ISL28118 [INTERSIL]

40V Precision Single-Supply, Rail-to-Rail Output, Low-Power; 40V精密单电源,轨到轨输出,低功耗
ISL28118
型号: ISL28118
厂家: Intersil    Intersil
描述:

40V Precision Single-Supply, Rail-to-Rail Output, Low-Power
40V精密单电源,轨到轨输出,低功耗

文件: 总28页 (文件大小:1541K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
40V Precision Single-Supply, Rail-to-Rail Output,  
Low-Power Operational Amplifiers  
ISL28118, ISL28218  
Features  
The ISL28118 and ISL28218 are single and dual, low-power  
precision amplifiers optimized for single-supply applications.  
These devices feature a common mode input voltage range  
extending to 0.5V below the V- rail, a rail-rail differential input  
voltage range for use as a comparator, and rail-to-rail output  
voltage swing, which makes them ideal for single-supply  
applications where input operation at ground is important.  
• Rail-to-Rail Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <10mV  
• Below-Ground (V-) Input Capability to -0.5V  
• Rail-to-Rail Input Differential Voltage Range for Comparator  
Applications  
• Single-Supply Range . . . . . . . . . . . . . . . . . . . . . . . . . 3V to 40V  
• Low Current Consumption . . . . . . . . . . . . . . . . . . . . . . . 850µA  
• Low Noise Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 5.6nV/Hz  
• Low Noise Current . . . . . . . . . . . . . . . . . . . . . . . . . . 355fA/Hz  
These op amps feature low power, low offset voltage, and low  
temperature drift, making them the ideal choice for  
applications requiring both high DC accuracy and AC  
performance. These amplifiers are designed to operate over a  
single supply range of 3V to 40V or a split supply voltage range  
of +1.8V/-1.2V to ±20V. The combination of precision and  
small footprint provides the user with outstanding value and  
flexibility relative to similar competitive parts.  
• Low Input Offset Voltage  
- ISL28118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150µV Max.  
- ISL28218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230µV Max.  
• Superb Offset Voltage Temperature Drift  
- ISL28118 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2µV/°C, Max.  
- ISL28218 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4µV/°C, Max.  
Applications for these amplifiers include precision  
instrumentation, data acquisition, precision power supply  
controls, and industrial controls.  
• Operating Temperature Range. . . . . . . . . . .-40°C to +125°C  
• No Phase Reversal  
Both parts are offered in 8 Ld TDFN, 8 Ld SOIC and 8 Ld MSOP  
packages. All devices are offered in standard pin  
configurations and operate over the extended temperature  
range of -40°C to +125°C.  
Applications  
• Precision Instruments  
• Medical Instrumentation  
• Data Acquisition  
Related Literature  
AN1595: ISL28218SOICEVAL1Z Evaluation Board User’s  
Guide  
• Power Supply Control  
• Industrial Process Control  
R
F
400  
300  
100k  
LOAD  
+3V  
to 40V  
R
-
IN  
IN-  
200  
-
V
-40°C  
OUT  
V+  
ISL28118  
10kΩ  
R
SENSE  
100  
0
+25°C  
R
+
V-  
IN  
+125°C  
IN+  
+
-100  
-200  
-300  
-400  
10kΩ  
GAIN = 10  
R
+
REF  
100kΩ  
V
REF  
-16  
-15  
-14  
-13 13  
14  
15  
16  
INPUT COMMON MODE VOLTAGE (V)  
FIGURE 2. INPUT OFFSET VOLTAGE vs INPUT COMMON MODE  
VOLTAGE, VS = ±15V  
FIGURE 1. TYPICAL APPLICATION: SINGLE-SUPPLY, LOW-SIDE  
CURRENT SENSE AMPLIFIER  
May 16, 2011  
FN7532.2  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 |Copyright Intersil Americas Inc. 2010, 2011. All Rights Reserved  
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners.  
1
ISL28118, ISL28218  
Pin Configurations  
ISL28118  
(8 LD TDFN)  
TOP VIEW  
ISL28118  
(8 LD SOIC, 8 LD MSOP)  
TOP VIEW  
NC  
-IN  
1
2
3
4
8
7
6
5
NC  
NC  
NC  
1
2
3
4
8
7
6
5
V
-IN  
V
+
- +  
+
- +  
+IN  
VOUT  
NC  
+IN  
VOUT  
NC  
PD  
V
V
-
-
ISL28218  
(8 LD TDFN)  
TOP VIEW  
ISL28218  
(8 LD SOIC, 8 LD MSOP)  
TOP VIEW  
VOUT_A  
-IN_A  
1
2
3
4
8
7
6
5
V
+
VOUT_A  
V
+
1
2
3
4
8
7
6
5
VOUT B  
_
-
+
-IN_A  
+IN_A  
VOUT_B  
-IN_B  
- +  
+IN_A  
-IN_B  
+IN_B  
+
-
+
-
PD  
V
-
+IN_B  
V
-
Pin Descriptions  
ISL28118  
(8 LD SOIC,  
MSOP)  
ISL28218  
(8 LD SOIC,  
MSOP)  
ISL28118  
(8 LD TDFN)  
ISL28218  
(8 LD TDFN)  
PIN  
NAME  
EQUIVALENT  
CIRCUIT  
DESCRIPTION  
3
2
6
4
3
2
6
4
3
2
3
2
1
4
5
6
7
8
-
+IN_A  
-IN_A  
VOUT_A  
V-  
1
1
2
3
1
1
2
3
-
Amplifier A non-inverting input  
Amplifier A inverting input  
Amplifier A output  
1
4
Negative power supply  
Amplifier B non-inverting input  
Amplifier B inverting input  
Amplifier B output  
5
+IN_B  
-IN_B  
VOUT_B  
V+  
6
7
7
7
8
Positive power supply  
No Connect  
1, 5, 8  
PAD  
1, 5, 8  
-
NC  
PAD  
PAD  
Thermal Pad is electrically isolated from active  
circuitry. Pad can float, connect to Ground, or connect  
to a potential source that is free from signals or noise  
sources.  
V
+
V
+
V
+
CAPACITIVELY  
TRIGGERED ESD  
CLAMP  
OUT  
IN-  
IN  
+
V
-
V
-
V
-
CIRCUIT 1  
CIRCUIT 2  
CIRCUIT 3  
FN7532.2  
May 16, 2011  
2
ISL28118, ISL28218  
Ordering Information  
PART NUMBER  
(Notes 2, 3)  
TEMPERATURE RANGE  
PACKAGE  
(Pb-Free)  
PKG.  
DWG. #  
PART MARKING  
(°C)  
ISL28118FBZ (Note 1)  
28118 FBZ  
-40 to +125  
8 Ld SOIC  
M8.15E  
Coming Soon  
ISL28118FRTZ (Note 1)  
118Z  
-40 to +125  
-40 to +125  
-40 to +125  
8 Ld TDFN  
8 Ld MSOP  
8 Ld SOIC  
L8.3x3A  
M8.118  
M8.15E  
ISL28118FUZ (Note 1)  
ISL28218FBZ (Note 1)  
8118Z  
28218 FBZ  
Coming Soon  
ISL28218FRTZ  
218Z  
-40 to +125  
-40 to +125  
8 Ld TDFN  
8 Ld MSOP  
L8.3x3A  
M8.118  
Coming Soon  
ISL28218FUZ  
8218Z  
ISL28218SOICEVAL1Z  
NOTES:  
Evaluation Board  
1. Add “-T*” suffix for tape and reel. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information pages for ISL28118, ISL28218. For more information on MSL, please see  
Technical Brief TB363.  
FN7532.2  
May 16, 2011  
3
ISL28118, ISL28218  
Absolute Maximum Ratings  
Thermal Information  
Maximum Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42V  
Maximum Differential Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . 20mA  
Maximum Differential Input Voltage . . . . . . . . 42V or V- - 0.5V to V+ + 0.5V  
Min/Max Input Voltage . . . . . . . . . . . . . . . . . . . . 42V or V- - 0.5V to V+ + 0.5V  
Max/Min Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20mA  
Output Short-Circuit Duration (1 output at a time) . . . . . . . . . . . . . . Indefinite  
ESD Tolerance  
Human Body Model (Tested per JESD22-A114F) . . . . . . . . . . . . . . . . 3kV  
Machine Model (Tested per JESD22-A115-A). . . . . . . . . . . . . . . . . . 300V  
Charged Device Model (Tested per CDM-22CI0ID). . . . . . . . . . . . . . . 2kV  
Thermal Resistance (Typical)  
ISL28118  
θ
JA (°C/W)  
θ
JC (°C/W)  
8 Ld TDFN Package (Notes 5, 6). . . . . . . . . .  
8 Ld SOIC Package (Notes 4, 7) . . . . . . . . . .  
8 Ld MSOP Package (Notes 4, 7) . . . . . . . . .  
ISL28218  
8 Ld TDFN Package (Notes 5, 6). . . . . . . . . .  
8 Ld SOIC Package (Notes 4, 7) . . . . . . . . . .  
8 Ld MSOP Package (Notes 4, 7) . . . . . . . . .  
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Pb-free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
50  
120  
165  
9
60  
57  
48  
120  
150  
5.5  
55  
45  
Operating Conditions  
Ambient Operating Temperature Range . . . . . . . . . . . . . .-40°C to +125°C  
Maximum Operating Junction Temperature . . . . . . . . . . . . . . . . . .+150°C  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . 3V (+1.8V/-1.2V) to 40V (±20V)  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
4. θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
5. θJA is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech  
Brief TB379.  
6. For θJC, the “case temp” location is the center of the exposed metal pad on the package underside.  
7. For θJC, the “case temp” location is taken at the package top center.  
Electrical Specifications VS ±15V, VCM = 0, VO = 0V, RL = Open, TA= +25°C, unless otherwise noted. Boldface limits apply over the  
operating temperature range, -40°C to +125°C. Temperature data established by characterization.  
MIN  
MAX  
PARAMETER  
VOS  
DESCRIPTION  
Input Offset Voltage  
CONDITIONS  
(Note 8)  
TYP  
25  
(Note 8)  
UNIT  
µV  
ISL28118  
ISL28218  
-150  
-270  
-230  
-290  
-1.2  
150  
270  
230  
290  
1.2  
µV  
40  
µV  
µV  
TCVOS  
ΔVOS  
IB  
Input Offset Voltage Temperature ISL28118  
Coefficient  
0.2  
0.3  
44  
µV/°C  
µV/°C  
µV  
ISL28218  
-1.4  
1.4  
Input Offset Voltage Match  
(ISL28218 only)  
-280  
-365  
-575  
-800  
280  
365  
µV  
Input Bias Current  
-230  
nA  
nA  
TCIB  
IOS  
Input Bias Current  
Temperature Coefficient  
-0.8  
4
nA/°C  
Input Offset Current  
-50  
-75  
50  
75  
nA  
nA  
FN7532.2  
May 16, 2011  
4
ISL28118, ISL28218  
Electrical Specifications VS ±15V, VCM = 0, VO = 0V, RL = Open, TA= +25°C, unless otherwise noted. Boldface limits apply over the  
operating temperature range, -40°C to +125°C. Temperature data established by characterization. (Continued)  
MIN  
MAX  
PARAMETER  
CMRR  
DESCRIPTION  
CONDITIONS  
(Note 8)  
TYP  
118  
118  
(Note 8)  
UNIT  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
V
Common-Mode Rejection Ratio  
VCM = V- - 0.5V to V+ - 1.8V  
V
CM = V- to V+ -1.8V  
102  
98  
ISL28118 SOIC  
V
CM = V- to V+ -1.8V  
ISL28118 MSOP  
102  
97  
118  
118  
V
CM = V- to V+ -1.8V  
103  
99  
ISL28218  
VCMIR  
PSRR  
AVOL  
Common Mode Input Voltage  
Range  
Guaranteed by CMRR test  
V- - 0.5  
V-  
V+ - 1.8  
V+ - 1.8  
V
Power Supply Rejection Ratio  
Open-Loop Gain  
V
S = 3V to 40V, VCMIR = Valid Input Voltage  
109  
105  
125  
120  
125  
122  
120  
116  
124  
136  
136  
136  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
mV  
mV  
mV  
mV  
mV  
mV  
VO = -13V to +13V, RL = 10kΩ to ground,  
ISL28118 SOIC  
V
O = -13V to +13V, RL = 10kΩ to ground,  
ISL28218  
V
O = -13V to +13V, RL = 10kΩ to ground,  
ISL28118 MSOP  
VOL  
Output Voltage Low, VOUT to V- ,  
See Figure 32  
ISL28118  
RL = 10kΩ  
70  
85  
ISL28218  
RL = 10kΩ  
70  
73  
VOH  
Output Voltage High, V+ to VOUT  
See Figure 32  
ISL28118  
ISL28218  
RL = 10kΩ  
110  
120  
IS  
Supply Current/Amplifier  
ISL28118  
RL = Open  
0.85  
0.85  
1.2  
1.6  
1.1  
1.4  
mA  
mA  
mA  
mA  
mA  
ISL28218  
RL = Open  
ISC+  
Output Short Circuit Source  
Current  
RL = 10Ω to V-  
16  
28  
ISC-  
Output Short Circuit Sink Current RL = 10Ω to V+  
Supply Voltage Range Guaranteed by PSRR  
mA  
V
VSUPPLY  
3
40  
AC SPECIFICATIONS  
GBWP  
enp-p  
en  
Gain Bandwidth Product  
ACL = 101, VOUT = 100mVP-P; RL = 2k  
0.1Hz to 10Hz, VS = ±18V  
f = 10Hz, VS = ±18V  
4
MHz  
Voltage Noise  
300  
8.5  
5.8  
5.6  
5.6  
nVP-P  
Voltage Noise Density  
Voltage Noise Density  
Voltage Noise Density  
Voltage Noise Density  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
en  
f = 100Hz, VS = ±18V  
en  
f = 1kHz, VS = ±18V  
en  
f = 10kHz, VS = ±18V  
FN7532.2  
May 16, 2011  
5
ISL28118, ISL28218  
Electrical Specifications VS ±15V, VCM = 0, VO = 0V, RL = Open, TA= +25°C, unless otherwise noted. Boldface limits apply over the  
operating temperature range, -40°C to +125°C. Temperature data established by characterization. (Continued)  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
CONDITIONS  
f = 1kHz, VS = ±18V  
(Note 8)  
TYP  
355  
(Note 8)  
UNIT  
fA/Hz  
%
in  
THD + N  
TRANSIENT RESPONSE  
Current Noise Density  
Total Harmonic Distortion + Noise 1kHz, G = 1, VO = 3.5VRMS, RL = 10kΩ  
0.0003  
SR  
Slew Rate  
AV = 1, RL = 2kΩ, VO = 10VP-P  
±1.2  
100  
V/µs  
ns  
tr, tf, Small  
Signal  
Rise Time  
10% to 90% of VOUT  
AV = 1, VOUT = 100mVP-P, Rf = 0Ω, RL = 2kΩ to  
VCM  
Fall Time  
90% to 10% of VOUT  
AV = 1, VOUT = 100mVP-P, Rf = 0Ω,  
100  
8.5  
ns  
µs  
RL = 2kΩ to VCM  
ts  
Settling Time to 0.01%  
10V Step; 10% to VOUT  
AV = 1, VOUT = 10VP-P, Rf = 0Ω  
RL = 2kΩ to VCM  
Electrical Specifications VS ±5V, VCM = 0, VO = 0V, TA = +25°C, unless otherwise noted. Boldface limits apply over the operating  
temperature range, -40°C to +125°C. Temperature data established by characterization.  
MIN  
MAX  
PARAMETER  
VOS  
DESCRIPTION  
Input Offset Voltage  
CONDITIONS  
(Note 8)  
TYP  
25  
(Note 8)  
UNIT  
µV  
ISL28118  
ISL28218  
-150  
-270  
-230  
-290  
-1.2  
150  
270  
230  
290  
1.2  
µV  
40  
µV  
µV  
TCVOS  
ΔVOS  
IB  
Input Offset Voltage Temperature  
Coefficient  
ISL28118  
ISL28218  
0.2  
0.3  
44  
µV/°C  
µV/°C  
µV  
-1.4  
1.4  
Input Offset Voltage Match  
(ISL28218 only)  
-280  
-365  
-575  
-800  
280  
365  
µV  
Input Bias Current  
-230  
nA  
nA  
TCIB  
IOS  
Input Bias Current  
Temperature Coefficient  
-0.8  
4
nA/°C  
Input Offset Current  
-50  
-75  
50  
75  
nA  
nA  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
V
CMRR  
Common-Mode Rejection Ratio  
V
CM = V- - 0.5V to V+ - 1.8V  
CM = V- to V+ -1.8V  
119  
117  
V
101  
97  
ISL28118 SOIC  
VCM = V- to V+ -1.8V  
101  
96  
117  
117  
ISL28118 MSOP  
VCM = V- to V+ -1.8V  
101  
97  
ISL28218  
VCMIR  
Common Mode Input Voltage  
Range  
Guaranteed by CMRR test  
V- - 0.5  
V-  
V+ - 1.8  
V+ - 1.8  
V
FN7532.2  
May 16, 2011  
6
ISL28118, ISL28218  
Electrical Specifications VS ±5V, VCM = 0, VO = 0V, TA = +25°C, unless otherwise noted. Boldface limits apply over the operating  
temperature range, -40°C to +125°C. Temperature data established by characterization. (Continued)  
MIN  
MAX  
PARAMETER  
PSRR  
DESCRIPTION  
CONDITIONS  
(Note 8)  
TYP  
124  
(Note 8)  
UNIT  
dB  
Power Supply Rejection Ratio  
VS = 3V to 10V, VCMIR = Valid Input Voltage,  
ISL28118 SOIC  
109  
105  
dB  
ISL28218 SOIC  
ISL28118 MSOP  
108  
103  
122  
117  
124  
132  
dB  
dB  
dB  
dB  
AVOL  
Open-Loop Gain  
VO = -3V to +3V, RL = 10kΩ to ground,  
ISL28118 SOIC  
ISL28218 SOIC  
ISL28118 MSOP  
RL = 10kΩ  
120  
115  
132  
dB  
dB  
VOL  
VOH  
IS  
Output Voltage Low, VOUT to V- ,  
See Figure 32  
38  
45  
65  
70  
1.1  
1.4  
mV  
mV  
mV  
mV  
mA  
µA  
Output Voltage High, V+ to VOUT  
See Figure 31  
RL = 10kΩ  
Supply Current/Amplifier  
RL = Open  
0.85  
ISC+  
ISC-  
AC SPECIFICATIONS  
Output Short Circuit Source Current RL = 10Ω to V-  
13  
20  
mA  
mA  
Output Short Circuit Sink Current  
RL = 10Ω to V+  
GBWP  
enp-p  
en  
Gain Bandwidth Product  
ACL = 101, VOUT = 100mVP-P; RL = 2k  
3.2  
320  
9
MHz  
nVP-P  
Voltage Noise  
0.1Hz to 10Hz  
f = 10Hz  
Voltage Noise Density  
Voltage Noise Density  
Voltage Noise Density  
Voltage Noise Density  
Current Noise Density  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
fA/Hz  
%
en  
f = 100Hz  
f = 1kHz  
5.7  
en  
5.5  
en  
f = 10kHz  
f = 1kHz  
5.5  
in  
380  
0.0003  
THD + N  
Total Harmonic Distortion + Noise 1kHz, G = 1, VO = 1.25VRMS, RL = 10kΩ  
TRANSIENT RESPONSE  
SR  
Slew Rate  
AV = 1, RL = 2kΩ, VO = 4VP-P  
±1  
V/µs  
ns  
tr, tf, Small  
Signal  
Rise Time  
10% to 90% of VOUT  
AV = 1, VOUT = 100mVP-P, Rf = 0Ω, RL = 2kΩ to  
VCM  
100  
Fall Time  
90% to 10% of VOUT  
AV = 1, VOUT = 100mVP-P, Rf = 0Ω,  
100  
4
ns  
µs  
RL = 2kΩ to VCM  
ts  
Settling Time to 0.01%  
4V Step; 10% to VOUT  
AV = 1, VOUT = 4VP-P, Rf = 0Ω  
RL = 2kΩ to VCM  
NOTE:  
8. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
FN7532.2  
May 16, 2011  
7
ISL28118, ISL28218  
Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified.  
200  
150  
100  
50  
200  
150  
100  
50  
V
= ±15V  
V = ±5V  
S
S
0
0
V
(µV)  
V
(µV)  
OS  
OS  
FIGURE 3. ISL28118 INPUT OFFSET VOLTAGE DISTRIBUTION  
FIGURE 4. ISL28118 INPUT OFFSET VOLTAGE DISTRIBUTION  
250  
250  
V
= ±15V  
V = ±5V  
S
S
200  
150  
100  
50  
200  
150  
100  
50  
0
0
V
(µV)  
V
(µV)  
OS  
OS  
FIGURE 5. ISL28218 INPUT OFFSET VOLTAGE DISTRIBUTION  
FIGURE 6. ISL28218 INPUT OFFSET VOLTAGE DISTRIBUTION  
18  
18  
V
= ±15V  
V = ±5V  
S
S
16  
14  
12  
10  
8
16  
14  
12  
10  
8
6
6
4
4
2
2
0
0
TCV (µV/C)  
TCV (µV/C)  
OS  
OS  
FIGURE 7. ISL28118 TCVOS vs NUMBER OF AMPLIFIERS ±15V  
FIGURE 8. ISL28118 TCVOS vs NUMBER OF AMPLIFIERS ±5V  
FN7532.2  
May 16, 2011  
8
ISL28118, ISL28218  
Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
V
= ±5V  
V
= ±15V  
S
S
0
0
TCV (µV/C)  
TCV (µV/C)  
OS  
OS  
FIGURE 9. ISL28218 TCVOS vs NUMBER OF AMPLIFIERS ±15V  
FIGURE 10. ISL28218 TCVOS vs NUMBER OF AMPLIFIERS ±5V  
400  
300  
100  
90  
80  
200  
70  
-40°C  
100  
0
+25°C  
60  
V
= ±15V  
S
+125°C  
50  
40  
30  
20  
10  
0
-100  
-200  
-300  
-400  
V
= ±5V  
20  
S
-16  
-15  
-14  
-13 13  
14  
15  
16  
-40  
-20  
0
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
INPUT COMMON MODE VOLTAGE (V)  
FIGURE 11. VOS vs TEMPERATURE  
FIGURE 12. INPUT OFFSET VOLTAGE vs INPUT COMMON MODE  
VOLTAGE, VS = ±15V  
-150  
0
-50  
V
= ±20V  
S
-200  
-250  
-300  
-350  
-400  
-100  
-150  
-200  
-250  
-300  
-350  
-400  
-450  
-500  
V
= ± 15V  
S
V
= +2V/-1V  
S
V
= ±2.25V  
40  
S
V
= ±5V  
80  
S
-40  
-20  
0
20  
60  
100  
120  
2
4
6
8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40  
(V)  
V
TEMPERATURE (°C)  
S
FIGURE 13. IBIAS vs VS  
FIGURE 14. IBIAS vs TEMPERATURE vs SUPPLY  
FN7532.2  
May 16, 2011  
9
ISL28118, ISL28218  
Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)  
124  
122  
120  
118  
116  
114  
112  
110  
124  
122  
120  
118  
116  
114  
112  
110  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 15. ISL28118 CMRR vs TEMPERATURE, VS = ±15V  
FIGURE 16. ISL28118 CMRR vs TEMPERATURE, VS = ±5V  
132  
130  
128  
126  
124  
132  
130  
128  
126  
124  
CHANNEL-B  
122  
122  
CHANNEL-A  
120  
120  
118  
118  
CHANNEL-B  
116  
CHANNEL-A  
116  
114  
112  
110  
114  
112  
110  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 17. ISL28218 CMRR vs TEMPERATURE, VS = ±15V  
FIGURE 18. ISL28218 CMRR vs TEMPERATURE, VS = ±5V  
140  
140  
130  
120  
110  
100  
90  
135  
ISL28118  
130  
125  
80  
70  
ISL28218  
120  
60  
50  
40  
30  
20  
10  
0
115  
110  
105  
100  
V
= ±15V  
S
SIMULATION  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
1m 0.01 0.1  
1
10 100 1k 10k 100k 1M 10M 100M 1G  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
FIGURE 19. CMRR vs FREQUENCY, VS = ±15V  
FIGURE 20. PSRR vs TEMPERATURE, VS = ±15V  
FN7532.2  
May 16, 2011  
10  
ISL28118, ISL28218  
Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)  
140  
130  
120  
110  
100  
90  
140  
130  
120  
110  
100  
90  
PSRR+  
PSRR+  
80  
80  
70  
70  
60  
60  
50  
50  
40  
30  
20  
10  
V
= ±15V  
= 1  
= 4pF  
= 10k  
40  
30  
20  
10  
V
= ±5V  
A = 1  
V
S
S
A
V
C
R
C
R
V
= 4pF  
= 10k  
L
L
PSRR-  
PSRR-  
L
L
0
0
V
= 1V  
= 1V  
CM  
P-P  
CM P-P  
-10  
10  
-10  
10  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 21. PSRR vs FREQUENCY, VS = ±15V  
FIGURE 22. PSRR vs FREQUENCY, VS = ±5V  
200  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
-20  
-40  
-60  
-80  
-100  
70  
60  
50  
40  
30  
20  
10  
0
R
= 10k, R = 10Ω  
G
F
A
= 1000  
CL  
PHASE  
R
= 10k, R = 100Ω  
F
G
V
= ±5V & ±15V  
= 4pF  
= 2k  
S
A
= 100  
= 10  
CL  
C
R
V
L
L
= 100mV  
OUT  
P-P  
A
CL  
GAIN  
R
= 10k, R = 1kΩ  
F
G
A
= 1  
CL  
V
R
= ±15V  
= 1MΩ  
S
L
R
= 0, R =  
F
G
-10  
100  
1m 0.01 0.1  
1
10 100 1k 10k 100k 1M 10M100M 1G  
FREQUENCY (Hz)  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FIGURE 23. OPEN-LOOP GAIN, PHASE vs FREQUENCY, VS = ±15V  
FIGURE 24. FREQUENCY RESPONSE vs CLOSED LOOP GAIN  
1
0
1
0
-1  
-2  
-3  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-4  
-5  
-6  
-7  
-8  
-9  
R
= OPEN, 100k, 10k  
R = OPEN, 100k, 10k  
L
L
R
= 1k  
R
= 1k  
L
L
V
= ±15V  
= 4pF  
= +1  
V
= ±5V  
= 4pF  
= +1  
R
= 499  
R
= 499  
L
S
S
L
C
C
L
R
= 100  
R = 100  
L
L
L
A
A
V
V
R
= 49.9  
R = 49.9  
L
L
V
= 100mV  
V
= 100mV  
OUT  
p-p  
OUT  
p-p  
100 1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FIGURE 25. GAIN vs FREQUENCY vs RL, VS = ±15V  
FIGURE 26. GAIN vs FREQUENCY vs RL, VS = ±5V  
FN7532.2  
May 16, 2011  
11  
ISL28118, ISL28218  
Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)  
1
0
1
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9-  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
V
V
= ±1.5V  
S
V
S
V
= 10mV  
V = 50mV  
OUT  
OUT  
P-P  
= ±5V  
S
= ±15V  
V
= ±5V  
= 4pF  
= +1  
P-P  
S
C
R
A
= 4pF  
= 10k  
= +1  
L
L
C
V
= 100mV  
L
OUT  
P-P  
P-P  
A
V
V
= 500mV  
V
OUT  
R
= INF  
V
= 100mV  
L
OUT  
P-P  
V
= 1V  
P-P  
OUT  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 27. GAIN vs FREQUENCY vs OUTPUT VOLTAGE  
FIGURE 28. GAIN vs FREQUENCY vs SUPPLY VOLTAGE  
90  
40  
V
R
= ±5V  
= 10k  
V
R
= ±15V  
= 10k  
S
S
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
L
L
V
V
OH  
OH  
80  
70  
60  
50  
40  
V
V
OL  
OL  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 29. OUTPUT OVERHEAD VOLTAGE vs TEMPERATURE,  
S = ±15V, RL = 10k  
FIGURE 30. OUTPUT OVERHEAD VOLTAGE vs TEMPERATURE,  
VS = ±5V, RL = 10k  
V
1
0.1  
1
V
= ±5V and ±15V  
V = ±5V and ±15V  
S
S
+125°C  
+25°C  
+125°C  
+25°C  
0.1  
0.01  
-40°C  
-40°C  
0.01  
0.001  
0.001  
0.001  
0.01  
0.1  
LOAD CURRENT (mA)  
1
10  
0.001  
0.01  
0.1  
LOAD CURRENT (mA)  
1
10  
FIGURE 31. OUTPUT OVERHEAD VOLTAGE HIGH vs LOAD CURRENT,  
VS = ±5V and ±15V  
FIGURE 32. OUTPUT OVERHEAD VOLTAGE LOW vs LOAD CURRENT,  
VS = ±5V and ±15V  
FN7532.2  
May 16, 2011  
12  
ISL28118, ISL28218  
Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)  
15  
14  
13  
12  
11  
5
4
3
2
V
= ±15V  
= 2  
V
= ±5V  
= 2  
S
S
A
A
V
V
R
V
= R = 100k  
R
= R = 100k  
+125°C  
F
G
F
G
= ±7.5V-DC  
+125°C  
V
= ±2.5V-DC  
IN  
IN  
-40°C  
-40°C  
10  
-10  
1
-1  
+75°C  
0°C  
+75°C  
0°C  
-11  
-12  
-13  
-14  
-15  
-2  
-3  
-4  
-5  
+25°C  
10  
+25°C  
10  
2
4
6
8
2
4
6
8
12  
14  
16  
12  
14  
16  
0
18  
20  
0
18  
20  
I-FORCE (mA)  
I-FORCE (mA)  
FIGURE 33. OUTPUT VOLTAGE SWING vs LOAD CURRENT VS = ±15V  
FIGURE 34. OUTPUT VOLTAGE SWING vs LOAD CURRENT VS = ±5V  
1400  
1200  
1400  
1200  
V
= ±21V  
V
= ±21V  
S
S
1000  
800  
600  
400  
1000  
800  
600  
400  
V
= ±15V  
V
= ±15V  
S
S
V
= ±2.25V  
V
= ±2.25V  
S
S
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 35. ISL28118 SUPPLY CURRENT vs TEMPERATURE vs  
SUPPLY VOLTAGE  
FIGURE 36. ISL28218 SUPPLY CURRENT vs TEMPERATURE vs  
SUPPLY VOLTAGE  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
ISL28218  
ISL28118  
0
2
4
6
8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42  
(V)  
V
SUPPLY  
FIGURE 37. SUPPLY CURRENT vs SUPPLY VOLTAGE  
FN7532.2  
May 16, 2011  
13  
ISL28118, ISL28218  
Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)  
100  
10  
1
100  
10  
1
100  
10  
1
100  
10  
V
= ±18V  
S
V
= ±5V  
S
INPUT NOISE VOLTAGE  
INPUT NOISE VOLTAGE  
INPUT NOISE CURRENT  
INPUT NOISE CURRENT  
1
0.1  
0.1  
0.1  
100k  
0.1  
0.1  
0.1  
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 38. INPUT NOISE VOLTAGE (en) AND CURRENT (in) vs  
FREQUENCY, VS = ±18V  
FIGURE 39. INPUT NOISE VOLTAGE (en) AND CURRENT (in) vs  
FREQUENCY, VS = ±5V  
500  
500  
V
= ±5V  
= 10k  
V
= ±18V  
= 10k  
S
S
400  
300  
200  
100  
0
400  
300  
200  
100  
0
A
A
V
V
-100  
-200  
-300  
-400  
-500  
-100  
-200  
-300  
-400  
-500  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
TIME (s)  
TIME (s)  
FIGURE 40. INPUT NOISE VOLTAGE 0.1Hz TO 10Hz, VS = ±18V  
FIGURE 41. INPUT NOISE VOLTAGE 0.1Hz TO 10Hz, VS = ±5V  
0.1  
0.1  
V
= ±15V  
= 4pF  
= 2k  
V
= ±15V  
= 4pF  
= 10k  
= 10V  
-40°C  
+25°C  
S
-40°C  
+25°C  
S
C
R
V
C
R
V
L
L
L
L
A
= 10  
V
= 10V  
OUT  
P-P  
OUT  
P-P  
+125°C  
+125°C  
0.01  
0.001  
0.01  
0.001  
C-WEIGHTED  
22Hz TO 500kHz  
C-WEIGHTED  
22Hz TO 500kHz  
A
= 10  
V
A
= 1  
V
-40°C  
= 1  
-40°C  
+25°C  
A
+125°C  
V
+125°C  
10k  
+25°C  
1k  
0.0001  
0.0001  
10  
100  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
FIGURE 42. THD+N vs FREQUENCY vs TEMPERATURE, AV = 1, 10,  
RL = 2k  
FIGURE 43. THD+N vs FREQUENCY vs TEMPERATURE, AV = 1, 10,  
RL = 10k  
FN7532.2  
May 16, 2011  
14  
ISL28118, ISL28218  
Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)  
1
1
V
C
R
= ±15V  
= 4pF  
= 2k  
C-WEIGHTED  
22Hz TO 22kHz  
S
V
C
R
= ±15V  
= 4pF  
= 10k  
C-WEIGHTED  
22Hz TO 22kHz  
S
L
L
L
L
f = 1kHz  
f = 1kHz  
0.1  
0.1  
+125°C  
-40°C  
+125°C  
-40°C  
+25°C  
+25°C  
0.01  
0.01  
A
= 10  
V
A
= 10  
V
A
= 1  
V
A
= 1  
0.001  
0.0001  
V
0.001  
0.0001  
+125°C  
20  
-40°C  
25 30  
+25°C  
10  
-40°C  
30  
+125°C  
20  
+25°C  
10  
0
5
15  
(V  
0
5
15  
(V  
25  
V
)
V
)
P-P  
OUT  
P-P  
OUT  
FIGURE 44. THD+N vs OUTPUT VOLTAGE (VOUT) vs TEMPERATURE,  
AV = 1, 10, RL = 2k  
FIGURE 45. THD+N vs OUTPUT VOLTAGE (VOUT) vs TEMPERATURE,  
AV = 1, 10, RL = 10k  
6
2.4  
V
= ±15V  
= 1  
= 2k  
V
= ±5V  
= 1  
S
S
2.0  
1.6  
1.2  
0.8  
A
A
V
V
4
2
R
C
R
C
= 2k  
= 4pF  
L
L
L
L
= 4pF  
0.4  
0
0
-0.4  
-0.8  
-1.2  
-1.6  
-2.0  
-2.4  
-2  
-4  
-6  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
TIME (µs)  
TIME (µs)  
FIGURE 46. LARGE SIGNAL 10V STEP RESPONSE, VS = ±15V  
FIGURE 47. LARGE SIGNAL 4V STEP RESPONSE, VS = ±5V  
100  
6
V
V
= ±15V  
AND  
= ±5V  
= 1  
= 2k  
= 4pF  
V
V
= ±5V  
= ±5.9V  
S
S
80  
60  
5
4
IN  
S
INPUT  
A
V
3
40  
R
C
L
L
2
20  
1
OUTPUT  
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-20  
-40  
-60  
-80  
-100  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8  
TIME (µs)  
2
0
1
2
3
4
TIME (ms)  
FIGURE 48. SMALL SIGNAL TRANSIENT RESPONSE,  
VS = ±5V, ±15V  
FIGURE 49. NO PHASE REVERSAL  
FN7532.2  
May 16, 2011  
15  
ISL28118, ISL28218  
Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)  
0
200  
160  
120  
80  
20  
16  
12  
8
0
-40  
INPUT  
V
A
R
V
= ±15V  
= 100  
= 10k  
S
V
INPUT  
L
-4  
-8  
= 100mV  
IN  
P-P  
OVERDRIVE = 1V  
-80  
OUTPUT  
-12  
-16  
-20  
-120  
OUTPUT  
V
= ±15V  
= 100  
= 10k  
S
A
V
-160  
-200  
40  
4
R
V
L
= 100mV  
IN  
P-P  
OVERDRIVE = 1V  
0
0
40  
0
4
8
12  
16  
20  
24  
28 32 36 40  
0
4
8
12  
16  
20  
24  
28  
32  
36  
TIME (µs)  
TIME (µs)  
FIGURE 50. POSITIVE OUTPUT OVERLOAD RESPONSE TIME,  
S = ±15V  
FIGURE 51. NEGATIVE OUTPUT OVERLOAD RESPONSE TIME,  
VS = ±15V  
V
6
5
4
3
2
60  
50  
40  
30  
20  
0
-10  
-20  
-30  
-40  
-50  
-60  
0
V
= ±5V  
= 100  
= 10k  
S
A
V
-1  
-2  
-3  
-4  
INPUT  
R
V
L
= 50mV  
IN  
P-P  
OVERDRIVE = 1V  
OUTPUT  
OUTPUT  
INPUT  
V
A
R
V
= ±5V  
= 100  
= 10k  
S
V
1
0
L
10  
0
-5  
-6  
= 50mV  
IN  
P-P  
OVERDRIVE = 1V  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
0
4
8
12  
16  
20  
24  
28 32 36  
40  
TIME (µs)  
TIME (µs)  
FIGURE 52. POSITIVE OUTPUT OVERLOAD RESPONSE TIME,  
S = ±5V  
FIGURE 53. NEGATIVE OUTPUT OVERLOAD RESPONSE TIME,  
VS = ±5V  
V
100  
100  
10  
V
= ±5V  
V
= ±15V  
S
S
A
= 10  
A
= 10  
V
V
10  
1
A
= 100  
A
= 100  
V
V
1
0.10  
0.01  
0.10  
0.01  
A
= 1  
V
A
= 1  
V
1
10  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 54. OUTPUT IMPEDANCE vs FREQUENCY, VS = ±15V  
FIGURE 55. OUTPUT IMPEDANCE vs FREQUENCY, VS = ±5V  
FN7532.2  
May 16, 2011  
16  
ISL28118, ISL28218  
Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
V
V
= ±5V  
V
V
= ±15V  
S
S
= 100mV  
= 100mV  
OUT  
P-P  
OUT  
P-P  
A
= 1  
A
= 1  
V
V
A
= 10  
A
= 10  
V
V
A
= -1  
V
A
= -1  
V
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.010  
0.100  
1
10  
100  
LOAD CAPACITANCE (nF)  
LOAD CAPACITANCE (nF)  
FIGURE 56. OVERSHOOT vs CAPACITIVE LOAD, VS = ±15V  
FIGURE 57. OVERSHOOT vs CAPACITIVE LOAD, VS = ±5V  
30  
30  
V
R
= ±15V  
= 10k  
V
= ±15V  
R = 10k  
L
S
S
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
L
I
-SINK  
SC  
I
-SINK  
SC  
I
-SOURCE  
SC  
I
-SOURCE  
100  
SC  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 58. ISL28118 SHORT CIRCUIT CURRENT vs  
TEMPERATURE, VS = ±15V  
FIGURE 59. ISL28218 SHORT CIRCUIT CURRENT vs  
TEMPERATURE, VS = ±15V  
150  
30  
V
= ±15V  
140  
130  
120  
110  
100  
90  
80  
70  
60  
50  
S
V
= ±15V  
= 1  
S
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
C
V
= 4pF  
= 1V  
A
L
V
CM  
P-P  
R _  
= ∞  
TRANSMIT  
40  
L
30  
20  
10  
0
6
4
2
R _  
= 10k  
L
RECEIVE  
R _  
L
= 2k  
TRANSMIT  
R _  
L
= 10k  
RECEIVE  
100  
0
1k  
10  
1k  
10k  
100k  
1M  
10M  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 60. MAX OUTPUT VOLTAGE vs FREQUENCY  
FIGURE 61. CHANNEL SEPARATION vs FREQUENCY, RL = inf,  
S = ±15V  
V
FN7532.2  
May 16, 2011  
17  
ISL28118, ISL28218  
Applications Information  
Functional Description  
R
F
V+  
The ISL28118 and ISL28218 are single and dual, 3.2MHz,  
single-supply, rail-to-rail output amplifiers with a common mode  
input voltage range extending to a range of 0.5V below the V- rail.  
Their input stages are optimized for precision sensing of  
ground-referenced signals in single-supply applications. The input  
stage is able to handle large input differential voltages without  
phase inversion, making these amplifiers suitable for  
R
R
-
IN  
-
V
-
IN  
+
IN  
+
V
+
R
IN  
L
R
G
V-  
high-voltage comparator applications. Their bipolar design  
features high open loop gain and excellent DC input and output  
temperature stability. These op amps feature very low quiescent  
current of 850µV, and low temperature drift. Both devices are  
fabricated in a new precision 40V complementary bipolar DI  
process and are immune from latch-up.  
FIGURE 62. INPUT ESD DIODE CURRENT LIMITING  
Output Drive Capability  
The bipolar rail-to-rail output stage features low saturation levels  
that enable an output voltage swing to less than 15mV when the  
total output load (including feedback resistance) is held below  
50µA (Figures 31 and 32). With ±15V supplies, this can be  
achieved by using feedback resistor values >300k.  
Operating Voltage Range  
The op amp is designed to operate over a single supply range of 3V  
to 40V or a split supply voltage range of +1.8V/-1.2V to ±20V. The  
device is fully characterized at 10V (±5V) and 30V (±15V). Both DC  
and AC performance remain virtually unchanged over the  
complete operating voltage range. Parameter variation with  
operating voltage is shown in the “Typical Performance Curves”  
beginning on page 8.  
The output stage is internally current limited. Output current limit  
over temperature is shown in Figures 33 and 34. The amplifiers  
can withstand a short circuit to either rail as long as the power  
dissipation limits are not exceeded. This applies to only one  
amplifier at a time for the dual op amp. Continuous operation  
under these conditions may degrade long-term reliability.  
The input common mode voltage to the V+ rail (V+ -1.8V over the  
full temperature range) may limit amplifier operation when  
operating from split V+ and V- supplies. Figure 12 shows the  
common mode input voltage range variation over temperature.  
The amplifiers perform well when driving capacitive loads  
(Figures 56 and 57). The unity gain, voltage follower (buffer)  
configuration provides the highest bandwidth but is also the  
most sensitive to ringing produced by load capacitance found in  
BNC cables. Unity gain overshoot is limited to 35% at  
capacitance values to 0.33nF. At gains of 10 and higher, the  
device is capable of driving more than 10nF without significant  
overshoot.  
Input Stage Performance  
The ISL28118 and ISL28218 PNP input stage has a common  
mode input range extending up to 0.5V below ground at +25°C  
(Figure 12). Full amplifier performance is guaranteed down for  
input voltage down to ground (V-) over the -40°C to +125°C  
temperature range. For common mode voltages down to -0.5V  
below ground (V-), the amplifiers are fully functional, but  
performance degrades slightly over the full temperature range.  
This feature provides excellent CMRR, AC performance, and DC  
accuracy when amplifying low-level, ground-referenced signals.  
Output Phase Reversal  
Output phase reversal is a change of polarity in the amplifier  
transfer function when the input voltage exceeds the supply  
voltage. The ISL28118 and ISL28218 are immune to output  
phase reversal out to 0.5V beyond the rail (VABS MAX) limit  
(Figure 49).  
The input stage has a maximum input differential voltage equal  
to a diode drop greater than the supply voltage (max 42V) and  
does not contain the back-to-back input protection diodes found  
on many similar amplifiers. This feature enables the device to  
function as a precision comparator by maintaining very high  
input impedance for high-voltage differential input comparator  
voltages. The high differential input impedance also enables the  
device to operate reliably in large signal pulse applications,  
without the need for anti-parallel clamp diodes required on  
MOSFET and most bipolar input stage op amps. Thus, input  
signal distortion caused by nonlinear clamps under high slew  
rate conditions is avoided.  
Single Channel Usage  
The ISL28218 is a dual op amp. If the application requires only  
one channel, the user must configure the unused channel to  
prevent it from oscillating. The unused channel oscillates if the  
input and output pins are floating. This results in  
higher-than-expected supply currents and possible noise  
injection into the channel being used. The proper way to prevent  
oscillation is to short the output to the inverting input, and  
ground the positive input (Figure 63).  
In applications where one or both amplifier input terminals are at  
risk of exposure to voltages beyond the supply rails,  
current-limiting resistors may be needed at each input terminal  
(see Figure 62, RIN+, RIN-) to limit current through the  
power-supply ESD diodes to 20mA.  
-
+
FIGURE 63. PREVENTING OSCILLATIONS IN UNUSED CHANNELS  
FN7532.2  
May 16, 2011  
18  
ISL28118, ISL28218  
Power Dissipation  
ISL28118 and ISL28218 SPICE Model  
It is possible to exceed the +150°C maximum junction  
temperatures under certain load and power supply conditions. It  
is therefore important to calculate the maximum junction  
temperature (TJMAX) for all applications to determine if power  
supply voltages, load conditions, or package type need to be  
modified to remain in the safe operating area. These parameters  
are related using Equation 1:  
Figure 64 shows the SPICE model schematic and Figure 65 shows  
the net list for the SPICE model. The model is a simplified version  
of the actual device and simulates important AC and DC  
parameters. AC parameters incorporated into the model are: 1/f  
and flatband noise voltage, slew rate, CMRR, and gain and phase.  
The DC parameters are IOS, total supply current, and output  
voltage swing. The model uses typical parameters given in the  
“Electrical Specifications” table beginning on page 4. The AVOL is  
adjusted for 136dB with the dominant pole at 0.6Hz. The CMRR is  
set at 120dB, f = 50kHz. The input stage models the actual device  
to present an accurate AC representation. The model is configured  
for an ambient temperature of +25°C.  
(EQ. 1)  
T
= T  
+ θ xPD  
MAX JA MAXTOTAL  
JMAX  
where  
• PDMAXTOTAL is the sum of the maximum power dissipation of  
each amplifier in the package (PDMAX  
)
Figures 66 through 80 show the characterization vs simulation  
results for the noise voltage, open loop gain phase, closed loop  
gain vs frequency, gain vs frequency vs RL, CMRR, large signal  
10V step response, small signal 0.1V step, and output voltage  
swing ±15V supplies.  
• TMAX = Maximum ambient temperature  
ΘJA = Thermal resistance of the package  
PDMAX for each amplifier can be calculated using Equation 2:  
LICENSE STATEMENT  
V
OUTMAX  
R
L
(EQ. 2)  
------------------------  
PD  
= V × I  
+ (V - V ) ×  
OUTMAX  
The information in the SPICE model is protected under United  
States copyright laws. Intersil Corporation hereby grants users of  
this macro-model, hereto referred to as “Licensee”, a  
nonexclusive, nontransferable licence to use this model, as long  
as the Licensee abides by the terms of this agreement. Before  
using this macro-model, the Licensee should read this license. If  
the Licensee does not accept these terms, permission to use the  
model is not granted.  
MAX  
S
qMAX  
S
where  
• PDMAX = Maximum power dissipation of 1 amplifier  
• VS = Total supply voltage  
• IqMAX = Maximum quiescent supply current of one amplifier  
• VOUTMAX = Maximum output voltage swing of the application  
• RL = Load resistance  
The Licensee may not sell, loan, rent, or license the  
macro-model, in whole, in part, or in modified form, to anyone  
outside the Licensee’s company. The Licensee may modify the  
macro-model to suit his/her specific applications, and the  
Licensee may make copies of this macro-model for use within  
their company only.  
This macro-model is provided “AS IS, WHERE IS, AND WITH NO  
WARRANTY OF ANY KIND EITHER EXPRESSED OR IMPLIED,  
INCLUDING BUY NOT LIMITED TO ANY IMPLIED WARRANTIES OF  
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.”  
In no event will Intersil be liable for special, collateral, incidental,  
or consequential damages in connection with or arising out of  
the use of this macro-model. Intersil reserves the right to make  
changes to the product and the macro-model without prior  
notice.  
FN7532.2  
May 16, 2011  
19  
I1  
80e-6  
D3  
                                                                                                                                                                                                                                                                                                                                                        
G1  
+
-
R5  
I2  
54E-6  
I3  
54E-6  
1
13GAIN = 0.65897  
V1  
Vin-  
9
-0.91  
-0.96  
D1DBREAK  
0.1  
V7  
0.1  
V8  
Q7  
Q6  
14  
PNP_LATERAL 7  
10  
PNP_LATERAL  
EOS  
+
-
+
12  
-
1
2
R2  
5e11  
PNP_input  
PNP_input  
Q8  
Q9  
4
D2DBREAK  
GAIN = 1  
CinDif  
1.33E-12  
D13 D14  
5
0
V2  
8
11  
0
IOS  
4e-9  
R1  
5e11  
3
750  
R17  
750  
R18  
Vcm  
15G2  
R3  
1k  
R4  
1k  
R6  
En  
-
1
Vin+  
6
GAIN = 0.3  
GAIN = 0.65897  
D4  
Cin2  
4.02e-12  
V--  
Cin1  
4.02e-12  
V--  
Input Stage  
1st Gain Stage  
V+  
E2  
+
+
-
-
V++  
GAIN = 1  
0
V++  
V++  
D5  
L1  
R13  
795.7981  
L3  
3.18319E-09  
D10  
D11  
-
3.18319E-09  
+
R15  
G9  
16  
G5  
+
+
C1  
6.6667E-11  
80  
Vout  
G13  
GAIN = 12.5e-3  
+
+
-
18  
R9  
1e-3  
21  
-
-
-
R7  
V5  
GAIN = 1.2566e-3  
R11  
D7  
GAIN = 1  
GAIN = 1  
3.7304227e9  
GAIN = 1.69138e-3  
DX  
24  
1e-3  
C3  
10e-12  
V3  
V4  
-0.4  
-0.91  
19  
VOUT  
Vc  
Vg  
23  
26  
27  
Vmid  
ISY  
2.5E-3  
D8  
D X  
V6  
-0.4  
25  
+
+
R10  
1e-3  
-0.96  
R12  
1e-3  
-
-
C4  
10e-12  
GAIN = 0.5  
C2  
6.6667E-11  
3.7304227e9  
G10  
-
20  
G4  
-
17  
22  
G11  
G12  
+
G6  
-
G8  
-
D12  
+
+
-
L4  
R16  
80  
+
-
GAIN = 1.2566e-3  
+
+
-
D9  
L2  
+
3.18319E-09  
GAIN = 12.5e-3  
R14  
795.7981  
GAIN = 1.69138e-3  
3.18319E-09  
GAIN = 12.5e-3  
GAIN = 1  
D6  
G14  
GAIN = 1  
GAIN = 12.5e-3  
V--  
V--  
V--  
E3  
+ +  
V-  
-
Common Mode  
Gain Stage  
with Zero  
Output Stage Correction Current Sources  
-
2nd Gain Stage Mid Supply ref  
V
GAIN = 1  
0
FIGURE 64. SPICE SCHEMATIC  
ISL28118, ISL28218  
*ISL28118_218 Macromodel - covers  
following *products  
*ISL28118  
*ISL28218  
*
*Revision History:  
* Revision A, LaFontaine February 8th 2011  
* Model for Noise, supply currents, CMRR  
*120dB f = 40kHz, AVOL 136dB f = 0.5Hz  
* SR = 1.2V/us, GBWP 4MHz.  
V_V8  
R_R17  
*R_R18  
*
*Input Stage  
Q_Q6  
Q_Q7  
Q_Q8  
Q_Q9  
I_I1  
4 0 0.1  
2 0 750  
3 0 750  
R_R14  
C_C3  
C_C4  
*
V-- 23 795.7981  
23 V++ 10e-12  
V-- 23 10e-12  
*Output Stage with Correction Current  
Sources  
11 10 9 PNP_input  
8 7 9 PNP_input  
V-- VIN- 7 PNP_LATERAL  
V-- 12 10 PNP_LATERAL  
V++ 9 DC 80e-6  
V++ 7 DC 54E-6  
V++ 10 DC 54E-6  
6 VIN- DC 4e-9  
7 10 DBREAK  
10 7 DBREAK  
5 6 5e11  
VIN- 5 5e11  
V-- 8 1000  
V-- 11 1000  
V-- VIN- 4.02e-12  
V-- 6 4.02e-12  
6 VIN- 1.33E-12  
G_G11  
G_G12  
G_G13  
G_G14  
D_D7  
D_D8  
D_D9  
D_D10  
D_D11  
D_D12  
V_V5  
26 V-- VOUT 23 12.5e-3  
27 V-- 23 VOUT 12.5e-3  
VOUT V++ V++ 23 12.5e-3  
V-- VOUT 23 V-- 12.5e-3  
23 24 DX  
25 23 DX  
V-- 26 DY  
V++ 26 DX  
V++ 27 DX  
V-- 27 DY  
24 VOUT -0.4  
VOUT 25 -0.4  
VOUT V++ 80  
V-- VOUT 80  
*Copyright 2011 by Intersil Corporation  
I_I2  
I_I3  
*Refer to data sheet “LICENSE STATEMENT”  
*Use of this model indicates your acceptance  
*with the terms and provisions in the License  
*Statement.  
I_IOS  
*D_D1  
*D_D2  
R_R1  
R_R2  
R_R3  
R_R4  
C_Cin1  
C_Cin2  
C_CinDif  
*
*
*Intended use:  
*This Pspice Macromodel is intended to give  
*typical DC and AC performance  
characteristics *under a wide range of  
external circuit *configurations using  
compatible simulation *platforms – such as  
iSim PE.  
V_V6  
R_R15  
R_R16  
.model PNP_LATERAL pnp(is=1e-016  
bf=250 va=80  
+ ik=0.138 rb=0.01 re=0.101 rc=180 kf=0  
af=1)  
.model PNP_input pnp(is=1e-016 bf=100  
va=80  
+ ik=0.138 rb=0.01 re=0.101 rc=180 kf=0  
af=1)  
.model DBREAK D(bv=43 rs=1)  
.model DN D(KF=6.69e-9 AF=1)  
.MODEL DX D(IS=1E-12 Rs=0.1)  
.MODEL DY D(IS=1E-15 BV=50 Rs=1)  
.ends ISL28118_218  
*
*Device performance features supported by  
this *model:  
*Typical, room temp., nominal power supply  
*voltages used to produce the following  
*characteristics:  
*Open and closed loop I/O impedances,  
*Open loop gain and phase,  
*Closed loop bandwidth and frequency  
*response,  
*Loading effects on closed loop frequency  
*response,  
*Input noise terms including 1/f effects,  
*Slew rate,  
*Input and Output Headroom limits to I/O  
*voltage swing,  
*Supply current at nominal specified supply  
*voltages,  
*1st Gain Stage  
G_G1  
G_G2  
V_V1  
V_V2  
D_D3  
D_D4  
R_R5  
R_R6  
*
V++ 14 8 11 0.65897  
V-- 14 8 11 0.65897  
13 14 -0.91  
14 15 -0.96  
13 V++ DX  
V-- 15 DX  
14 V++ 1  
V-- 14 1  
*2nd Gain Stage  
G_G3  
G_G4  
V_V3  
V_V4  
D_D5  
D_D6  
R_R7  
R_R8  
C_C1  
C_C2  
*
V++ VG 14 VMID 1.69138e-3  
V-- VG 14 VMID 1.69138e-3  
16 VG -0.91  
VG 17 -0.96  
16 V++ DX  
*
V-- 17 DX  
*Device performance features NOT  
supported *by this model:  
*Harmonic distortion effects,  
*Output current limiting (current will limit at  
*40mA),  
*Disable operation (if any),  
VG V++ 3.7304227e9  
V-- VG 3.7304227e9  
VG V++ 6.6667E-11  
V-- VG 6.6667E-11  
*Thermal effects and/or over temperature  
*parameter variation,  
*Limited performance variation vs. supply  
*voltage is modeled,  
*Part to part performance variation due to  
*normal process parameter spread,  
*Any performance difference arising from  
*different packaging,  
*Mid supply Ref  
E_E2  
E_E3  
E_E4  
I_ISY  
*
V++ 0 V+ 0 1  
V-- 0 V- 0 1  
VMID V-- V++ V-- 0.5  
V+ V- DC 0.85E-3  
*Common Mode Gain Stage with Zero  
G_G5  
G_G6  
G_G7  
G_G8  
E_EOS  
L_L1  
L_L2  
L_L3  
L_L4  
R_R9  
R_R10  
R_R11  
R_R12  
*
V++ 19 5 VMID 1  
V-- 19 5 VMID 1  
V++ VC 19 VMID 1  
V-- VC 19 VMID 1  
12 6 VC VMID 1  
18 V++ 3.18319E-09  
20 V-- 3.18319E-09  
21 V++ 3.18319E-09  
22 V-- 3.18319E-09  
19 18 1e-3  
*Load current reflected into the power supply  
*current.  
* source ISL28118_218 SPICEmodel  
*
* Connections:  
+input  
*
*
*
*
|
|
|
|
-input  
|
|
|
+Vsupply  
|
|
-Vsupply  
output  
|
.subckt ISL28118_218 Vin+ Vin-V+ V- VOUT  
* source ISL28118_218_presubckt_0  
*
20 19 1e-3  
VC 21 1e-3  
22 VC 1e-3  
*Voltage Noise  
E_En  
VIN+ 6 2 0 0.3  
1 2 DN  
1 2 DN  
*Pole Stage  
G_G9  
G_G10  
D_D13  
D_D14  
V_V7  
V++ 23 VG VMID 1.2566e-3  
V-- 23 VG VMID 1.2566e-3  
23 V++ 795.7981  
1 0 0.1  
R_R13  
FIGURE 65. SPICE NET LIST  
FN7532.2  
May 16, 2011  
21  
ISL28118, ISL28218  
Characterization vs Simulation Results  
100  
10  
1
100  
10  
1
100  
10  
1
V
= ±18V  
S
INPUT NOISE VOLTAGE  
INPUT NOISE CURRENT  
0.1  
0.1  
0.1  
0.1  
1
10  
100  
1k  
10k  
100k  
0.1  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 66. CHARACTERIZED INPUT NOISE VOLTAGE  
FIGURE 67. SIMULATED INPUT NOISE VOLTAGE  
200  
180  
160  
140  
120  
100  
80  
200  
180  
160  
140  
120  
100  
80  
PHASE  
PHASE  
60  
60  
40  
40  
20  
20  
0
-20  
-40  
-60  
-80  
GAIN  
0
GAIN  
-20  
-40  
-60  
-80  
-100  
V
R
= ±15V  
= 1MΩ  
V
R
= ±15V  
S
S
= 1MΩ  
L
L
-100  
1m  
0.1  
1
10 100 1k 10k 100k 1M 10M100M 1G  
FREQUENCY (Hz)  
1m  
0.1  
0.01  
1
10 100 1k 10k 100k 1M 10M100M 1G  
FREQUENCY (Hz)  
0.01  
FIGURE 68. CHARACTERIZED OPEN-LOOP GAIN, PHASE vs  
FREQUENCY  
FIGURE 69. SIMULATED OPEN-LOOP GAIN, PHASE vs FREQUENCY  
70  
70  
R
= 10k, R = 10Ω  
G
R
= 10k, R = 10Ω  
G
F
F
A
= 1000  
A
= 1000  
= 100  
= 10  
CL  
CL  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
R
= 10k, R = 100Ω  
R = 10k, R = 100Ω  
F G  
F
G
V
= ±5V & ±15V  
= 4pF  
= 2k  
V
= ±5V & ±15V  
S
S
A
= 100  
= 10  
A
CL  
CL  
C
R
V
C
R
V
= 4pF  
= 2k  
= 100mV  
L
L
L
L
= 100mV  
OUT  
P-P  
OUT  
P-P  
A
A
CL  
CL  
R
= 10k, R = 1kΩ  
R
= 10k, R = 1kΩ  
F
G
F
G
A
= 1  
CL  
A
= 1  
CL  
R
= 0, R = ∞  
F
G
R
= 0, R = ∞  
F
G
-10  
100  
-10  
100  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 70. CHARACTERIZED CLOSED-LOOP GAIN vs FREQUENCY  
FIGURE 71. SIMULATED CLOSED-LOOP GAIN vs FREQUENCY  
FN7532.2  
May 16, 2011  
22  
ISL28118, ISL28218  
Characterization vs Simulation Results (Continued)  
1
1
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
R
= OPEN, 100k, 10k  
R = OPEN, 100k, 10k  
L
L
R
= 1k  
R
= 1k  
L
L
V
= ±15V  
= 4pF  
= +1  
V
= ±15V  
= 4pF  
= +1  
R
= 499k  
R
= 499k  
S
S
L
L
C
C
L
R
= 100k  
R
= 100k  
L
L
L
A
A
V
V
R
= 49.9k  
R
= 49.9k  
1M  
L
L
V
= 100mV  
V
= 100mV  
OUT  
p-p  
OUT  
p-p  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 72. CHARACTERIZED GAIN vs FREQUENCY vs RL  
FIGURE 73. SIMULATED GAIN vs FREQUENCY vs RL  
140  
130  
120  
110  
100  
90  
140  
130  
120  
110  
100  
90  
80  
80  
70  
70  
60  
60  
50  
50  
40  
40  
V
= ±15V  
V = ±15V  
S
SIMULATION  
30  
20  
10  
0
30  
20  
10  
0
S
SIMULATION  
1m 0.01 0.1  
1
10 100 1k 10k 100k 1M 10M 100M 1G  
FREQUENCY (Hz)  
1m 0.01 0.1  
1
10 100 1k 10k 100k 1M 10M 100M 1G  
FREQUENCY (Hz)  
FIGURE 74. CHARACTERIZED CMRR vs FREQUENCY  
FIGURE 75. SIMULATED CMRR vs FREQUENCY  
6
4
6
V
= ±15V  
= 1  
= 2k  
V
= ±15V  
= 1  
= 2k  
S
S
A
A
V
V
4
2
R
C
R
C
L
L
L
L
= 4pF  
= 4pF  
2
0
0
-2  
-4  
-6  
-2  
-4  
-6  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
TIME (µs)  
TIME (µs)  
FIGURE 77. SIMULATED LARGE-SIGNAL 10V STEP RESPONSE  
FIGURE 76. CHARACTERIZED LARGE-SIGNAL 10V STEP RESPONSE  
FN7532.2  
May 16, 2011  
23  
ISL28118, ISL28218  
Characterization vs Simulation Results (Continued)  
100  
100  
V
= ±15V  
AND  
= ±5V  
= 1  
= 2k  
= 4pF  
V
= ±15V  
S
S
80  
80  
AND  
V
V
= ±5V  
S
S
60  
60  
A
A
= 1  
V
V
40  
40  
R
C
R
C
= 2k  
= 4pF  
L
L
L
L
20  
20  
0
0
-20  
-40  
-60  
-80  
-100  
-20  
-40  
-60  
-80  
-100  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
TIME (µs)  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
TIME (µs)  
FIGURE 78. CHARACTERIZED SMALL-SIGNAL TRANSIENT  
RESPONSE  
FIGURE 79. SIMULATED SMALL-SIGNAL TRANSIENT RESPONSE  
20V  
10V  
0V  
VOH = 14.88V  
-10V  
V
= ±15V  
S
R
= 10kΩ  
L
VOL = -14.93V  
-20V  
0
0.5  
1.0  
TIME (ms)  
1.5  
2.0  
FIGURE 80. SIMULATED OUTPUT VOLTAGE SWING  
FN7532.2  
May 16, 2011  
24  
ISL28118, ISL28218  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make  
sure you have the latest Rev.  
DATE  
REVISION  
FN7532.2  
CHANGE  
5/9/2011  
Page 2: Added NC pin to Pin Descriptions table.  
Page 3: Added ISL28218EVAL1Z evaluation board to the Ordering Information table.  
Page 12: Added new Output Overhead Voltage plots (Figs. 31,32)  
Pages 19 through 24: Added SPICE model schematic, netlist, description and Figs. 66 through 80.  
11/12/10  
FN7532.1  
On page 1: Features Section, added Low input offset voltage and superb offset voltage temperature drift for  
ISL28118.  
Updated Intersil trademark statement (bottom of page)  
On page 3: Removed “coming soon” from ISL28118FBZ. Updated tape & reel note.  
On page 4: Change ISL28118 Theta JA value from 158 to 165. Added ISL28118 min/max specs to VOS (input  
offset voltage), TCVOS and min specs to CMRR.  
On page 5: Added AVOL MIN spec for ISL28118 in dB. Changed existing AVOL spec from V/mV to dB. Added VOL  
max spec for ISL28118, IS Typ and Max spec for ISL28118. Changed TS from 18µs to 8.5µs.  
On page 6: Added Min Max VOS spec, TCVOS spec for ISL28118. Changed AVOL specs from V/mV to dB.  
On page 7: Changed Slew Rate TYP from ±1.2V/µs to ±1V/µs. Added for TS TYP spec = 4µs. Changed min/max  
note 8 to “Compliance to datasheet limits is assured by one or more methods: production test, characterization  
and/or design.” Added Figs 3 & 4 for ISL28118. Figures 5 & 6 moved to page 8.  
On page 8: Added Figures 7 & 8  
On page 10: Added Figures 15 & 16 for ISL28118  
On page 10, in Figure 19, changed VS from ±5V to ±15V  
On page 12 and page 13: Added Figures 27, 28, 31 & 34 for ISL28118  
On page 13: Added Figure 35 for ISL28118  
On page 14: Figure 41 changed VS from ±18V to ±5V, Figure 42 added RL = 2k, Figure 43 added RL = 10k and  
corrected "HD+N" to "THD+N"  
On page 15, Figure 44 added RL = 2k, Figure 45 RL = 10k.  
On page 17: Added Figure 58 for ISL28118  
On page 17, Figure 58 and 59, graph upper left corner changed VS = ±5V to VS = ±15V  
On page 17, Figure 61, deleted VS = ±5V  
9/16/10  
FN7532.0  
Initial Release  
Products  
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products  
address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks.  
Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a  
complete list of Intersil product families.  
*For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page  
on intersil.com: ISL28118, ISL28218.  
To report errors or suggestions for this datasheet, please go to: www.intersil.com/askourstaff  
FITs are available from our website at: http://rel.intersil.com/reports/search.php  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7532.2  
May 16, 2011  
25  
ISL28118, ISL28218  
Package Outline Drawing  
L8.3x3A  
8 LEAD THIN DUAL FLAT NO-LEAD PLASTIC PACKAGE  
Rev 4, 2/10  
( 2.30)  
( 1.95)  
3.00  
A
B
( 8X 0.50)  
(1.50)  
6
PIN 1  
INDEX AREA  
( 2.90 )  
(4X)  
0.15  
PIN 1  
TOP VIEW  
(6x 0.65)  
( 8 X 0.30)  
TYPICAL RECOMMENDED LAND PATTERN  
SEE DETAIL "X"  
0.10 C  
2X 1.950  
C
6X 0.65  
0.75 ±0.05  
0.08 C  
1
PIN #1  
INDEX AREA  
6
SIDE VIEW  
1.50 ±0.10  
5
8
C
0 . 2 REF  
4
8X 0.30 ±0.05  
0.10 M C A B  
8X 0.30 ± 0.10  
0 . 02 NOM.  
0 . 05 MAX.  
2.30 ±0.10  
DETAIL "X"  
BOTTOM VIEW  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to ASME Y14.5m-1994.  
3. Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension applies to the metallized terminal and is measured  
between 0.15mm and 0.20mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
Compliant to JEDEC MO-229 WEEC-2 except for the foot length.  
7.  
FN7532.2  
May 16, 2011  
26  
ISL28118, ISL28218  
Package Outline Drawing  
M8.15E  
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE  
Rev 0, 08/09  
4
4.90 ± 0.10  
A
DETAIL "A"  
0.22 ± 0.03  
B
6.0 ± 0.20  
3.90 ± 0.10  
4
PIN NO.1  
ID MARK  
5
(0.35) x 45°  
4° ± 4°  
0.43 ± 0.076  
1.27  
0.25 M C A B  
SIDE VIEW “B”  
TOP VIEW  
1.75 MAX  
1.45 ± 0.1  
0.25  
GAUGE PLANE  
C
SEATING PLANE  
0.175 ± 0.075  
SIDE VIEW “A  
0.10 C  
0.63 ±0.23  
DETAIL "A"  
(0.60)  
(1.27)  
NOTES:  
(1.50)  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3. Unless otherwise specified, tolerance : Decimal ± 0.05  
(5.40)  
4. Dimension does not include interlead flash or protrusions.  
Interlead flash or protrusions shall not exceed 0.25mm per side.  
The pin #1 identifier may be either a mold or mark feature.  
Reference to JEDEC MS-012.  
5.  
6.  
TYPICAL RECOMMENDED LAND PATTERN  
FN7532.2  
May 16, 2011  
27  
ISL28118, ISL28218  
Package Outline Drawing  
M8.118  
8 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE  
Rev 3, 3/10  
5
3.0±0.05  
A
8
DETAIL "X"  
D
1.10 MAX  
SIDE VIEW 2  
0.09 - 0.20  
4.9±0.15  
3.0±0.05  
5
0.95 REF  
PIN# 1 ID  
1
2
B
0.65 BSC  
GAUGE  
PLANE  
TOP VIEW  
0.25  
3°±3°  
0.55 ± 0.15  
DETAIL "X"  
0.85±010  
H
C
SEATING PLANE  
0.10 C  
0.25 - 0.036  
0.10 ± 0.05  
0.08  
C A-B D  
M
SIDE VIEW 1  
(5.80)  
NOTES:  
1. Dimensions are in millimeters.  
(4.40)  
(3.00)  
2. Dimensioning and tolerancing conform to JEDEC MO-187-AA  
and AMSEY14.5m-1994.  
3. Plastic or metal protrusions of 0.15mm max per side are not  
included.  
(0.65)  
4. Plastic interlead protrusions of 0.15mm max per side are not  
included.  
(0.40)  
(1.40)  
5. Dimensions are measured at Datum Plane "H".  
6. Dimensions in ( ) are for reference only.  
TYPICAL RECOMMENDED LAND PATTERN  
FN7532.2  
May 16, 2011  
28  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY