ISL59603-Coax-EVZ [INTERSIL]

MegaQ™: An Automatic Composite Video Equalizer,Fully-Adaptive to 1 Mile (1600m);
ISL59603-Coax-EVZ
型号: ISL59603-Coax-EVZ
厂家: Intersil    Intersil
描述:

MegaQ™: An Automatic Composite Video Equalizer,Fully-Adaptive to 1 Mile (1600m)

文件: 总28页 (文件大小:2775K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MegaQ™: An Automatic Composite Video Equalizer,  
Fully-Adaptive to 1 Mile (1600m)  
ISL59601, ISL59602, ISL59603, ISL59604, ISL59605  
The ISL59601, ISL59602, ISL59603, ISL59604, and  
ISL59605 (the “MegaQ™” product family) are single-channel  
Features  
• ISL59605 Equalizes Up to 1 Mile (1600m) of Cat 5/6 and Up  
to 6000 Feet (1800m) of RG-59  
adaptive equalizers designed to automatically compensate for  
long runs of Cat 5/6 or RG-59 cable, producing high quality  
video output with no user interaction. The ISL59601 equalizes  
Cat 5/6 up to a distance of 1000 feet (300 meters), while the  
ISL59605 equalizes up to 5300 feet (1600 meters).  
• Fully Automatic, Stand-Alone Operation - No User  
Adjustment Required  
• ±8kV ESD Protection on All Inputs  
MegaQ™ compensates for high frequency cable losses of up to  
60dB (ISL59605) at 5MHz as well as source amplitude  
variations up to ±3dB.  
• Automatic Cable Type Compensation  
• Compatible with Color or Monochrome, NTSC or PAL Signals  
• Automatic Polarity Detection and Inversion  
The ISL59601, ISL59602, ISL59603, ISL59604, and  
ISL59605 operate from a single +5V supply. Inputs are  
AC-coupled and internally DC-restored. The output can drive  
• Compensates for ±3dB Source Variation (in Addition to  
Cable Losses)  
2V  
into two source-terminated 75loads (AC-coupled or  
P-P  
• Optional Serial Interface Adds Additional Functionality  
• 5MHz -3dB Bandwidth  
DC-coupled).  
• Works with Single-Ended or Differential Inputs  
• Output Drives Up to Two 150Video Loads  
Related Literature  
AN1780 “ISL59605-Catx-EVZ Evaluation Board Operation”  
(Stand-Alone Evaluation Board)  
Applications  
• Surveillance Video  
• Video Distribution  
AN1776 “ISL59603-Coax-EVZ Evaluation Board Operation”  
(Stand-Alone Evaluation Board)  
AN1775 “ISL59605-SPI-EVALZ Evaluation Board (with Serial  
Interface) Operation” (Evaluation Board with USB Serial  
Interface)  
Typical Application  
NTSC, PAL, OR  
Application Circuit for Cat x Cable  
MONOCHROME CAMERA/  
VIDEO SOURCE  
PASSIVE  
1.0µF  
ISL59601  
ISL59602  
ISL59603  
ISL59604  
ISL59605  
75.0  
IN+  
BALUN  
OUT  
CFB  
50  
50  
1k  
300  
0.047µF  
GND  
IN-  
1.0µF  
UP TO 1 MILE OF  
CAT-5/6 CABLE  
1500pF  
TV/DVR  
VCC  
Application Circuit for Coaxial Cable  
0.1µF  
NTSC, PAL, OR  
MONOCHROME CAMERA/  
VIDEO SOURCE  
10k  
1.0µF  
ISL59601  
IN+  
75.0  
ISL59602  
ISL59603  
ISL59604  
ISL59605  
OUT  
CFB  
37.5  
37.5  
1k  
300  
0.047µF  
GND  
IN-  
0 TO 6000 FEET OVER RG-59  
COPPER-CORE COAXIAL CABLE  
1.0µF  
1500pF  
TV/DVR  
0.1µF  
September 5, 2012  
FN6739.2  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 1-888-468-3774 | Copyright Intersil Americas Inc. 2011, 2012. All Rights Reserved  
Intersil (and design) and MegaQ are trademarks owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners.  
ISL59601, ISL59602, ISL59603, ISL59604, ISL59605  
Pin Configuration  
ISL59601, ISL59602, ISL59603, ISL59604, ISL59605  
(20 LD QFN)  
TOP VIEW  
20 19 18 17 16  
GND  
V
REF  
1
2
3
4
5
15  
14  
13  
12  
11  
V
GND  
DD1  
IN+  
THERMAL  
PAD  
(SOLDER TO GND)  
VIDEO OUT  
CFB  
GND  
IN-  
V
DD2  
6
7
8
9
10  
Block Diagram  
CLAMP AND  
IN+  
IN-  
DIFFERENTIAL TO  
SINGLE-ENDED  
CONVERTER  
VIDEO OUT  
CFB  
AMP  
EQUALIZER  
LPF  
V
REF  
GEN  
DIGITAL INTERFACE  
FN6739.2  
September 5, 2012  
2
ISL59601, ISL59602, ISL59603, ISL59604, ISL59605  
Pin Descriptions  
PIN NUMBER  
PIN NAME  
DESCRIPTION  
INPUTS  
3
5
IN+  
High impedance analog input. This is the positive differential video input. Input signals are externally AC-coupled with  
an external 1.0µF capacitor. See Applications Information section for information regarding input network for Cat x  
and coax cables.  
IN-  
High impedance analog input. This is the negative differential video input. Input signals are externally AC-coupled  
with an external 1.0µF capacitor. See Applications Information section for information regarding input network for  
Cat x and coax cables.  
12  
CFB  
Analog input. Bypass to ground with a 1500pF capacitor and connect to VIDEO OUT via a 0.047µF capacitor in series  
with a 300Ω resistor.  
OUTPUTS  
13  
DIGITAL I/O  
7
VIDEO OUT  
Single-ended video output. The internal AGC sets this level to 2V  
P-P  
for a nominal 1V (pre-cable) video source.  
P-P  
EQ_DISABLE Digital Input. Equalizer Disable.  
0: Normal Operation  
1: Disables the equalizer to allow for insertion of upstream data onto the signal path, e.g. RS-485.  
This pin must be asserted high or low. Do not float this pin.  
8
COLOR  
Digital I/O. Color Indicator/Override.  
0: Monochrome  
1: Color  
When used as an output, this pin indicates whether the incoming signal does or does not have a colorburst. When  
used as an input, this pin forces the state machine to into monochrome or color mode. See Figure 49 and associated  
text for more information on functionality.  
When COLOR is not externally driven, it is an output pin with a 13k (typical) output impedance. It is capable of driving  
5V, high-impedance CMOS logic.  
Note: The COLOR indicator may be invalid for monochrome signals over greater than ~4800 feet. The device will still  
equalize properly if this occurs.  
9
INVERT  
Digital I/O. Polarity Indicator/Override.  
0: Nominal Polarity.  
1: Inverted Polarity.  
When used as an output, this pin indicates the polarity of the incoming signal. When used as an input, this pin  
controls whether or not the input signal is inverted in the signal chain. See Figure 48 and associated text for more  
information on functionality.  
When INVERT is not externally driven, it is an output pin with a 13k (typical) output impedance. It is capable of driving  
5V, high-impedance CMOS logic.  
In stand-alone mode, toggling this pin high-low-high or low-high-low will make the equalizer reacquire the signal.  
10  
16  
LOCKED  
FREEZE  
Digital Output.  
0: Signal is not equalized (or not present).  
1: Signal is equalized and settled.  
Note: The LOCKED indicator may be invalid for monochrome signals over greater than ~4800 feet. The device will  
still equalize properly if this occurs.  
Digital Input. Freezes equalizer in its current EQ state.  
0: Continuous Update  
1: Freeze EQ in current state.  
For stand-alone operations, connect FREEZE to the LOCKED pin to enter the recommended Lock Until Reset mode.  
Tie this pin low if unused.  
SERIAL INTERFACE  
18  
SEN  
SCK  
SD  
Digital Input. Serial Interface Enable. This pin should be tied to ground when not in use.  
Digital Input. Serial Interface Clock Signal. This pin should be tied to ground when not in use.  
Digital I/O. Serial Interface Data Signal. This pin should be tied to ground when not in use.  
19  
20  
POWER  
2
V
+5V power supply for analog equalizer. Isolate from +5V source with a ferrite bead and bypass to ground with a 0.1µF  
capacitor in parallel with a 4.7µF capacitor.  
DD1  
FN6739.2  
September 5, 2012  
3
ISL59601, ISL59602, ISL59603, ISL59604, ISL59605  
Pin Descriptions(Continued)  
PIN NUMBER  
PIN NAME  
DESCRIPTION  
11  
15  
V
+5V power supply for output amplifier. Bypass to ground with a 0.1µF capacitor.  
DD2  
V
Internally generated 2.5V reference. Bypass to ground with a low-ESR 0.47µF capacitor. Do not attach anything else  
to this pin.  
REF  
1, 4, 6, 14, 17  
THERMAL PAD  
EP  
GND  
PAD  
Ground  
Solder the exposed thermal PAD to ground for best thermal and electrical performance.  
Ordering Information  
PART NUMBER  
(Notes 1, 2, 3)  
PART  
MARKING  
MAX EQ  
LENGTH  
TEMP RANGE  
(°C)  
PACKAGE  
(Pb-free)  
PKG.  
DWG. #  
ISL59601IRZ  
596 01IRZ  
1000 feet  
1000 feet  
1000 feet  
2000 feet  
2000 feet  
2000 feet  
3000 feet  
3000 feet  
3000 feet  
4000 feet  
4000 feet  
4000 feet  
5300 feet  
5300 feet  
5300 feet  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
20 Ld QFN (4x4mm)  
20 Ld QFN (4x4mm)  
20 Ld QFN (4x4mm)  
20 Ld QFN (4x4mm)  
20 Ld QFN (4x4mm)  
20 Ld QFN (4x4mm)  
20 Ld QFN (4x4mm)  
20 Ld QFN (4x4mm)  
20 Ld QFN (4x4mm)  
20 Ld QFN (4x4mm)  
20 Ld QFN (4x4mm)  
20 Ld QFN (4x4mm)  
20 Ld QFN (4x4mm)  
20 Ld QFN (4x4mm)  
20 Ld QFN (4x4mm)  
L20.4x4C  
ISL59601IRZ-T7  
ISL59601IRZ-T7A  
ISL59602IRZ  
596 01IRZ  
596 01IRZ  
596 02IRZ  
596 02IRZ  
596 02IRZ  
596 03IRZ  
596 03IRZ  
596 03IRZ  
596 04IRZ  
596 04IRZ  
596 04IRZ  
596 05IRZ  
596 05IRZ  
596 05IRZ  
L20.4x4C  
L20.4x4C  
L20.4x4C  
L20.4x4C  
L20.4x4C  
L20.4x4C  
L20.4x4C  
L20.4x4C  
L20.4x4C  
L20.4x4C  
L20.4x4C  
L20.4x4C  
L20.4x4C  
L20.4x4C  
ISL59602IRZ-T7  
ISL59602IRZ-T7A  
ISL59603IRZ  
ISL59603IRZ-T7  
ISL59603IRZ-T7A  
ISL59604IRZ  
ISL59604IRZ-T7  
ISL59604IRZ-T7A  
ISL59605IRZ  
ISL59605IRZ-T7  
ISL59605IRZ-T7A  
ISL59605-Catx-EVZ  
ISL59603-Coax-EVZ  
ISL59605-SPI-EVALZ  
NOTES:  
Stand-alone (no USB I/O) evaluation board  
Stand-alone (no USB I/O) evaluation board  
Evaluation board with serial interface  
1. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-  
free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL59601, ISL59602, ISL59603, ISL59604, ISL59605. For more  
information on MSL please see techbrief TB363.  
FN6739.2  
September 5, 2012  
4
ISL59601, ISL59602, ISL59603, ISL59604, ISL59605  
Table of Contents  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Thermal Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Serial Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Serial Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Typical Performance Over 1000 Feet of Cat 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Typical Performance Over 2000 Feet of Cat 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Typical Performance Over 3000 Feet of Cat 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Typical Performance Over 4000 Feet of Cat 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Typical Performance Over 5200 Feet of Cat 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Typical Performance Over 1000 Feet of Copper-Core RG-59. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Typical Performance Over 2000 Feet of Copper-Core RG-59. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Typical Performance Over 3000 Feet of Copper-Core RG-59. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Typical Performance Over 4000 Feet of Copper-Core RG-59. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Typical Performance Over 5000 Feet of Copper-Core RG-59. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Typical Performance Over 6000 Feet of Copper-Core RG-59. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
MegaQ™ Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Equalization for Various Cable Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Unshielded Twisted Pair (UTP) App Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Coax Input Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Dual UTP/Coax Input Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Input Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Stand-Alone Operation and Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Lock Until RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Continuous Update. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Polarity Detection and Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
The COLOR Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Monochrome Video Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Security Cameras. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Additional Equalization Modes Available With the Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Continuous Update. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Lock Until RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Lock Until Signal Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Manual Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Serial Interface Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Read Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Register Listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Bypassing and Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
General PowerPAD Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
FN6739.2  
September 5, 2012  
5
ISL59601, ISL59602, ISL59603, ISL59604, ISL59605  
Absolute Maximum Ratings (T = +25°C)  
Thermal Information  
A
Supply Voltage between V and GND . . . . . . . . . . . . . . . . . . . . . . . . 5.75V  
Maximum Continuous Output Current. . . . . . . . . . . . . . . . . . . . . . . . . 50mA  
Thermal Resistance (Typical)  
20 Ld QFN Package (Notes 4, 5) . . . . . . . .  
θ
JA (°C/W)  
40  
θ
JC (°C/W)  
DD  
3.7  
Maximum Voltage on any Pin . . . . . . . . . . . . . . . . GND - 0.3V to V + 0.3V  
ESD Rating  
Human Body Model (tested per JESD22-A114) . . . . . . . . . . . . . . 8,000V  
Machine Model (Tested per JESD22-A115). . . . . . . . . . . . . . . . . . . . 600V  
CDM Model (Tested per JESD22-C101) . . . . . . . . . . . . . . . . . . . . . 2,000V  
Latch Up (Tested per JESD78; Class II, Level A). . . . . . . . . . . . . . . . . . . . . . . . . 100mA  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Ambient Operating Temperature . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Die Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
DD  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
4. θ is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech  
JA  
Brief TB379.  
5. For θ , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
Electrical Specifications  
V
= V  
= V = +5V, source video amplitude before any cable loss = 1V  
cable type = Cat 5,  
DD  
DD1  
DD2 P-P,  
cable length = 0 feet, R = 150Ω (75Ω series + 75Ω load to ground), T = +25°C, exposed die plate = 0V, unless otherwise specified.  
L
A
Max cable length = 1000 feet for ISL59601, 2000 feet for ISL59602, 3000 feet for ISL59603, 4000 feet for ISL59604, and 5300 feet for  
ISL59605.  
MIN  
MAX  
PARAMETER  
SUPPLY  
DESCRIPTION  
CONDITIONS  
(Note 6)  
TYP  
(Note 6)  
UNIT  
V
V
V
V
Operating Range  
4.5  
5.0  
40  
30  
60  
5.5  
60  
45  
V
DD  
DD  
I
I
Supply Current  
Supply Current  
mA  
mA  
dB  
S1  
S2  
DD1  
DD2  
PSRR  
DC  
Power Supply Rejection Ratio  
AC PERFORMANCE  
BW  
DG  
-3dB Bandwidth  
Differential Gain  
Full power  
5
1
MHz  
%
Cable length = max,  
20IRE Sub Carrier on 100% ramp  
DP  
Differential Phase  
Cable length = max,  
20IRE Sub Carrier on 100% ramp  
1
°
V
DC PERFORMANCE  
V
Output Blanking/Backporch Level  
Measured at VIDEO OUT pin  
0.82  
0.95  
1.05  
BL  
INPUT CHARACTERISTICS  
V
Minimum Correctable Peak-to-Peak  
Signal Swing  
Measured at the source-end of  
cable, before cable losses  
0.7  
1.4  
V
V
INDIFF_MIN  
P-P  
P-P  
V
Maximum Correctable Peak-to-Peak  
Signal Swing  
Measured at the source-end of  
cable, before cable losses  
INDIFF_MAX  
V
V
Min Common Mode Input Voltage  
Max Common Mode Input Voltage  
1
V
V
CM-MIN  
4
CM-MAX  
SNR  
Signal-to-Noise Ratio,  
NTC-7 weighted filter  
EQ = 0 feet  
-67  
-67  
-65  
-64  
-61  
-54  
dB rms  
dB rms  
dB rms  
dB rms  
dB rms  
dB rms  
EQ = 1,000 feet  
EQ = 2,000 feet  
EQ = 3,000 feet  
EQ = 4,000 feet  
EQ = 5,300 feet  
FN6739.2  
September 5, 2012  
6
ISL59601, ISL59602, ISL59603, ISL59604, ISL59605  
Electrical Specifications  
V
= V  
= V = +5V, source video amplitude before any cable loss = 1V  
cable type = Cat 5,  
DD  
DD1  
DD2 P-P,  
cable length = 0 feet, R = 150Ω (75Ω series + 75Ω load to ground), T = +25°C, exposed die plate = 0V, unless otherwise specified.  
L
A
Max cable length = 1000 feet for ISL59601, 2000 feet for ISL59602, 3000 feet for ISL59603, 4000 feet for ISL59604, and 5300 feet for  
ISL59605. (Continued)  
MIN  
MAX  
PARAMETER  
CMRR  
DESCRIPTION  
CONDITIONS  
0 feet cable  
(Note 6)  
TYP  
-50  
-35  
25  
(Note 6)  
UNIT  
dB  
Common-mode Rejection Ratio at  
f
= 100kHz  
IN  
2,500 feet cable  
dB  
I
Input Clamp Current  
µA  
Clamp  
OUTPUT CHARACTERISTICS  
A
AGC Accuracy  
Accuracy of sync tip amplitude  
relative to 600mV  
±0.5  
dB  
GC-ACC  
I
Output Drive Current  
40  
mA  
ns  
OUT  
t
t
Enable-to-Equalization On Time  
Disable-to-Equalization Off Time  
500  
500  
EN-EQ  
ns  
DIS-EQ  
LOGIC CONTROL PINS  
V
V
Logic High Level  
Logic Low Level  
Logic Input Current  
2.0  
V
V
IH  
0.8  
IL  
I
EQ_DISABLE, FREEZE, SD, SCK,  
SEN  
±10  
µA  
LOGIC  
INVERT, COLOR  
±500  
µA  
Serial Timing  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
Serial Enable Deselect Time  
Lead Time  
CONDITIONS  
(Note 6)  
TYP  
(Note 6)  
UNIT  
ns  
t
t
t
t
t
t
t
t
t
t
f
10  
10  
CS  
LEAD  
SU  
H
ns  
SD, SCK Setup Time  
SD, SEN, SCK Hold Time  
SCK High Time  
10  
ns  
10  
ns  
100  
100  
10  
ns  
WH  
WL  
RI  
SCK Low Time  
ns  
SD, SEN, SCK Rise Time  
SD, SEN, SCK Fall Time  
Lag Time  
ns  
10  
ns  
FI  
10  
ns  
LAG  
V
SCK Rising Edge to SD Data Valid  
SCK Frequency  
Read Operation  
10  
5
ns  
MHz  
SCK  
NOTE:  
6. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
FN6739.2  
September 5, 2012  
7
ISL59601, ISL59602, ISL59603, ISL59604, ISL59605  
Serial Timing Diagram  
t
CS  
SEN  
f
SCK  
t
t
t
t
t
t
LAG  
16  
RI  
11  
LEAD  
1
H
FI  
WH  
4
6
SCK  
SD  
2
3
5
7
8
9
10  
12  
13  
14  
15  
t
t
t
V
SU  
WL  
A3  
1
A6  
A5  
A4  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
READ OPERATION  
t
CS  
SEN  
f
SCK  
t
t
t
t
RI  
t
t
LAG  
16  
LEAD  
1
t
WH  
3
H
FI  
SCK  
SD  
2
4
5
6
7
9
10  
D6  
11  
12  
D4  
13  
D3  
14  
15  
D1  
8
t
SU  
WL  
0
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D5  
D2  
D0  
WRITE OPERATION  
A6:A0 = REGISTER ADDRESS, D7:D0 = DATA TO BE READ/WRITTEN  
FN6739.2  
September 5, 2012  
8
ISL59601, ISL59602, ISL59603, ISL59604, ISL59605  
Typical Performance Over 1000 Feet of Cat 5  
FIGURE 1. TEST PATTERN IMAGE AFTER 1000 FEET OF  
UNCOMPENSATED CAT 5  
FIGURE 2. TEST PATTERN IMAGE AFTER 1000 FEET OF CAT 5  
WITH ISL59601 (OR BETTER)  
200mV/DIV  
200mV/DIV  
10µs/DIV  
10µs/DIV  
FIGURE 3. MULTIBURST WAVEFORM AFTER 1000 FEET OF  
UNCOMPENSATED CAT 5  
FIGURE 4. MULTIBURST WAVEFORM AFTER 1000 FEET OF CAT 5  
WITH ISL59601 (OR BETTER)  
FN6739.2  
September 5, 2012  
9
ISL59601, ISL59602, ISL59603, ISL59604, ISL59605  
Typical Performance Over 2000 Feet of Cat 5  
FIGURE 5. TEST PATTERN IMAGE AFTER 2000 FEET OF  
UNCOMPENSATED CAT 5  
FIGURE 6. TEST PATTERN IMAGE AFTER 2000 FEET OF CAT 5  
WITH ISL59602 (OR BETTER)  
200mV/DIV  
200mV/DIV  
10µs/DIV  
10µs/DIV  
FIGURE 7. MULTIBURST WAVEFORM AFTER 2000 FEET OF  
UNCOMPENSATED CAT 5  
FIGURE 8. MULTIBURST WAVEFORM AFTER 2000 FEET OF CAT 5  
WITH ISL59602 (OR BETTER)  
FN6739.2  
September 5, 2012  
10  
ISL59601, ISL59602, ISL59603, ISL59604, ISL59605  
Typical Performance Over 3000 Feet of Cat 5  
FIGURE 9. TEST PATTERN IMAGE AFTER 3000 FEET OF  
UNCOMPENSATED CAT 5  
FIGURE 10. TEST PATTERN IMAGE AFTER 3000 FEET OF CAT 5  
WITH ISL59603 (OR BETTER)  
200mV/DIV  
200mV/DIV  
10µs/DIV  
10µs/DIV  
FIGURE 11. MULTIBURST WAVEFORM AFTER 3000 FEET OF  
UNCOMPENSATED CAT 5  
FIGURE 12. MULTIBURST WAVEFORM AFTER 3000 FEET OF CAT 5  
WITH ISL59603 (OR BETTER)  
FN6739.2  
September 5, 2012  
11  
ISL59601, ISL59602, ISL59603, ISL59604, ISL59605  
Typical Performance Over 4000 Feet of Cat 5  
FIGURE 13. TEST PATTERN IMAGE AFTER 4000 FEET OF  
UNCOMPENSATED CAT 5  
FIGURE 14. TEST PATTERN IMAGE AFTER 4000 FEET OF CAT 5  
WITH ISL59604 (OR BETTER)  
200mV/DIV  
200mV/DIV  
10µs/DIV  
10µs/DIV  
FIGURE 15. MULTIBURST WAVEFORM AFTER 4000 FEET OF  
UNCOMPENSATED CAT 5  
FIGURE 16. MULTIBURST WAVEFORM AFTER 4000 FEET OF CAT 5  
WITH ISL59604 (OR BETTER)  
FN6739.2  
September 5, 2012  
12  
ISL59601, ISL59602, ISL59603, ISL59604, ISL59605  
Typical Performance Over 5200 Feet of Cat 5  
FIGURE 17. TEST PATTERN IMAGE AFTER 5200 FEET OF  
UNCOMPENSATED CAT 5  
FIGURE 18. TEST PATTERN IMAGE AFTER 5200 FEET OF CAT 5  
WITH ISL59605  
200mV/DIV  
200mV/DIV  
10µs/DIV  
10µs/DIV  
FIGURE 19. MULTIBURST WAVEFORM AFTER 5200 FEET OF  
UNCOMPENSATED CAT 5  
FIGURE 20. MULTIBURST WAVEFORM AFTER 5200 FEET OF CAT 5  
WITH ISL59605  
FN6739.2  
September 5, 2012  
13  
ISL59601, ISL59602, ISL59603, ISL59604, ISL59605  
Typical Performance Over 1000 Feet of Copper-Core RG-59  
FIGURE 21. TEST PATTERN IMAGE AFTER 1000 FEET OF  
UNCOMPENSATED RG-59 COAX  
FIGURE 22. TEST PATTERN IMAGE AFTER 1000 FEET OF RG-59  
COAX WITH ISL59601 (OR BETTER)  
200mV/DIV  
200mV/DIV  
10µs/DIV  
10µs/DIV  
FIGURE 23. MULTIBURST WAVEFORM AFTER 1000 FEET OF  
UNCOMPENSATED RG-59 COAX  
FIGURE 24. MULTIBURST WAVEFORM AFTER 1000 FEET OF RG-59  
COAX WITH ISL59601 (OR BETTER)  
FN6739.2  
September 5, 2012  
14  
ISL59601, ISL59602, ISL59603, ISL59604, ISL59605  
Typical Performance Over 2000 Feet of Copper-Core RG-59  
FIGURE 25. TEST PATTERN IMAGE AFTER 2000 FEET OF  
UNCOMPENSATED RG-59 COAX  
FIGURE 26. TEST PATTERN IMAGE AFTER 2000 FEET OF RG-59  
COAX WITH ISL59602 (OR BETTER)  
200mV/DIV  
200mV/DIV  
10µs/DIV  
10µs/DIV  
FIGURE 27. MULTIBURST WAVEFORM AFTER 2000 FEET OF  
UNCOMPENSATED RG-59 COAX  
FIGURE 28. MULTIBURST WAVEFORM AFTER 2000 FEET OF RG-59  
COAX WITH ISL59602 (OR BETTER)  
FN6739.2  
September 5, 2012  
15  
ISL59601, ISL59602, ISL59603, ISL59604, ISL59605  
Typical Performance Over 3000 Feet of Copper-Core RG-59  
FIGURE 29. TEST PATTERN IMAGE AFTER 3000 FEET OF  
UNCOMPENSATED RG-59 COAX  
FIGURE 30. TEST PATTERN IMAGE AFTER 3000 FEET OF RG-59  
COAX WITH ISL59602 (OR BETTER)  
200mV/DIV  
200mV/DIV  
10µs/DIV  
10µs/DIV  
FIGURE 31. MULTIBURST WAVEFORM AFTER 3000 FEET OF  
UNCOMPENSATED RG-59 COAX  
FIGURE 32. MULTIBURST WAVEFORM AFTER 3000 FEET OF RG-59  
COAX WITH ISL59602 (OR BETTER)  
FN6739.2  
September 5, 2012  
16  
ISL59601, ISL59602, ISL59603, ISL59604, ISL59605  
Typical Performance Over 4000 Feet of Copper-Core RG-59  
FIGURE 33. TEST PATTERN IMAGE AFTER 4000 FEET OF  
UNCOMPENSATED RG-59 COAX  
FIGURE 34. TEST PATTERN IMAGE AFTER 4000 FEET OF RG-59  
COAX WITH ISL59602 (OR BETTER)  
200mV/DIV  
200mV/DIV  
10µs/DIV  
10µs/DIV  
FIGURE 35. MULTIBURST WAVEFORM AFTER 4000 FEET OF  
UNCOMPENSATED RG-59 COAX  
FIGURE 36. MULTIBURST WAVEFORM AFTER 4000 FEET OF RG-59  
COAX WITH ISL59602 (OR BETTER)  
FN6739.2  
September 5, 2012  
17  
ISL59601, ISL59602, ISL59603, ISL59604, ISL59605  
Typical Performance Over 5000 Feet of Copper-Core RG-59  
FIGURE 37. TEST PATTERN IMAGE AFTER 5000 FEET OF  
UNCOMPENSATED RG-59 COAX  
FIGURE 38. TEST PATTERN IMAGE AFTER 5000 FEET OF RG-59  
COAX WITH ISL59603 (OR BETTER)  
200mV/DIV  
200mV/DIV  
10µs/DIV  
10µs/DIV  
FIGURE 39. MULTIBURST WAVEFORM AFTER 5000 FEET OF  
UNCOMPENSATED RG-59 COAX  
FIGURE 40. MULTIBURST WAVEFORM AFTER 5000 FEET OF RG-59  
COAX WITH ISL59603 (OR BETTER)  
FN6739.2  
September 5, 2012  
18  
ISL59601, ISL59602, ISL59603, ISL59604, ISL59605  
Typical Performance Over 6000 Feet of Copper-Core RG-59  
FIGURE 41. TEST PATTERN IMAGE AFTER 6000 FEET OF  
UNCOMPENSATED RG-59 COAX  
FIGURE 42. TEST PATTERN IMAGE AFTER 6000 FEET OF RG-59  
COAX WITH ISL59603 (OR BETTER)  
200mV/DIV  
200mV/DIV  
10µs/DIV  
10µs/DIV  
FIGURE 43. MULTIBURST WAVEFORM AFTER 6000 FEET OF  
UNCOMPENSATED RG-59 COAX  
FIGURE 44. MULTIBURST WAVEFORM AFTER 6000 FEET OF RG-59  
COAX WITH ISL59603 (OR BETTER)  
FN6739.2  
September 5, 2012  
19  
ISL59601, ISL59602, ISL59603, ISL59604, ISL59605  
Equalization for Various Cable Types  
Functional Description  
MegaQ™ Overview  
MegaQ™ is a fully automated, stand-alone equalizer for  
composite video transmitted over UTP (Unshielded Twisted Pair,  
i.e. Cat 5, Cat 6, etc.) or coaxial (RG-59) cables.  
TABLE 1. CABLE TYPES AND LENGTHS  
MAXIMUM  
CABLE TYPE  
LENGTH SUPPORTED  
Copper-Core  
CAT5/CAT5e  
CAT6  
Differential video signals sent over long distances of twisted pair  
wire exhibit large high frequency attenuation, resulting in loss of  
high frequency detail/blurring. The exact loss characteristic is a  
complex function of wire gauge, length, composition, and  
coupling to adjacent conductors.  
5300 feet  
5600 feet  
6000 feet  
3000 feet  
Coaxial - RG-59  
CAT2/CAT3  
(telephone wire)  
The video signal can be restored by applying a filter with the  
exact inverse transfer function to the far end signal. MegaQ™ is  
designed to compensate for the losses due to long cables, and  
incorporates the functionality and flexibility to match a wide  
variety of cable types and loss characteristics.  
Belden IMSA Spec 39-2 581718  
(3-pair traffic light cable)  
5300 feet  
Non-Copper-Core*  
CAT5/CAT5e CCA  
(Copper-Coated Aluminum Core)  
2000 feet  
1500 feet  
While MegaQ™ was designed and optimized for stand-alone  
operation, with no need for any external control of any kind, it has  
an optional SPI serial interface with some additional features.  
See “Additional Equalization Modes Available With the Serial  
Interface” on page 22 for more information on the features and  
operation of the serial interface.  
Coaxial - RG-59 CCS  
(Copper-Coated Steel Core)  
*Image quality will be significantly improved over unequalized cable, but  
there will still be some image smearing due to the high resistance of the  
core material.  
Ferrite Bead –  
DC resistance = 1Ω,  
600Ω at 100MHz,  
100mA DC current rating  
+5V  
C8  
C9  
C7  
0.1µF 4.7µF  
0.1µF  
V
DD1  
V
DD2  
C1  
DIFFERENTIAL  
VIDEO INPUT+  
1.0µF  
IN+  
R6 75.0  
VIDEO  
OUT  
OUT  
CFB  
R1  
R2  
49.9  
49.9  
5V  
TVS  
R3  
1k  
Z1  
Z2  
C5  
0.047µF  
300  
GND  
IN-  
R5  
C4  
1500pF  
DIFFERENTIAL  
VIDEO INPUT-  
ISL59601  
ISL59602  
ISL59603  
ISL59604  
ISL59605  
1.0µF  
C2  
Internally  
5V  
TVS  
Generated  
VREF  
C6  
0.47µF  
TVS = Transient Voltage Suppressor  
a.k.a. Transorb  
EQ_DISABLE  
COLOR  
SEN  
SCK  
SD  
Freezes EQ once  
lock is achieved.  
Tie FREEZE low if  
not used.  
SERIAL  
INTERFACE  
(OPTIONAL)  
INVERT  
LOCKED  
FREEZE  
GND  
FIGURE 45. APPLICATION CIRCUIT FOR UTP CABLE  
FN6739.2  
September 5, 2012  
20  
ISL59601, ISL59602, ISL59603, ISL59604, ISL59605  
inputs. The value of Cx should be determined by calculating how  
Application Information  
much trace capacitance is added by the coax startup circuit. A  
typical value for a good layout is ~5pF. Note that only coax or UTP  
should be connected at any one time - this circuit does not  
multiplex between them.  
Unshielded Twisted Pair (UTP) App Circuit  
Figure 45 shows the complete schematic for a MegaQ™  
equalizer configured for unshielded twisted pair (UTP) cable. The  
input signal is terminated into the network formed by R1, R2,  
and R3. C1 and C2 AC-couple the signal into MegaQ™. To protect  
the front-end circuitry, 5V transorbs (Z1 and Z2) should be used  
instead of diodes because the signals on either differential input  
may swing far enough below ground to turn on a diode and  
distort the video.  
VCC  
C4  
0.1µF  
D1  
10k  
R4  
UTP  
IN+  
COAX  
1.0µF  
C1  
R1  
IN+  
300  
R5  
49.9  
49.9  
Z1  
R3  
MegaQTM  
GND  
IN-  
5V  
TVS  
On the output side, C5, R5, and C4 form a compensation  
network, while R6 provides 75source-termination for the video  
output. MegaQ™ has an native gain of 6dB, so when VIDEO OUT  
is terminated into 75(the input to a DVR, TV, etc.), R6 and the  
75terminator form a 2:1 divider, producing standard video  
amplitude across the 75terminator.  
1k  
UTP  
IN-  
SW1A  
R2  
C2  
1.0µF  
5.6pF  
Cx*  
Z2  
SW1B  
5V  
TVS  
Close all switches for  
Coax  
C3  
0.1µF  
*optional  
TVS = Transient Voltage Suppressor  
a.k.a. Transorb  
Coax Input Circuit  
FIGURE 47. APPLICATION CIRCUIT FOR UTP/COAX CABLE  
Figure 46 shows the input termination recommended for coaxial  
cables. The differential termination resistance is now 75to  
match the characteristic impedance of the RG-59 coax cable. C3  
bypasses high-frequency noise on the coax ground line to system  
ground. This allows the coax ground to be independent of the  
system at low frequencies (DC to 50/60Hz) to accommodate  
differences in the ground potential of the remote video source(s).  
The coax startup network (D1, R4, C4) prevents a rare start-up  
condition that can occur when a high average-picture-level (e.g.  
white screen) video signal is present on the inputs before the  
power has been applied.  
Input Multiplexing  
Placing a semiconductor multiplexer in front of this part may  
increase high frequency attenuation and noise. However a  
low-capacitance mechanical relay may be acceptable. Note that  
changing from one channel to another in Lock Until Reset mode  
will require a reset (INVERT toggle) to trigger equalization of the  
new channel (see “Lock Until RESET” on page 21).  
For best performance, do not multiplex the inputs to the  
equalizer - this can further degrade the signal. Instead, multiplex  
at the output after equalization has been performed.  
VCC  
C4  
0.1µF  
D1  
Stand-Alone Operation and Configuration  
10k R4  
In its default stand-alone configuration, MegaQ™ features two  
modes of automatic cable equalization: Lock Until Reset and  
Continuous Update. Lock Until Reset is the recommended mode  
for most applications.  
COAX  
1.0µF  
IN+  
C1  
R1  
37.5  
37.5  
Z1  
5V  
TVS  
1k  
MegaQTM  
GND  
IN-  
R3  
R2  
C2  
1.0µF  
LOCK UNTIL RESET  
Z2  
5V  
TVS  
In the Lock Until Reset mode, once MegaQ™ finds the optimum  
equalization and the LOCKED signal goes high, the equalization  
is frozen and will not change until either the power is cycled or  
the INVERT signal is toggled, which initiates a re-equalization of  
the input signal. Re-equalization is usually only necessary during  
device/system evaluation - in normal operation MegaQ™  
powers-up, acquires and equalizes the signal, and continues to  
equalize until/unless it is powered-down. If the signal is lost in  
Lock Until Reset mode, the LOCKED pin will not go low  
until/unless the device is reset by toggling the INVERT pin. A  
reset should only be necessary if the length or type of cable was  
changed without cycling power.  
C3  
0.1µF  
TVS = Transient Voltage Suppressor  
a.k.a. Transorb  
FIGURE 46. APPLICATION CIRCUIT FOR COAX CABLE  
Dual UTP/Coax Input Circuit  
If desired, it is also possible to support both UTP and coax cables  
with the same PCB layout using two SPST switches that are  
closed when in coax mode (Figure 47). Since UTP requires a  
100termination network while coax requires 75, a switch to  
introduce a shunt 300resistor when in coax mode will change  
the termination from 100to 75. A second switch is required  
to engage C3. The addition of the coax startup circuit (D1, R4,  
C4) can unbalance the capacitance of the differential pair and  
degrade the CMRR in UTP applications. This in turn could cause  
excess noise at long lengths of UTP. In UTP applications, if the  
output signal is too noisy at long distances, an optional capacitor  
Cx may be used to balance the capacitance of the differential  
To enable the Lock Until Reset mode, tie the LOCKED output pin  
to the FREEZE input pin as shown in Figure 45 on page 20.  
To generate a reset (and trigger a re-equalization), toggle the  
external INVERT pin to its opposite state for at least 1ms.  
Depending on the initial state of INVERT, this would be a  
high-low-high or low-high-low sequence.  
FN6739.2  
September 5, 2012  
21  
ISL59601, ISL59602, ISL59603, ISL59604, ISL59605  
CONTINUOUS UPDATE  
COLOR  
PIN  
In the Continuous Update mode, MegaQ™ will continuously try to  
find the optimum equalization solution. When the equalization  
has settled for 100 sequential video lines with no changes, the  
LOCKED pin will go high. However once lock is achieved, noise  
and average-picture-level changes may cause the device to  
unlock, causing some image perturbation while MegaQ™  
re-equalizes.  
13k  
COLOR  
DETECTION  
LOGIC  
SIGNAL  
PROCESSING  
ISL5960x  
The Continuous Update mode is enabled whenever the FREEZE  
pin is set to a logic low (grounded).  
FIGURE 49. COLOR PIN STRUCTURE  
Polarity Detection and Correction  
However the unique design of the COLOR I/O pin (Figure 49) also  
allows MegaQ™’s internal color detector to be overdriven  
externally. This is not necessary in normal operation, but it may  
improve performance in particularly noisy environments when  
the signal type is predetermined.  
MegaQ™ features polarity detection and correction,  
automatically detecting incorrectly-wired input signals and  
inverting the signal inside the IC as necessary. The detected  
polarity is indicated by the state of the INVERT pin.  
The INVERT pin has 2 modes of operation. It is typically used to  
indicate whether or not the incoming signal is inverted (the “+”  
signal on the “-” input and vice-versa). The state of the invert  
signal is then used to tell the signal processing logic whether or  
not to invert the signal in the signal path.  
Monochrome Video Signals  
MegaQ™ will equalize monochrome signals to the same distance  
as color signals. However due to the high level of noise past  
~4800 feet, the COLOR and LOCKED indicators may become  
invalid for monochrome signals. The device will still equalize  
properly if this occurs.  
A logic high on INVERT indicates that the positive differential  
input signal is on IN- (pin 5) and the negative differential input  
signal is on IN+ (pin 3). A logic low indicates nominal polarity.  
Security Cameras  
MegaQ™ is ideal for security camera installations.  
However the unique design of the INVERT I/O pin (Figure 48) also  
allows MegaQ™’s internal inversion detector to be overdriven  
externally, forcing MegaQ™ to invert or not invert the signal  
regardless of the state of the inversion detection function. This is  
not necessary in normal operation, but it may improve  
performance in particularly noisy environments when the polarity  
of the signal is guaranteed to be correct.  
The automatic adaptive equalizer doesn't need any active silicon  
on the transmit side of the cable, enabling upgrading of older  
installations without having to touch the installed camera base,  
including older monochrome cameras.  
MegaQ™ automatically adjusts for wiring polarity errors as well  
as adjusts for optimum image quality. These features eliminates  
the need for the installer to make any adjustments.  
INVERT  
PIN  
With an extended equalization range of 5300ft, the ISL59605  
enables cameras to be placed in even more remote locations,  
enabling coverage of up to three square miles from a single  
monitoring station.  
13k  
INVERSION  
SIGNAL  
DETECTION  
PROCESSING  
LOGIC  
Additional Equalization Modes Available  
With the Serial Interface  
ISL5960x  
In addition to the Lock Until Reset and Continuous Update  
modes, software control of MegaQ™ through the SPI interface  
adds a Lock Until Signal Loss mode and a Manual Equalization  
mode.  
FIGURE 48. INVERT PIN STRUCTURE  
The COLOR Pin  
Note: When controlling MegaQ™ through the SPI interface, the  
external FREEZE pin must be tied to ground (logic low). Failure to  
keep FREEZE at a logic low will prevent the software controls  
from working properly.  
The color pin has 2 modes of operation. It is typically used to  
indicate whether or not the incoming signal has a colorburst or  
not. The state of the color signal is then used to tell the signal  
processing logic whether or not it can rely on the presence of a  
colorburst signal. A logic high indicates a color signal; a logic low  
indicates monochrome.  
All of the equalization modes are selected via the two “Locking  
Mode/Manual Length Enable” register bits, 0x05[1:0].  
CONTINUOUS UPDATE  
Continuous Update mode is entered by setting address  
0x05[1:0] = 00b. Continuous Update behavior is the same as  
described in the stand-alone mode.  
FN6739.2  
September 5, 2012  
22  
ISL59601, ISL59602, ISL59603, ISL59604, ISL59605  
LOCK UNTIL RESET  
Serial Interface Protocol  
Lock Until Reset mode is entered by setting address  
0x05[1:0] = 10b. Lock Until Reset behavior is the same as  
described in the stand-alone mode, with the exception of how to  
generate a reset.  
While MegaQ™ is designed to work as a stand-alone equalizer, it  
does have a serial interface that can be used to control it and  
monitor its state.  
The serial interface is used to read and write the configuration  
registers. It uses three signals (SCK, SD, and SEN) for  
programming. The serial clock can operate up to 5MHz  
(5Mbits/s). The “Serial Timing Diagram” on page 8 shows the  
timing of serial I/O.  
To generate a reset via software, select Continuous Update mode  
and then return to Lock Until Reset mode (register 0x05[1:0] =  
00b then 10b). Toggling INVERT (either the hardware pin or the  
software bit) will not cause a reset/re-equalization event.  
A transaction begins when the host microcontroller takes SEN  
(serial enable) high. The first 8 bits on the SD (serial data) pin are  
latched by MegaQ™ on the rising edge of SCK (serial clock) to  
form the address byte. The MSB of the address byte indicates  
whether the operation is a read (1) or a write (0), and the next  
seven bits indicate which register is to be read from or written to.  
Each read and write operation consists of 16 bits: 8 bits for an  
address byte followed by 8 bits of data. See the “Serial Timing  
Diagram” on page 8 for more details on using the SPI interface.  
LOCK UNTIL SIGNAL LOSS  
Lock Until Signal Loss mode is entered by setting address  
0x05[1:0] = 01b. Lock Until Signal Loss can only be enabled via  
the SPI interface.  
In the Lock Until Signal Loss mode, MegaQ™ will freeze the  
equalization once the LOCKED pin goes high (in the same way as  
Lock Until Reset). Unlike the “Settled” state in the Continuous  
Update mode, only a signal loss lasting more than 1ms (typical) will  
cause MegaQ™ to re-equalize the signal when it returns. In this  
sense, the Lock Until Signal Loss mode can be considered as  
halfway between the Continuous Update mode and the Lock Until  
Reset mode. The Lock Until Signal Loss mode is useful, for example,  
when testing or demonstrating a system by plugging in multiple  
different length cables - it eliminates the need to also generate a  
reset. To prevent potentially undesired re-equalization, signal losses  
lasting less than 1ms (typical) do not trigger a re-equalization.  
TABLE 2. ADDRESS BYTE FORMAT  
0 = Write  
1 = Read  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
(MSB)  
(LSB)  
WRITE OPERATION  
After the address byte is clocked in, the next 8 bits should  
contain the data to be sent to the register identified in the  
address byte.  
MANUAL LENGTH  
Manual Length mode is entered by setting address  
0x05[1:0] = 11b. Manual Length mode allows the forcing of  
specific cable lengths, cable type, DC gains, etc. (see the Register  
Listing on the next page). The “Cable Type” bit (0x05 [4]) allows  
selection between the two most common cable types for security  
video: Cat 5/6 or steel core RG-59 coaxial. However since many  
of MegaQ™’s automatic functions and adjustments are disabled  
in Manual Length mode, performance is almost always worse  
than what is achieved in any of the automatic modes. For  
example, automatic polarity correction is disabled so the polarity  
must be manually set using the INVERT bit. There is no practical  
reason to ever use Manual Length mode in normal operation.  
READ OPERATION  
After the rising edge of the 8th clock after the address byte is clocked in,  
the microcontroller should tristate the SD line so MegaQ™ can begin to  
output data on the SD pin (from the register identified in the address  
byte), beginning on the 9th rising edge of SCK. The data should be  
latched on the falling edge of SCK to allow enough time for the data to  
settle. See ““Serial Timing Diagram” on page 8 for more details on how  
to read from the registers.  
FN6739.2  
September 5, 2012  
23  
ISL59601, ISL59602, ISL59603, ISL59604, ISL59605  
Register Listing  
REGISTER  
ADDRESS  
0x00  
(DEFAULT VALUE)  
BIT(S)  
3:0  
7:4  
0
FUNCTION NAME  
Device Revision  
DESCRIPTION  
0 = initial silicon, 1 = first revision, etc.  
0x3  
Device ID (0x31)  
Device ID  
0x01  
Signal Status (N/A)  
Signal Present  
0: A signal is not present at the input  
1: A signal is present at the input  
1
2
DLL Locked  
0: DLL is not locked  
1: DLL is locked  
Signal Polarity  
0: Inverted Polarity  
1: Nominal Polarity  
This bit is only valid if the INVERT pin is connected as an  
output. If INVERT is overdriven, this value may not reflect the  
polarity of the input signal.  
3
4
Color Detected  
Signal Overloaded  
Settled  
0: Signal is monochrome  
1: Signal has a colorburst  
0: Signal (if present) is within normal range  
1: Signal appears to be overloaded  
5
0: EQ is not settled, though DLL may be locked.  
1: EQ has stabilized and equalization achieved.  
0x02  
Manual Length(0x00)  
5:0  
Manual Length  
Manual Length Control; 0x0 through 0x3F,  
84 feet per bit.  
0x0: 0 feet.  
0x3F: 5300 feet (Cat 5 mode)  
This register sets the EQ setting when MegaQ™ is in manual  
length mode (reg 0x05[1:0] = 11).  
Note that the length in this register is for Cat 5 cable when  
“Cable Type” (reg 0x05[4]) equals 0. When “Cable Type” is set  
to 1 (coax mode), then the length is for steel core coax. In coax  
mode, the maximum length is 0x14 (~1200 feet) and setting  
the register higher than this value does not provide any  
increase in equalization.  
FN6739.2  
September 5, 2012  
24  
ISL59601, ISL59602, ISL59603, ISL59604, ISL59605  
Register Listing(Continued)  
REGISTER  
ADDRESS  
0x03  
(DEFAULT VALUE)  
BIT(S)  
5:0  
FUNCTION NAME  
Manual DC Gain  
DESCRIPTION  
0x00: Maximum DC Gain (+3dB)  
Manual DC Gain (0x20)  
0x20: Mid-Scale 0dB  
0x3F: Minimum DC Gain (-3dB)  
This register sets the DC Gain when the device is in manual  
length mode (reg 0x05[1:0] = 11).  
0x04  
Pin Overrides (0x00)  
0
1
Freeze Select  
Freeze Value  
0: Use value of FREEZE pin.  
1: Use value in “Freeze Value” bit  
If Freeze Select = 1, then:  
0: Equalization is not frozen  
1: Equalization is frozen at current setting.  
If Freeze Select = 0, then this bit is ignored.  
2
3
Eq-Disable Select  
Eq-Disable Value  
0: Use value of EQ_DISABLE pin.  
1: Use value in “Eq-Disable Value” bit  
If Eq-Disable Select = 1, then:  
0: Equalizer is enabled  
1: Equalizer is disabled (allows data to be sent upstream over  
cable pair connected to inputs)  
If Eq-Disable Select = 0, then this bit is ignored.  
4
5
Color Select  
Color Value  
0: Use value of COLOR pin  
1: Use value in “Color Value” bit  
If Color Select = 1, then  
0: Monochrome Mode  
1: Color Mode  
If Color Select = 0, then this bit is ignored.  
6
7
Invert Select  
Invert Value  
0: Use value of INVERT pin.  
1: Use value in “Invert Value” bit  
If Invert Select = 1, then  
0: Incoming signal is not inverted  
1: Incoming signal is inverted  
If Invert Select = 0, then this bit is ignored.  
0x05  
Equalization Control (0x00)  
1:0  
Locking Mode/Manual  
Length Enable  
00 = Continuous Monitoring  
01 = Lock Until Signal Loss*  
10 = Lock Until Reset  
11 = Manual Length**  
*Signal must be missing for at least 1ms in order to trigger a  
re-equalization.  
** In Manual Length mode the polarity corrector is disabled  
and the polarity must be set using the INVERT bit or pin.  
Note: The FREEZE pin must be tied to ground/a logic low for  
this function to work correctly.  
3:2  
4
Noise Filter  
Cable Type  
00: No Noise Filtering  
01: Min Noise Filtering  
10 or 11: Max Noise Filtering  
Note: Noise Filtering is only available on the ISL59605  
0: CAT5/6 Mode  
1: Steel Core Coax Mode  
This bit is ignored in all modes except Manual Length (reg  
0x05[1:0] = 11).  
Set to 1 if using copper-coated steel-core coaxial cable and  
you are in Manual Length.  
FN6739.2  
September 5, 2012  
25  
ISL59601, ISL59602, ISL59603, ISL59604, ISL59605  
Power Dissipation  
The maximum power dissipation allowed in a package is  
determined according to Equation 1:  
Bypassing and Layout  
Considerations  
MegaQ™ requires a dedicated ground plane in order to function  
properly. For 2-layer boards, pour a quarter-inch ground plane  
extending around the device on both the top and bottom layers.  
Ensure that the ground plane on the bottom layer is a solid plane  
with no traces cutting through it. Bypass capacitors must be  
placed as close as possible to the device in order to ensure good  
performance at longer lengths of equalization. Ensure that the  
ground connections for the bypass capacitors connect directly to  
the same uniform ground plane described previously.  
T
T  
JMAX  
AMAX  
(EQ. 1)  
---------------------------------------  
PD  
=
MAX  
Θ
JA  
Where:  
T
= Maximum junction temperature  
= Maximum ambient temperature  
JMAX  
T
AMAX  
Θ
= Thermal resistance of the package  
JA  
General PowerPAD Design Considerations  
The thermal pad must be connected to the ground plane for heat  
dissipation. Figure 50 is an example of how to use vias to remove  
heat from the IC.  
The maximum power dissipation actually produced by an IC is  
the total quiescent supply current times the total power supply  
voltage, plus the power in the IC due to the load, or:  
for sourcing use Equation 2:  
V
OUT  
R
L
(EQ. 2)  
------------  
PD  
= V × I  
+ (V V ) ×  
OUT  
MAX  
S
SMAX  
S
for sinking use Equation 3:  
(EQ. 3)  
PD  
= V × I  
+ (V  
V ) × I  
OUT S LOAD  
MAX  
S
SMAX  
FIGURE 50. PCB VIA PATTERN  
Where:  
V = Supply voltage  
The thermal pad is electrically connected to GND through the  
high resistance IC substrate. We recommend you fill the thermal  
pad area with vias. The via array should be centered in the  
thermal pad and placed such that the center on center spacing is  
3x the via radius. Vias should be small, but large enough to allow  
solder wicking during reflow. Connect all vias to ground. It is  
important the vias have a low thermal resistance for efficient  
heat transfer. Do not use “thermal relief” patterns. It is important  
to have a solid connection of the plated-through hole to each  
plane.  
S
I
= Maximum quiescent supply current  
= Maximum output voltage of the application  
= Load resistance tied to ground  
SMAX  
V
OUT  
R
LOAD  
I
= Load current  
LOAD  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6739.2  
September 5, 2012  
26  
ISL59601, ISL59602, ISL59603, ISL59604, ISL59605  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make  
sure you have the latest Rev.  
DATE  
REVISION  
CHANGE  
August 6, 2012  
February 4, 2011  
FN6739.2 Typical applications circuit diagrams and corresponding text updated to reflect more optimal setup for the device.  
Converted to Updated Intersil Template  
page 1 - Updated Related Literature by changing titles to match released application notes  
Added standard Reference to MIN and MAX columns and Note to Electrical Specifications and Serial Timing Spec  
Tables: "Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or  
design."  
page 4 - Updated ordering information by naming Evaluation boards to match Intrepid.  
CHANGED I2C to SPI as follows:  
page 22 first paragraph and 2nd Note paragraph under "Additional Equalization Modes Available with the Serial  
Interface" section from "…MegaQ through the I2C interface…" to "…MegaQ through the SPI interface…"  
page 23 "Under Lock Until Signal Loss" section 1st paragraph last sentence "…via the I2C interface."  
To: "…via the SPI interface."  
November 19, 2010 FN6739.1 Modified both "Typical Application" drawings on page 1 to reflect recommended new termination network.  
Modified Figures 45, 46, and 47 to reflect recommended new termination network.  
Modified text in "UTP Application Circuit" and "Coax Input Circuit" sections to mention changes to termination  
network.  
Added "Dual UTP/Coax Input Circuit" heading  
October 21, 2010  
Added superscript TM to all MegaQ and trademark statement, pg 1.  
Added ±8kV ESD protection to the Features list  
Pg24, Register 0x04 of the Register Listing: Fixed Select and Value locations (were swapped for each pin).  
Last two rows should say "Invert", not "INVERT", EXCEPT for "Use the value of INVERT pin  
Pg25, address 0x05 of Register listing, 3:2 Noise filter row, change from:  
00: No Noise Filtering  
01: Min Noise Filtering  
1X: Max Noise Filtering  
to:  
00: No Noise Filtering  
01: Min Noise Filtering  
10 or 11: Max Noise Filtering  
Note: Noise Filtering is only available on the ISL59605  
October 8, 2010  
FN6739.0 Initial Release.  
Products  
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products  
address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks.  
Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a  
complete list of Intersil product families.  
For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on  
intersil.com: ISL59601, ISL59602, ISL59603, ISL59604, ISL59605.  
To report errors or suggestions for this datasheet, please go to: www.intersil.com/askourstaff  
FITs are available from our website at: http://rel.intersil.com/reports/sear  
FN6739.2  
September 5, 2012  
27  
ISL59601, ISL59602, ISL59603, ISL59604, ISL59605  
Package Outline Drawing  
L20.4x4C  
20 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE  
Rev 0, 11/06  
4X  
2.0  
4.00  
0.50  
16X  
A
6
B
16  
20  
PIN #1 INDEX AREA  
6
PIN 1  
INDEX AREA  
1
15  
2 .70 ± 0 . 15  
11  
5
(4X)  
0.15  
6
10  
0.10 M  
C
A B  
4
20X 0.25 +0.05 / -0.07  
20X 0.4 ± 0.10  
TOP VIEW  
BOTTOM VIEW  
SEE DETAIL "X"  
C
0.10  
0 . 90 ± 0 . 1  
C
BASE PLANE  
( 3. 8 TYP )  
(
SEATING PLANE  
0.08 C  
2. 70 )  
( 20X 0 . 5 )  
SIDE VIEW  
( 20X 0 . 25 )  
( 20X 0 . 6)  
5
C
0 . 2 REF  
0 . 00 MIN.  
0 . 05 MAX.  
DETAIL "X"  
TYPICAL RECOMMENDED LAND PATTERN  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3. Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension b applies to the metallized terminal and is measured  
between 0.15mm and 0.30mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 indentifier may be  
either a mold or mark feature.  
FN6739.2  
September 5, 2012  
28  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY