 10 Ld µTQFN Packages  
• Pb-free (RoHS compliant)  
This allows for low logic levels to be connected directly to the  
ISL23418 without passing through a voltage level shifter.  
The DCP can be used as a three-terminal potentiometer or as a  
two-terminal variable resistor in a wide variety of applications  
including control, parameter adjustments, and signal  
processing.  
Applications  
• Power Supply Margining  
Related Literature  
• See ISL23415, “Single, Low Voltage Digitally Controlled  
Potentiometer (XDCP™)”  
• RF Power Amplifier Bias Compensation  
• LCD Bias Compensation  
• Gain Adjustment in Battery Powered Instruments  
• Portable Medical Equipment Calibration  
10000  
8000  
6000  
4000  
2000  
0
VREF  
RH1  
-
VREF_M  
RW1  
ISL23418  
+
ISL28114  
RL1  
0
25  
50  
75  
100  
125  
TAP POSITION (DECIMAL)  
FIGURE 1. FORWARD AND BACKWARD RESISTANCE vs TAP  
POSITION, 10k  
FIGURE 2. V  
ADJUSTMENT  
REF  
August 3, 2011  
FN7901.0  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 |Copyright Intersil Americas Inc. 2011. All Rights Reserved  
XDCP is a trademark of Intersil Americas Inc. Intersil (and design) is a trademark owned by Intersil Corporation  
or one of its subsidiaries .All other trademarks mentioned are the property of their respective owners.  
1
ISL23418  
Block Diagram  
V
V
CC  
LOGIC  
RH  
SCK  
SDI  
POWER-UP  
INTERFACE,  
CONTROL  
AND  
STATUS  
LOGIC  
I/O BLOCK  
LEVEL  
SHIFTER  
WR  
SDO  
CS  
VOLATILE  
REGISTER  
AND  
WIPER  
CONTROL  
CIRCUITRY  
RL  
RW  
GND  
Pin Configurations  
Pin Description  
ISL23418  
(10 LD MSOP)  
TOP VIEW  
MSOP  
µTQFN  
SYMBOL  
DESCRIPTION  
1
10  
V
SPI bus/logic supply; range 1.2V to  
5.5V  
LOGIC  
O
10  
GND  
V
1
2
3
4
5
LOGIC  
SCK  
2
3
1
2
SCK  
SDO  
Logic pin: serial bus clock input  
V
9
CC  
Logic pin: serial bus data output  
(configurable)  
RH  
SDO  
SDI  
CS  
8
7
RW  
RL  
4
5
6
7
8
9
3
4
5
6
7
8
SDI  
CS  
Logic pin: serial bus data input  
Logic pin: active low Chip Select  
DCP “low” terminal  
6
RL  
ISL23418  
(10 LD µTQFN)  
TOP VIEW  
RW  
RH  
DCP wiper terminal  
DCP “high” terminal  
V
Analog power supply; range 1.7V to  
5.5V  
CC  
O
SCK  
1
9
8
7
6
GND  
10  
9
GND  
Ground pin  
SDO  
SDI  
CS  
2
3
4
V
CC  
RH  
RW  
FN7901.0  
August 3, 2011  
2
ISL23418  
Ordering Information  
RESISTANCE  
PART NUMBER  
(Note 5)  
PART  
MARKING  
OPTION  
(k)  
TEMP. RANGE  
PACKAGE  
(Pb-free)  
PKG.  
DWG. #  
(°C)  
ISL23418TFUZ (Notes 1, 3)  
ISL23418UFUZ (Notes 1, 3)  
ISL23418WFUZ (Notes 1, 3)  
ISL23418TFRUZ-T7A (Notes 2, 4)  
ISL23418TFRUZ-TK (Notes 2, 4)  
ISL23418UFRUZ-T7A (Notes 2, 4)  
ISL23418UFRUZ-TK (Notes 2, 4)  
ISL23418WFRUZ-T7A (Notes 2, 4)  
ISL23418WFRUZ-TK (Notes 2, 4)  
NOTES:  
3418T  
3418U  
100  
50  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
10 Ld MSOP  
M10.118  
10 Ld MSOP  
M10.118  
3418W  
HL  
10  
10 Ld MSOP  
M10.118  
100  
100  
50  
10 Ld 2.1x1.6 µTQFN  
10 Ld 2.1x1.6 µTQFN  
10 Ld 2.1x1.6 µTQFN  
10 Ld 2.1x1.6 µTQFN  
10 Ld 2.1x1.6 µTQFN  
10 Ld 2.1x1.6 µTQFN  
L10.2.1x1.6A  
L10.2.1x1.6A  
L10.2.1x1.6A  
L10.2.1x1.6A  
L10.2.1x1.6A  
L10.2.1x1.6A  
HL  
HK  
HK  
50  
HJ  
10  
HJ  
10  
1. Add “-T*” suffix for tape and reel. Please refer to TB347 for details on reel specifications.  
2. Please refer to TB347 for details on reel specifications.  
3. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
4. These Intersil Pb-free plastic packaged products employ special Pb-free material sets; molding compounds/die attach materials and NiPdAu plate -  
e4 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
5. For Moisture Sensitivity Level (MSL), please see device information page for ISL23418. For more information on MSL please see Tech Brief TB363.  
FN7901.0  
August 3, 2011  
3
ISL23418  
Absolute Maximum Ratings  
Thermal Information  
Supply Voltage Range  
Thermal Resistance (Typical)  
10 Ld MSOP Package (Notes 6, 7). . . . . . .  
10 Ld µTQFN Package (Notes 6, 7) . . . . . .  
θ
JA (°C/W)  
170  
θ
JC (°C/W)  
V
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6.0V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6.0V  
70  
90  
CC  
LOGIC  
145  
Voltage on any DCP Terminal Pin . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6.0V  
Voltage on any Digital Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6.0V  
Wiper Current I (10s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±6mA  
W
ESD Rating  
Maximum Junction Temperature (Plastic Package) . . . . . . . . . . . .+150°C  
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
Human Body Model (Tested per JESD22-A114E). . . . . . . . . . . . . . .6.5kV  
CDM Model (Tested per JESD22-A114E) . . . . . . . . . . . . . . . . . . . . . . . 1kV  
Machine Model (Tested per JESD22-A115-A). . . . . . . . . . . . . . . . . . 200V  
Latch Up  
Recommended Operating Conditions  
Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +125°C  
(Tested per JESD-78B; Class 2, Level A) . . . . . . . . . . 100mA @ +125°C  
V
V
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.7V to 5.5V  
CC  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2V to 5.5V  
LOGIC  
DCP Terminal Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 to V  
CC  
Max Wiper Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±3mA  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
6. θ is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
JA  
7. For θ , the “case temp” location is taken at the package top center.  
JC  
Analog Specifications  
V
= 2.7V to 5.5V, V  
= 1.2V to 5.5V over recommended operating conditions unless otherwise stated.  
LOGIC  
CC  
Boldface limits apply over the operating temperature range, -40°C to +125°C.  
MIN  
TYP  
MAX  
SYMBOL  
PARAMETER  
to R Resistance  
TEST CONDITIONS  
(Note 20)  
(Note 8)  
(Note 20)  
UNITS  
R
R
W option  
U option  
T option  
10  
50  
k  
TOTAL  
H
L
kΩ  
kΩ  
100  
±2  
R
to R Resistance Tolerance  
-20  
+20  
%
H
L
End-to-End Temperature Coefficient  
W option  
U option  
T option  
175  
85  
ppm/°C  
ppm/°C  
ppm/°C  
V
70  
V
, V  
RH RL  
DCP Terminal Voltage  
Wiper Resistance  
V
or V to GND  
RL  
0
V
CC  
RH  
R
RH - floating, V = 0V, force I current  
RL  
70  
200  
W
W
to the wiper, I = (V - V )/R  
W
CC RL  
TOTAL,  
V
= 2.7V to 5.5V  
CC  
V
= 1.7V  
580  
32/32/32  
<0.1  
16  
CC  
C /C /C  
W
Terminal Capacitance  
Leakage on DCP Pins  
Resistor Noise Density  
See “DCP Macro Model” on page 8.  
Voltage at pin from GND to V  
pF  
µA  
H
L
I
-0.4  
0.4  
LkgDCP  
Noise  
CC  
Wiper at middle point, W option  
Wiper at middle point, U option  
Wiper at middle point, T option  
nV/ Hz  
49  
nV/ Hz  
61  
nV/ Hz  
Feed Thru Digital Feedthrough from Bus to Wiper Wiper at middle point  
-65  
dB  
dB  
PSRR  
Power Supply Reject Ratio  
Wiper output change if V change  
CC  
-75  
±10%; wiper at middle point  
VOLTAGE DIVIDER MODE (0V @ RL; V @ RH; measured at RW, unloaded)  
CC  
INL  
Integral Non-linearity, Guaranteed  
W, U, T option  
-0.5  
±0.15  
+0.5  
LSB  
(Note 13) Monotonic  
(Note 9)  
FN7901.0  
August 3, 2011  
4
ISL23418  
Analog Specifications  
V
= 2.7V to 5.5V, V  
= 1.2V to 5.5V over recommended operating conditions unless otherwise stated.  
LOGIC  
CC  
Boldface limits apply over the operating temperature range, -40°C to +125°C. (Continued)  
MIN  
TYP  
MAX  
SYMBOL  
DNL  
PARAMETER  
TEST CONDITIONS  
(Note 20)  
(Note 8)  
(Note 20)  
UNITS  
Differential Non-linearity, Guaranteed W, U, T option  
-0.5  
-2.5  
-1.0  
0
±0.15  
-1.5  
-0.7  
+0.5  
LSB  
(Note 9)  
(Note 12) Monotonic  
FSerror  
(Note 11)  
Full-scale Error  
W option  
U, T option  
W option  
U, T option  
0
LSB  
(Note 9)  
0
LSB  
(Note 9)  
ZSerror  
(Note 10)  
Zero-scale Error  
-1.5  
-0.7  
2.5  
1.0  
LSB  
(Note 9)  
0
LSB  
(Note 9)  
TC  
(Note 14)  
Ratiometric Temperature Coefficient  
W option, Wiper Register set to 40 hex  
U option, Wiper Register set to 40 hex  
T option, Wiper Register set to 40 hex  
From code 0 to 7F hex  
8
4
ppm/°C  
ppm/°C  
ppm/°C  
ns  
V
2.3  
t
Large Signal Wiper Settling Time  
-3dB Cutoff Frequency  
300  
1200  
250  
120  
LS_Settling  
f
Wiper at middle point W option  
Wiper at middle point U option  
Wiper at middle point T option  
kHz  
cutoff  
kHz  
kHz  
RHEOSTAT MODE (Measurements between RW and RL pins with RH not connected, or between RW and RH with RL not connected)  
Integral Non-linearity, Guaranteed W option; V = 2.7V to 5.5V  
R
-1.0  
-0.5  
-0.5  
-0.5  
0
±0.5  
±3.0  
±0.15  
±1.0  
±0.15  
±0.4  
±0.15  
±0.4  
1.8  
+1.0  
+0.5  
+0.5  
+0.5  
3.0  
MI  
INL  
CC  
(Note 18) Monotonic  
(Note 15)  
W option; V = 1.7V  
CC  
MI  
(Note 15)  
U, T option; V = 2.7V to 5.5V  
CC  
MI  
(Note 15)  
U, T option; V = 1.7V  
CC  
MI  
(Note 15)  
R
Differential Non-linearity, Guaranteed W option; V = 2.7V to 5.5V  
CC  
MI  
(Note 15)  
DNL  
(Note 17) Monotonic  
W option; V = 1.7V  
CC  
MI  
(Note 15)  
U, T option; V = 2.7V to 5.5V  
CC  
MI  
(Note 15)  
U, T option; V = 1.7V  
CC  
MI  
(Note 15)  
R
Offset, Wiper at 0 Position  
W option; V = 2.7V to 5.5V  
CC  
MI  
(Note 15)  
offset  
(Note 16)  
W option; V = 1.7V  
CC  
3.0  
MI  
(Note 15)  
U, T option; V = 2.7V to 5.5V  
CC  
0
0.3  
1
MI  
(Note 15)  
U, T option; V = 1.7V  
CC  
0.5  
MI  
(Note 15)  
FN7901.0  
August 3, 2011  
5
ISL23418  
Analog Specifications  
V
= 2.7V to 5.5V, V  
= 1.2V to 5.5V over recommended operating conditions unless otherwise stated.  
LOGIC  
CC  
Boldface limits apply over the operating temperature range, -40°C to +125°C. (Continued)  
MIN  
TYP  
MAX  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
(Note 20)  
(Note 8)  
(Note 20)  
UNITS  
TCR  
(Note 19)  
Resistance Temperature Coefficient  
W option; Wiper register set between  
32 hex and 7F hex  
220  
100  
75  
ppm/°C  
U option; Wiper register set between  
32 hex and 7F hex  
ppm/°C  
ppm/°C  
T option; Wiper register set between  
32 hex and 7F hex  
Operating Specifications  
V
= 2.7V to 5.5V, V  
= 1.2V to 5.5V over recommended operating conditions unless otherwise  
CC  
LOGIC  
stated. Boldface limits apply over the operating temperature range, -40°C to +125°C.  
MIN  
TYP  
MAX  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
(Note 20)  
(Note 8)  
(Note 20)  
UNITS  
mA  
I
V
Supply Current (Write/Read)  
V
= 5.5V, V = 5.5V,  
1.5  
LOGIC  
LOGIC  
LOGIC  
CC  
f
= 5MHz (for SPI active read and write)  
SCK  
V
= 1.2V, V = 1.7V,  
CC  
30  
µA  
LOGIC  
= 1MHz (for SPI active read and write)  
f
SCK  
I
V
V
Supply Current (Write/Read)  
V
V
V
= 5.5V, V = 5.5V  
CC  
100  
10  
µA  
µA  
µA  
CC  
CC  
LOGIC  
LOGIC  
LOGIC  
= 1.2V, V = 1.7V  
CC  
I
Standby Current  
= V = 5.5V,  
CC  
1.3  
LOGIC SB  
LOGIC  
SPI interface in standby  
V
= 1.2V, V = 1.7V,  
0.4  
1.5  
1
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µs  
LOGIC  
CC  
SPI interface in standby  
I
V
Standby Current  
V = V = 5.5V,  
LOGIC CC  
SPI interface in standby  
CC SB  
CC  
V
= 1.2V, V = 1.7V,  
LOGIC  
CC  
SPI interface in standby  
I
V
Shutdown Current  
V
= V = 5.5V,  
LOGIC CC  
1.3  
0.4  
1.5  
1
LOGIC SHDN LOGIC  
SPI interface in standby  
V
= 1.2V, V = 1.7V,  
LOGIC  
CC  
SPI interface in standby  
I
V
Shutdown Current  
V = V = 5.5V,  
LOGIC CC  
SPI interface in standby  
CC SHDN  
CC  
V
= 1.2V, V = 1.7V,  
LOGIC  
CC  
SPI interface in standby  
I
Leakage Current, at Pins CS, SDO, SDI,  
SCK  
Voltage at pin from GND to V  
-0.4  
<0.1  
0.4  
1.5  
3.5  
1.5  
0.4  
LkgDig  
LOGIC  
t
Wiper Response Time  
W option; CS rising edge to wiper new position,  
from 10% to 90% of final value.  
DCP  
U option; CS rising edge to wiper new position,  
from 10% to 90% of final value.  
µs  
T option; CS rising edge to wiper new position,  
from 10% to 90% of final value.  
µs  
tShdnRec DCP Recall Time from Shutdown Mode CS rising edge to wiper recalled position and  
RH connection  
µs  
V
, V  
V
, V  
Ramp Rate  
Ramp monotonic at any level  
0.01  
50  
V/ms  
CC LOGIC CC LOGIC  
Ramp  
FN7901.0  
August 3, 2011  
6
ISL23418  
Serial Interface Specification For SCK, SDI, SDO, CS, unless otherwise noted.  
MIN  
TYP  
MAX  
SYMBOL  
PARAMETER  
Input LOW Voltage  
TEST CONDITIONS  
(Note 20)  
(Note 8)  
(Note 20)  
UNITS  
V
-0.3  
0.3 x V  
V
V
V
IL  
LOGIC  
V
Input HIGH Voltage  
0.7 x V  
V
LOGIC  
+ 0.3  
IH  
LOGIC  
Hysteresis  
SDI and SCK Input Buffer Hysteresis  
V
V
> 2V  
< 2V  
0.05 x V  
LOGIC  
LOGIC  
0.1 x V  
0
LOGIC  
LOGIC  
V
SDO Output Buffer LOW Voltage  
SDO Pull-up Resistor Off-chip  
I
I
= 3mA, V  
> 2V  
0.4  
V
V
OL  
OL  
OL  
LOGIC  
= 1.5mA, V  
< 2V  
0.2 x V  
LOGIC  
LOGIC  
R
Maximum is determined by t and t with  
1.5  
kΩ  
pu  
RO  
FO  
maximum bus load Cb = 30pF, f  
= 5MHz  
SCK  
C
SCK, SDO, SDI, CS Pin Capacitance  
SCK Frequency  
10  
pF  
MHz  
MHz  
ns  
pin  
f
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
= 1.7V to 5.5V  
= 1.2V to 1.6V  
1.7V  
5
1
SCK  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
t
SPI Clock Cycle Time  
200  
CYC  
t
SPI Clock High Time  
1.7V  
100  
100  
250  
250  
50  
ns  
WH  
t
SPI Clock Low Time  
1.7V  
ns  
WL  
t
Lead Time  
1.7V  
ns  
LEAD  
t
Lag Time  
1.7V  
ns  
LAG  
t
SDI, SCK and CS Input Setup Time  
SDI, SCK and CS Input Hold Time  
SDI, SCK and CS Input Rise Time  
SDI, SCK and CS Input Fall Time  
SDO Output Disable Time  
SDO Output Setup Time  
SDO Output Valid Time  
SDO Output Hold Time  
SDO Output Rise Time  
SDO Output Fall Time  
CS Deselect Time  
1.7V  
ns  
SU  
t
1.7V  
50  
ns  
H
t
1.7V  
10  
ns  
RI  
t
1.7V  
10  
20  
ns  
FI  
t
1.7V  
0
100  
ns  
DIS  
t
1.7V  
50  
ns  
SO  
t
1.7V  
150  
0
ns  
V
t
1.7V  
ns  
HO  
RO  
t
R
= 1.5k, Cbus = 30pF  
= 1.5k, Cbus = 30pF  
60  
60  
ns  
pu  
pu  
t
t
R
ns  
FO  
CS  
2
µs  
NOTES:  
8. Typical values are for T = +25°C and 3.3V supply voltages.  
A
9. LSB = [V(RW)  
127  
– V(RW) ]/127. V(RW) and V(RW) are V(RW) for the DCP register set to 7F hex and 00 hex, respectively. LSB is the incremental  
0
127 0  
voltage when changing from one tap to an adjacent tap.  
10. ZS error = V(RW) /LSB.  
0
11. FS error = [V(RW)  
127  
– V ]/LSB.  
CC  
12. DNL = [V(RW) – V(RW) ]/LSB-1, for i = 1 to 127. i is the DCP register setting.  
i-1  
i
13. INL = [V(RW) – i • LSB – V(RW) ]/LSB for i = 1 to 127  
i
0
Max(V(RW) ) Min(V(RW) )  
6
10  
14.  
i
i
for i = 16 to 127 decimal, T = -40°C to +125°C. Max( ) is the maximum value of the wiper voltage  
and Min( ) is the minimum value of the wiper voltage over the temperature range.  
----------------------------------------------------------------------------- ---------------------  
TC  
=
×
V
V(RWi(+25°C))  
+165°C  
15. MI = |RW  
– RW |/127. MI is a minimum increment. RW and RW are the measured resistances for the DCP register set to 7F hex and 00  
127 0  
127  
hex, respectively.  
0
16. Roffset = RW /MI, when measuring between RW and RL.  
0
Roffset = RW  
/MI, when measuring between RW and RH.  
127  
17. RDNL = (RW – RW )/MI -1, for i = 16 to 127.  
i-1  
i
18. RINL = [RW – (MI • i) – RW ]/MI, for i = 16 to 127.  
i
0
6
[Max(Ri) Min(Ri)]  
10  
19.  
for i = 16 to 127, T = -40°C to +125°C. Max( ) is the maximum value of the resistance and Min( ) is the  
minimum value of the resistance over the temperature range.  
------------------------------------------------------ ---------------------  
TC  
=
×
R
Ri(+25°C)  
+165°C  
20. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
FN7901.0  
August 3, 2011  
7
ISL23418  
DCP Macro Model  
R
TOTAL  
RH  
RL  
C
L
C
H
C
W
32pF  
32pF  
32pF  
RW  
Timing Diagrams  
Input Timing  
t
CS  
CS  
t
t
t
LAG  
LEAD  
CYC  
SCK  
SDI  
...  
t
WH  
t
t
t
RI  
FI  
t
t
WL  
SU  
H
...  
MSB  
LSB  
SDO  
Output Timing  
CS  
SCK  
SDO  
SDI  
...  
...  
t
t
t
SO  
HO  
DIS  
MSB  
LSB  
t
V
ADDR  
XDCP™ Timing (for All Load Instructions)  
CS  
t
DCP  
SCK  
...  
...  
MSB  
LSB  
SDI  
V
W
SDO  
*When CS is HIGH  
SDO at Z or Hi-Z state  
FN7901.0  
August 3, 2011  
8
ISL23418  
Typical Performance Curves  
0.4  
0.30  
0.2  
0
0.15  
0
-0.2  
-0.4  
-0.15  
-0.30  
0
0
0
25  
50  
75  
100  
125  
125  
125  
0
25  
50  
75  
100  
125  
TAP POSITION (DECIMAL)  
TAP POSITION (DECIMAL)  
FIGURE 3. 10k DNL vs TAP POSITION, V = 5V  
CC  
FIGURE 4. 50k DNL vs TAP POSITION, V = 5V  
CC  
0.30  
0.15  
0
0.4  
0.2  
0
-0.2  
-0.4  
-0.15  
-0.30  
0
25  
50  
75  
100  
125  
25  
50  
75  
100  
TAP POSITION (DECIMAL)  
TAP POSITION (DECIMAL)  
FIGURE 5. 10k INL vs TAP POSITION, V = 5V  
CC  
FIGURE 6. 50k INL vs TAP POSITION, V = 5V  
CC  
0.4  
0.2  
0
0.30  
0.15  
0
-0.2  
-0.4  
-0.15  
-0.30  
25  
50  
75  
100  
0
25  
50  
75  
100  
125  
TAP POSITION (DECIMAL)  
TAP POSITION (DECIMAL)  
FIGURE 7. 10k RDNL vs TAP POSITION, V = 5V  
CC  
FIGURE 8. 50k RDNL vs TAP POSITION, V = 5V  
CC  
FN7901.0  
August 3, 2011  
9
ISL23418  
Typical Performance Curves (Continued)  
0.6  
0.4  
0.2  
0
0.30  
0.15  
0
-0.2  
-0.4  
-0.6  
-0.15  
-0.30  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
TAP POSITION (DECIMAL)  
TAP POSITION (DECIMAL)  
FIGURE 9. 10k RINL vs TAP POSITION, V = 5V  
CC  
FIGURE 10. 50k RINL vs TAP POSITION, V = 5V  
CC  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
+125°C  
+125°C  
+25°C  
+25°C  
-40°C  
-40°C  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
TAP POSITION (DECIMAL)  
TAP POSITION (DECIMAL)  
FIGURE 11. 10k WIPER RESISTANCE vs TAP POSITION, V = 5V  
CC  
FIGURE 12. 50k WIPER RESISTANCE vs TAP POSITION, V = 5V  
CC  
300  
250  
200  
150  
100  
50  
70  
60  
50  
40  
30  
20  
10  
0
0
7.5  
32.5  
57.5  
82.5  
107.5  
7.5  
32.5  
57.5  
82.5  
107.5  
TAP POSITION (DECIMAL)  
TAP POSITION (DECIMAL)  
FIGURE 13. 10k TCv vs TAP POSITION  
FIGURE 14. 50k TCv vs TAP POSITION  
FN7901.0  
August 3, 2011  
10  
ISL23418  
Typical Performance Curves (Continued)  
600  
500  
400  
300  
200  
100  
0
200  
150  
100  
50  
0
7.5  
7.5  
32.5  
57.5  
82.5  
107.5  
32.5  
57.5  
82.5  
107.5  
TAP POSITION (DECIMAL)  
TAP POSITION (DECIMAL)  
FIGURE 15. 10k TCr vs TAP POSITION  
FIGURE 16. 50k TCr vs TAP POSITION  
35  
30  
25  
20  
15  
10  
5
120  
90  
60  
30  
0
0
7.5  
32.5  
57.5  
82.5  
107.5  
7.5  
32.5  
57.5  
82.5  
107.5  
TAP POSITION (DECIMAL)  
TAP POSITION (DECIMAL)  
FIGURE 17. 100k TCv vs TAP POSITION  
FIGURE 18. 100k TCr vs TAP POSITION  
SCK CLOCK  
RW PIN  
CH1: 1V/DIV, 1µs/DIV  
CH2: 10mV/DIV, 1µs/DIV  
20mV/DIV  
5µs/DIV  
FIGURE 19. WIPER DIGITAL FEEDTHROUGH  
FIGURE 20. WIPER TRANSITION GLITCH  
FN7901.0  
August 3, 2011  
11  
ISL23418  
Typical Performance Curves (Continued)  
1V/DIV  
1V/DIV  
1µs/DIV  
0.1s/DIV  
VRW  
CS RISING EDGE  
FIGURE 21. WIPER LARGE SIGNAL SETTLING TIME  
FIGURE 22. POWER-ON START-UP IN VOLTAGE DIVIDER MODE  
1.2  
1.0  
0.8  
CH1: 0.5V/DIV, 0.2µs/DIV RH PIN  
CH2: 0.2V/DIV, 0.2µs/DIV RW PIN  
V
= 5.5V, V  
= 5.5V  
LOGIC  
CC  
0.6  
0.4  
0.2  
0
V
= 1.7V, V  
= 1.2V  
LOGIC  
CC  
R
= 10k  
TOTAL  
-40  
-15  
10  
35  
60  
85  
110  
-3dB FREQUENCY = 1.4MHz AT MIDDLE TAP  
TEMPERATURE (°C)  
FIGURE 23. 10k -3dB CUT OFF FREQUENCY  
FIGURE 24. STANDBY CURRENT vs TEMPERATURE  
FN7901.0  
August 3, 2011  
12  
ISL23418  
Voltage at any DCP pins, RH, RL, or RW should not exceed V  
CC  
Functional Pin Descriptions  
Potentiometers Pins  
RH AND RL  
level at any conditions during power-up and normal operation.  
The V pin must be connected to the SPI bus supply, which  
LOGIC  
allows reliable communication with a wide range of  
microcontrollers, independently of the V level. This is  
CC  
extremely important in systems in which the digital supply has  
lower levels than the analog supply.  
The high (RH) and low (RL) terminals of the ISL23418 are  
equivalent to the fixed terminals of a mechanical potentiometer.  
The RH and RL are referenced to the relative position of the wiper  
and not to the voltage potential on the terminals. With the WR  
register set to 127 decimal, the wiper is closest to RH, and with  
the WR register set to 0, the wiper is closest to RL.  
DCP Description  
Each DCP is implemented with a combination of resistor  
elements and CMOS switches. The physical ends of DCP are  
equivalent to the fixed terminals of a mechanical potentiometer  
(RH and RL pins). The RW pin of the DCP is connected to  
intermediate nodes and is equivalent to the wiper terminal of a  
mechanical potentiometer. The position of the wiper terminal  
within the DCP is controlled by the 8-bit volatile Wiper Register  
(WR). When the WR of a DCP contains all zeroes (WR[7:0] = 00h),  
its wiper terminal (RW) is closest to its “Low” terminal (RL). When  
the WR register of a DCP contains all ones (WR[7:0] = 7Fh), its  
wiper terminal (RW) is closest to its “High” terminal (RH). As the  
value of WR increases from all zeroes (0) to all ones (127  
decimal), the wiper moves monotonically from the position  
closest to RL to the position closest to RH. At the same time, the  
resistance between RW and RL increases monotonically, while  
the resistance between RH and RW decreases monotonically.  
RW  
RW is the wiper terminal, and it is equivalent to the moveable  
terminal of a mechanical potentiometer. The position of the  
wiper within the array is determined by the WR register.  
Bus Interface Pins  
SERIAL CLOCK (SCK)  
The SCK input is the serial clock of the SPI serial interface.  
SERIAL DATA INPUT (SDI)  
SDI is a serial data input pin for the SPI interface. SDI receives  
operation code, wiper address and data from the SPI remote  
host device. The data bits are shifted in at the rising edge of the  
serial clock, SCK, while CS input is low.  
While the ISL23418 is being powered up, the WR is reset to 40h  
(64 decimal), which locates RW to the mid value between RL and  
RH.  
SERIAL DATA OUTPUT (SDO)  
WR can be read or written to directly using the SPI serial  
interface as described in the following sections.  
SDO is a serial data output pin. During a read cycle, the data bits  
are shifted out on the falling edge of the serial clock SCK and are  
available to the master on the following rising edge of SCK.  
Memory Description  
The output type is configured through ACR[1] bit for Push-Pull or  
Open Drain operation. Default setting for this pin is Push-Pull. An  
external pull-up resistor is required for Open Drain output  
operation. When CS is HIGH, the SDO pin is in tri-state (Z) or  
high-tri-state (Hi-Z), depending on the selected configuration.  
The ISL23418 contains two volatile 8-bit registers: the Wiper  
Register (WR) and the Access Control Register (ACR). A memory  
map of ISL23418 is shown in Table 1. WR, at address 0, contains  
the current wiper position of the DCP. ACR, at address 10h,  
contains information and control bits as described in Table 2.  
CHIP SELECT (CS)  
TABLE 1. MEMORY MAP  
CS LOW enables the ISL23418, placing it in the active power  
mode. A HIGH to LOW transition on CS is required prior to the  
start of any operation after power-up. When CS is HIGH, the  
ISL23418 is deselected, the SDO pin is at high impedance, and  
the device is in standby state.  
ADDRESS  
(hex)  
DEFAULT SETTING  
(hex)  
VOLATILE  
ACR  
10  
0
40  
80  
WR  
VLOGIC  
TABLE 2. ACCESS CONTROL REGISTER (ACR)  
VLOGIC is an input pin that supplies an internal level translator  
for serial bus operation from 1.2V to 5.5V.  
BIT #  
7
6
5
0
4
0
3
0
2
0
1
0
0
NAME  
0
SHDN  
SDO  
Principles of Operation  
Shutdown Function  
The ISL23418 is an integrated circuit incorporating one DCP with  
its associated registers and an SPI serial interface providing  
direct communication between a host and the potentiometer.  
The resistor array is composed of individual resistors connected  
in series. At either end of the array and between each resistor is  
an electronic switch that transfers the potential at that point to  
the wiper. The electronic switches on the device operate in a  
“make before break” mode when the wiper changes tap  
positions.  
The SHDN bit (ACR[6]) disables or enables shutdown mode for all  
DCP channels simultaneously. When this bit is 0, DCP is forced to  
end-to-end open circuit, and RW is connected to RL through a  
2kserial resistor, as shown in Figure 25. Default value of the  
SHDN bit is 1.  
FN7901.0  
August 3, 2011  
13  
ISL23418  
SPI Serial Interface  
RH  
The ISL23418 supports an SPI serial protocol, mode 0. The  
device is accessed via the SDI input and SDO output, with data  
clocked in on the rising edge of SCK and clocked out on the  
falling edge of SCK. CS must be LOW during communication with  
the ISL23418. The SCK and CS lines are controlled by the host or  
master. The ISL23418 operates only as a slave device. All  
communication over the SPI interface is conducted by sending  
the MSB of each byte of data first.  
RW  
RL  
2k  
Protocol Conventions  
FIGURE 25. DCP CONNECTION IN SHUTDOWN MODE  
The SPI protocol contains an Instruction Byte followed by one or  
more Data Bytes. A valid Instruction Byte contains instruction as  
the three MSBs, with the following five register address bits  
(Table 3). The next byte sent to the ISL23418 is the Data Byte.  
In shutdown mode, the RW terminal is shorted to the RL terminal  
with around 2kresistance, as shown in Figure 25. When the device  
enters shutdown, all current DCP WR settings are maintained. When  
the device exits shutdown, the wipers return to the previous WR  
settings after a short settling time (Figure 26).  
TABLE 3. INSTRUCTION BYTE FORMAT  
BIT #  
7
6
5
4
3
2
1
0
I2  
I1  
I0  
R4  
R3  
R2  
R1  
R0  
Table 4 contains a valid instruction set for ISL23418. If the  
[R4:R0] bits are zero, then the read or write is to the WR register. If  
the [R4:R0] bits are 10000, then the operation is to the ACR.  
POWER-UP  
MID SCALE = 40H  
USER PROGRAMMED  
AFTER SHDN  
Write Operation  
SHDN RELEASED  
A write operation to the ISL23418 is a two or more bytes  
operation. It first requires CS to transition from HIGH to LOW.  
Then the host sends a valid Instruction Byte to the SDI pin,  
followed by one or more Data Bytes. The host terminates the  
write operation by pulling the CS pin from LOW to HIGH. The  
instruction is executed on the rising edge of CS (Figure 27).  
SHDN ACTIVATED  
WIPER RESTORE TO  
ORIGINAL POSITION  
SHDN MODE  
TIME (s)  
0
FIGURE 26. SHUTDOWN MODE WIPER RESPONSE  
Read Operation  
In shutdown mode, if there is a glitch in the power supply that  
causes it to drop below 1.3V for more than 0.2µs to 0.4µs, the  
wipers are RESET to their mid position. This is done to avoid an  
undefined state at the wiper outputs.  
A read operation to the ISL23418 is a four-byte operation. First,  
the CS transitions from HIGH to LOW. Then the host sends a valid  
Instruction Byte to the SDI pin, followed by a “dummy” Data Byte,  
an NOP Instruction Byte, and another “dummy” Data Byte. The  
SPI host receives the Instruction Byte (instruction code + register  
address) and the requested Data Byte from the SDO pin on the  
rising edge of SCK during the third and fourth bytes, respectively.  
The host terminates the read by pulling the CS pin from LOW to  
HIGH (Figure 28).  
TABLE 4. INSTRUCTION SET  
INSTRUCTION SET  
I2  
0
0
0
1
1
I1  
0
0
1
0
1
I0  
0
1
1
0
0
R4  
X
R3  
X
R2  
X
R1  
X
R0  
X
OPERATION  
NOP  
X
X
X
X
X
ACR READ  
X
X
X
X
X
ACR WRTE  
R4  
R4  
R3  
R3  
R2  
R2  
R1  
R1  
R0  
R0  
WR or ACR READ  
WR or ACR WRTE  
where “X” means “do not care.”  
FN7901.0  
August 3, 2011  
14  
ISL23418  
CS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
SCK  
DATA BYTE  
WR INSTRUCTION  
ADDR  
SDI  
SDO  
FIGURE 27. TWO-BYTE WRITE SEQUENCE  
1
8
16  
24  
32  
CS  
SCK  
NOP  
RD  
ADDR  
SDI  
RD  
ADDR  
READ DATA  
SDO  
FIGURE 28. FOUR-BYTE READ SEQUENCE  
FN7901.0  
August 3, 2011  
15  
ISL23418  
First there is a HIGH-to-LOW transition on the CS line, followed by  
Applications Information  
Communicating with ISL23418  
Communication with ISL23418 is accomplished by using the SPI  
interface through the ACR (address 10000b) and WR (address  
00000b) registers.  
N two-byte read instructions on the SDI line, with reversed chain  
access sequence. The instruction byte + dummy data byte for the  
last DCP in the chain goes first, followed by a LOW-to-HIGH  
transition on the CS line. The read instructions are executed  
during the second part of the read sequence. It also starts by a  
HIGH-to-LOW transition on the CS line, followed by N number of  
two-byte NOP instructions on the SDI line and a LOW-to-HIGH  
transition of CS. The data is read on every even byte during the  
second part of the read sequence, while every odd byte contains  
code 111b followed by the address from which the data is being  
read.  
The wiper of the potentiometer is controlled by the WR register.  
Writes and reads can be made directly to these registers to  
control and monitor the wiper position.  
Daisy Chain Configuration  
When an application needs more than one ISL23418, it can  
communicate with all of them without additional CS lines by  
daisy chaining the DCPs, as shown in Figure 29. In daisy chain  
configuration, the SDO pin of the previous chip is connected to  
the SDI pin of the following chip, and each CS and SCK pin is  
connected to the corresponding microcontroller pin in parallel,  
like regular SPI interface implementation. The daisy chain  
configuration can also be used for simultaneous setting of  
multiple DCPs. Note that the number of daisy chained DCPs is  
limited only by the driving capabilities of the SCK and CS pins of  
the microcontroller. For a larger number of SPI devices, buffering  
of the SCK and CS lines is required.  
Wiper Transition  
When stepping up through each tap in voltage divider mode,  
some tap transition points can exhibit noticeable voltage  
transients or overshoot/undershoot, which results from the  
sudden transition from a very low impedance “make” to a much  
higher impedance “break” within a short period of time (<1µs).  
Several code transitions, such as 0Fh to 10h, 1Fh to 20h,..., and  
EFh to 7Fh, have higher transient glitch. Note that all switching  
transients settle well within the settling time as stated in the  
datasheet. A small capacitor can be added externally to reduce  
the amplitude of these voltage transients, but this also reduces  
the useful bandwidth of the circuit, which may not be a good  
solution for some applications. Using fast amplifiers in a signal  
chain for fast recovery may be a good idea in these cases.  
Daisy Chain Write Operation  
The write operation starts with a HIGH to LOW transition on the  
CS line, followed by N number of two-byte write instructions on  
the SDI line, with reversed chain access sequence. The  
instruction byte + data byte for the last DCP in the chain go first,  
as shown in Figure 30, where N is the number of DCPs in the  
chain. Serial data is going through the DCPs from DCP0 to  
DCP(N-1) as follows: DCP0 --> DCP1 --> DCP2 --> ... --> DCP(N-1).  
The write instruction is executed on the rising edge of CS for all N  
DCPs simultaneously.  
V
Requirements  
LOGIC  
Keeping V  
powered all the time during normal operation is  
LOGIC  
recommended. In cases in which turning V  
necessary, grounding the V  
OFF is  
LOGIC  
pin is recommended. Grounding  
LOGIC  
the V  
LOGIC  
pin or both V  
LOGIC  
and V does not affect other  
CC  
devices on the same bus. It is good practice to put a 1µF capacitor  
in parallel with a 0.1µF decoupling capacitor close to the V pin.  
LOGIC  
V
Requirements and Placement  
Daisy Chain Read Operation  
CC  
Putting a 1µF capacitor in parallel with a 0.1µF decoupling capacitor  
The read operation consists of two parts. First, the read  
instructions (N two-byte operations) are sent with a valid address.  
Second, the requested data is read while sending NOP  
instructions (N two-byte operations), as shown in  
Figures 31 and 32.  
close to the V pin is recommended.  
CC  
N DCP IN A CHAIN  
CS  
SCK  
DCP0  
DCP1  
DCP2  
DCP(N-1)  
CS  
MOSI  
MISO  
CS  
CS  
CS  
SCK  
SDI  
SCK  
SDI  
SCK  
SDI  
SCK  
SDI  
µC  
SDO  
SDO  
SDO  
SDO  
FIGURE 29. DAISY CHAIN CONFIGURATION  
FN7901.0  
August 3, 2011  
16  
ISL23418  
CS  
SCK  
16 CLKS  
C P0  
16 CLKLS  
C P2  
16 CLKS  
WR  
D
WR  
WR  
D
D
C P1  
C P2  
WR  
WR  
D
SDI  
D
C P1  
C P2  
SDO 0  
WR  
D
SDO 1  
SDO 2  
FIGURE 30. DAISY CHAIN WRITE SEQUENCE OF N = 3 DCP  
CS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
SCK  
SDI  
INSTRUCTION  
ADDR  
DATA IN  
SDO  
DATA OUT  
FIGURE 31. TWO-BYTE READ INSTRUCTION  
CS  
SCK  
SDI  
16 CLKS  
RD DCP2  
16 CLKS  
RD DCP1  
16 CLKS  
RD DCP0  
16 CLKS  
NOP  
16 CLKS  
NOP  
16 CLKS  
NOP  
DCP0 OUT  
DCP2 OUT  
DCP1 OUT  
SDO  
FIGURE 32. DAISY CHAIN READ SEQUENCE OF N = 3 DCP  
FN7901.0  
August 3, 2011  
17  
ISL23418  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make  
sure you have the latest revision.  
DATE  
REVISION  
FN7901.0  
CHANGE  
8/3/2011  
Initial Release  
Products  
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products  
address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks.  
Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a  
complete list of Intersil product families.  
For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on  
intersil.com: ISL23418  
To report errors or suggestions for this datasheet, please go to: www.intersil.com/askourstaff  
FITs are available from our website at: http://rel.intersil.com/reports/search.php  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7901.0  
August 3, 2011  
18  
ISL23418  
Mini Small Outline Plastic Packages (MSOP)  
N
M10.118 (JEDEC MO-187BA)  
10 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE  
INCHES  
MILLIMETERS  
E1  
E
SYMBOL  
MIN  
MAX  
MIN  
0.94  
0.05  
0.75  
0.18  
0.09  
2.95  
2.95  
MAX  
1.10  
0.15  
0.95  
0.27  
0.20  
3.05  
3.05  
NOTES  
A
A1  
A2  
b
0.037  
0.002  
0.030  
0.007  
0.004  
0.116  
0.116  
0.043  
0.006  
0.037  
0.011  
0.008  
0.120  
0.120  
-
-B-  
0.20 (0.008)  
INDEX  
AREA  
1 2  
A
B
C
-
-
TOP VIEW  
4X θ  
9
0.25  
(0.010)  
R1  
c
-
R
GAUGE  
PLANE  
D
3
E1  
e
4
SEATING  
PLANE  
L
0.020 BSC  
0.50 BSC  
-
-C-  
4X θ  
L1  
A
A2  
E
0.187  
0.016  
0.199  
0.028  
4.75  
0.40  
5.05  
0.70  
-
L
6
SEATING  
PLANE  
L1  
N
0.037 REF  
10  
0.95 REF  
10  
-
0.10 (0.004)  
-A-  
C
C
b
7
-H-  
A1  
e
R
0.003  
0.003  
-
-
0.07  
0.07  
-
-
-
D
0.20 (0.008)  
C
R1  
θ
-
o
o
o
o
a
SIDE VIEW  
5
15  
5
15  
-
C
L
o
o
o
o
0
6
0
6
-
α
E
1
-B-  
Rev. 0 12/02  
0.20 (0.008)  
C
D
END VIEW  
NOTES:  
1. These package dimensions are within allowable dimensions of  
JEDEC MO-187BA.  
2. Dimensioning and tolerancing per ANSI Y14.5M-1994.  
3. Dimension “D” does not include mold flash, protrusions or gate  
burrs and are measured at Datum Plane. Mold flash, protrusion  
and gate burrs shall not exceed 0.15mm (0.006 inch) per side.  
4. Dimension “E1” does not include interlead flash or protrusions  
- H -  
and are measured at Datum Plane.  
Interlead flash and  
protrusions shall not exceed 0.15mm (0.006 inch) per side.  
5. Formed leads shall be planar with respect to one another within  
0.10mm (.004) at seating Plane.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. Dimension “b” does not include dambar protrusion. Allowable  
dambar protrusion shall be 0.08mm (0.003 inch) total in excess  
of “b” dimension at maximum material condition. Minimum space  
between protrusion and adjacent lead is 0.07mm (0.0027 inch).  
- B -  
-A -  
10. Datums  
and  
to be determined at Datum plane  
.
- H -  
11. Controlling dimension: MILLIMETER. Converted inch dimen-  
sions are for reference only  
FN7901.0  
August 3, 2011  
19  
ISL23418  
Package Outline Drawing  
L10.2.1x1.6A  
10 LEAD ULTRA THIN QUAD FLAT NO-LEAD PLASTIC PACKAGE  
Rev 5, 3/10  
8.  
PIN 1  
INDEX AREA  
2.10  
A
PIN #1 ID  
8.  
0.05 MIN.  
B
1
4
1
4X 0.20 MIN.  
0.10 MIN.  
10  
5
0.80  
10X 0.40  
10 X 0.20  
0.10  
6
9
2X  
6X 0.50  
4
TOP VIEW  
(10 X 0.20)  
0.10 M C A B  
M C  
BOTTOM VIEW  
SEE DETAIL "X"  
(0.05 MIN)  
(0.10 MIN.)  
MAX. 0.55  
PACKAGE  
OUTLINE  
1
0.10 C  
C
(10X 0.60)  
SEATING PLANE  
0.08 C  
(2.00)  
SIDE VIEW  
0 . 125 REF  
(0.80)  
(1.30)  
C
(6X 0.50 )  
(2.50)  
0-0.05  
TYPICAL RECOMMENDED LAND PATTERN  
DETAIL "X"  
NOTES:  
1. Dimensioning and tolerancing conform to ASME Y14.5M-1994.  
2. All Dimensions are in millimeters. Angles are in degrees.  
Dimensions in ( ) for Reference Only.  
3. Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Lead width dimension applies to the metallized terminal and is measured  
between 0.15mm and 0.30mm from the terminal tip.  
5. Maximum package warpage is 0.05mm.  
6. Maximum allowable burrs is 0.076mm in all directions.  
7. Same as JEDEC MO-255UABD except:  
No lead-pull-back, MIN. Package thickness = 0.45 not 0.50mm  
Lead Length dim. = 0.45mm max. not 0.42mm.  
8. The configuration of the pin #1 identifier is optional, but must be located within  
the zone indicated. The pin #1 identifier may be either a mold or mark feature.  
FN7901.0  
August 3, 2011  
20  

相关型号:

ISL23418UFUZ

Single, 128-Tap, Low Voltage Digitally Controlled Potentiometer (XDCP™)
INTERSIL

ISL23418UFUZ

Single, 128-Tap, Low Voltage Digitally Controlled Potentiometer (XDCP&trade;); MSOP10; Temp Range: -40&deg; to 125&deg;C
RENESAS

ISL23418UFUZ-T

50K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 128 POSITIONS, PDSO10, ROHS COMPLIANT, PLASTIC, MO-187BA, MSOP-10
RENESAS

ISL23418UFUZ-T7A

Single, 128-Tap, Low Voltage Digitally Controlled Potentiometer (XDCP&trade;); MSOP10; Temp Range: -40&deg; to 125&deg;C
RENESAS

ISL23418UFUZ-TK

Single, 128-Tap, Low Voltage Digitally Controlled Potentiometer (XDCP&trade;); MSOP10; Temp Range: -40&deg; to 125&deg;C
RENESAS

ISL23418WFRUZ-T7A

Single, 128-Tap, Low Voltage Digitally Controlled Potentiometer (XDCP™)
INTERSIL

ISL23418WFRUZ-TK

Single, 128-Tap, Low Voltage Digitally Controlled Potentiometer (XDCP™)
INTERSIL

ISL23418WFUZ

Single, 128-Tap, Low Voltage Digitally Controlled Potentiometer (XDCP™)
INTERSIL

ISL23418WFUZ-T

10K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 128 POSITIONS, PDSO10, ROHS COMPLIANT, PLASTIC, MO-187BA, MSOP-10
RENESAS

ISL23418WFUZ-T7

Digital Potentiometer
RENESAS

ISL23418WFUZ-T7A

Single, 128-Tap, Low Voltage Digitally Controlled Potentiometer (XDCP&trade;); MSOP10, uTQFN10; Temp Range: -40&deg; to 125&deg;C
RENESAS

ISL23425

Dual, 256-Tap, Low Voltage Digitally Controlled Potentiometer (XDCP?)
INTERSIL