ISL28276FBZ [INTERSIL]

Single, Dual and Quad Micropower Single Supply Rail-to-Rail Input and Output (RRIO) Precision Op Amp; 单,双和四通道微功耗单电源轨至轨输入和输出( RRIO )精密运算放大器
ISL28276FBZ
型号: ISL28276FBZ
厂家: Intersil    Intersil
描述:

Single, Dual and Quad Micropower Single Supply Rail-to-Rail Input and Output (RRIO) Precision Op Amp
单,双和四通道微功耗单电源轨至轨输入和输出( RRIO )精密运算放大器

运算放大器
文件: 总19页 (文件大小:967K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISL28176, ISL28276, ISL28476  
®
Data Sheet  
June 23, 2009  
FN6301.4  
Single, Dual and Quad Micropower Single  
Supply Rail-to-Rail Input and Output  
(RRIO) Precision Op Amp  
Features  
• Low power 120µA typical supply current (ISL28276)  
• 100µV maximum offset voltage  
The ISL28176, ISL28276 and ISL28476 are single, dual and  
quad channel micropower operational amplifiers optimized  
for single supply operation over the 2.4V to 5V range. They  
can be operated from one lithium cell or two Ni-Cd batteries.  
• 500pA typical input bias current  
• 400kHz typical gain-bandwidth product  
• 115dB typical PSRR and CMRR  
These devices feature an Input Range Enhancement Circuit  
(IREC) which enables them to maintain CMRR performance for  
input voltages 10% above the positive supply rail and down to  
the negative supply. The output operation is rail-to-rail.  
• Single supply operation down to 2.4V  
• Input is capable of swinging above V+ and to V- (ground  
sensing)  
• Rail-to-rail input and output (RRIO)  
• Pb-free (RoHS compliant)  
The ISL28276 and ISL28476 draw minimal supply current  
while meeting excellent DC-accuracy, AC-performance,  
noise and output drive specifications. The ISL28276 (QSOP  
package only) contains a power-down enable pin that  
reduces the power supply current to typically 4µA in the  
disabled state.  
Applications  
• Battery- or solar-powered systems  
• 4mA to 25mA current loops  
• Handheld consumer products  
• Medical devices  
Ordering Information  
PART NUMBER  
(Note)  
PART  
MARKING  
PACKAGE  
(Pb-free)  
PKG.  
DWG. #  
• Thermocouple amplifiers  
• Photodiode pre-amps  
• pH probe amplifiers  
ISL28176FBZ*  
ISL28276FBZ*  
ISL28276IAZ*  
ISL28476FAZ*  
28176 FBZ  
8 Ld SOIC MDP0027  
8 Ld SOIC MDP0027  
16 Ld QSOP MDP0040  
16 Ld QSOP MDP0040  
28276 FBZ  
28276 IAZ  
28476 FAZ  
*Add “-T7” suffix for tape and reel. Please refer to TB347 for details  
on reel specifications.  
NOTE: These Intersil Pb-free plastic packaged products employ  
special Pb-free material sets, molding compounds/die attach  
materials, and 100% matte tin plate plus anneal (e3 termination  
finish, which is RoHS compliant and compatible with both SnPb and  
Pb-free soldering operations). Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed  
the Pb-free requirements of IPC/JEDEC J STD-020.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2006, 2007, 2009. All Rights Reserved  
All other trademarks mentioned are the property of their respective owners.  
ISL28176, ISL28276, ISL28476  
Pinouts  
ISL28176  
(8 LD SOIC)  
TOP VIEW  
ISL28276  
(16 LD QSOP)  
TOP VIEW  
NC  
1
2
3
4
5
6
7
8
16 NC  
NC  
IN-_A  
IN+_A  
V-  
1
2
3
4
8
7
6
5
NC  
NC  
OUT_A  
IN-_A  
IN+_A  
EN_A  
V-  
15 V+  
V+  
-
+
14 OUT_B  
13 IN-_B  
12 IN+_B  
11 EN_B  
10 NC  
OUT_A  
NC  
NC  
9
NC  
ISL28276  
(8 LD SOIC)  
TOP VIEW  
ISL28476  
(16 LD QSOP)  
TOP VIEW  
OUT_A  
IN-_A  
IN+_A  
V-  
1
2
3
4
8
7
6
5
V+  
OUT_A  
1
2
3
4
5
6
7
8
16 OUT_D  
15 IN-_D  
14 IN+_D  
13 V-  
OUT_B  
IN-_B  
IN+_B  
IN-_A  
IN+_A  
V+  
IN+_B  
IN-_B  
OUT_B  
NC  
12 IN+_C  
11 IN-_C  
10 OUT_C  
9
NC  
FN6301.4  
June 23, 2009  
2
ISL28176, ISL28276, ISL28476  
Absolute Maximum Ratings (T = +25°C)  
Thermal Information  
A
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5V  
Supply Turn On Voltage Slew Rate . . . . . . . . . . . . . . . . . . . . . 1V/µs  
Differential Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5mA  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . V- - 0.5V to V+ + 0.5V  
ESD Rating  
Thermal Resistance (Typical, Note 1)  
θ
(°C/W)  
JA  
8 Ld SOIC Package . . . . . . . . . . . . . . . . . . . . . . . .  
16 Ld QSOP Package . . . . . . . . . . . . . . . . . . . . . . .  
125  
100  
Output Short-Circuit Duration . . . . . . . . . . . . . . . . . . . . . . .Indefinite  
Ambient Operating Temperature Range . . . . . . . . .-40°C to +125°C  
Storage Temperature Range . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . +150°C  
Pb-free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3kV  
Machine Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .300V  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and  
result in failures not covered by warranty.  
NOTE:  
1. θ is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
JA  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications V+ = 5V, V- = 0V,V  
= 2.5V, R = Open, T = +25°C unless otherwise specified.  
L A  
Boldface limits apply over the operating temperature range, -40°C to +125°C, temperature data  
CM  
established by characterization.  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
CONDITIONS  
(Note 2) TYP (Note 2) UNIT  
DC SPECIFICATIONS  
V
Input Offset Voltage  
ISL28176  
ISL28276  
ISL28476  
ISL28176  
-100  
-220  
±20  
±20  
±20  
100  
220  
µV  
µV  
µV  
OS  
-100  
-150  
100  
150  
-100  
-225  
100  
225  
ΔV  
Input Offset Voltage vs Temperature  
Input Offset Current  
0.7  
0.5  
µV/°C  
µV/°C  
nA  
OS  
ΔT  
---------------  
ISL28276, ISL28476  
ISL28176  
I
I
-1  
-2  
±0.4  
1.3  
2
OS  
ISL28276, ISL28476  
ISL28176  
-1.3  
-4  
±0.25  
±0.5  
±0.5  
1
4
nA  
nA  
nA  
Input Bias Current  
-2  
-5  
2
5
B
ISL28276, ISL28476  
-2  
2
-2.5  
2.5  
CMIR  
Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
Guaranteed by CMRR  
0
5
V
CMRR  
V
= 0V to 5V  
90  
80  
115  
115  
dB  
CM  
PSRR  
Power Supply Rejection Ratio  
V+ = 2.4V to 5V  
90  
dB  
80  
FN6301.4  
June 23, 2009  
3
ISL28176, ISL28276, ISL28476  
Electrical Specifications V+ = 5V, V- = 0V,V  
= 2.5V, R = Open, T = +25°C unless otherwise specified.  
L A  
Boldface limits apply over the operating temperature range, -40°C to +125°C, temperature data  
CM  
established by characterization. (Continued)  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
CONDITIONS  
(Note 2) TYP (Note 2) UNIT  
A
Large Signal Voltage Gain  
ISL28176  
= 0.5V to 4.5V, R = 100kΩ  
200  
200  
500  
550  
V/mV  
V/mV  
VOL  
V
O
L
ISL28276, ISL28476  
= 0.5V to 4.5V, R = 100kΩ  
350  
350  
V
O
L
ISL28176,  
= 0.5V to 4.5V, R = 1kΩ  
V
25  
V/mV  
O
L
ISL28276, ISL28476  
= 0.5V to 4.5V, R = 1kΩ  
V
95  
3
V/mV  
mV  
O
L
V
Maximum Output Voltage Swing  
ISL28176  
Output low, R = 100kΩ  
8
OUT  
L
10  
Output low, R = 1kΩ  
130  
200  
300  
mV  
V
L
Output high, R = 100kΩ  
4.994 4.997  
L
4.992  
Output high, R = 1kΩ  
4.750 4.867  
V
L
4.7  
Maximum Output Voltage Swing  
ISL28276, ISL28476  
Output low, R = 100kΩ  
3
6
30  
mV  
mV  
V
L
Output low, R = 1kΩ  
130  
175  
225  
L
Output high, R = 100kΩ  
4.990 4.996  
L
4.97  
Output high, R = 1kΩ  
4.800 4.880  
V
L
4.750  
I
Supply Current, Enabled  
ISL28176  
35  
30  
55  
120  
240  
4
75  
90  
µA  
µA  
µA  
µA  
mA  
mA  
mA  
mA  
S,ON  
ISL28276, All channels enabled.  
ISL28476, All channels enabled.  
156  
175  
315  
350  
I
I
Supply Current, Disabled  
ISL28276IAZ (QSOP package only),  
All channels disabled.  
7
9
S,OFF  
+
Short Circuit Sourcing Capability  
ISL28176  
18  
18  
31  
31  
26  
26  
SC  
R
= 10Ω  
L
ISL28276, ISL28476  
= 10Ω  
29  
23  
R
L
I
-
Short Circuit Sinking Capability  
ISL28176  
= 10Ω  
17  
15  
SC  
R
L
ISL28276, ISL28476  
= 10Ω  
24  
19  
R
L
V
V
V
Supply Operating Range  
EN Pin High Level  
V to V  
+
2.4  
2
5
V
V
SUPPLY  
ENH  
-
ISL28276IAZ, (QSOP package only)  
ISL28276IAZ, (QSOP package only)  
EN Pin Low Level  
0.8  
V
ENL  
I
EN Pin Input High Current  
V
= V  
+
0.7  
1.3  
1.5  
µA  
ENH  
EN  
ISL28276IAZ, (QSOP package only)  
FN6301.4  
June 23, 2009  
4
ISL28176, ISL28276, ISL28476  
Electrical Specifications V+ = 5V, V- = 0V,V  
= 2.5V, R = Open, T = +25°C unless otherwise specified.  
L A  
Boldface limits apply over the operating temperature range, -40°C to +125°C, temperature data  
CM  
established by characterization. (Continued)  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
CONDITIONS  
(Note 2) TYP (Note 2) UNIT  
I
EN Pin Input Low Current  
V
= V-  
0
0.1  
µA  
ENL  
EN  
ISL28276IAZ, (QSOP package only)  
AC SPECIFICATONS  
GBW Gain Bandwidth Product  
A
R
= 100, R = 100kΩ, R = 1kΩ,  
400  
1.5  
2.5  
28  
kHz  
V
F
G
= 10kΩ to V  
L
CM  
e
Input Noise Voltage Peak-to-Peak  
ISL28176  
f = 0.1Hz to 10Hz  
µV  
n
P-P  
P-P  
ISL28276, ISL28476  
f = 0.1Hz to 10Hz  
µV  
Input Noise Voltage Density  
ISL28176  
nV/Hz  
nV/Hz  
pA/Hz  
pA/Hz  
dB  
f
= 1kHz  
O
ISL28276, ISL28476  
= 1kHz  
30  
f
O
i
Input Noise Current Density  
ISL28176  
= 1kHz  
0.16  
0.12  
78  
n
f
O
ISL28276, ISL28476  
= 1kHz  
f
O
CMRR @ 60Hz  
Input Common Mode Rejection Ratio  
ISL28276, ISL28476  
= 1V , R = 10kΩ to V  
CM  
V
CM  
ISL28176  
V , V- = ±1.2V and ±2.5V,  
P-P  
L
PSRR+ @ 120Hz Power Supply Rejection Ratio, +V  
PSRR- @ 120Hz Power Supply Rejection Ratio, -V  
TRANSIENT RESPONSE  
90  
dB  
+
V
= 1V , R = 10kΩ to V  
P-P  
SOURCE  
L
CM  
CM  
CM  
CM  
ISL28276, ISL28476  
V , V- = ±1.2V and ±2.5V,  
105  
70  
dB  
dB  
dB  
+
V
= 1V , R = 10kΩ to V  
SOURCE  
ISL28176  
V , V- = ±1.2V and ±2.5V  
P-P  
L
+
V
= 1V , R = 10kΩ to V  
P-P  
SOURCE  
L
ISL28276, ISL28476  
V , V- = ±1.2V and ±2.5V  
V
73  
+
= 1V , R = 10kΩ to V  
P-P  
SOURCE  
L
SR  
Slew Rate  
ISL28176  
ISL28276, ISL28476  
±0.065 ±0.13  
±0.3  
V/µs  
V/µs  
±0.10  
±0.17  
±0.20  
±0.09  
±0.25  
t
Enable to Output Turn-on Delay Time,  
V
R
= 5V to 0V, A = -1,  
EN V  
2
µs  
µs  
EN  
10% EN to 10% V  
,
= R = RL = 1k to V  
ISL28276IAZ,  
= R = RL = 1k to V ISL28276IAZ,  
CM,  
OUT  
g
f
CM,  
(QSOP package only)  
Enable to Output Turn-off Delay Time,  
V
R
= 0V to 5V, A = -1,  
V
0.1  
EN  
10% EN to 10% V  
OUT  
g
f
(QSOP package only)  
NOTE:  
2. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization  
and are not production tested.  
FN6301.4  
June 23, 2009  
5
ISL28176, ISL28276, ISL28476  
Typical Performance Curves  
2
+1  
V
= 2.5V  
+
1
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
V , V = ±1.2V  
+
-
L
0
R
= 1k  
V , V = ±2.5V  
+
-
L
-1  
-2  
R
= 1k  
V , V = ±1.2V  
+
R
-
L
= 10k  
V
= 5V  
= 2V  
+
-3  
-4  
-5  
-6  
-7  
-8  
-9  
V , V = ±2.5V  
+
R
-
L
= 10k  
R
C
= 10k  
= 8.3pF  
= +1  
L
L
V
= 50mV  
P-P  
V
OUT  
= 1  
+
A
V
A
V
C
R
= 3pF  
L
F
V
= 10mV  
= 0/R = INF  
OUT  
P-P  
G
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
5M  
FIGURE 1. ISL28176 GAIN vs FREQUENCY vs SUPPLY  
VOLTAGE  
FIGURE 2. ISL28276, ISL28476 FREQUENCY RESPONSE vs  
SUPPLY VOLTAGE  
45  
40  
35  
30  
45  
40  
V
= 2.5V  
35  
30  
25  
20  
15  
10  
5
+
25  
V , V = ±1.25V  
V
= 5V  
+
-
+
20  
15  
10  
5
A
R
C
= 100  
= 10kΩ  
= 2.7pF  
V
L
L
F
F
G
A
R
C
= 100  
= 10k  
= 8.3pF  
= 10mV  
= 221kΩ  
= 2.23kΩ  
V
L
L
V , V = ±2.5V  
+
-
V
= 2V  
+
R /R = 99.02  
R
R
G
V
R
R
OUT  
P-P  
V , V = ±1.0V  
= 221kΩ  
+
-
F
G
= 2.23kΩ  
0
100  
0
1k  
10k  
100k  
1M  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
FREQUENCY (Hz)  
FIGURE 3. ISL28176 GAIN vs FREQUENCY vs SUPPLY  
VOLTAGE  
FIGURE 4. ISL28276, ISL28476 FREQUENCY RESPONSE vs  
SUPPLY VOLTAGE  
120  
80  
200  
150  
100  
50  
100  
80  
60  
40  
20  
0
80  
40  
0
40  
PHASE  
0
GAIN  
0
-40  
-80  
-120  
GAIN  
10k  
-50  
-100  
-150  
PHASE  
100  
-40  
-80  
-20  
10  
100  
1k  
100k  
1M  
1
10  
1k  
10k 100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 5. A  
VOL  
vs FREQUENCY @ 100kΩ LOAD  
FIGURE 6. A  
VOL  
vs FREQUENCY @ 1kΩ LOAD  
FN6301.4  
June 23, 2009  
6
ISL28176, ISL28276, ISL28476  
Typical Performance Curves (Continued)  
120  
110  
100  
90  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
V , V = ±2.5V  
+
-
V
= 1V  
SOURCE  
P-P  
R
= 100k  
= +1  
Ω
PSRR +  
L
A
V
80  
70  
60  
50  
PSRR -  
V , V = ±2.5V  
40  
30  
+
-
V
= 1V  
SOURCE  
P-P  
20  
10  
R
= 100k  
Ω
L
A
= +1  
V
0
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
FIGURE 7. PSRR vs FREQUENCY  
FIGURE 8. CMRR vs FREQUENCY  
1000  
100  
10  
1k  
100  
10  
V
R
= 5V  
+
L
L
= OPEN  
= 8.3pF  
= +1  
C
A
V
100k  
0.1  
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 9. ISL28176 INPUT VOLTAGE NOISE DENSITY vs  
FREQUENCY  
FIGURE 10. ISL28276, ISL28476 VOLTAGE NOISE vs  
FREQUENCY  
10  
10.0  
V
= 5V  
+
R
= OPEN  
L
L
C
= 8.3pF  
= +1  
A
V
1
1.0  
0.1  
0.1  
0.1  
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 11. ISL28176 INPUT CURRENT NOISE DENSITY vs  
FREQUENCY  
FIGURE 12. ISL28276, ISL28476 CURRENT NOISE vs  
FREQUENCY  
FN6301.4  
June 23, 2009  
7
ISL28176, ISL28276, ISL28476  
Typical Performance Curves (Continued)  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
V
= 5V  
+
R
C
R
= OPEN  
L
L
g
= 8.3pF  
= 10, R = 10k  
= 1000  
f
A
V
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
-1.0  
-1.5  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
TIME (s)  
TIME (1s/DIV)  
FIGURE 13. ISL28176 INPUT VOLTAGE NOISE 0.1Hz TO 10Hz  
FIGURE 14. ISL28276, ISL28476 0.1Hz TO 10Hz INPUT  
VOLTAGE NOISE  
2.56  
12  
10  
8
V
IN  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
2.42  
V
OUT  
6
V , V = ±2.5V  
+
-
R
= 10k  
L
L
g
4
2
C
R
A
= 8.3pF  
= R = 10k  
f
V
V
= 5VDC  
+
= 2  
= 10mV  
= 0.1V  
P-P  
V
OUT  
OUT  
= 500Ω  
V
P-P  
R
L
0
A
= +1  
V
-2  
0
2
4
6
8
10 12 14 16 18 20  
TIME (µs)  
0
50  
100  
150  
200  
250  
300  
350  
400  
TIME (µs)  
FIGURE 15. ISL28176 SMALL SIGNAL TRANSIENT RESPONSE  
FIGURE 16. ISL28276, ISL28476 SMALL SIGNAL TRANSIENT  
RESPONSE  
2.5  
2.0  
1.5  
1.0  
4.0  
V
IN  
V
OUT  
3.5  
3.0  
2.5  
V
V
= 5VDC  
+
= 2V  
P-P  
OUT  
= 1kΩ  
L
= -1  
R
A
0.5  
0
V , V = ±2.5V  
+
-
R
= 10k  
L
L
g
V
C
R
= 8.3pF  
= 10k  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
R = 30k  
f
2.0  
1.5  
1.0  
A
OUT  
= 4  
V
V
OUT  
V
= 4V  
P-P  
V
IN  
0
20  
40  
60  
80  
100  
0
50  
100  
150  
200  
250  
300  
350  
400  
TIME (µs)  
TIME (µs)  
FIGURE 17. ISL28176 LARGE SIGNAL TRANSIENT  
RESPONSE  
FIGURE 18. ISL28276, ISL28476 LARGE SIGNAL TRANSIENT  
RESPONSE  
FN6301.4  
June 23, 2009  
8
ISL28176, ISL28276, ISL28476  
Typical Performance Curves (Continued)  
100  
80  
A
= -1  
= 200mV  
= 5V  
V
EN  
INPUT  
V
V
IN  
P-P  
60  
+
V = 0V  
-
40  
20  
0
0
0
-20  
-40  
-60  
-80  
-100  
V+ = 5V  
V
OUT  
R
= OPEN  
L
F
R
= 100k, R = 100  
G
A
= +1000  
V
-1  
0
1
2
V
3
(V)  
4
5
6
10µs/DIV  
CM  
FIGURE 19. ISL28276 ENABLE TO OUTPUT DELAY TIME  
FIGURE 20. INPUT OFFSET VOLTAGE vs COMMON-MODE  
INPUT VOLTAGE  
155  
135  
115  
95  
100  
80  
60  
40  
20  
0
-20  
75  
-40  
-60  
V+ = 5V  
R
= OPEN  
L
F
55  
R
= 100k, R = 100  
G
-80  
A
= +1000  
V
35  
-100  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-1  
0
1
2
3
4
5
6
SUPPLY VOLTAGE (V)  
V
(V)  
CM  
FIGURE 21. INPUT OFFSET CURRENT vs COMMON-MODE  
INPUT VOLTAGE  
FIGURE 22. ISL28276 SUPPLY CURRENT vs SUPPLY VOLTAGE  
75  
150  
n = 12  
70  
N = 7  
100  
MAX  
65  
50  
MAX  
60  
0
MIN  
MEDIAN  
55  
-50  
MIN  
MEDIAN  
50  
-100  
45  
-40  
-150  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-20  
0
20  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 23. ISL28176 SUPPLY CURRENT vs TEMPERATURE  
FIGURE 24. ISL28276 SUPPLY CURRENT vs TEMPERATURE,  
V ,V = ±2.5V ENABLED, R = INF  
V
= ±2.5V ENABLED, R = INF  
S
L
+
-
L
FN6301.4  
June 23, 2009  
9
ISL28176, ISL28276, ISL28476  
Typical Performance Curves (Continued)  
4.9  
4.7  
4.5  
4.3  
4.1  
3.9  
3.7  
3.5  
320  
300  
280  
260  
240  
220  
200  
N = 7  
N = 1000  
MAX  
MEDIAN  
MAX  
MEDIAN  
MIN  
MIN  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 25. ISL28476 SUPPLY CURRENT vs TEMPERATURE,  
FIGURE 26. ISL28276 SUPPLY CURRENT vs TEMPERATURE,  
V , V = ±2.5V ENABLED, R = INF  
V , V = ±2.5V DISABLED, R = INF  
+
-
L
+
-
L
200  
150  
100  
50  
200  
150  
100  
50  
SO PACKAGE  
SO PACKAGE  
n = 12  
n = 12  
MAX  
MAX  
MEDIAN  
MEDIAN  
MIN  
0
0
MIN  
-50  
-40  
-50  
-40  
-20  
0
20  
40  
60  
80  
100 120  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 27. ISL28176 INPUT OFFSET VOLTAGE vs  
FIGURE 28. ISL28176 INPUT OFFSET VOLTAGE vs  
TEMPERATURE V = ±2.5V  
S
TEMPERATURE V = ±1.2V  
S
150  
100  
50  
150  
100  
50  
N = 7  
N = 7  
MAX  
MAX  
MEDIAN  
MIN  
MEDIAN  
MIN  
0
0
-50  
-100  
-150  
-50  
-100  
-150  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
TEMPERATURE (°C)  
vs TEMPERATURE, V = 0V,  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
FIGURE 29. ISL28276 V  
vs TEMPERATURE, V = 0V,  
IN  
FIGURE 30. ISL28276 V  
OS  
OS  
V ,V = ±2.5V  
IN  
V ,V = ±1.2V  
+
-
+ -  
FN6301.4  
June 23, 2009  
10  
ISL28176, ISL28276, ISL28476  
Typical Performance Curves (Continued)  
200  
150  
100  
50  
200  
150  
100  
50  
N = 1000  
N = 1000  
MAX  
MAX  
MEDIAN  
MEDIAN  
0
0
-50  
-50  
MIN  
MIN  
-100  
-150  
-200  
-100  
-150  
-200  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 31. ISL28476 V  
vs TEMPERATURE, V = 0V,  
IN  
FIGURE 32. ISL28476 V  
vs TEMPERATURE, V = 0V,  
OS IN  
OS  
V ,V = ±2.5V  
V ,V = ±1.2V  
+
-
+
-
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
n = 12  
n = 12  
MAX  
MAX  
MEDIAN  
MEDIAN  
MIN  
MIN  
0
-0.5  
-40  
-0.5  
-20  
20  
40  
60  
80  
100 120  
-40  
-20  
0
20  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 33. ISL28176 I  
(+) vs TEMPERATURE V = ±2.5V  
FIGURE 34. ISL28176 I (+) vs TEMPERATURE V = ±1.2V  
BIAS S  
BIAS  
S
2.5  
3.0  
N = 1000  
N = 1000  
2.5  
2.0  
1.5  
1.0  
0.5  
0
MAX  
2.0  
1.5  
1.0  
0.5  
0
MAX  
MEDIAN  
MIN  
MEDIAN  
MIN  
-0.5  
-1.0  
-1.5  
-0.5  
-1.0  
-1.5  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 35. ISL28276 ISL28476 I  
(+) vs TEMPERATURE,  
FIGURE 36. ISL28276, ISL28476 I  
(+) vs TEMPERATURE,  
BIAS  
BIAS  
V ,V = ±2.5V  
V ,V = ±1.2V  
+ -  
+
-
FN6301.4  
June 23, 2009  
11  
ISL28176, ISL28276, ISL28476  
Typical Performance Curves (Continued)  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
n = 12  
n = 12  
MAX  
MAX  
MEDIAN  
MEDIAN  
MIN  
MIN  
-0.5  
-0.5  
-40  
-20  
0
20  
40  
60  
80  
100 120  
-40  
-20  
0
20  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 37. ISL28176 I  
(-) vs TEMPERATURE V = ±2.5V  
S
FIGURE 38. ISL28176 I  
(-) vs TEMPERATURE V = ±1.2V  
BIAS S  
BIAS  
2.5  
2.5  
N = 1000  
N = 1000  
MAX  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
MAX  
MEDIAN  
MIN  
MEDIAN  
MIN  
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
-1.0  
-1.5  
-2.0  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 39. ISL28276 ISL28476 I  
(-) vs TEMPERATURE,  
FIGURE 40. ISL28276, ISL28476 I  
(-) vs TEMPERATURE,  
BIAS  
BIAS  
V , V = ±2.5V  
V , V = ±1.2V  
+
-
+ -  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
N = 1000  
n = 12  
MAX  
MAX  
MEDIAN  
-0.5  
-1.0  
-1.5  
-2.0  
MEDIAN  
MIN  
MIN  
0
-0.5  
-40  
-20  
20  
40  
60  
80  
100 120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 41. ISL28176 INPUT OFFSET CURRENT vs  
FIGURE 42. ISL28276, ISL28476 I  
vs TEMPERATURE,  
OS  
TEMPERATURE, V = ±2.5V  
S
V , V = ±2.5V  
+ -  
FN6301.4  
June 23, 2009  
12  
ISL28176, ISL28276, ISL28476  
Typical Performance Curves (Continued)  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1050  
950  
850  
750  
650  
550  
450  
350  
n = 12  
N = 1000  
MAX  
MAX  
MEDIAN  
MEDIAN  
MIN  
MIN  
-40  
-20  
0
20  
40  
60  
80  
100 120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 43. ISL28176 A  
, R = 100k, V ±2.5V, V = ±2V  
FIGURE 44. ISL28276, ISL28476 A vs TEMPERATURE,  
VOL  
VOL  
L
S
O
V , V = ±2.5V, R = 100k  
+
-
L
125  
135  
130  
125  
120  
115  
110  
105  
100  
95  
N = 1000  
n = 12  
MAX  
120  
MAX  
115  
MEDIAN  
MIN  
110  
105  
100  
95  
MEDIAN  
MIN  
90  
-40  
-40  
-20  
0
20  
40  
60  
80  
100 120  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 45. ISL28176 CMRR vs TEMPERATURE, VCM = +2.5V  
TO -2.5V  
FIGURE 46. ISL28276, ISL28476 CMRR vs TEMPERATURE,  
V
= +2.5V TO -2.5V V , V = ±2.5V  
CM  
+
-
140  
140  
130  
120  
110  
100  
90  
n = 12  
N = 1000  
MAX  
135  
130  
MAX  
125  
120  
115  
110  
105  
100  
95  
MEDIAN  
MIN  
MEDIAN  
MIN  
80  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 47. ISL28176 PSRR vs TEMPERATURE, V = ±1.2V  
S
FIGURE 48. ISL28276, ISL28476 PSRR vs TEMPERATURE, V ,  
+
TO ±2.5V  
V = ±1.2V to ±2.5V  
-
FN6301.4  
June 23, 2009  
13  
ISL28176, ISL28276, ISL28476  
Typical Performance Curves (Continued)  
4.91  
4.90  
4.89  
4.88  
4.87  
4.86  
4.85  
4.84  
4.83  
4.82  
4.91  
4.90  
4.89  
4.88  
4.87  
4.86  
4.85  
n = 12  
N = 1000  
MAX  
MAX  
MEDIAN  
MEDIAN  
MIN  
MIN  
-40  
-20  
0
20  
40  
60  
80  
100 120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 49. ISL28176 V  
HIGH vs TEMPERATURE,  
FIGURE 50. ISL28276, ISL28476 V  
HIGH vs  
OUT  
OUT  
V , V = ±2.5V, R = 1k  
TEMPERATURE, V ,V = ±2.5V, R = 1k  
+
-
L
+
-
L
170  
160  
150  
140  
130  
120  
110  
100  
90  
240  
220  
200  
180  
160  
140  
120  
100  
80  
n = 12  
N = 1000  
MEDIAN  
MAX  
MAX  
MEDIAN  
MIN  
MIN  
80  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 51. ISL28176 V  
LOW vs TEMPERATURE,  
FIGURE 52. ISL28276, ISL28476 V  
LOW vs  
OUT  
OUT  
V , V = ±2.5V, R = 1k  
TEMPERATURE, V , V = ±2.5V, R = 1k  
+
-
L
+
-
L
39  
37  
35  
33  
31  
29  
27  
25  
-21  
-23  
-25  
-27  
-29  
-31  
-33  
N = 1000  
N = 1000  
MAX  
MAX  
MEDIAN  
MEDIAN  
MIN  
MIN  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 53. ISL28276, ISL28476 + OUTPUT SHORT CIRCUIT  
CURRENT vs TEMPERATURE, V = -2.55V,  
FIGURE 54. ISL28276, ISL28476 - OUTPUT SHORT CIRCUIT  
CURRENT vs TEMPERATURE, V = +2.55V,  
IN  
IN  
R
= 10, V , V = ±2.5V  
R = 10, V , V = ±2.5V  
L + -  
L
+
-
FN6301.4  
June 23, 2009  
14  
ISL28176, ISL28276, ISL28476  
Typical Performance Curves (Continued)  
0.23  
0.21  
0.19  
0.17  
0.15  
0.13  
0.11  
0.09  
0.24  
0.22  
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
N = 1000  
n = 12  
MAX  
MAX  
MEDIAN  
MEDIAN  
MIN  
MIN  
-40  
-20  
0
20  
40  
60  
80  
100 120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 55. ISL28176 + SLEW RATE vs TEMPERATURE,  
FIGURE 56. ISL28276, ISL28476 + SLEW RATE vs  
V
= ±1.5V, A = +2  
TEMPERATURE, V  
= ±1.5V, A = +2  
OUT  
V
OUT  
V
0.17  
0.16  
0.15  
0.14  
0.13  
0.12  
0.11  
0.10  
0.24  
0.22  
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
N = 1000  
n = 12  
MAX  
MAX  
MEDIAN  
MEDIAN  
MIN  
MIN  
-40  
-20  
0
20  
40  
60  
80  
100 120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 57. ISL28176 - SLEW RATE vs TEMPERATURE, V  
FIGURE 58. ISL28276, ISL28476 - SLEW RATE vs  
TEMPERATURE, V = ±1.5V, A = +2  
OUT  
= ±1.5V, A = +2  
V
OUT  
V
Pin Descriptions  
ISL28176  
ISL28276  
ISL28276  
ISL28476  
PIN  
EQUIVALENT  
CIRCUIT  
(8 LD SOIC) (8 LD SOIC) (16 LD QSOP) (16 LD QSOP) NAME  
DESCRIPTION  
6
2
3
7
1
2
3
8
5
6
7
3
1
2
OUT_A  
IN-_A  
IN+_A  
V+  
Circuit 3  
Circuit 1  
Circuit 1  
Circuit 4  
Circuit 1  
Circuit 1  
Circuit 3  
Amplifier A output  
4
Amplifier A inverting input  
Amplifier A non-inverting input  
Positive power supply  
5
3
15  
4
12  
5
IN+_B  
IN-_B  
OUT_B  
NC  
Amplifier B non-inverting input  
Amplifier B inverting input  
Amplifier B output  
13  
14  
6
7
1, 5, 8  
1, 2, 8, 9, 10, 16  
8, 9  
10  
11  
12  
No internal connection  
OUT_C  
IN-_C  
IN+_C  
Circuit 3  
Circuit 1  
Circuit 1  
Amplifier C output  
Amplifier C inverting input  
Amplifier B non-inverting input  
FN6301.4  
June 23, 2009  
15  
ISL28176, ISL28276, ISL28476  
Pin Descriptions (Continued)  
ISL28176  
ISL28276  
ISL28276  
ISL28476  
PIN  
EQUIVALENT  
CIRCUIT  
(8 LD SOIC) (8 LD SOIC) (16 LD QSOP) (16 LD QSOP) NAME  
DESCRIPTION  
Negative power supply  
4
4
7
13  
14  
15  
16  
V-  
Circuit 4  
Circuit 1  
Circuit 1  
Circuit 3  
Circuit 2  
IN+_D  
IN-_D  
OUT_D  
EN_A  
Amplifier D non-inverting input  
Amplifier D inverting input  
Amplifier D output  
6
Amplifier A enable pin internal pull-down; Logic “1”  
selects the disabled state; Logic “0” selects the enabled  
state.  
11  
EN_B  
Circuit 2  
Amplifier B enable pin with internal pull-down; Logic “1”  
selects the disabled state; Logic “0” selects the enabled  
state.  
V+  
V+  
V+  
V+  
CAPACITIVELY  
COUPLED  
ESD CLAMP  
LOGIC  
PIN  
OUT  
IN-  
IN+  
V-  
V-  
V-  
V-  
CIRCUIT 1  
CIRCUIT 2  
CIRCUIT 3  
CIRCUIT 4  
Input Protection  
Applications Information  
All input terminals have internal ESD protection diodes to the  
positive and negative supply rails, limiting the input voltage  
to within one diode beyond the supply rails. Both parts have  
additional back-to-back diodes across the input terminals. If  
overdriving the inputs is necessary, the external input current  
must never exceed 5mA. External series resistors may be  
used as an external protection to limit excessive external  
voltage and current from damaging the inputs.  
Introduction  
The ISL28176, ISL28276 and ISL28476 are single, dual and  
quad BiCMOS rail-to-rail input, output (RRIO) micropower  
precision operational amplifiers. These devices are designed  
to operate from a single supply (2.4V to 5.0V) or dual  
supplies (±1.2V to ±2.5V) while drawing only 120µA  
(ISL28276) of supply current. This combination of low power  
and precision performance makes these devices suitable for  
solar and battery power applications.  
Input Bias Current Compensation  
The devices contain an input bias cancellation circuit which  
reduces the bias currents down to a typical of 500pA while  
maintaining an excellent bandwidth for a micro-power  
operational amplifier. The input stage transistors are still  
biased with adequate current for speed but the canceling  
circuit sinks most of the base current, leaving a small fraction  
as input bias current.  
Rail-to-Rail Input  
Many rail-to-rail input stages use two differential input pairs, a  
long-tail PNP (or PFET) and an NPN (or NFET). Severe  
penalties have to be paid for this circuit topology. As the input  
signal moves from one supply rail to another, the operational  
amplifier switches from one input pair to the other causing  
drastic changes in input offset voltage and an undesired  
change in magnitude and polarity of input offset current.  
Rail-to-Rail Output  
A pair of complementary MOSFET devices are used to  
achieve the rail-to-rail output swing. The NMOS sinks  
current to swing the output in the negative direction. The  
PMOS sources current to swing the output in the positive  
direction. Both parts, with a 100kΩ load, will typically swing to  
within 4mV of the positive supply rail and within 3mV of the  
negative supply rail.  
The devices achieve rail-to-rail input without sacrificing  
important precision specifications and degrading distortion  
performance. The devices’ input offset voltage exhibits a  
smooth behavior throughout the entire common-mode input  
range. The input bias current versus the common-mode  
voltage range gives us an undistorted behavior from typically  
down to the negative rail to 10% higher than the V rail (0.5V  
+
higher than V when V equals 5V).  
+
+
FN6301.4  
June 23, 2009  
16  
ISL28176, ISL28276, ISL28476  
Enable/Disable Feature  
V
+
HIGH IMPEDANCE INPUT  
The ISL28276 (QSOP package only) offers two EN pins  
(EN_A and EN_B) which disable the op amp when pulled up  
to at least 2.0V. In the disabled state (output in a high  
impedance state), the part consumes typically 4µA. By  
disabling the part, multiple parts can be connected together  
as a MUX. The outputs are tied together in parallel and a  
channel can be selected by the EN pins. The loading effects  
of the feedback resistors of the disabled amplifier must be  
considered when multiple amplifier outputs are connected  
together. The EN pin also has an internal pull-down. If left  
open, the EN pin will pull to the negative rail and the device  
will be enabled by default.  
IN  
FIGURE 60. GUARD RING EXAMPLE FOR UNITY GAIN  
AMPLIFIER  
Current Limiting  
The ISL28176, ISL28276 and ISL28476 have no internal  
current-limiting circuitry. If the output is shorted, it is possible  
to exceed the Absolute Maximum Rating for output current  
or power dissipation, potentially resulting in the destruction  
of the device.  
Using Only One Channel  
The ISL28276 and ISL28476 are dual and quad channel  
op amps. If the application only requires one channel when  
using the ISL28276 or less than 4 channels when using the  
ISL28476, the user must configure the unused channel(s) to  
prevent them from oscillating. The unused channel(s) will  
oscillate if the input and output pins are floating. This will  
result in higher than expected supply currents and possible  
noise injection into the channel being used. The proper way  
to prevent this oscillation is to short the output to the  
negative input and ground the positive input (as shown in  
Figure 59).  
Power Dissipation  
It is possible to exceed the +150°C maximum junction  
temperatures under certain load and power-supply  
conditions. It is therefore important to calculate the  
maximum junction temperature (T  
) for all applications  
JMAX  
to determine if power supply voltages, load conditions, or  
package type need to be modified to remain in the safe  
operating area. These parameters are related as follows:  
T
= T  
+ xPD  
)
MAXTOTAL  
(EQ. 1)  
JMAX  
MAX  
JA  
-
where:  
• P  
+
1/2 ISL28276  
1/4 ISL28476  
is the sum of the maximum power  
MAX  
DMAXTOTAL  
dissipation of each amplifier in the package (PD  
)
FIGURE 59. PREVENTING OSCILLATIONS IN UNUSED  
CHANNELS  
• PD  
for each amplifier can be calculated as follows:  
MAX  
V
OUTMAX  
R
L
Proper Layout Maximizes Performance  
----------------------------  
PD  
= 2*V × I  
+ (V - V ) ×  
OUTMAX  
MAX  
S
SMAX  
S
(EQ. 2)  
To achieve the maximum performance of the high input  
impedance and low offset voltage, care should be taken in  
the circuit board layout. The PC board surface must remain  
clean and free of moisture to avoid leakage currents  
between adjacent traces. Surface coating of the circuit board  
will reduce surface moisture and provide a humidity barrier,  
reducing parasitic resistance on the board. When input  
leakage current is a concern, the use of guard rings around  
the amplifier inputs will further reduce leakage currents.  
Figure 60 shows a guard ring example for a unity gain  
amplifier that uses the low impedance amplifier output at the  
same voltage as the high impedance input to eliminate  
surface leakage. The guard ring does not need to be a  
specific width, but it should form a continuous loop around  
both inputs. For further reduction of leakage currents,  
components can be mounted to the PC board using Teflon  
standoff insulators.  
where:  
• T  
= Maximum ambient temperature  
MAX  
θ = Thermal resistance of the package  
JA  
• PD  
MAX  
= Maximum power dissipation of 1 amplifier  
• V = Supply voltage (Magnitude of V and V )  
S
+
-
• I  
= Maximum supply current of 1 amplifier  
MAX  
• V  
OUTMAX  
application  
= Maximum output voltage swing of the  
• R = Load resistance  
L
FN6301.4  
June 23, 2009  
17  
ISL28176, ISL28276, ISL28476  
Small Outline Package Family (SO)  
A
D
h X 45°  
(N/2)+1  
N
A
PIN #1  
I.D. MARK  
E1  
E
c
SEE DETAIL “X”  
1
(N/2)  
B
L1  
0.010 M  
C A B  
e
H
C
A2  
A1  
GAUGE  
PLANE  
SEATING  
PLANE  
0.010  
L
4° ±4°  
0.004 C  
b
0.010 M  
C
A
B
DETAIL X  
MDP0027  
SMALL OUTLINE PACKAGE FAMILY (SO)  
INCHES  
SO16  
(0.150”)  
SO16 (0.300”)  
(SOL-16)  
SO20  
SO24  
(SOL-24)  
SO28  
(SOL-28)  
SYMBOL  
SO-8  
0.068  
0.006  
0.057  
0.017  
0.009  
0.193  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
8
SO-14  
0.068  
0.006  
0.057  
0.017  
0.009  
0.341  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
14  
(SOL-20)  
0.104  
0.007  
0.092  
0.017  
0.011  
0.504  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
20  
TOLERANCE  
MAX  
NOTES  
A
A1  
A2  
b
0.068  
0.006  
0.057  
0.017  
0.009  
0.390  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.406  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.606  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
24  
0.104  
0.007  
0.092  
0.017  
0.011  
0.704  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
28  
-
±0.003  
±0.002  
±0.003  
±0.001  
±0.004  
±0.008  
±0.004  
Basic  
-
-
-
c
-
D
1, 3  
E
-
E1  
e
2, 3  
-
L
±0.009  
Basic  
-
L1  
h
-
Reference  
Reference  
-
N
-
Rev. M 2/07  
NOTES:  
1. Plastic or metal protrusions of 0.006” maximum per side are not included.  
2. Plastic interlead protrusions of 0.010” maximum per side are not included.  
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994  
FN6301.4  
June 23, 2009  
18  
ISL28176, ISL28276, ISL28476  
Quarter Size Outline Plastic Packages Family (QSOP)  
A
MDP0040  
QUARTER SIZE OUTLINE PLASTIC PACKAGES FAMILY  
D
(N/2)+1  
N
INCHES  
SYMBOL QSOP16 QSOP24 QSOP28 TOLERANCE NOTES  
A
A1  
A2  
b
0.068  
0.006  
0.056  
0.010  
0.008  
0.193  
0.236  
0.154  
0.025  
0.025  
0.041  
16  
0.068  
0.006  
0.056  
0.010  
0.008  
0.341  
0.236  
0.154  
0.025  
0.025  
0.041  
24  
0.068  
0.006  
0.056  
0.010  
0.008  
0.390  
0.236  
0.154  
0.025  
0.025  
0.041  
28  
Max.  
±0.002  
±0.004  
±0.002  
±0.001  
±0.004  
±0.008  
±0.004  
Basic  
-
PIN #1  
I.D. MARK  
E
E1  
-
-
-
1
(N/2)  
c
-
B
D
1, 3  
0.010 C A B  
E
-
e
E1  
e
2, 3  
H
-
C
SEATING  
L
±0.009  
Basic  
-
PLANE  
L1  
N
-
0.007 C A B  
b
0.004 C  
Reference  
-
Rev. F 2/07  
L1  
NOTES:  
1. Plastic or metal protrusions of 0.006” maximum per side are not  
included.  
A
2. Plastic interlead protrusions of 0.010” maximum per side are not  
included.  
c
SEE DETAIL "X"  
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
0.010  
A2  
GAUGE  
PLANE  
L
A1  
4°±4°  
DETAIL X  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6301.4  
June 23, 2009  
19  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY