ISL28117FUZ [INTERSIL]

40V Precision Low Power Operational Amplifiers; 40V精密低功耗运算放大器
ISL28117FUZ
型号: ISL28117FUZ
厂家: Intersil    Intersil
描述:

40V Precision Low Power Operational Amplifiers
40V精密低功耗运算放大器

运算放大器
文件: 总25页 (文件大小:1056K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
40V Precision Low Power Operational Amplifiers  
ISL28117, ISL28217  
Features  
• Low Input Offset . . . . . . . . . . . . . . ±50µV, Max.  
• Superb Offset TC . . . . . . . . . . . . 0.6µV/°C, Max.  
• Input Bias Current . . . . . . . . . . . . . . ±1nA, Max.  
The ISL28117 and ISL28217 are a family of very high  
precision amplifiers featuring low noise vs power  
consumption, low offset voltage, low I  
current and  
BIAS  
low temperature drift making them the ideal choice for  
applications requiring both high DC accuracy and AC  
performance. The combination of precision, low noise,  
and small footprint provides the user with outstanding  
value and flexibility relative to similar competitive parts.  
• Input Bias Current TC . . . . . . . . . .±5pA/°C, Max.  
• Low Current Consumption . . . . . . . . . . . . .440µA  
• Voltage Noise. . . . . . . . . . . . . . . . . . . . . 8nV/Hz  
• Wide Supply Range. . . . . . . . . . . . . . 4.5V to 40V  
Applications for these amplifiers include precision active  
filters, medical and analytical instrumentation, precision  
power supply controls, and industrial controls.  
• Operating Temperature Range . . -40°C to +125°C  
• Small Package Offerings in Single and Dual  
• Pb-Free (RoHS Compliant)  
The ISL28117 single and ISL28217 dual are offered in an  
8 Ld SOIC package. Both devices are offered in standard  
pin configurations and operate over the extended  
temperature range to -40°C to +125°C.  
Related Literature*(see page 23)  
• See AN1508 “ISL281X7SOICEVAL1Z Evaluation  
Board User’s Guide”  
Applications*(see page 23)  
• Precision Instruments  
• See AN1509 “ISL282X7SOICEVAL2Z Evaluation  
Board User’s Guide”  
• Medical Instrumentation  
• Spectral Analysis Equipment  
• Active Filter Blocks  
• Thermocouples and RTD Reference Buffers  
• Data Acquisition  
• Power Supply Control  
Typical Application  
V
Temperature Coefficient  
OS  
(V TC)  
OS  
18  
16  
14  
12  
10  
8
C
1
V
= ± 15V  
S
8.2nF  
V
+
-
OUTPUT  
R
R
V
2
1
IN  
+
1.84k  
4.93k  
3.3nF  
6
C
2
4
V
-
2
Sallen-Key Low Pass Filter (10kHz)  
0
-0.45 -0.30 -0.15  
0
0.15  
0.30 0.45  
V
TC (µV/°C)  
OS  
April 13, 2010  
FN6632.4  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2009, 2010. All Rights Reserved  
1
All other trademarks mentioned are the property of their respective owners.  
ISL28117, ISL28217  
Ordering Information  
PART NUMBER  
(Notes2, 3)  
PART  
MARKING  
V
(MAX)  
PACKAGE  
(Pb-Free)  
PKG.  
DWG. #  
OS  
(µV)  
ISL28117FBBZ  
28117 FBZ  
50 (B Grade)  
50 (B Grade)  
50 (B Grade)  
100 (C Grade)  
100 (C Grade)  
100 (C Grade)  
TBD (B Grade)  
TBD (B Grade)  
8 Ld SOIC  
M8.15E  
ISL28117FBBZ-T7 (Note 1)  
ISL28117FBBZ-T13 (Note 1)  
ISL28117FBZ  
28117 FBZ  
28117 FBZ  
28117 FBZ -C  
28117 FBZ -C  
28117 FBZ -C  
8117Z  
8 Ld SOIC  
8 Ld SOIC  
8 Ld SOIC  
8 Ld SOIC  
8 Ld SOIC  
8 Ld MSOP  
8 Ld MSOP  
M8.15E  
M8.15E  
M8.15E  
M8.15E  
M8.15E  
M8.118  
M8.118  
ISL28117FBZ-T7 (Note 1)  
ISL28117FBZ-T13 (Note 1)  
ISL28117FUBZ Coming Soon  
ISL28117FUBZ-T13 (Note 1)  
8117Z  
Coming Soon  
ISL28117FUZ  
8117Z -C  
150 (C Grade)  
150 (C Grade)  
50 (B Grade)  
50 (B Grade)  
50 (B Grade)  
100 (C Grade)  
100 (C Grade)  
100 (C Grade)  
8 Ld MSOP  
8 Ld MSOP  
8 Ld SOIC  
8 Ld SOIC  
8 Ld SOIC  
8 Ld SOIC  
8 Ld SOIC  
8 Ld SOIC  
M8.118  
M8.118  
M8.15E  
M8.15E  
M8.15E  
M8.15E  
M8.15E  
M8.15E  
ISL28117FUZ-T13 (Note 1)  
ISL28217FBBZ  
8117Z -C  
28217 FBZ  
ISL28217FBBZ-T7 (Note 1)  
ISL28217FBBZ-T13 (Note 1)  
ISL28217FBZ  
28217 FBZ  
28217 FBZ  
28217 FBZ -C  
28217 FBZ -C  
28217 FBZ -C  
Evaluation Board  
Evaluation Board  
ISL28217FBZ-T7 (Note 1)  
ISL28217FBZ-T13 (Note 1)  
ISL28117SOICEVAL1Z  
ISL28217SOICEVAL2Z  
NOTES:  
1. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach  
materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both  
SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that  
meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL28117, ISL28217. For more information on  
MSL please see techbrief TB363.  
Pin Configurations  
ISL28117  
(8 LD SOIC, MSOP)  
TOP VIEW  
ISL28217  
(8 LD SOIC)  
TOP VIEW  
V
_A  
1
2
3
4
8
7
6
5
V+  
OUT  
NC  
-IN  
+IN  
V -  
1
2
3
4
8
7
6
5
NC  
V+  
-IN_A  
+IN_A  
V -  
V
_B  
- +  
OUT  
- +  
-IN_B  
+IN_B  
+ -  
V
OUT  
NC  
April 13, 2010  
FN6632.4  
2
ISL28117, ISL28217  
Pin Descriptions  
ISL28117  
ISL28217  
(8 LD SOIC)  
(8 LD SOIC)  
PIN NAME  
EQUIVALENT CIRCUIT  
DESCRIPTION  
3
4
+IN  
+IN_A  
Circuit 1  
Amplifier A non-inverting input  
3
4
5
6
7
8
V-  
Circuit 3  
Circuit 1  
Circuit 1  
Circuit 2  
Circuit 3  
Circuit 2  
Negative power supply  
Amplifier B non-inverting input  
Amplifier B inverting input  
Amplifier B output  
+IN_B  
-IN_B  
V
_B  
OUT  
V+  
7
6
Positive power supply  
Amplifier A output  
V
OUT  
_A  
1
2
V
OUT  
2
-IN  
-IN_A  
NC  
Circuit 1  
-
Amplifier A inverting input  
1, 5, 8  
No internal connection  
V+  
V+  
V+  
500Ω  
500Ω  
CAPACITIVELY  
COUPLED  
ESD CLAMP  
IN-  
IN+  
OUT  
V-  
V-  
V-  
CIRCUIT 1  
CIRCUIT 2  
CIRCUIT 3  
April 13, 2010  
FN6632.4  
3
ISL28117, ISL28217  
Absolute Maximum Ratings  
Thermal Information  
Maximum Supply Voltage . . . . . . . . . . . . . . . . . . . . ....42V  
Maximum Differential Input Current . . . . . . . . . . . . . 20mA  
Maximum Differential Input Voltage . . . . . . . . . . . . . . . 42V  
Min/Max Input Voltage . . . . . . . . . . .V- - 0.5V to V+ + 0.5V  
Max/Min Input current for Input Voltage >V+ or <V-. . .±20mA  
Output Short-Circuit Duration (1 output at a time). . . Indefinite  
ESD Rating  
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . 4.5kV  
Machine Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 500V  
Charged Device Model . . . . . . . . . . . . . . . . . . . . . . 1.5kV  
Thermal Resistance (Typical, Notes 4, 5) θJA (°C/W) θJC (°C/W)  
8 Ld SOIC ISL28117 . . . . . . . . . .  
8 Ld SOIC ISL28217 . . . . . . . . . .  
8 Ld MSOP ISL28117 . . . . . . . . . .  
120  
105  
155  
60  
50  
50  
Maximum Storage Temperature Range . . . -65°C to +150°C  
Maximum Junction Temperature (T ) . . . . . . . . . +150°C  
JMAX  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
Recommended Operating Conditions  
Ambient Temperature Range (T ) . . . . . . . -40°C to +125°C  
A
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact  
product reliability and result in failures not covered by warranty.  
NOTES:  
4. θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief  
TB379 for details.  
5. For θ , the “case temp” location is taken at the package top center.  
JC  
Electrical Specifications V ± 15V, V = 0, V = 0V, T = +25°C, unless otherwise noted. Boldface limits apply  
S
CM  
O
A
over the operating temperature range, -40°C to +125°C. Temperature data  
established by characterization.  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
CONDITIONS  
(Note 6) TYP (Note 6) UNIT  
V
Input Offset Voltage, SOIC Package ISL28x17 B Grade  
-50  
-110  
-100  
-190  
-150  
-250  
-0.6  
-0.9  
-1  
8
4
4
50  
110  
100  
190  
150  
250  
0.6  
0.9  
1
µV  
µV  
OS  
ISL28x17 C Grade  
µV  
µV  
Input Offset Voltage, MSOP  
Package  
ISL28117 C Grade  
µV  
µV  
TCV  
Input Offset Voltage Temperature ISL28x17 B Grade  
0.14  
0.14  
0.14  
µV/C  
µV/C  
µV/C  
OS  
Coefficient; SOIC Package  
ISL28x17 C Grade  
Input Offset Voltage Temperature ISL28117 C Grade  
Coefficient; MSOP Package  
I
Input Bias Current  
-1  
-1.5  
-5  
0.08  
1
1.5  
5
nA  
nA  
B
TCI  
Input Bias Current Temperature  
Coefficient  
1
pA/C  
B
I
Input Offset Current  
-1.5  
-1.85  
-3  
0.08  
1.5  
1.85  
3
nA  
nA  
OS  
TCI  
Input Offset Current Temperature  
Coefficient  
0.42  
pA/C  
OS  
V
Input Voltage Range  
Guaranteed by CMRR test  
= -13V to +13V  
-13  
120  
13  
V
dB  
CM  
CMRR  
Common-Mode Rejection Ratio  
V
145  
145  
CM  
120  
120  
dB  
PSRR  
Power Supply Rejection Ratio  
Open-Loop Gain  
V = ±2.25V to ±20V  
dB  
S
120  
3,000  
dB  
A
V
= -13V to +13V, R = 10kΩ to  
18,000  
V/mV  
VOL  
O
L
ground  
April 13, 2010  
FN6632.4  
4
ISL28117, ISL28217  
Electrical Specifications V ± 15V, V  
= 0, V = 0V, T = +25°C, unless otherwise noted. Boldface limits apply  
over the operating temperature range, -40°C to +125°C. Temperature data  
S
CM  
O
A
established by characterization. (Continued)  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
Output Voltage High  
CONDITIONS  
= 10kΩ to ground  
(Note 6)  
TYP  
(Note 6) UNIT  
V
R
R
13.5  
13.2  
13.3  
13.1  
13.7  
V
V
V
V
OH  
L
= 2kΩ to ground  
13.55  
-13.7  
-13.55  
0.44  
L
V
Output Voltage Low  
R = 10kΩ to ground  
-13.5  
-13.2  
-13.3  
-13.1  
0.53  
V
V
OL  
L
R = 2kΩ to ground  
V
L
V
I
Supply Current/Amplifier  
mA  
mA  
mA  
V
S
0.68  
I
Short-Circuit  
43  
SC  
V
Supply Voltage Range  
Guaranteed by PSRR  
± 2.25  
± 20  
SUPPLY  
AC SPECIFICATIONS  
GBWP Gain Bandwidth Product  
Voltage Noise V  
A = 1k, R = 2kΩ  
1.5  
0.25  
10  
MHz  
V
L
e
0.1Hz to 10Hz  
f = 10Hz  
µV  
P-P  
nVp-p  
P-P  
e
e
e
e
Voltage Noise Density  
Voltage Noise Density  
Voltage Noise Density  
Voltage Noise Density  
Current Noise Density  
Total Harmonic Distortion  
nV/Hz  
n
n
n
n
f = 100Hz  
f = 1kHz  
8.2  
8
nV/Hz  
nV/Hz  
nV/Hz  
pA/Hz  
%
f = 10kHz  
f = 1kHz  
8
in  
THD + N  
0.1  
0.0009  
1kHz, G = 1, V = 3.5V  
,
,
O
RMS  
R = 2kΩ  
L
1kHz, G = 1, V = 3.5V  
0.0005  
%
O
RMS  
R = 10kΩ  
L
TRANSIENT RESPONSE  
SR  
Slew Rate, V  
20% to 80%  
A = 11, R = 2kΩ, V = 4V  
0.5  
V/µs  
ns  
OUT  
V
L
O
P-P  
t , t ,  
Rise Time  
A
= 1,  
V
= 50mV  
,
100  
r
f
V
OUT  
P-P  
Small Signal 10% to 90% of V  
RL = 10kΩ to V  
OUT  
OUT  
CM  
Fall Time  
90% to 10% of V  
A
to V  
= 1,  
V
= 50mV , RL = 10k  
Ω
120  
21  
ns  
µs  
µs  
µs  
µs  
µs  
µs  
V
OUT  
P-P  
CM  
t
Settling Time to 0.1%  
10V Step; 10% to V  
A
V
= -1,  
V
= 10V , RL = 5kΩ to  
P-P  
s
V
OUT  
OUT  
OUT  
OUT  
OUT  
Settling Time to 0.01%  
10V Step; 10% to V  
CM  
A
= -1,  
V
V
V
= 10V , RL = 5kΩ to  
P-P  
24  
V
V
OUT  
Settling Time to 0.1%  
4V Step; 10% to V  
CM  
A
= -1,  
= 4V , RL = 5kΩ to  
P-P  
13  
V
V
OUT  
Settling Time to 0.01%  
4V Step; 10% to V  
CM  
A
= -1,  
= 4V , RL = 5kΩ to  
P-P  
18  
V
V
OUT  
CM  
t
Output Positive Overload Recovery  
Time  
A
V
= -100, V = 0.2  
V
RL = 2kΩ to  
RL = 2kΩ to  
5.6  
10.6  
OL  
V
IN  
P-P,  
P-P,  
CM  
A = -100, V = 0.2  
V
Output Negative Overload  
Recovery Time  
V
IN  
V
CM  
April 13, 2010  
FN6632.4  
5
ISL28117, ISL28217  
Electrical Specifications V ± 5V, V  
= 0, V = 0V, T = +25°C, unless otherwise noted. Boldface limits apply over  
the operating temperature range, -40°C to +125°C. Temperature data established by  
S
CM  
O
A
characterization.  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
CONDITIONS  
(Note 6)  
TYP  
(Note 6) UNIT  
V
Input Offset Voltage; SOIC Package  
ISL28x17 B Grade  
-50  
-110  
-100  
-190  
-150  
-250  
-0.6  
-0.9  
-1  
4
50  
110  
100  
190  
150  
250  
0.6  
0.9  
1
µV  
µV  
OS  
ISL28x17 C Grade  
ISL28117 C Grade  
8
8
µV  
µV  
Input Offset Voltage; MSOP Package  
µV  
µV  
TCV  
Input Offset Voltage Temperature  
Coefficient; SOIC Package  
ISL28x17 B Grade  
ISL28x17 C Grade  
ISL28117 C Grade  
0.14  
0.14  
0.14  
µV/C  
µV/C  
µV/C  
OS  
Input Offset Voltage Temperature  
Coefficient; MSOP Package  
I
Input Bias Current  
-1  
-1.5  
-5  
0.18  
1
1.5  
5
nA  
nA  
B
TCI  
Input Bias Current Temperature  
Coefficient  
1
pA/C  
B
I
Input Offset Current  
-1.5  
-1.85  
-3  
0.3  
1.5  
1.85  
3
nA  
nA  
OS  
TCI  
Input Offset Current Temperature  
Coefficient  
0.42  
pA/C  
OS  
V
Input Voltage Range  
-3  
120  
3
V
dB  
CM  
CMRR  
Common-Mode Rejection Ratio  
V
= -3V to +3V  
145  
145  
CM  
120  
120  
dB  
PSRR  
Power Supply Rejection Ratio  
Open-Loop Gain  
V = ±2.25V to ±5V  
dB  
S
120  
3,000  
dB  
A
V
= -3.0V to +3.0V  
O
18,000  
V/mV  
VOL  
R = 10kΩ to ground  
L
V
Output Voltage High  
R
R
= 10kΩ to ground  
= 2kΩ to ground  
3.5  
3.2  
3.3  
3.1  
3.7  
3.55  
-3.7  
-3.55  
0.44  
43  
V
V
OH  
L
L
V
V
V
Output Voltage Low  
R = 10kΩ to ground  
-3.5  
-3.2  
-3.3  
-3.1  
0.53  
0.68  
V
OL  
L
V
R = 2kΩ to ground  
V
L
V
I
Supply Current/Amplifier  
Short-Circuit  
mA  
mA  
mA  
S
I
SC  
AC SPECIFICATIONS  
GBWP Gain Bandwidth Product  
A = 1k, R = 2kΩ  
1.5  
MHz  
V
L
April 13, 2010  
FN6632.4  
6
ISL28117, ISL28217  
Electrical Specifications V ± 5V, V  
= 0, V = 0V, T = +25°C, unless otherwise noted. Boldface limits apply over  
the operating temperature range, -40°C to +125°C. Temperature data established by  
S
CM  
O
A
characterization. (Continued)  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
Voltage Noise  
CONDITIONS  
0.1Hz to 10Hz  
(Note 6)  
TYP  
0.25  
12  
(Note 6) UNIT  
e
µV  
P-P  
np-p  
e
e
e
e
Voltage Noise Density  
Voltage Noise Density  
Voltage Noise Density  
Voltage Noise Density  
Current Noise Density  
f = 10Hz  
f = 100Hz  
f = 1kHz  
f = 10kHz  
f = 1kHz  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
pA/Hz  
n
n
n
n
8.6  
8
8
in  
0.1  
TRANSIENT RESPONSE  
SR Slew Rate, V  
20% to 80%  
A =11, R = 2kΩ, V = 4V  
0.5  
V/µs  
ns  
OUT  
V
L
O
P-P  
t , t , Small  
Signal  
Rise Time  
10% to 90% of V  
A
= 1,  
V
= 50mV ,  
P-P  
CM  
= 50mV ,  
P-P  
100  
r
f
V
OUT  
RL = 10kΩ to V  
OUT  
OUT  
Fall Time  
90% to 10% of V  
A
= 1,  
V
120  
12  
19  
7
ns  
µs  
µs  
µs  
µs  
V
OUT  
RL = 10kΩ to V  
CM  
t
Settling Time to 0.1%  
4V Step; 10% to V  
A
= -1,  
V
= 4V  
,
s
V
OUT  
P-P  
RL = 5kΩ to V  
OUT  
Settling Time to 0.01%  
4V Step; 10% to V  
CM  
A
= -1,  
V
= 4V  
,
V
OUT  
P-P  
RL = 5kΩ to V  
OUT  
CM  
t
Output Positive Overload Recovery Time A = -100, V = 0.2V  
OL  
V
IN  
CM  
P-P  
P-P  
RL = 2kΩ to V  
Output Negative Overload Recovery  
Time  
A
= -100, V = 0.2V  
5.8  
V
IN  
RL = 2kΩ to V  
CM  
NOTE:  
6. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established  
by characterization and are not production tested.  
Typical Performance Curves V = ±15V, V = 0V, R = Open, unless otherwise  
S
CM  
L
specified.  
140  
140  
120  
100  
80  
V
= ±15V  
V
= ±5V  
S
S
120  
100  
80  
60  
40  
20  
0
60  
40  
20  
0
-50  
-30  
-10  
10  
(µV)  
30  
50  
-50  
-30  
-10  
10  
(µV)  
30  
50  
V
V
OS  
OS  
FIGURE 2. V  
DISTRIBUTION FOR GRADE B  
FIGURE 1. V  
DISTRIBUTION for GRADE B  
OS  
OS  
April 13, 2010  
FN6632.4  
7
ISL28117, ISL28217  
Typical Performance Curves V = ±15V, V = 0V, R = Open, unless otherwise  
S
CM  
L
specified. (Continued)  
300  
300  
250  
200  
150  
100  
50  
V
= ± 5V  
S
V
= ± 15V  
S
250  
200  
150  
100  
50  
0
0
-100  
-60  
-20  
V
20  
(µV)  
60  
100  
-100  
-60  
-20  
V
20  
(µV)  
60  
100  
OS  
OS  
FIGURE 4. V  
DISTRIBUTION FOR GRADE C  
FIGURE 3. V  
DISTRIBUTION FOR GRADE C  
OS  
OS  
100  
18  
16  
14  
12  
10  
8
V
= ± 15V  
V
= ± 15V  
S
S
50  
0
6
-50  
-100  
4
2
0
-50  
0
50  
100  
150  
-0.45 -0.30 -0.15  
0
0.15  
0.30 0.45  
V
TC (µV/°C)  
TEMPERATURE (°C)  
OS  
FIGURE 5. V  
RANGE vs TEMPERATURE  
FIGURE 6. TCV  
vs NUMBER OF AMPLIFIERS  
OS  
OS  
100  
50  
16  
14  
12  
10  
8
V
= ±5V  
V
= ± 5V  
S
S
0
6
-50  
4
2
-100  
0
-0.45  
-0.30 -0.15  
0
0.15  
0.30  
0.45  
-50  
0
50  
TEMPERATURE (°C)  
100  
150  
V
TC (µV/°C)  
OS  
FIGURE 8. TCV  
vs NUMBER OF AMPLIFIERS  
FIGURE 7. V  
RANGE vs TEMPERATURE  
OS  
OS  
April 13, 2010  
FN6632.4  
8
ISL28117, ISL28217  
Typical Performance Curves V = ±15V, V = 0V, R = Open, unless otherwise  
S
CM  
L
specified. (Continued)  
500  
400  
300  
200  
100  
0
70  
V
= ± 15V  
V
= ±15V  
S
S
60  
50  
40  
30  
20  
10  
0
-100  
-200  
-300  
-400  
-500  
-50  
0
50  
100  
150  
-3.5 -2.5 -1.5 -0.5 0.5  
1.5  
2.5  
3.5 MORE  
I +TC (pA/°C)  
TEMPERATURE (°C)  
B
FIGURE 9. I + RANGE vs TEMPERATURE  
FIGURE 10. TCI + vs NUMBER OF AMPLIFIERS  
B
B
500  
400  
300  
200  
100  
0
70  
V
= ± 15V  
S
V
= ±15V  
S
60  
50  
40  
30  
20  
10  
0
-100  
-200  
-300  
-400  
-500  
-50  
0
50  
100  
150  
-3.5 -2.5 -1.5 -0.5 0.5  
1.5  
2.5  
3.5  
I -TC (pA/°C)  
TEMPERATURE (°C)  
B
FIGURE 11. I - RANGE vs TEMPERATURE  
FIGURE 12. TCI - vs NUMBER OF AMPLIFIERS  
B
B
500  
80  
V
= ± 5V  
V
= ±5V  
S
S
400  
300  
200  
100  
0
70  
60  
50  
40  
30  
20  
10  
0
-100  
-200  
-300  
-400  
-500  
-50  
0
50  
100  
150  
-3.5 -2.5 -1.5 -0.5  
0.5  
1.5  
2.5  
3.5  
TEMPERATURE (°C)  
I +TC(pA/°C)  
B
FIGURE 14. I TC+ vs NUMBER OF AMPLIFIERS  
FIGURE 13. I + RANGE vs TEMPERATURE  
B
B
April 13, 2010  
FN6632.4  
9
ISL28117, ISL28217  
Typical Performance Curves V = ±15V, V = 0V, R = Open, unless otherwise  
S
CM  
L
specified. (Continued)  
500  
400  
300  
200  
100  
0
90  
V
= ± 5V  
S
V
= ±5V  
S
80  
70  
60  
50  
40  
30  
20  
10  
0
-100  
-200  
-300  
-400  
-500  
-50  
0
50  
100  
150  
-3.5 -2.5 -1.5 -0.5 0.5  
1.5  
2.5  
3.5  
I -TC(pA/°C)  
TEMPERATURE (°C)  
B
FIGURE 15. I - RANGE vs TEMPERATURE  
FIGURE 16. I TC- vs NUMBER OF AMPLIFIERS  
B
B
500  
90  
V
= ± 15V  
S
V
= ±15V  
S
400  
300  
200  
100  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
-100  
-200  
-300  
-400  
-500  
-50  
0
50  
100  
150  
-3.5 -2.5 -1.5 -0.5 0.5  
1.5  
2.5  
3.5  
TEMPERATURE (°C)  
I
TC (pA/°C)  
OS  
FIGURE 17. I  
RANGE vs TEMPERATURE  
FIGURE 18. I TC vs NUMBER OF AMPLIFIERS  
OS  
OS  
500  
100  
V
= ± 5V  
V
= ±5V  
S
S
400  
300  
200  
100  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
-100  
-200  
-300  
-400  
-500  
-3.5 -2.5 -1.5 -0.5  
0.5  
1.5  
2.5  
3.5  
-50  
0
50  
TEMPERATURE (°C)  
100  
150  
I
TC (pA/°C)  
OS  
FIGURE 19. I  
RANGE vs TEMPERATURE  
FIGURE 20. I TC vs NUMBER OF AMPLIFIERS  
OS  
OS  
April 13, 2010  
FN6632.4  
10  
ISL28117, ISL28217  
Typical Performance Curves V = ±15V, V = 0V, R = Open, unless otherwise  
S
CM  
L
specified. (Continued)  
0.70  
0.60  
0.50  
0.40  
0.30  
14.4  
V
R
= ±15V  
= 10kΩ  
S
L
±15V  
14.2  
14.0  
13.8  
13.6  
13.4  
13.2  
±2.25V  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 21. SUPPLY CURRENT PER AMP vs  
TEMPERATURE  
FIGURE 22. +V  
vs TEMPERATURE  
OUT  
-140  
-130  
-135  
-140  
-145  
-150  
-155  
-160  
V
= ±13V  
CM  
V
= ±2.25V TO ±20V  
S
-145  
-150  
-155  
-50  
0
50  
TEMPERATURE (°C)  
100  
150  
-50  
0
50  
TEMPERATURE (°C)  
100  
150  
FIGURE 24. CMRR vs TEMPERATURE  
FIGURE 23. PSRR vs TEMPERATURE  
60  
55  
50  
45  
40  
35  
30  
25  
60  
55  
50  
45  
40  
35  
30  
25  
I - @ ±15V  
SC  
I
+ @ ±15V  
SC  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 25. SHORT CIRCUIT CURRENT vs  
TEMPERATURE  
FIGURE 26. SHORT CIRCUIT CURRENT vs  
TEMPERATURE  
April 13, 2010  
FN6632.4  
11  
ISL28117, ISL28217  
Typical Performance Curves V = ±15V, V = 0V, R = Open, unless otherwise  
S
CM  
L
specified. (Continued)  
100  
20000  
15000  
10000  
V
= ±13V  
O
80  
60  
40  
20  
0
V
= ±15V  
S
+125°C  
+25°C  
-40°C  
-20  
-40  
-60  
-15  
-10  
-5  
0
5
10  
15  
-50  
0
50  
100  
150  
TEMPERATURE (°C)  
VCM (V)  
FIGURE 28. INPUT V  
vs INPUT COMMON MODE  
FIGURE 27. AV  
vs TEMPERATURE  
OS  
VOLTAGE, V = ±15V  
OL  
S
-13.2  
-13.4  
-13.6  
-13.8  
-14.0  
-14.2  
-14.4  
100  
80  
V
R
= ±15V  
= 10kΩ  
S
L
V
= +5V  
S
60  
+125°C  
40  
20  
+25°C  
-40°C  
0
-20  
-40  
-60  
-5  
-3  
-1  
V
1
3
5
-50  
0
50  
100  
150  
(V)  
TEMPERATURE (°C)  
CM  
FIGURE 29. V  
vs INPUT COMMON MODE VOLTAGE,  
FIGURE 30. V  
vs TEMPERATURE  
OUT  
OS  
V = ±5V  
S
-13.2  
-13.4  
-13.6  
-13.8  
-14.0  
-14.2  
-14.4  
14.4  
14.2  
14.0  
13.8  
13.6  
13.4  
13.2  
V
R
= +15V  
= 2kΩ  
V
S
= +15V  
= 2kΩ  
S
L
R
L
-50  
0
50  
100  
150  
-50  
0
50  
TEMPERATURE (°C)  
100  
150  
TEMPERATURE (°C)  
FIGURE 31. V  
vs TEMPERATURE  
FIGURE 32. V  
vs TEMPERATURE  
OUT  
OUT  
April 13, 2010  
FN6632.4  
12  
ISL28117, ISL28217  
Typical Performance Curves V = ±15V, V = 0V, R = Open, unless otherwise  
S
CM  
L
specified. (Continued)  
100  
250  
200  
150  
100  
50  
V
= ±18.2V  
S
AV = 1  
10  
0
-50  
-100  
-150  
-200  
-250  
V+ = 36.4V  
= 10, R = 100k  
R
g
f
AV = 10,000  
1
1
10  
100  
1k  
10k  
100k  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (Hz)  
TIME (s)  
FIGURE 34. INPUT NOISE VOLTAGE SPECTRAL DENSITY  
FIGURE 33. INPUT NOISE VOLTAGE 0.1Hz to 10Hz  
1
200  
180  
160  
140  
V
= ±18.2V  
S
AV = 1  
PHASE  
120  
100  
80  
60  
40  
20  
0
GAIN  
-20  
-40  
-60  
R
= 10k  
L
C
= 10pF  
L
SIMULATION  
-80  
-100  
0.1  
0.1m 1m 10m 100m  
1
10 100 1k 10k 100k 1M 10M 100M  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 36. OPEN-LOOP GAIN, PHASE vs FREQUENCY,  
FIGURE 35. INPUT NOISE CURRENT SPECTRAL DENSITY  
R = 10kΩ, C = 10pF  
L
L
220  
200  
180  
160  
140  
120  
100  
80  
200  
180  
160  
140  
120  
100  
80  
60  
40  
20  
V
= ±2.5V  
S
V
= ±5V  
S
PHASE  
V
= ±15V  
S
GAIN  
0
-20  
-40  
-60  
60  
R
= 10k  
L
R
= INF  
L
40  
C
= 100pF  
L
C
= 10pF  
L
SIMULATION  
20  
-80  
SIMULATION  
-100  
0
0.1m 1m 10m 100m  
1
10 100 1k 10k 100k 1M 10M 100M  
1m 10m 100m  
1
10 100  
1k 10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 37. OPEN-LOOP GAIN, PHASE vs FREQUENCY,  
FIGURE 38. CMRR vs FREQUENCY, V = ±2.25, ±5V,  
S
R = 10kΩ, C = 100pF  
±15V  
L
L
April 13, 2010  
FN6632.4  
13  
ISL28117, ISL28217  
Typical Performance Curves V = ±15V, V = 0V, R = Open, unless otherwise  
S
CM  
L
specified. (Continued)  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
R
= 100, R = 100k  
f
g
AV = 1000  
AV = 100  
AV = 10  
60  
50  
40  
30  
20  
10  
0
R
= 1k, R = 100k  
f
g
PSRR+ AND PSRR- VS = ±2.25V  
V
C
= ±20V  
= 4pF  
S
L
R
= 10k  
L
R
= INF  
= 4pF  
L
V
= 50mV  
OUT  
P-P  
C
L
AV = +1  
= 1V  
V
R
= 10k, R = 100k  
f
CM  
P-P  
g
AV = 1  
PSRR+ AND PSRR- VS = ±15V  
100 1k 10k 100k  
FREQUENCY (Hz)  
R
= OPEN, R = 0  
f
g
-10  
-10  
10  
100  
1k  
10k  
100k  
1M  
10M  
10M  
10  
1M  
FREQUENCY (Hz)  
FIGURE 40. FREQUENCY RESPONSE vs CLOSED LOOP  
GAIN  
FIGURE 39. PSRR vs FREQUENCY, V = ±5V, ±15V  
S
4
2
R
= 10k  
L
2
0
R = R = 100k  
1
0
f
g
-2  
R = R = 10k  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
f
g
R
= 4.99k  
= 1k  
L
-4  
R = R = 1k  
f
g
-6  
R
L
R = R = 100  
f
g
-8  
V
R
= ±20V  
= 10k  
S
V
C
= ±20V  
= 4pF  
R
= 499  
S
L
L
-10  
C
= 4pF  
L
L
-12  
-14  
-16  
AV = +1  
= 50mV  
AV = +2  
= 50mV  
R
= 100  
100k  
L
V
V
OUT  
P-P  
OUT  
P-P  
10k  
10  
100  
1k  
10k  
1M  
10M  
10  
100  
1k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 41. FREQUENCY RESPONSE vs FEEDBACK  
FIGURE 42. GAIN vs FREQUENCY vs R  
L
RESISTANCE R /R  
f
g
2
1
12  
10  
8
V
= ±2.25V  
S
V
= ±2.5V  
= 10k  
S
R
V
= ±5V  
L
S
0
AV = +1  
= 50mV  
V
OUT  
P-P  
6
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
V
= ±15V  
4
S
2
C = 0.01µF  
L
C
= 47pF  
V = ±20V  
S
L
0
-2  
-4  
-6  
-8  
C
L
= 4pF  
= 10k  
C
= 100pF  
L
R
L
C
= 4pF  
C
= 270pF  
L
L
AV = +1  
C
= 470pF  
L
V
= 50mV  
OUT  
P-P  
1k  
FREQUENCY (Hz)  
C
= 1000pF  
10k  
L
10k  
10  
100  
100k  
1M  
10M  
10  
100  
1k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FIGURE 44. GAIN vs FREQUENCY vs SUPPLY VOLTAGE  
FIGURE 43. GAIN vs FREQUENCY vs C  
L
April 13, 2010  
FN6632.4  
14  
ISL28117, ISL28217  
Typical Performance Curves V = ±15V, V = 0V, R = Open, unless otherwise  
S
CM  
L
specified. (Continued)  
180  
160  
140  
120  
100  
80  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
V
= ±15V, RL = 2k, 10k  
V = ±5V, RL = 2k, 10k  
S
S
V
= ±15V  
S
R -Driver Ch. = Open  
L
-0.4  
-0.8  
-1.2  
-1.6  
-2.0  
-2.4  
R -Receiving Ch. = 10k  
L
60  
C
= 4pF  
L
CL = 4pF  
AV = +1  
40  
AV = +1  
V
= 4V  
OUT  
P-P  
V
= 1V  
P-P  
20  
SOURCE  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
0
10 20 30 40 50 60 70 80 90 100  
TIME (µs)  
FREQUENCY (Hz)  
FIGURE 46. LARGE SIGNAL TRANSIENT RESPONSE vs  
R V = ±5V, ±15V  
FIGURE 45. CROSSTALK, V = ±15V  
S
L
S
14  
12  
10  
8
0.04  
0
60  
50  
40  
30  
20  
10  
0
INPUT  
-0.04  
-0.08  
-0.12  
-0.16  
-0.20  
-0.24  
-0.28  
OUTPUT @ VS = ±15V  
V
= ±15V  
S
R
= 2k  
L
RL = 10k  
CL = 4pF  
AV = +1  
6
C
= 4pF  
L
AV = -100  
4
R = 100k, R = 1k  
f
g
V
= 50mV  
OUT  
P-P  
V
= 200mV  
IN  
P-P  
2
0
OUTPUT @ V = ±5V  
S
-2  
-10  
0
10 20 30 40 50 60 70 80 90 100  
TIME (µs)  
0
5
10  
15  
20  
TIME (µs)  
25  
30  
35  
40  
FIGURE 48. POSITIVE OUTPUT OVERLOAD RESPONSE  
FIGURE 47. SMALL SIGNAL TRANSIENT RESPONSE,  
TIME, V = ±5V, ±15V  
V = ±5V, ±15V  
S
S
80  
0.24  
0.20  
4
V
L
= ±15V  
= 10k  
S
R
70  
60  
50  
40  
30  
20  
10  
0
2
OUTPUT @ V = ±5V  
S
AV = 1  
= 50mV  
V
0.16  
0.12  
0.08  
0.04  
0
0
OUT  
P-P  
R
= 2k  
-2  
-4  
-6  
-8  
-10  
-12  
L
C
= 4pF  
L
AV = -100  
R = 100k, R = 1k  
f
g
V
= 200mV  
IN  
P-P  
INPUT  
OUTPUT @ V = ±15V  
S
-0.04  
-0.08  
1
10  
100  
CAPACITANCE (pF)  
1k  
10k  
0
10 20 30 40 50 60 70 80 90 100  
TIME (µs)  
FIGURE 50. % OVERSHOOT vs LOAD CAPACITANCE,  
FIGURE 49. NEGATIVE OUTPUT OVERLOAD RESPONSE  
V = ±15V  
TIME, V = ±5V, ±15V  
S
S
April 13, 2010  
FN6632.4  
15  
ISL28117, ISL28217  
Applications Information  
Functional Description  
V+  
The ISL28117 and ISL28217 are single and dual, low  
noise precision op amps. Both devices are fabricated in a  
new precision 40V complementary bipolar DI process. A  
super-beta NPN input stage with input bias current  
cancellation provides low input bias current (180pA  
typical), low input offset voltage (13µV typical), low input  
noise voltage (8nV/Hz), and low 1/f noise corner  
frequency (~8Hz). These amplifiers also feature high  
open loop gain (18kV/mV) for excellent CMRR (145dB)  
500Ω  
V
OUT  
500Ω  
V
R
IN  
L
V-  
FIGURE 51. INPUT ESD DIODE CURRENT LIMITING-  
UNITY GAIN  
and THD+N performance (0.0005% @ 3.5V  
into 2kΩ). A complimentary bipolar output stage enables  
, 1kHz  
RMS  
The series resistors limit the high feed-through currents  
that can occur in pulse applications when the input  
dV/dT exceeds the 0.5V/µs slew rate of the amplifier.  
Without the series resistors, the input can forward-bias  
the anti-parallel diodes causing current to flow to the  
output resulting in severe distortion and possible diode  
failure. Figure 46 provides an example of distortion free  
high capacitive load drive without external compensation.  
Operating Voltage Range  
The devices are designed to operate over the 4.5V  
(±2.25V) to 40V (±20V) range and are fully  
characterized at 10V (±5V) and 30V (±15V). The Power  
Supply Rejection Ratio typically exceeds 140dB over the  
full operating voltage range and 120dB minimum over  
the -40°C to +125°C temperature range. The worst case  
common mode input voltage range over temperature is  
2V to each rail. With ±15V supplies, CMRR performance  
is typically >130dB over-temperature. The minimum  
CMRR performance over the -40°C to +125°C  
large signal response using a 4V  
input pulse with an  
P-P  
input rise time of <1ns. The series resistors enable the  
input differential voltage to be equal to the maximum  
power supply voltage (40V) without damage.  
In applications where one or both amplifier input  
terminals are at risk of exposure to high voltages beyond  
the power supply rails, current limiting resistors may be  
needed at the input terminal to limit the current through  
the power supply ESD diodes to 20mA max.  
temperature range is >120dB for power supply voltages  
from ±5V (10V) to ±15V (30V).  
Input Performance  
Output Current Limiting  
The super-beta NPN input pair provides excellent  
frequency response while maintaining high input  
precision. High NPN beta (>1000) reduces input bias  
current while maintaining good frequency response, low  
input bias current and low noise. Input bias cancellation  
circuits provide additional bias current reduction to  
<1nA, and excellent temperature stabilization. Figures 9  
through 16 show the high degree of bias current stability  
at ±5V and ±15V supplies that is maintained across the  
-40°C to +125°C temperature range. The low bias  
current TC also produces very low input offset current  
TC, which reduces DC input offset errors in precision,  
high impedance amplifiers.  
The output current is internally limited to approximately  
±45mA at +25°C and can withstand a short circuit to  
either rail as long as the power dissipation limits are not  
exceeded. This applies to only 1 amplifier at a time for  
the dual op amp. Continuous operation under these  
conditions may degrade long term reliability. Figures 25  
and 26 show the current limit variation with temperature.  
Output Phase Reversal  
Output phase reversal is a change of polarity in the  
amplifier transfer function when the input voltage  
exceeds the supply voltage. The ISL28117 and ISL28217  
are immune to output phase reversal, even when the  
input voltage is 1V beyond the supplies.  
The +25°C maximum input offset voltage (V ) for the  
OS  
“B” grade is 50µV and 100µV for the “C” grade. Input  
offset voltage temperature coefficients (V TC) are a  
Power Dissipation  
OS  
maximum of ±0.6µV/°C for the “B” and ±0.9µV/°C for the  
“C” grade. Figures 1 through 4 show the typical gaussian-  
like distribution over the ±5V to ±15V supply range and  
It is possible to exceed the +150°C maximum junction  
temperatures under certain load and power supply  
conditions. It is therefore important to calculate the  
over the full temperature range. The V  
behavior is smooth (Figures 5 through 8) maintaining  
temperature  
OS  
maximum junction temperature (T  
) for all  
JMAX  
applications to determine if power supply voltages, load  
conditions, or package type need to be modified to  
remain in the safe operating area. These parameters are  
related using Equation 1:  
constant TC across the entire temperature range.  
Input ESD Diode Protection  
The input terminals (IN+ and IN-) have internal ESD  
protection diodes to the positive and negative supply  
rails, series connected 500Ω current limiting resistors  
and an anti-parallel diode pair across the inputs  
(Figure 51).  
(EQ. 1)  
T
= T  
+ θ xPD  
MAX JA MAXTOTAL  
JMAX  
April 13, 2010  
FN6632.4  
16  
ISL28117, ISL28217  
where:  
• P  
LICENSE STATEMENT  
The information in this SPICE model is protected under  
the United States copyright laws. Intersil Corporation  
hereby grants users of this macro-model hereto referred  
to as “Licensee, a nonexclusive, nontransferable licence  
to use this model as long as the Licensee abides by the  
terms of this agreement. Before using this macro-model,  
the Licensee should read this license. If the Licensee  
does not accept these terms, permission to use the  
model is not granted.  
is the sum of the maximum power  
DMAXTOTAL  
dissipation of each amplifier in the package (PD  
)
MAX  
• PD  
for each amplifier can be calculated using  
MAX  
Equation 2:  
V
OUTMAX  
R
L
----------------------------  
PD  
= V × I  
+ (V - V ) ×  
OUTMAX  
MAX  
S
qMAX  
S
(EQ. 2)  
where:  
The Licensee may not sell, loan, rent, or license the  
macro-model, in whole, in part, or in modified form, to  
anyone outside the Licensee’s company. The Licensee  
may modify the macro-model to suit his/her specific  
applications, and the Licensee may make copies of this  
macro-model for use within their company only.  
• T  
= Maximum ambient temperature  
MAX  
θ = Thermal resistance of the package  
JA  
• PD  
= Maximum power dissipation of 1 amplifier  
MAX  
• V = Total supply voltage  
S
This macro-model is provided “AS IS, WHERE IS, AND  
WITH NO WARRANTY OF ANY KIND EITHER EXPRESSED  
OR IMPLIED, INCLUDING BUY NOT LIMITED TO ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY AND  
FITNESS FOR A PARTICULAR PURPOSE.”  
• I  
= Maximum quiescent supply current of  
1 amplifier  
qMAX  
• V  
application  
= Maximum output voltage swing of the  
OUTMAX  
In no event will Intersil be liable for special, collateral,  
incidental, or consequential damages in connection with  
or arising out of the use of this macro-model. Intersil  
reserves the right to make changes to the product and  
the macro-model without prior notice.  
ISL28117 and ISL28217 SPICE Model  
Figure 52 shows the SPICE model schematic and  
Figure 53 shows the net list for the ISL28117 and  
ISL28217 SPICE model for a Grade “B” part. The model  
is a simplified version of the actual device and simulates  
important AC and DC parameters. AC parameters  
incorporated into the model are: 1/f and flatband noise,  
Slew Rate, CMRR, Gain and Phase. The DC parameters  
are VOS, IOS, total supply current and output voltage  
swing. The model uses typical parameters given in the  
“Electrical Specifications” Table beginning on page 4.  
The AVOL is adjusted for 155dB with the dominate pole  
at 0.02Hz. The CMRR is set (210dB, f  
= 10Hz). The  
cm  
input stage models the actual device to present an  
accurate AC representation. The model is configured for  
ambient temperature of +25°C.  
Figures 54 through 64 show the characterization vs  
simulation results for the Noise Voltage, Closed Loop  
Gain vs Frequency, Closed Loop Gain vs RL, Large Signal  
Step Response, Open Loop Gain Phase and Simulated  
CMRR vs Frequency.  
April 13, 2010  
FN6632.4  
17  
ISL28117, ISL28217  
.
V++  
V++  
R3  
R4  
IEE1  
4
5
96E-6  
4.45k  
4.45k  
4
5
CASCODE  
CASCODE  
6
7
Q4  
Q5  
3
D1  
DX  
C4  
2
2pF  
SUPERB  
SUPERB  
Vin-  
V5  
V
-
Q1 Q2  
IN  
C5  
2pF  
R1  
8
5E11  
24  
25  
EOS  
C6  
1.2pF  
1
IOS  
Mirror  
Vc  
D12  
DN  
0.1V  
R17  
VCM  
+
-
+
-
Vmid  
Q3  
0.3nA  
9
+
-
IEE  
R2  
200E-6  
290  
In+  
VOS  
5E11  
En  
13E-6  
V
+
IN  
V--  
VCM  
Voltage Noise  
Input Stage  
V++  
V++  
D2  
DX  
D4  
DX  
G1  
G3  
G5  
L1  
13  
10  
4
15.9159E  
+
+
+
-
+
-
+
-
R5  
1
R7  
C2  
R9  
V1  
V3  
17  
400pF  
2.1E3  
R11  
1
1.86V  
1.86V  
1.99e10  
-
-
5
11  
Vc  
Vg  
Vmid  
Vg  
Vc  
R12  
1
R6  
1
R8  
R10  
C3  
Vmid  
G4  
G6  
G2  
2.1E3  
1.99e10  
400pF  
18  
+
-
+
-
-
+
-
+
-
+
V4  
V2  
L2  
1.86V  
1.86V  
12  
14  
VCM  
15.9159E  
D5  
DX  
D3  
DX  
V--  
V--  
VCM  
ST  
nd  
Mid Supply Ref  
Common Mode Gain Stage  
1
Gain Stage  
2
Gain Stage  
V++  
D8  
DX  
D9  
DX  
G7  
V+  
V+  
+
-
+
E2  
R15  
90  
-
-
+
22  
23  
V5  
DX  
DX  
D6  
20  
21  
ISY  
0.44mA  
V
OUT  
VOUT  
1.12V  
Vg  
V6  
D7  
1.12V  
R16  
90  
V-  
G8  
-
+
+
-
+
-
-
+
D10  
DY  
D11  
DY  
-
E3  
V-  
+
V--  
G9  
G10  
Supply Isolation Stage  
Output Stage  
FIGURE 52. SPICE SCHEMATIC  
April 13, 2010  
FN6632.4  
18  
ISL28117, ISL28217  
* source ISL28117_SPICEmodel  
R_R7  
VG V++ 1.99e10  
V-- VG 1.99e10  
VG V++ 4e-10  
V-- VG 4e-10  
13 V++ DX  
* Revision B, November 20th 2009 LaFontaine  
* Model for Grade B Noise, supply currents, 210dB  
f=10Hz CMRR, 155dB f=0.02Hz AOL, SR = 0.5V/µsec  
*Copyright 2009 by Intersil Corporation  
*Refer to data sheet “LICENSE STATEMENT” Use of  
*this model indicates your acceptance with the  
*terms and provisions in the License Statement.  
* Connections: +input  
R_R8  
C_C2  
C_C3  
D_D4  
D_D5  
V_V3  
V_V4  
*
V-- 14 DX  
13 VG 1.86  
VG 14 1.86  
*
*
*
*
*
|
|
|
|
|
-input  
*Mid supply Ref  
|
|
|
|
+Vsupply  
R_R9  
R_R10  
I_ISY  
E_E2  
E_E3  
*
VMID V++ 2.1E3  
|
|
|
-Vsupply  
V-- VMID 2.1E3  
V+ V- DC 0.44E-3  
V++ 0 V+ 0 1  
|
|
output  
|
.subckt ISL28117subckt Vin+ Vin-V+ V- VOUT  
V-- 0 V- 0 1  
* source ISL28107subckt  
*
*Common Mode Gain Stage with Zero  
*Voltage Noise  
G_G5  
G_G6  
R_R11  
R_R12  
L_L1  
L_L2  
*
V++ VC VCM VMID 3.162277  
V-- VC VCM VMID 3.162277  
E_En  
IN+ VIN+ 25 0 1  
25 0 290  
R_R17  
D_D12  
V_V7  
VC 17  
18 VC  
1
1
24 25 DN  
24 0 0.1  
17 V++ 15.9159E-3  
18 V-- 15.9159E-3  
*
*Input Stage  
I_IOS  
C_C6  
IN+ VIN- DC 0.08E-9  
IN+ VIN- 1.2E-12  
VCM VIN- 5e11  
IN+ VCM 5e11  
2 VIN- 1 SuperB  
3 8 1 SuperB  
*Output Stage with Correction Current Sources  
G_G7  
G_G8  
G_G9  
G_G10  
D_D6  
D_D7  
D_D8  
D_D9  
D_D10  
D_D11  
V_V5  
V_V6  
R_R15  
R_R16  
*
VOUT V++ V++ VG 1.11e-2  
V-- VOUT VG V-- 1.11e-2  
22 V-- VOUT VG 1.11e-2  
23 V-- VG VOUT 1.11e-2  
VG 20 DX  
R_R1  
R_R2  
Q_Q1  
Q_Q2  
Q_Q3  
V-- 1 7 Mirror  
4 6 2 Cascode  
5 6 3 Cascode  
4 V++ 4.45e3  
21 VG DX  
Q_Q4  
V++ 22 DX  
Q_Q5  
V++ 23 DX  
R_R3  
V-- 22 DY  
R_R4  
5 V++ 4.45e3  
V-- 23 DY  
C_C4 VIN- 0 2e-12  
C_C5 8 0 2e-12  
20 VOUT 1.12  
VOUT 21 1.12  
D_D1  
I_IEE  
I_IEE1  
V_VOS  
E_EOS  
*
6 7 DX  
VOUT V++ 9E1  
1 V-- DC 200e-6  
V++ 6 DC 96e-6  
9 IN+ 8e-6  
V-- VOUT 9E1  
.model SuperB npn  
8 9 VC VMID 1  
+ is=184E-15 bf=30e3 va=15 ik=70E-3 rb=50  
+ re=0.065 rc=35 cje=1.5E-12 cjc=2E-12  
+ kf=0 af=0  
*1st Gain Stage  
G_G1  
G_G2  
R_R5  
R_R6  
D_D2  
D_D3  
V_V1  
V_V2  
*
V++ 11 4 5 8.129384e-2  
.model Cascode npn  
V-- 11 4 5 8.129384e-2  
11 V++ 1  
+ is=502E-18 bf=150 va=300 ik=17E-3 rb=140  
+ re=0.011 rc=900 cje=0.2E-12 cjc=0.16E-12f  
+ kf=0 af=0  
V-- 11  
1
10 V++ DX  
V-- 12 DX  
10 11 1.86  
11 12 1.86  
.model Mirror pnp  
+ is=4E-15 bf=150 va=50 ik=138E-3 rb=185  
+ re=0.101 rc=180 cje=1.34E-12 cjc=0.44E-12  
+ kf=0 af=0  
.model DN D(KF=6.69e-9 AF=1)  
.MODEL DX D(IS=1E-12 Rs=0.1)  
*2nd Gain Stage  
G_G3  
G_G4  
V++ VG 11 VMID 2.83e-3  
.MODEL DY D(IS=1E-15 BV=50 Rs=1)  
.ends ISL28117subckt  
V-- VG 11 VMID 2.83e-3  
FIGURE 53. SPICE NET LIST  
April 13, 2010  
FN6632.4  
19  
ISL28117, ISL28217  
Characterization vs Simulation Results  
100  
100  
10  
1
V
= ±18.2V  
S
AV = 1  
10  
1.0  
1.0  
10  
100  
1.0k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 54. CHARACTERIZED INPUT NOISE VOLTAGE  
FIGURE 55. SIMULATED INPUT NOISE VOLTAGE  
70  
70  
R
= 100, R = 100k  
f
R
= 100, R = 100k  
f
AV = 1000  
AV = 100  
AV = 10  
g
g
AV = 1000  
AV = 100  
AV = 10  
60  
40  
20  
60  
50  
40  
30  
20  
10  
0
R
= 1k, R = 100k  
f
g
R
= 1k, R = 100k  
f
g
V
C
= ±20V  
= 4pF  
V
= ±15V  
= 4pF  
S
L
S
C
L
R
= 10k  
R
= 10k  
L
L
V
= 50mV  
V
= 50mV  
OUT  
P-P  
OUT  
P-P  
R
= 10k, R = 100k  
f
R
= 10k, R = 100k  
f
g
g
AV = 1  
AV = 1  
0
R
g
= OPEN, R = 0  
f
R
= OPEN, R = 0  
g
f
-10  
10  
-10  
1k  
10k  
100k  
1M  
10M  
10  
100  
100  
1.0k  
10k  
100k  
1.0M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 57. SIMULATED CLOSED LOOP GAIN vs  
FREQUENCY  
FIGURE 56. CHARACTERIZED CLOSED LOOP GAIN vs  
FREQUENCY  
1
2
R
= 10k  
L
R
= 10k  
L
1
0
0
-2  
-4  
-6  
-8  
R
= 4.99k  
L
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
R
= 1k  
L
R
= 4.99k  
= 1k  
L
R
L
V
= ±15V  
= 4pF  
S
V
= ±20V  
= 4pF  
R
= 499  
R
= 499  
S
L
L
C
L
C
L
AV = +1  
AV = +1  
R
=100  
L
V
= 50mV  
R
= 100  
100k  
OUT  
P-P  
L
V
= 50mV  
OUT  
P-P  
10  
100  
1.0k  
10k  
100k  
1.0M  
10M  
10  
100  
1k  
10k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 59. SIMULATED CLOSED LOOP GAIN vs R  
FIGURE 58. CHARACTERIZED CLOSED LOOP GAIN vs  
L
R
L
April 13, 2010  
FN6632.4  
20  
ISL28117, ISL28217  
Characterization vs Simulation Results (Continued)  
3
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
2
INPUT  
V
= ±15V, RL =10k  
S
OUTPUT  
1
0
-0.4  
-0.8  
-1.2  
-1.6  
-2.0  
-2.4  
-1  
-2  
-3  
CL = 4pF  
AV = +1  
C
= 4pF  
L
AV = +1  
V
V
= 4V  
OUT  
P-P  
= 4V  
OUT  
P-P  
0
20  
40  
TIME (µs)  
60  
80  
100  
0
10 20 30 40 50 60 70 80 90 100  
TIME (µs)  
FIGURE 61. SIMULATED LARGE SIGNAL 10V STEP  
RESPONSE  
FIGURE 60. CHARACTERIZED LARGE SIGNAL  
TRANSIENT RESPONSE vs R V = ±15V  
L
S
200  
160  
200  
180  
160  
140  
120  
100  
80  
PHASE  
PHASE  
120  
60  
40  
80  
20  
0
GAIN  
40  
GAIN  
-20  
-40  
-60  
-80  
-100  
R
= 10k  
L
0
C
= 10pF  
L
SIMULATION  
-40  
0.1m 1m 10m 100m  
1
10 100 1k 10k 100k 1M 10M 100M  
1.0m 10m 0.1  
1
10 100 1k 10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 62. SIMULATED OPEN-LOOP GAIN, PHASE vs  
FREQUENCY  
FIGURE 63. SIMULATED OPEN-LOOP GAIN, PHASE vs  
FREQUENCY  
250  
200  
150  
100  
50  
1m 10m 0.1  
1
10 100 1k 10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
FIGURE 64. SIMULATED CMRR vs FREQUENCY  
April 13, 2010  
FN6632.4  
21  
ISL28117, ISL28217  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to  
web to make sure you have the latest Rev.  
DATE  
REVISION  
CHANGE  
3/18/10  
FN6632.4  
1. Updated “Ordering Information” on page 2 by adding two rows for MSOP packages  
ISL28117FUBZ and ISL28117FUZ, which are scheduled to release Q2 2010. Added Pinout  
accordingly.  
2. Added POD for MSOP M8.118 to the end of datasheet  
3. In “Ordering Information” on page 2, Separated each part number with it's own specific -  
T7 and -T13 suffix and removed “Add “-T7” or “-T13” suffix for Tape and Reel.from Note 1.  
4. Updated ±15 and ±5V Electrical Specification table with the following edits:  
A) Separated VOS specs for SOIC and MSOP Grade C packages. Added new VOS specs  
for MSOP Grade C package.  
B) Separated TCVOS specs for SOIC and MSOP Grade C packages. Added new TCVOS  
specs for MSOP Grade C package.  
5. Added “Thermal Information” on page 4 for ISL28117 MSOP package.  
3/3/10  
Added “Related Literature*(see page 23)” on page 1.  
Added Evaluation Boards to “Ordering Information” on page 2.  
Added Theta JC values to “Thermal Information” on page 4. Added applicable Theta JC Note 5.  
Updated Theta JA for ISL28217 8 Ld SOIC from 115°C/W to 105°C/W.  
1/21/10  
Part marking in “Ordering Information” on page 2 changed as follows:  
ISL28117FBBZ changed from "28117 FBZ -B" to "28117 FBZ"  
ISL28117FBZ changed from "28117 FBZ" to "28117 FBZ -C"  
ISL28217FBBZ changed from "28217 FBZ -B" to "28217 FBZ"  
ISL28217FBZ changed from "28217 FBZ" to "28217 FBZ -C"  
12/24/09  
11/25/09  
On page 7: Changed label in Figure 1 from “V = +5V” to “V = ±5V”  
S S  
On page 7: Changed label in Figure 2 from “V = +15V” to “V = ±15V”  
S
S
Changed Typical VOS spec from “13” to “8” (B Grade), “19” to “4” (C Grade), IB from “0.18”  
to “0.08, IOS from “0.3” to “0.08. Edited Spice Schematic - L1 from “95.4957” to “15.9159E,  
R1 from “6k” to 1, R9 from “1” to “2.1E3, R10 from “1” to “2.1E3, R12 from “6k” to “1, L2  
from “95.4957” to “15.9159E. Edited Spice Net List - Changed Revision from “A” to “B, Date  
change from “October 29th 2009” to “November 20th 2009, added after AOL “SR =  
0.5V/µsec, Input Stage changed in I_IOS from “0.3E-9” to 0.08E-9, V_VOS “13e-6” to  
“8e-6, Mid supply Ref R_R9 and R_R10 changed “1” to “2.1E3, Common Mode Gain Stage  
with Zero change in G_G5 and G_G6 “5.27046e-15” to “3.162277, R_R11 and R_R12 “6.3”  
to “1, L_L1 and L_L2 “95.4957” to “15.9159E-3”  
11/12/09  
10/16/09  
FN6632.3  
FN6632.2  
Updated Typical Performance Curves Figure 5, 7, 9, 11, 13, 15, 17 and 19. Added Spice Model  
and license statement. Replaced typical application schematic on page 1.  
On page 2 “Ordering Information, changed the following:  
a) corrected part marking for ISL28117FBBZ from "28117 -B FBZ" to "28117 FBZ -B".  
Corrected part marking for ISL28217FBBZ from "28217-B FBZ" to "28217 FBZ -B"  
B) Updated package outline drawing to most recent revision (no changes were made to  
package dimensions; land pattern was added and dimensions were moved from table onto  
drawing)  
c) Added "Add “-T7” or “-T13” suffix for tape and reel." to the tape and reel Note 1.  
d) added Note 3 callout to all parts (Note 3 reads: "For Moisture Sensitivity Level (MSL), please  
see device information page for ISL28117, ISL28217. For more information on MSL please see  
techbrief TB363.")  
e) removed "Coming Soon" from ISL28117FBBZ, ISL28117FBZ & ISL28217FBBZ devices  
April 13, 2010  
FN6632.4  
22  
ISL28117, ISL28217  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to  
web to make sure you have the latest Rev. (Continued)  
DATE  
REVISION  
CHANGE  
10/08/09  
FN6632.1  
1. Removed “very” from “...low noise..1st sentence, page 1.  
2. Removed “Low” from 6th bullet under features, page 1.  
3. Modified typical characteristics curves to show conservative performance. Specific channel  
designations removed. On temperature curves, changed formatting to indicate range from  
typical value. Changes include:  
a. Removed former Figures 1, 3, 5, 7, 9, 10, 13, 14, 17, 18, 21, 22, 25, 26, 29, 30, 33, 34,  
37 & 38 (all Channel A curves)  
b. Replaced former Figures 19, 20, 23, 24, 27, 28, 31, 32, 35, 36, 39 & 40 with new Figures  
9 thru 20 (all “conservative channels”)  
c. Added Figures 30, 31, 32  
4. Updated TCVos histogram on page 1 to match TCVos histogram Figure 6 on page 7 (same  
graphic)  
5. Added temp labels to Figures 28 & 29  
09/03/09  
FN6632.0  
Initial Release  
Products  
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The  
Company's products address some of the industry's fastest growing markets, such as, flat panel displays, cell phones,  
handheld products, and notebooks. Intersil's product families address power management and analog signal  
processing functions. Go to www.intersil.com/products for a complete list of Intersil product families.  
*For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device  
information page on intersil.com: ISL28117, ISL28217  
To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff  
FITs are available from our website at http://rel.intersil.com/reports/search.php  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications  
at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by  
Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any  
infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any  
patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
April 13, 2010  
23  
FN6632.4  
ISL28117, ISL28217  
Package Outline Drawing  
M8.15E  
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE  
Rev 0, 08/09  
4
4.90 ± 0.10  
A
DETAIL "A"  
0.22 ± 0.03  
B
6.0 ± 0.20  
3.90 ± 0.10  
4
PIN NO.1  
ID MARK  
5
(0.35) x 45°  
4° ± 4°  
0.43 ± 0.076  
1.27  
0.25 M C A B  
SIDE VIEW “B”  
TOP VIEW  
1.75 MAX  
1.45 ± 0.1  
0.25  
GAUGE PLANE  
C
SEATING PLANE  
0.175 ± 0.075  
SIDE VIEW “A  
0.10 C  
0.63 ±0.23  
DETAIL "A"  
(0.60)  
(1.27)  
NOTES:  
(1.50)  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3. Unless otherwise specified, tolerance : Decimal ± 0.05  
(5.40)  
4. Dimension does not include interlead flash or protrusions.  
Interlead flash or protrusions shall not exceed 0.25mm per side.  
The pin #1 identifier may be either a mold or mark feature.  
Reference to JEDEC MS-012.  
5.  
6.  
TYPICAL RECOMMENDED LAND PATTERN  
April 13, 2010  
FN6632.4  
24  
ISL28117, ISL28217  
Package Outline Drawing  
M8.118  
8 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE  
Rev 3, 3/10  
5
3.0±0.05  
A
8
DETAIL "X"  
D
1.10 MAX  
SIDE VIEW 2  
0.09 - 0.20  
4.9±0.15  
3.0±0.05  
5
0.95 REF  
PIN# 1 ID  
1
2
B
0.65 BSC  
GAUGE  
PLANE  
TOP VIEW  
0.25  
3°±3°  
0.55 ± 0.15  
DETAIL "X"  
0.85±010  
H
C
SEATING PLANE  
0.25 - 0.036  
0.10 C  
0.10 ± 0.05  
0.08  
C A-B D  
M
SIDE VIEW 1  
(5.80)  
NOTES:  
1. Dimensions are in millimeters.  
(4.40)  
(3.00)  
2. Dimensioning and tolerancing conform to JEDEC MO-187-AA  
and AMSEY14.5m-1994.  
3. Plastic or metal protrusions of 0.15mm max per side are not  
included.  
(0.65)  
4. Plastic interlead protrusions of 0.15mm max per side are not  
included.  
(0.40)  
(1.40)  
5. Dimensions are measured at Datum Plane "H".  
6. Dimensions in ( ) are for reference only.  
TYPICAL RECOMMENDED LAND PATTERN  
April 13, 2010  
FN6632.4  
25  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY