ISL59114 [INTERSIL]

YC (S-video) to Composite Video Driver with LPF; YC ( S端子),以复合视频驱动器与低通滤波器
ISL59114
型号: ISL59114
厂家: Intersil    Intersil
描述:

YC (S-video) to Composite Video Driver with LPF
YC ( S端子),以复合视频驱动器与低通滤波器

驱动器
文件: 总10页 (文件大小:331K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISL59114  
®
Data Sheet  
September 21, 2006  
FN6184.2  
YC (S-video) to Composite Video Driver  
with LPF  
Features  
• 3rd order 9MHz reconstruction filter  
• 40V/µs slew rate  
The ISL59114 is a YC (S-video) reconstruction filter with a  
-3dB roll-off frequency of 9MHz and summer amplifier to  
create the composite video signal. Operating from a single  
supply ranging from +2.5V to +3.6V and drawing only 4.5mA  
quiescent current, the ISL59114 is ideally suited for low  
power, battery-operated applications. Additionally, an enable  
pin shuts the part down in under 14ns.  
• Low supply current = 4.5mA  
• Maximum Power-down current <0.5µA  
• Supplies from 2.5V to 3.6V  
• Rail-to-rail output  
The ISL59114 is designed to meet the bandwidth and very  
low power requirements of battery-operated communication,  
instrumentation, and modern industrial applications such as  
video on demand, cable set-top boxes, MP3 players, and  
HDTV. The ISL59114 is offered in a space-saving µTQFN  
Pb-free package guaranteed to a 0.6mm maximum height  
constraint and specified for operation from -40°C to +85°C  
temperature range.  
• µTQFN package  
• Pb-free plus anneal available (RoHS compliant)  
Applications  
• Video amplifiers  
• Portable and handheld products  
• Communications devices  
• Video on demand  
• Cable set-top boxes  
• Satellite set-top boxes  
• MP3 players  
Pinout  
ISL59114  
(10 LD µTQFN)  
TOP VIEW  
GND  
10  
• HDTV  
• Personal video recorder  
Y
Y
OUT  
9
1
2
IN  
Block Diagram  
EN  
CVBS  
8
CLAMP  
OUT  
+
-
C
C
3
4
7
IN  
OUT  
65mV  
-
YIN  
9MHz  
9MHz  
+
x2  
x2  
x2  
YOUT  
1uA  
EN  
CY  
EN  
500mV  
6
CVBS  
65mV  
-
+
CIN  
COUT  
5
ENCY  
VDD  
+
+
65mV  
ENCLAMP  
ENCVBS  
-
+
CVBSOUT  
Ordering Information  
PART NUMBER (Note)  
PART MARKING  
TAPE AND REEL  
TEMP. RANGE (°C)  
PACKAGE (Pb-Free)  
PKG. DWG. #  
L10.2.1x1.6A  
ISL59114IRUZ-T7  
FJ  
7”  
-40 to +85  
10 Ld µTQFN  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate  
termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2006. All Rights Reserved.  
All other trademarks mentioned are the property of their respective owners.  
ISL59114  
Absolute Maximum Ratings (T = +25°C)  
A
Supply Voltage from V  
DD  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . .V  
Continuous Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . 40mA  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . .+125°C  
to GND . . . . . . . . . . . . . . . . . . . . . . . 4.2V  
+0.3V to GND -0.3V  
ESD Classification  
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2500V  
Machine Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300V  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +125°C  
Ambient Operating Temperature . . . . . . . . . . . . . . . .-40°C to +85°C  
DD  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are  
at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications  
V
= 3.3V, T = +25°C, R = 150to GND, unless otherwise specified.  
A L  
DD  
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT CHARACTERISTICS  
V
Supply Voltage Range  
2.5  
3.6  
4.0  
V
DD  
I
I
I
Quiescent Supply Current - CY Amps  
Enabled  
V
= 500mV, EN = V , EN  
CY DD CVBS  
= GND,  
3.1  
4.5  
mA  
DD_CY  
IN  
no load  
Quiescent Supply Current  
V
= 500mV, EN  
CY  
= EN  
= V ,  
DD  
6.0  
mA  
DD  
IN  
no load  
CVBS  
Shutdown Supply Current  
Y Input Clamp Voltage  
EN  
= EN  
= 0V  
0.1  
-15  
1
0.5  
10  
µA  
mV  
µA  
mA  
MΩ  
mV  
kΩ  
nA  
mV  
mV  
V/V  
V/V  
%
DD_OFF  
CY  
CVBS  
= -100µA  
Y
V
I
-30  
0.6  
Y_CLAMP  
Y_DOWN  
Y_UP  
I
I
Y input Clamp Discharge Current  
Y Input Clamp Charge Current  
Y Input Resistance  
V
V
= 0.5V  
1.6  
-3.0  
Y
Y
= -0.1V  
-3.4  
R
0.5V < V < 1V  
10  
500  
2.0  
Y
Y
V
C Input Clamp Voltage  
V
V
V
= 0.05V, I = 0A  
550  
2.5  
700  
3.0  
C_CLAMP  
Y
Y
Y
C
R
C Input Resistance  
= 0.05V, 0.25V < V < 0.75V  
C
C
I
C Input Bias Current  
= 0.3V  
-200  
100  
60  
-2  
200  
200  
200  
2.04  
2.04  
1.75  
3
C
V
V
Y Input Sync Detect Voltage  
Output Level Shift Voltage  
Voltage Gain, C-Y channel  
Voltage Gain, CVBS channel  
C-to-Y Channel Gain Mismatch  
C/Y-to-CVBS Channel Gain Mismatch  
DC Power Supply Rejection  
DC Power Supply Rejection  
Output Voltage High Swing  
Output Short-Circuit Current  
150  
130  
1.99  
1.98  
±0.5  
±0.7  
60  
Y_SYNC  
OLS  
V
= 0V, no load  
= 150Ω  
IN  
A
R
R
1.95  
1.93  
-1.75  
-3  
V_CY  
L
L
A
= 150Ω  
V_CVBS  
A  
V_CY  
A  
%
V_CVBS  
PSRR  
PSRR  
V
V
V
V
= 2.5V to 3.6V  
= 2.5V to 3.6V  
40  
dB  
dB  
V
_CY  
DD  
25  
35  
_CVBS  
DD  
V
= 2V, R = 150to GND  
2.85  
100  
-0.2  
3.2  
OH  
IN  
IN  
L
I
I
= 2V, to GND through 10Ω  
145  
0.001  
mA  
µA  
V
SC  
ENABLE  
EN , EN  
CY CVBS  
Input Current  
0V < V  
< 3.3V  
+0.2  
0.8  
EN  
V
V
Disable Threshold  
IL  
Enable Threshold  
2.0  
5.0  
V
IH  
R
Shutdown Output Impedance  
EN = 0V, DC  
7.5  
kΩ  
kΩ  
OUT  
EN = 0V, f = 4.5MHz  
3.4  
FN6184.2  
September 21, 2006  
2
ISL59114  
Electrical Specifications  
V
= 3.3V, T = +25°C, R = 150to GND, unless otherwise specified. (Continued)  
DD  
A
L
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
BW  
±0.1dB Bandwidth  
R
= 75, R = 150, C = 5pF  
5.6  
3.9  
8.8  
7.8  
-28.5  
-30.6  
0.10  
0.5  
5.4  
65  
MHz  
MHz  
MHz  
MHz  
dB  
0.1dB  
3dB  
SOURCE  
SOURCE  
SOURCE  
SOURCE  
L
L
R
R
R
= 500, R = 150, C = 5pF  
L L  
BW  
-3dB Bandwidth  
= 75, R = 150, C = 5pF  
L L  
= 500, R = 150, C = 5pF  
L
L
Normalized Stopband Gain  
f = 27MHz, R  
f = 27MHz, R  
= 75Ω  
SOURCE  
= 500Ω  
dB  
SOURCE  
dG  
dP  
Differential Gain  
Differential Phase  
Group Delay Variation  
Signal to Noise Ratio  
Enable Time  
NTSC and PAL  
NTSC and PAL  
f = 100kHz, 5MHz  
100% white signal  
%
°
D/DT  
SNR  
ns  
dB  
T
T
V
V
= 500mV, V  
= 500mV, V  
to 1%  
200  
14  
ns  
ON  
IN  
IN  
OUT  
OUT  
Disable Time  
to 1%  
ns  
OFF  
+SR  
-SR  
Positive Slew Rate  
Negative Slew Rate  
Fall Time  
20% to 80%, V = 1V step  
IN  
30  
40  
50  
V/µs  
V/µs  
ns  
80% to 20%, V = 1V step  
IN  
-30  
-40  
25  
-50  
t
t
2.5V  
2.5V  
, 80% - 20%  
STEP  
F
Rise Time  
, 20% - 80%  
STEP  
22  
ns  
R
Connection Diagram  
+
-
S-video cable  
65mV  
YIN  
YOUT  
-
+
Y (luminance)  
9MHz  
9MHz  
x2  
x2  
x2  
YOUT  
75  
0.1uF  
75  
1uA  
500mV  
65mV  
CIN  
COUT  
-
C (chrominance)  
+
COUT  
0.1uF  
75  
75  
75  
+
+
65mV  
ENCLAMP  
ENCY  
CVBSOUT  
75  
-
+
CVBSOUT  
uC or  
tie to 3.3V  
ENCVBS  
Note:  
ENCLAMP is high for AC coupled inputs (as shown)  
ENCLAMP is low for DC coupled inputs  
FN6184.2  
September 21, 2006  
3
ISL59114  
Pin Descriptions  
PIN NUMBER  
PIN NAME  
DESCRIPTION  
1
2
Y
Luminance input  
IN  
EN  
CLAMP  
Enable clamp. Tie high for AC coupled inputs. Tie low for DC coupled inputs.  
3
C
Chrominance input  
IN  
4
EN  
Enable chrominance and luminance outputs  
Positive power supply  
Enable composite video output  
Chrominance output  
CY  
5
V
DD  
6
EN  
CVBS  
OUT  
7
C
8
CVBS  
Composite video output  
Luminance output  
OUT  
9
Y
OUT  
10  
GND  
Ground  
Typical Performance Curves  
5
0
5
0
-3dB BW @ 8.8MHz  
-28dB BW @ 27MHz  
-0.1dB BW @ 5.6MHz  
-5  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-10  
-15  
-20  
-25  
V
R
= +3.3V  
= 150  
V
R
= +3.3V  
= 150Ω  
DD  
L
DD  
L
-30  
-35  
35M  
1M  
10M  
100k  
100k  
1M  
FREQUENCY RESPONSE (Hz)  
10M 25M  
FREQUENCY RESPONSE (Hz)  
FIGURE 2. GAIN vs FREQUENCY -3dB POINT  
FIGURE 1. GAIN vs FREQUENCY -0.1dB  
2
1
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
C
= 470pF  
V
R
= +3.3V  
V
R
= +3.3V  
= 150Ω  
= 100kHz  
L
DD  
L
DD  
L
= 150Ω  
F
IN  
0
-1  
-2  
-3  
-4  
-5  
-6  
C
= 100pF  
L
C
= 10pF  
L
25M  
0.0  
0.5  
1.0  
1.5  
2.0  
(V  
2.5  
3.0  
3.5  
4.0  
100k  
1M  
FREQUENCY RESPONSE (Hz)  
10M  
V
)
IN P-P  
FIGURE 3. GAIN vs FREQUENCY FOR VARIOUS C  
FIGURE 4. MAXIMUM OUTPUT MAGNITUDE vs INPUT  
MAGNITUDE  
LOAD  
FN6184.2  
September 21, 2006  
4
ISL59114  
Typical Performance Curves (Continued)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
270  
V
= +3.3V  
V
R
= +3.3V  
= 150Ω  
DD  
DD  
L
180  
90  
0
-90  
-180  
-270  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 6. PSRR vs FREQUENCY  
FIGURE 5. PHASE vs FREQUENCY  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
V
= +3.3V  
DD  
Y
TO C  
OUT  
IN  
C
TO Y  
IN  
OUT  
100k  
1M  
FREQUENCY (Hz)  
10M  
50M  
FIGURE 8. ISOLATION vs FREQUENCY  
FIGURE 7. OUTPUT IMPEDANCE vs FREQUENCY  
7
6
5
4
3
2
1
0
NO LOAD  
NO INPUT  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
SUPPLY VOLTAGE (V)  
FIGURE 9. MAXIMUM OUTPUT vs LOAD RESISTANCE  
FIGURE 10. SUPPLY CURRENT vs SUPPLY VOLTAGE  
FN6184.2  
September 21, 2006  
5
ISL59114  
Typical Performance Curves (Continued)  
3.6  
3.0  
2.4  
1.8  
1.2  
0.6  
0.0  
3.5  
3.0  
2.5  
V
R
V
= +3.3V  
= 150Ω  
DD  
L
= 1V  
OUT  
P-P  
V
= +3.3V  
= 150Ω  
= 2.5V  
DD  
R
V
L
2.0  
1.5  
1.0  
0.5  
0.0  
OUT  
P-P  
POSITIVE SLEW  
RATE = 41.1V/µs  
T
= 26.4ns  
RISE  
NEGATIVE SLEW  
RATE = -40.8V/µs  
T
= 26.9ns  
FALL  
-60  
0
60 120 180 240 300 360 420 480  
TIME (ns)  
-120 -60  
0
60 120 180 240 300 360 420 480 540  
TIME (ns)  
FIGURE 12. SLEW RATE  
FIGURE 11. LARGE SIGNAL STEP RESPONSE  
3.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
V
R
= +3.3V  
DD  
L
V
= +3.3V  
DD  
= 150Ω  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
R
= 150Ω  
L
DISABLE SIGNAL  
ENABLE SIGNAL  
OUTPUT SIGNAL  
-20 -10  
OUTPUT SIGNAL  
60 90 120 150 180 210  
TIME (ns)  
-60 -30  
0
30  
0
10  
20  
30  
40  
TIME (ns)  
FIGURE 13. ENABLE TIME  
FIGURE 14. DISABLE TIME  
-30  
-40  
-50  
-60  
-70  
-80  
-20  
THD  
V
R
= +3.3V  
= 150Ω  
DD  
-30  
-40  
-50  
-60  
-70  
-80  
L
V
= 2V  
OUT  
P-P  
THD  
rd  
3
HD  
rd  
3
HD  
nd  
2
HD  
nd  
2
HD  
1.0  
0.5  
1.5  
2.0  
2.5  
3.0  
1M  
10M  
FREQUENCY (Hz)  
OUTPUT VOLTAGE (V  
)
P-P  
FIGURE 15. HARMONIC DISTORTION vs FREQUENCY  
FIGURE 16. HARMONIC DISTORTION vs OUTPUT VOLTAGE  
FN6184.2  
September 21, 2006  
6
ISL59114  
Typical Performance Curves (Continued)  
16  
14  
12  
10  
8
V
R
= +3.3V  
= 150Ω  
V
R
= +3.3V  
= 150Ω  
DD  
L
DD  
L
6
4
2
80  
140  
200  
260  
320  
380  
440  
500  
INPUT RESISTANCE ()  
FIGURE 18. -3dB BANDWIDTH vs INPUT RESISTANCE  
FIGURE 17. GROUP DELAY vs FREQUENCY  
44  
V
R
= 1V  
P-P  
IN  
= 150Ω  
43  
42  
41  
40  
39  
38  
37  
L
POSITIVE SLEW RATE  
NEGATIVE SLEW RATE  
2.0  
2.5  
3.0  
3.5  
4.0  
SUPPLY VOLTAGE (V)  
FIGURE 19. SLEW RATE vs SUPPLY VOLTAGE  
100  
10  
2
4
6
8
1
2
4
6
8
1
2
4
10kHz  
100kHz  
1MHz  
4.2MHz  
FREQUENCY (Hz)  
FIGURE 20. UNWEIGHTED NOISE FLOOR  
FN6184.2  
September 21, 2006  
7
ISL59114  
Typical Performance Curves (Continued)  
JEDEC JESD51-7 HIGH EFFECTIVE  
THERMAL CONDUCTIVITY TEST BOARD -  
QFN EXPOSED DIEPAD SOLDERED TO  
PCB PER JESD51-5  
JEDEC JESD51-3 AND SEMI G42-88  
(SINGLE LAYER) TEST BOARD  
0.8  
3
2.5  
2
0.7  
0.6  
515mW  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.5  
1
775mW  
0.5  
0
0
25  
50  
75 85 100  
125  
150  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
FIGURE 21. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 22. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
The Sallen Key Low Pass Filter  
Application Information  
The Sallen Key is a classic low pass configuration. This  
provides a very stable low pass function, and in the case of  
the ISL59114, a three-pole roll-off at 9MHz. The three-pole  
function is accomplished with an RC low pass network placed  
in series with and before the Sallen Key. One pole provided by  
the RC network and poles two and three provided by the  
Sallen Key for a nice three-pole roll-off at 9MHz.  
The ISL59114 is a single-supply rail-to-rail triple (two in,  
three out) video amplifier with internal sync tip clamps, a  
typical -3dB bandwidth of 9MHz and slew rate of about  
40V/µs. The Y and C channels are internally mixed to create  
a third CVBS (composite) video output. This part is ideally  
suited for applications requiring high composite and s-video  
performance with very low power consumption. As the  
performance characteristics and features illustrate, the  
ISL59114 is optimized for portable video applications.  
Output Coupling  
The ISL59114 can be AC or DC coupled to its output. When  
AC coupling, a 220µF coupling capacitor is recommended to  
ensure that low frequencies are passed, preventing video  
“tilt” or “droop” across a line.  
Internal Sync Clamp  
Embedded video DACs typically use ground as their most  
negative supply. This places the sync tip voltage at a  
minimum of 0V. Presenting a 0V input to most single supply  
amplifiers will saturate the output stage of the amplifier  
resulting in a clipped sync tip and degraded video image.  
The ISL59114’s internal sync clamp makes it possible to DC  
couple the output to a video load, eliminating the need for  
any AC coupling capacitors, saving board space, cost, and  
eliminating any “tilt” or offset shift in the output signal. The  
trade off is larger supply current draw, since the DC  
component of the signal is now dissipated in the load  
resistor. Typical load current for AC coupled signals is 5mA  
compared to 10mA for DC coupling.  
The ISL59114 features an internal sync clamp and offset  
function that level shifts the entire video signal to the  
optimum level before it reaches the amplifiers’ input stage.  
These features also help avoid saturation of the output stage  
of the amplifier by setting the signal closer to the best  
voltage range.  
Output Drive Capability  
The simplified block diagram on the front page shows the  
basic operation of the ISL59114’s sync clamp. The Y input’s  
AC-coupled video sync signal is pulled negative by a current  
source at the input. When the sync tip goes below the  
comparator threshold, the comparator output goes high,  
pulling up on the Y input through the diode, forcing current  
into the coupling capacitor until the voltage at the Y input is  
again 0V, and the comparator turns off. This forces the sync  
tip clamp to always be 0V, setting the offset for the entire  
video signal.  
The ISL59114 does not have internal short circuit protection  
circuitry. If the output is shorted indefinitely, the power  
dissipation could easily overheat the die or the current could  
eventually compromise metal integrity. Maximum reliability is  
maintained if the output current never exceeds ±40mA. This  
limit is set by the design of the internal metal interconnect.  
Note that for transient short circuits, the part is robust.  
Short circuit protection can be provided externally with a  
back match resistor in series with the output placed close as  
possible to the output pin. In video applications this would be  
a 75resistor and will provide adequate short circuit  
protection to the device. Care should still be taken not to  
stress the device with a short at the output.  
FN6184.2  
September 21, 2006  
8
ISL59114  
Power Dissipation  
Power Supply Bypassing Printed Circuit Board  
Layout  
With the high output drive capability of the ISL59114, it is  
possible to exceed the +125°C absolute maximum junction  
temperature under certain load current conditions.  
Therefore, it is important to calculate the maximum junction  
temperature for an application to determine if load conditions  
or package types need to be modified to assure operation of  
the amplifier in a safe operating area.  
As with any modern operational amplifier, a good printed  
circuit board layout is necessary for optimum performance.  
Lead lengths should be as short as possible. The power  
supply pin must be well bypassed to reduce the risk of  
oscillation. For normal single supply operation, a single  
4.7µF tantalum capacitor in parallel with a 0.1µF ceramic  
capacitor from V + to GND will suffice.  
S
The maximum power dissipation allowed in a package is  
determined according to:  
Printed Circuit Board Layout  
For good AC performance, parasitic capacitance should be  
kept to minimum. Use of wire wound resistors should be  
avoided because of their additional series inductance. Use  
of sockets should also be avoided if possible. Sockets add  
parasitic inductance and capacitance that can result in  
compromised performance.  
T
T  
AMAX  
JMAX  
PD  
= --------------------------------------------  
MAX  
Θ
JA  
Where:  
T
= Maximum junction temperature  
= Maximum ambient temperature  
JMAX  
T
AMAX  
Θ
= Thermal resistance of the package  
JA  
The maximum power dissipation actually produced by an IC  
is the total quiescent supply current times the total power  
supply voltage, plus the power in the IC due to the load, or:  
for sourcing:  
V
OUT  
R
L
---------------  
PD  
= V × I  
+ (V V  
) ×  
MAX  
S
SMAX  
S
OUT  
for sinking:  
PD  
= V × I  
+ (V  
V ) × I  
OUT S LOAD  
MAX  
S
SMAX  
Where:  
V = Supply voltage  
S
I
= Maximum quiescent supply current  
SMAX  
V
= Maximum output voltage of the application  
OUT  
R
= Load resistance tied to ground  
LOAD  
I
= Load current  
LOAD  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6184.2  
September 21, 2006  
9
ISL59114  
Ultra Thin Quad Flat No-Lead Plastic Package (UTQFN)  
L10.2.1x1.6A  
D
A
B
10 LEAD ULTRA THIN QUAD FLAT NO-LEAD PLASTIC  
PACKAGE  
6
MILLIMETERS  
INDEX AREA  
N
E
SYMBOL  
MIN  
0.45  
NOMINAL  
MAX  
0.55  
NOTES  
2X  
0.10 C  
A
A1  
A3  
b
0.50  
-
1
2
2X  
0.10 C  
-
-
0.05  
-
TOP VIEW  
0.127 REF  
-
0.15  
2.05  
1.55  
0.20  
0.25  
2.15  
1.65  
5
0.10 C  
0.05 C  
D
2.10  
-
C
A
E
1.60  
-
SEATING PLANE  
e
0.50 BSC  
-
A1  
k
0.20  
0.35  
-
0.40  
10  
4
-
-
SIDE VIEW  
L
0.45  
-
(DATUM A)  
N
2
PIN #1 ID  
Nd  
Ne  
θ
3
4xk  
1
2
NX L  
1
3
N
0
-
12  
4
(DATUM B)  
Rev. 3 6/06  
N-1  
NOTES:  
5
NX b  
e
1. Dimensioning and tolerancing conform to ASME Y14.5-1994.  
2. N is the number of terminals.  
3. Nd and Ne refer to the number of terminals on D and E side,  
respectively.  
0.10 M C A B  
0.05 M C  
3
(ND-1) X e  
4. All dimensions are in millimeters. Angles are in degrees.  
5. Dimension b applies to the metallized terminal and is measured  
between 0.15mm and 0.30mm from the terminal tip.  
6. The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
BOTTOM VIEW  
C
L
(A1)  
NX (b)  
L
5
7. Maximum package warpage is 0.05mm.  
e
8. Maximum allowable burrs is 0.076mm in all directions.  
9. Same as JEDEC MO-255UABD except:  
SECTION "C-C"  
TERMINAL TIP  
C C  
No lead-pull-back, "A" MIN dimension = 0.45 not 0.50mm  
"L" MAX dimension = 0.45 not 0.42mm.  
FOR ODD TERMINAL/SIDE  
10. For additional information, to assist with the PCB Land Pattern  
Design effort, see Intersil Technical Brief TB389.  
b
2.50  
1.75  
0.05 MIN  
L
2.00  
0.80  
0.275  
0.10 MIN  
0.25  
0.50  
DETAIL “A” PIN 1 ID  
10  
LAND PATTERN  
FN6184.2  
September 21, 2006  
10  

相关型号:

ISL59114IRUZ-T7

YC (S-video) to Composite Video Driver with LPF
INTERSIL

ISL59115

Triple Channel Video Driver with LPF
INTERSIL

ISL59115IRUZ-T7

Triple Channel Video Driver with LPF
INTERSIL

ISL59116

YC to Composite Video Driver with LPF
INTERSIL

ISL59116IIZ

YC to Composite Video Driver with LPF
INTERSIL

ISL59117

Triple Channel Video Driver with LPF
INTERSIL

ISL59117IIZ-T7

Triple Channel Video Driver with LPF
INTERSIL

ISL59118

Dual Video Driver with Low Pass Filter
INTERSIL

ISL59118IRUZ-T7

Dual Video Driver with Low Pass Filter
INTERSIL

ISL59119

Triple Channel Video Driver with LPF
INTERSIL

ISL59119IBZ

Triple Channel Video Driver with LPF
INTERSIL

ISL59121IIZ-T7

3 CHANNEL, VIDEO AMPLIFIER, PBGA9, ROHS COMPLIANT, MO-211-CDD, WLCSP-10
RENESAS