ISL59920 [INTERSIL]

Triple Analog Video Delay Lines; 三重模拟视频延迟线
ISL59920
型号: ISL59920
厂家: Intersil    Intersil
描述:

Triple Analog Video Delay Lines
三重模拟视频延迟线

延迟线
文件: 总16页 (文件大小:811K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISL59920, ISL59921, ISL59922, ISL59923  
®
Data Sheet  
August 31, 2010  
FN6826.2  
Triple Analog Video Delay Lines  
Features  
The ISL59920, ISL59921, ISL59922, and ISL59923 are  
triple analog delay lines that provide skew compensation  
between three high-speed signals. These parts are ideal for  
compensating for the skew introduced by a typical CAT-5,  
CAT-6 or CAT-7 cable (with differing electrical lengths on  
each twisted pair) when transmitting analog video.  
• 30, 31, 46.5, or 62ns Total Delay  
• 1.0, 1.5, or 2.0ns Delay Step Increments  
• Very Low Offset Voltage  
• Drop-in Compatible with the EL9115  
• Low Power Consumption  
Using a simple serial interface, the ISL59920, ISL59921,  
ISL59922, and ISL59923’s delays are programmable in  
steps of 2, 1.5, 1, or 2ns (respectively) for up to a total delay  
of 62, 46.5, 31, or 30ns (respectively) on each channel. The  
gain of the video amplifiers can be set to x1 (0dB) or x2  
(6dB) for back-termination. The delay lines require a ±5V  
supply.  
• 20 Ld QFN Package  
• Pb-Free (RoHS Compliant)  
Applications  
• Skew Control for RGB Video Signals  
• Generating Programmable High-speed Analog Delays  
Ordering Information  
MAX  
TYPICAL POWER  
PART NUMBER  
(Note)  
PART  
MARKING  
DELAY  
(ns)  
DELAY STEP  
SIZE (ns)  
DISSIPATION  
(mW)  
PACKAGE  
(Pb-free)  
PKG.  
DWG. #  
ISL59920IRZ*  
ISL59921IR*  
ISL59922IRZ*  
ISL59923IRZ*  
59920 IRZ  
62  
46.5  
31  
2.0  
1.5  
1.0  
2.0  
645  
645  
645  
540  
20 Ld 5mmx5mm QFN  
20 Ld 5mmx5mm QFN  
20 Ld 5mmx5mm QFN  
20 Ld 5mmx5mm QFN  
L20.5x5C  
59921 IRZ  
59922 IRZ  
59923 IRZ  
L20.5x5C  
L20.5x5C  
L20.5x5C  
30  
*Add “-T7” suffix for tape and reel. Please refer to TB347 for details on reel specifications.  
NOTE: These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100%  
matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
Pinout  
ISL59920, ISL59921, ISL59922, ISL59923  
(20 LD 5X5 QFN)  
TOP VIEW  
V
1
2
3
4
5
15 R  
OUT  
SP  
R
14 GNDO  
IN  
THERMAL  
PAD  
13 G  
OUT  
GND  
12 V  
SMO  
G
IN  
V
11 B  
OUT  
SM  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2009, 2010. All Rights Reserved  
1
All other trademarks mentioned are the property of their respective owners.  
ISL59920, ISL59921, ISL59922, ISL59923  
Absolute Maximum Ratings (T = +25°C)  
Thermal Information  
A
Supply Voltage (V + to V -) . . . . . . . . . . . . . . . . . . . . . . . . . . . .12V  
Thermal Resistance (Typical, Note 1)  
θ
JA  
(°C/W)  
31  
S
S
Maximum Output Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . ±60mA  
Storage Temperature Range . . . . . . . . . . . . . . . . . .-65°C to +150°C  
ESD Classification  
20 Lead QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Pb-Free Reflow Profile. . . . . . . . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3000V  
Machine Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .300V  
Charged Device Model. . . . . . . . . . . . . . . . . . . . . . . . . . . .1200V  
Recommended Operating Conditions  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . . +135°C  
Ambient Operating Temperature . . . . . . . . . . . . . . . .-40°C to +85°C  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and  
result in failures not covered by warranty.  
NOTE:  
1. θ is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
JA  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
J
C
A
Electrical Specifications  
V
R
= V  
= +5V, V  
= V  
= -5V, GAIN = 2, T = +25°C, exposed die plate = -5V, x2 = 5V,  
SP  
SPO  
SM  
SMP A  
= 150Ω on all video outputs, unless otherwise specified.  
LOAD  
DESCRIPTION  
Nominal Delay Increment (Note 2)  
PARAMETER  
CONDITION  
MIN TYP MAX  
UNIT  
ns  
d
ISL59920  
ISL59921  
ISL59922  
ISL59923  
ISL59920  
ISL59921  
ISL59922  
ISL59923  
1.8  
1.4  
0.9  
1.8  
55  
2
2.2  
t
1.5 1.7  
ns  
1
2
1.2  
2.3  
68  
ns  
ns  
t
Maximum Delay  
62  
ns  
MAX  
42.5 46.5 53.5  
ns  
26.5  
26.5  
31 38.5  
30 34.5  
1
ns  
ns  
D
Delay Difference Between Channels for Same  
Delay Settings On All Channels  
ns  
ELDT  
t
Propagation Delay  
ISL59920, ISL59923, measured input to  
output, delay setting = 0ns  
10  
8
ns  
ns  
ns  
PD  
ISL59921, measured input to output, delay  
setting = 0ns  
ISL59922, measured input to output, delay  
setting = 0ns  
7
BW -3dB  
BW ±0.1dB  
SR  
3dB Bandwidth, 0ns Delay Time  
±0.1dB Bandwidth, 0ns Delay Time  
Slew Rate  
ISL59920, ISL59923  
ISL59921  
153  
200  
230  
50  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
V/µs  
V/µs  
V/µs  
V/µs  
ISL59922  
ISL59920, ISL59923  
ISL59921  
60  
ISL59922  
50  
ISL59920, 20-80, delay = 0ns  
ISL59921, 20-80, delay = 0ns  
ISL59922, 20-80, delay = 0ns  
ISL59923; 20-80, delay = 0ns  
550  
640  
700  
550  
FN6826.2  
August 31, 2010  
2
ISL59920, ISL59921, ISL59922, ISL59923  
Electrical Specifications  
V
R
= V  
= +5V, V  
= V = -5V, GAIN = 2, T = +25°C, exposed die plate = -5V, x2 = 5V,  
SMP A  
SP  
SPO  
SM  
= 150Ω on all video outputs, unless otherwise specified. (Continued)  
LOAD  
DESCRIPTION  
Transient Response Time  
PARAMETER  
CONDITION  
MIN TYP MAX  
UNIT  
t
- t  
ISL59920, 20% to 80%, for any delay, 1V step  
delay = 0ns  
1.7  
ns  
R
F
ISL59921, 20% to 80%, for any delay, 1V step  
delay = 0ns  
1.6  
1.43  
1.7  
ns  
ns  
ns  
ISL59922, 20% to 80%, for any delay, 1V step  
delay = 0ns  
ISL59923, 20% to 80%, for any delay, 1V step  
delay = 0ns  
V
Voltage Overshoot  
For any delay, response to 1V step input  
4
3
%
OVER  
Settling Time Output Settling after Delay Change / Offset  
Calibration  
Output settling time from rising edge of  
SENABLE  
µs  
THD  
Total Harmonic Distortion  
1V  
10MHz sinewave, offset by +0.2V at  
-43 -38  
-80 -63  
dB  
dB  
dB  
P-P  
mid delay setting  
X
Crosstalk  
Stimulate G, measure R/B at 1MHz,  
ISL59920, ISL59921, ISL59923  
ISL59922  
-78 -59  
2
V
Output Noise  
Bandwidth = 150MHz  
mV  
RMS  
N
G_0  
Gain Zero Delay  
1.74  
1.67  
1.6  
1.8 1.92  
1.8 1.97  
V/V  
V/V  
V/V  
%
G_m  
Gain Mid Delay  
G_f  
Gain Full Delay  
1.8  
2
DG_m0  
DG_f0  
DG_fm  
Difference in Gain, 0 to Mid  
Difference in Gain, 0 to Full  
Difference in Gain, Mid to Full  
Input Voltage Range  
-8  
0.6 7.5  
-1.8 10  
-1.7 7.5  
1.1  
-12  
-10  
-0.7  
%
%
V
ISL59920, Gain remains > 90% of nominal,  
Gain = 2  
V
IN  
ISL59921, Gain remains > 90% of nominal,  
Gain = 2  
-0.7  
-0.7  
-0.7  
1.04  
1.04  
1.15  
V
V
V
ISL59922, Gain remains > 90% of nominal,  
Gain = 2  
ISL59923, Gain remains > 90% of nominal,  
Gain = 2  
I
R
, G , B Input Bias Current  
ISL59920, ISL59921  
ISL59922, ISL59923  
3
6
8
8
µA  
µA  
B
IN IN IN  
1.5  
-25  
V
Output Offset Voltage  
Output Impedance  
Post offset calibration (Note 4), Delay = 0ns  
and Delay = Full  
-4  
+20  
mV  
OS  
Z
ISL59920, ISL59921, Enabled,  
Chip enable = 5V  
4.5  
3.5  
5.4 6.3  
6.3  
Ω
Ω
OUT  
ISL59922, ISL59923, Enabled,  
Chip enable = 5V  
Disabled, Chip enable = 0V  
8
MΩ  
dB  
dB  
mA  
V
+PSRR  
-PSRR  
Rejection of Positive Supply  
Rejection of Negative Supply  
Output Drive Current  
Logic High  
-42 -29  
-58 -46  
I
10Ω load, 0.5V drive  
Switch high threshold  
Switch low threshold  
43  
53  
70  
OUT  
V
V
1.6  
IH  
IL  
Logic Low  
0.8  
V
FN6826.2  
August 31, 2010  
3
ISL59920, ISL59921, ISL59922, ISL59923  
Electrical Specifications  
V
R
= V  
= +5V, V  
= V = -5V, GAIN = 2, T = +25°C, exposed die plate = -5V, x2 = 5V,  
SMP A  
SP  
SPO  
SM  
= 150Ω on all video outputs, unless otherwise specified. (Continued)  
LOAD  
PARAMETER  
DESCRIPTION  
CONDITION  
MIN TYP MAX  
UNIT  
POWER SUPPLY CHARACTERISTICS  
V+  
V-  
V
V
, V  
SP SPO  
Positive Supply Range  
Negative Supply Range  
+4.5  
-4.5  
98  
+5.5  
-5.5  
V
, V  
SM SMO  
V
I
I
Positive Supply Current (Note 3)  
ISL59920  
115 127  
125 146  
90 106  
13 15.3  
13 16.3  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
SP  
ISL59921, ISL59922  
ISL59923  
98  
74  
Positive Output Supply Current (Note 3)  
ISL59920  
11.3  
11.3  
9.9  
SPO  
ISL59921, ISL59922  
ISL59923  
13  
16  
I
I
Negative Supply Current (Note 3)  
-35.45 -31 -26  
-15.5 -13 -11  
-17.5 -13 -9.5  
0.9  
SM  
Negative Output Supply Current (Note 3)  
ISL59920, ISL59921, ISL59922  
ISL59923  
SMO  
I
Supply Current (Note 3)  
Increase in I per unit step in delay per  
SP  
channel  
Δ SP  
I
Positive Supply Standby Current (Note 3)  
Chip enable = 0V  
2.6  
mA  
STANDBY  
SERIAL INTERFACE CHARACTERISTICS  
t
t
Max SCLOCK Frequency  
Maximum programming clock speed  
10  
10  
MHz  
ns  
MAX  
SENABLE to SCLOCK falling edge setup time.  
See Figure 33.  
SENABLE falling edge should occur at least  
SEN_SETUP  
t
ns after previous (ignored) clock  
SEN_SETUP  
and t  
before next (desired) clock.  
SEN_SETUP  
Clock edges occurring within t_en_ck of the  
SENABLE falling edge will have  
indeterminate effect.  
t
Minimum Separation Between SENABLE rising  
If SENABLE is taken low less than 3µs after it  
3
µs  
SEN_CYCLE  
edge and next SENABLE falling edge. See Figure 33. was taken high, there is a small possibility that  
an offset correction will not be initiated.  
NOTES:  
2. The limits for the “Nominal Delay Increment” are derived by taking the limits for the “Maximum Delay” and dividing by the number of steps for the  
device. For the ISL59920, ISL59921, and ISL59922 the number of steps is 31; for the ISL59923 the number of steps is 15.  
3. All supply currents measured with Delay R = 0ns, G = mid delay, B = full delay.  
4. Offset measurements are referred to 75Ω load as shown in Figure 1.  
75Ω  
VIN  
VOUT  
VOS  
x2 -  
75Ω  
FIGURE 1. V  
MEASUREMENT CONDITIONS  
OS  
FN6826.2  
August 31, 2010  
4
ISL59920, ISL59921, ISL59922, ISL59923  
Pin Descriptions  
PIN NUMBER  
PIN NAME  
PIN DESCRIPTION  
1
2
V
+5V for delay circuitry and input amp  
Red channel video input  
0V for delay circuitry supply  
Green channel video input  
-5V for input amp  
SP  
R
IN  
3
GND  
4
G
IN  
5
V
SM  
6
B
Blue channel video input  
IN  
7
CENABLE  
SENABLE  
SDATA  
Chip Enable input, active high: logical high enables chip, low disables chip  
Serial Enable input, active low: logical low enables serial communication  
Serial Data input, logic threshold 1.2V: data to be programmed into chip  
Serial Clock input: Clock to enter data; logical; data written on negative edge  
Blue channel video output  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
SCLOCK  
B
OUT  
V
-5V for video output buffers  
SMO  
G
Green channel video output  
OUT  
GNDO  
0V reference for input and output buffers  
R
V
Red channel video output  
OUT  
+5V for video output buffers  
SPO  
TESTB  
TESTG  
TESTR  
X2  
Blue channel phase detector output  
Green channel phase detector output  
Red channel phase detector output  
Gain Select Input: logical high = 2x (+6dB), logical low = 1x (0dB)  
Thermal Pad  
MUST be tied to -5V. For best thermal conductivity also tie to a larger -5V copper plane (inner  
or bottom). Use many vias to minimize thermal resistance between thermal pad and copper  
plane. Do not connect to GND - connection to GND is equivalent to shorting the -5V and GND  
planes together.  
FN6826.2  
August 31, 2010  
5
ISL59920, ISL59921, ISL59922, ISL59923  
Typical Performance Curves  
2
1
2
1
0ns  
0ns  
20ns  
20ns  
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-10  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-10  
40ns  
62ns  
40ns  
62ns  
10ns  
10ns  
30ns  
30ns  
50ns  
50ns  
V
= 700mV  
V
= 700mV  
IN  
GAIN = 2  
P-P  
IN  
GAIN = 1  
P-P  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
1G  
1G  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
FIGURE 2. ISL59920 FREQUENCY RESPONSE (GAIN = 1)  
FIGURE 3. ISL59920 FREQUENCY RESPONSE (GAIN = 2)  
2
2
0
0ns  
0ns  
0
10.5ns  
46.5ns  
10.5ns  
21ns  
-2  
-2  
-4  
46.5ns  
21ns  
-4  
-6  
30ns  
-6  
30ns  
-8  
-8  
V
= 700mV  
P-P  
IN  
GAIN = 1  
V
= 700mV  
P-P  
IN  
GAIN = 2  
-10  
-10  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
FREQUENCY (Hz)  
FIGURE 4. ISL59921 FREQUENCY RESPONSE (GAIN = 1)  
FIGURE 5. ISL59921 FREQUENCY RESPONSE (GAIN = 2)  
4
2
4
0ns  
0ns  
10ns  
2
0
0
10ns  
-2  
-2  
31ns  
31ns  
20ns  
-4  
-6  
-4  
-6  
20ns  
-8  
-8  
V
= 700mV  
P-P  
V
= 700mV  
P-P  
IN  
GAIN = 1  
IN  
GAIN = 2  
-10  
-10  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 6. ISL59922 FREQUENCY RESPONSE (GAIN = 1)  
FIGURE 7. ISL59922 FREQUENCY RESPONSE (GAIN = 2)  
FN6826.2  
August 31, 2010  
6
ISL59920, ISL59921, ISL59922, ISL59923  
Typical Performance Curves (Continued)  
2
2
0
0ns  
0ns  
0
10ns  
10ns  
-2  
-2  
-4  
-4  
30ns  
30ns  
20ns  
20ns  
-6  
-6  
-8  
-8  
V
= 700mV  
P-P  
V
= 700mV  
IN  
GAIN = 2  
IN  
GAIN = 1  
P-P  
1M  
-10  
-10  
100k  
10M  
FREQUENCY (Hz)  
100M  
1G  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
FIGURE 8. ISL59923 FREQUENCY RESPONSE (GAIN = 1)  
FIGURE 9. ISL59923 FREQUENCY RESPONSE (GAIN = 2)  
250  
OUTPUT REFERRED  
GAIN = 2  
SENABLE  
200  
150  
100  
50  
TIMEBASE: 500ns/div  
SENABLE: 1V/div  
OUTPUT: 100mV/div  
GAIN: 1  
OUTPUT  
0
0M  
100M  
200M  
300M  
400M  
500M  
600M  
FREQUENCY (Hz)  
FIGURE 10. OFFSET CORRECTION DAC ADJUST  
FIGURE 11. ISL59920 NOISE SPECTRUM (10k TO 500MHz)  
250  
200  
150  
100  
200  
180  
160  
140  
120  
100  
80  
60  
50  
40  
OUTPUT REFERRED  
OUTPUT REFERRED  
GAIN = 2  
20  
GAIN = 2  
0
0
0M  
100M  
200M  
300M  
400M  
500M  
600M  
0M  
100M  
200M  
300M  
400M  
500M  
600M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 12. ISL59921 NOISE SPECTRUM (10k TO 500MHz)  
FIGURE 13. ISL59922 NOISE SPECTRUM (10k TO 500MHz)  
FN6826.2  
August 31, 2010  
7
ISL59920, ISL59921, ISL59922, ISL59923  
Typical Performance Curves (Continued)  
250  
200  
150  
100  
50  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
RISE  
FALL  
OUTPUT REFERRED  
GAIN = 2  
0
0
4
8
12 16 20 24 28 32 36 40 44 48 52 56 60  
DELAY (ns)  
0M  
100M  
200M  
300M  
FREQUENCY (Hz)  
400M  
500M  
600M  
FIGURE 14. ISL59923 NOISE SPECTRUM (10k TO 500MHz)  
FIGURE 15. ISL59920 RISE/FALL TIME vs DELAY TIME  
(GAIN = 2)  
2.0  
3.0  
2.5  
FALL  
1.8  
1.6  
1.4  
FALL  
2.0  
1.2  
RISE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.5  
RISE  
1.0  
0.5  
0
0
4
8
12 16 20 24 28 32 36 40 44 48  
DELAY (ns)  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
DELAY (ns)  
FIGURE 16. ISL59921 RISE/FALL TIME vs DELAY TIME  
(GAIN = 2)  
FIGURE 17. ISL59922 RISE/FALL TIME vs DELAY TIME  
(GAIN = 2)  
2.5  
0
V+ = +5.0V, V- = -5.0V  
V
= 1.0V , SINE WAVE  
FALL  
2.0  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
OUT  
= 150Ω  
P-P  
R
L
GAIN = 2  
1.5  
RISE  
1.0  
ND  
2
HD  
RD  
0.5  
0
3
HD  
2M  
6M  
10M 14M 18M 22M 26M 30M 34M 38M  
FREQUENCY (Hz)  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
DELAY (ns)  
FIGURE 18. ISL59923 RISE/FALL TIME vs DELAY TIME  
(GAIN = 2)  
FIGURE 19. HARMONIC DISTORTION vs FREQUENCY  
FN6826.2  
August 31, 2010  
8
ISL59920, ISL59921, ISL59922, ISL59923  
Typical Performance Curves (Continued)  
180  
160  
140  
120  
100  
80  
220  
200  
180  
160  
140  
120  
100  
80  
3 CHANNELS  
3 CHANNELS  
2 CHANNELS  
1 CHANNEL  
1 CHANNEL  
2 CHANNELS  
GAIN = 2  
NO INPUT, NO LOAD  
GAIN = 2  
60  
60  
0
3
6
9
12 15 18 21 24 27 30 33 36 39 42 45 48  
DELAY (ns)  
0
4
8
12 16 20 24 28 32 36 40 44 48 52 56 60  
DELAY (ns)  
FIGURE 20. ISL59920 POSITIVE SUPPLY CURRENT (V ) vs  
SP  
FIGURE 21. ISL59921 POSITIVE SUPPLY CURRENT (V ) vs  
SP  
DELAY TIME  
DELAY TIME  
220  
200  
150  
140  
3 CHANNELS  
130  
120  
110  
100  
90  
3 CHANNELS  
180  
160  
140  
120  
100  
80  
2 CHANNELS  
1 CHANNEL  
80  
2 CHANNELS  
GAIN = 2  
NO INPUT, NO LOAD  
1 CHANNEL  
GAIN = 2  
NO INPUT, NO LOAD  
70  
60  
60  
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
DELAY (ns)  
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
DELAY (ns)  
FIGURE 22. ISL59922 POSITIVE SUPPLY CURRENT (V ) vs  
SP  
FIGURE 23. ISL59923 POSITIVE SUPPLY CURRENT (V ) vs  
SP  
DELAY TIME  
DELAY TIME  
200  
-42.5  
-43.0  
180  
DELAY = 62ns  
-43.5  
-44.0  
-44.5  
-44.0  
-45.5  
-46.0  
-46.5  
DELAY = 62ns  
160  
140  
120  
DELAY = 0ns  
100  
DELAY = 0ns  
80  
GAIN = 1 OR 2  
60  
GAIN = 1 OR 2  
4.0  
4.2  
4.4  
4.6  
4.8  
5.0 5.2  
5.4  
5.6  
5.8 6.0  
-4.0 -4.2 -4.4 -4.6 -4.8 -5.0 -5.2 -5.4 -5.6 -5.8 -6.0  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
FIGURE 24. ISL59920 I  
+ vs V  
SUPPLY  
+
FIGURE 25. ISL59920 I  
- vs V  
SUPPLY  
-
SUPPLY  
SUPPLY  
FN6826.2  
August 31, 2010  
9
ISL59920, ISL59921, ISL59922, ISL59923  
Typical Performance Curves (Continued)  
-46.0  
-46.5  
-47.0  
-47.5  
-48.0  
-48.5  
-49.0  
-49.5  
-50.0  
-50.5  
-51.0  
240  
GAIN = 2  
220  
DELAY = 46.5ns  
DELAY = 46.5ns  
200  
180  
160 GAIN = 1 OR 2  
DELAY APPLIED TO ALL  
CHANNELS  
NO INPUT, NO LOAD  
140  
120  
100  
80  
DELAY = 0ns  
DELAY = 0ns  
60  
4.0 4.2  
4.0 4.2  
4.4  
4.6  
4.8  
5.0 5.2  
5.4  
5.6  
5.8  
6.0  
4.4  
4.6  
4.8  
5.0 5.2  
5.4  
5.6  
5.8  
6.0  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
FIGURE 26. ISL59921 I  
+ vs V  
SUPPLY  
+
FIGURE 27. ISL59921 I  
- vs V  
SUPPLY  
-
SUPPLY  
SUPPLY  
-45.0  
220  
200  
180  
160  
GAIN = 2  
DELAY = 31ns  
-45.5  
DELAY = 31ns  
-46.0  
-46.5  
-47.0  
-47.5  
-48.0  
-48.5  
GAIN = 1 OR 2  
140  
DELAY APPLIED TO ALL  
CHANNELS  
NO INPUT, NO LOAD  
120  
100  
80  
-49.0  
DELAY = 0ns  
-49.5  
-50.0  
-50.5  
DELAY = 0ns  
60  
4.0  
4.0 4.2  
4.4  
4.6  
4.8  
5.0 5.2  
5.4  
5.6  
5.8  
6.0  
4.2  
4.4  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
FIGURE 28. ISL59922 I  
+ vs V  
SUPPLY  
+
FIGURE 29. ISL59922 I  
- vs V  
SUPPLY  
-
SUPPLY  
SUPPLY  
150  
140  
130  
120  
110  
100  
90  
-46.0  
GAIN = 2  
DELAY = 30ns  
DELAY = 30ns  
-46.5  
-47.0  
-47.5  
-48.0  
DELAY = 0ns  
DELAY = 0ns  
-48.5  
-49.0  
-49.5  
GAIN = 1 OR 2  
80  
DELAY APPLIED TO ALL  
CHANNELS  
NO INPUT, NO LOAD  
70  
60  
4.0 4.2  
4.4  
4.6  
4.8  
5.0 5.2  
5.4  
5.6  
5.8  
6.0  
4.0 4.2  
4.4  
4.6  
4.8  
5.0 5.2  
5.4  
5.6  
5.8  
6.0  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
ISL59923 I  
+ vs V  
+
SUPPLY  
SUPPLY  
FIGURE 30. ISL59923 I  
- vs V  
SUPPLY  
-
SUPPLY  
FN6826.2  
August 31, 2010  
10  
ISL59920, ISL59921, ISL59922, ISL59923  
Typical Performance Curves (Continued)  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD - QFN EXPOSED  
DIEPAD SOLDERED TO PCB PER JESD51-5  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.54W  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
FIGURE 31. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE  
1
19  
17  
18  
16  
CENABLE  
7
R
2
IN  
+
DELAY LINE  
R
15  
OUT  
+
G
B
4
6
IN  
+
+
DELAY LINE  
DELAY LINE  
G
B
13  
11  
OUT  
OUT  
+
+
IN  
X2 20  
9
SDATA  
10  
SCLOCK  
CONTROL LOGIC  
8
SENABLE  
[BOTTOM PLATE]  
C
3
5
12  
14  
FIGURE 32. ISL59920, ISL59921, ISL59922, ISL59923 BLOCK DIAGRAM  
TABLE 1.  
Applications Information  
The ISL59920, ISL59921, ISL59922, and ISL59923 are  
triple analog delay lines that provide skew compensation  
between three high-speed signals. These devices  
compensate for time skew introduced by a typical CAT-5,  
CAT-6 or CAT-7 cable with differing electrical lengths (due to  
different twist ratios) on each pair. Via their SPI interface,  
these devices can be programmed to independently  
compensate for the three different cable delays while  
maintaining 80MHz bandwidth at their maximum setting.  
There are four different variations of the ISL5992x (ISL5992x  
will be used when talking about characteristics that are  
common to all four devices).  
NOMINAL DELAY  
INCREMENT  
(ns)  
MAX DELAY  
(ns)  
PART NUMBER  
ISL59920  
62  
46.5  
31  
2.0  
1.5  
1.0  
2.0  
ISL59921  
ISL59922  
ISL59923  
30  
FN6826.2  
August 31, 2010  
11  
ISL59920, ISL59921, ISL59922, ISL59923  
SENABLE  
SCLOCK  
t
t
SEN_CYCLE  
SEN_SETUP  
SDATA  
0
A1  
A0  
b
D4  
v
D3  
w
D2  
x
D1  
D0*  
z
*D0 is 0 when addressing the test register  
a
y
FIGURE 33. SERIAL TIMING  
TABLE 2. SERIAL BUS DATA (Continued)  
Figure 32 shows the ISL5992x block diagram. The 3 analog  
inputs are ground referenced single-ended signals. After the  
signal is received, the delay is introduced by switching filter  
blocks into the signal path. Each filter block is an all-pass  
filter introducing either 1, 1.5 or 2ns of delay. In addition to  
adding delay, each filter block also introduces some low  
pass filtering. As a result, the bandwidth of the signal path  
decreases from the 0ns delay setting to the maximum delay  
setting, as shown in Figures 2 through 9 of the “Typical  
Performance Curves”.  
ISL59920  
DELAY  
ISL59921  
DELAY  
ISL59922 ISL59923  
DELAY  
vwxyz  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
DELAY  
8
6
4
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  
62  
7.5  
9
5
10  
6
12  
10.5  
12  
7
14  
8
16  
13.5  
15  
9
18  
In operation, it is best to allocate the most delayed signal  
0ns delay then increase the delay on the other channels to  
bring them into line. This will result in delay compensation  
with the lowest power and distortion.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
20  
16.5  
18  
22  
24  
19.5  
21  
26  
Serial Bus Operation  
The ISL5992x is programmed via 8-bit words sent through  
its serial interface. The first bit (MSB) of SDATA is latched on  
the first falling clock edge after SENABLE goes low, as  
shown in Figure 33. This bit should be a 0 under all  
conditions. The next two bits determine the color register to  
be written to: 01 = R, 02 = G, and 03 = B (00 is reserved for  
the test register). The final five bits set the delay for the  
specified color. After 8 bits are latched, any additional clocks  
are treated as a new word (data is shifted directly to the final  
registers as it is clocked in). This allows the user to write (for  
example) the 24 bits of data necessary for R, G, and B as a  
single 24-bit word. It is the user's responsibility to send  
complete multiples of 8 clock cycles. The serial state  
machine is reset on the falling edge of SENABLE, so any  
data corruption that may have occurred due to too many or  
too few clocks can be corrected with a new word with the  
correct number of clocks. The initial value of all registers on  
power-up is 0.  
28  
22.5  
24  
30  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
25.5  
27  
28.5  
30  
31.5  
33  
34.5  
36  
37.5  
39  
40.5  
42  
TABLE 2. SERIAL BUS DATA  
43.5  
45  
ISL59920  
DELAY  
ISL59921  
DELAY  
ISL59922 ISL59923  
vwxyz  
00000  
00001  
00010  
00011  
DELAY  
DELAY  
0
2
4
6
0
0
1
2
3
0
2
4
6
46.5  
1.5  
3
NOTE: Delay register word = 0abvwxyz; Red register - ab = 01;  
Green register - ab = 10; Blue register - ab = 11; vwxyz selects  
delay; ab = 00 writes to the test register to change the DAC slice  
level.  
4.5  
FN6826.2  
August 31, 2010  
12  
ISL59920, ISL59921, ISL59922, ISL59923  
Offset Compensation  
Offset Calibration with Sync-On-Video  
To counter the effects of offset, the ISL5992x incorporates an  
offset compensation circuit that reduces the offset to less than  
±25mV. An offset correction cycle is triggered by the rising  
edge of the SENABLE pin after writing a delay word to any of  
the 3 channels. The offset calibration starts about 500ns after  
the SENABLE rising edge to allow the ISL5992x time to settle  
(electrically and thermally) to the new delay setting. It lasts  
about 2.5µs, for a total offset correction time of 3.0µs. During  
calibration, the ISL5992x’s inputs are internally shorted  
together (however the characteristics of the ISL5992x’s  
differential input pins stay the same), and the offset of the  
output stage is adjusted until it has been minimized.  
The offset correction mechanism temporarily disconnects  
the input signals to perform the offset calibration. This  
introduces several discontinuities in the video signal, as  
shown in Figure 10 on page 7:  
• 200-300mV spike when calibration is engaged  
• Successive-approximation offset null  
• 200-300mV spike when calibration is disengaged  
• In addition, because an offset calibration is performed any  
time the delay changes, the output video signal may be  
moved forward or back in time by up to 62ns.  
If the video signals going through the ISL5992x contain only  
video (with no sync signals), this appears as a 2µs “sparkle”  
on the screen - usually it is not even visible to the eye.  
In addition to automatically triggering after a delay change  
(or any register write), an additional offset calibration may be  
initiated at any time, such as:  
However if sync signals are embedded on the video, the  
spikes may be misinterpreted as a sync signal, causing the  
downstream circuitry to see an asynchronous sync pulse. In  
some receiving systems (typically monitors), a single  
asynchronous sync pulse can cause the system to think the  
video signal has changed. Depending on the receiveing  
monitor’s design, this can initiate a new video acquisition  
cycle (for example, the monitor blanks the screen while it  
measures the “new” HSYNC and VSYNC timing, selects the  
right mode, and optimizes the image). This can cause the  
monitor to go blank for up to several seconds after a single  
delay change.  
• When the die temperature changes. Applying power to the  
ISL5992x will cause the die temperature to quickly increase  
then slowly settle over 20 to 30ns. Because the ISL5992x  
powers-down unused delay stages (to minimize power  
consumption), the die temp will also change and settle after  
a delay change. Initiating an offset 20ns (or longer,  
depending on the thermal characteristics of the system)  
after power-on or a delay change will minimize the offset in  
normal operation thereafter.  
• When the ambient temperature changes. If you are  
monitoring the temperature, initiate a calibration every time  
the temperature shifts by 5 to 10 degrees. If you are not  
monitoring temperature, initiate a calibration periodically, as  
expected by the environment the device is in.  
Since this only happens at power-on and when the delays  
are initially set, this is not a problem in normal use, but if the  
monitor is blanking for several seconds every time the delay  
is adjusted, it can cause calibration to take longer than  
absolutely necessary. If this behavior is undesirable, it can  
be eliminated as follows:  
• After a CENABLE (Chip Enable) cycle. The CENABLE pin  
may be taken low to put the ISL5992x in a low power  
standby mode to conserve power when not needed. When  
the CENABLE pin goes high to exit this low power mode,  
the ISL5992x will recall the delay settings but it will not  
recall the correct offset calibration settings, so to maintain  
low offset, a write to the delay register is required after a  
CENABLE cycle. Offset errors may be as large as  
±200mV coming out of standby mode - recalibration is a  
necessity. For best performance, initiate an additional  
calibration again once the die temperature has settled (20  
to 30ns after coming out of standby).  
1. Synchronize the rising edge of SENABLE to the sync  
pulse, so that the SENABLE goes high immediately after  
the trailing edge of the sync pulse. SENABLE can be  
taken low and the serial data written asynchronously at  
any time - it is the rising edge of SENABLE that triggers  
a calibration.  
2. If the Sync Processor is part of the same design as  
ISL5992x, ensure that the sync processor ignores the  
first x microseconds after a valid sync, where x = 3µs + the  
delay between the end of a sync and rising edge of  
SENABLE. This will prevent the sync processor from  
generating invalid sync signals due to the spikes.  
• After a gain change (X2 pin changes state). The systematic  
offset is different for a gain of x1 vs. a gain of x2, so an  
offset calibration is recommended after a gain change.  
However in a typical application the gain is permanently  
fixed at x1 or x2, so this is not usually a concern.  
3. If the Sync Processor is external to the design with the  
ISL5992x (video with Sync-On-Green, for example), the  
video signal should disconnected from the ISL59920 and  
shorted to ground via an analog switch for the first x  
microseconds after a valid sync, where x = 3µs + the  
delay between the end of a sync and rising edge of  
SENABLE. This will remove the calibration signals from  
the video signal.  
FN6826.2  
August 31, 2010  
13  
ISL59920, ISL59921, ISL59922, ISL59923  
These steps are only necessary if the sync signal is  
embedded on the video and you want to avoid possible  
INTERNAL DAC  
SLICING LEVEL  
4
monitor blanking during skew adjustment.  
000wxyz0  
COMPARATORS  
A
Test Pins  
RED  
GREEN  
BLUE  
OUT  
OUT  
OUT  
Three test pins are provided (Test R, Test G, Test B). During  
normal operation, the test pins output pulses of current for a  
duration of the overlap between the inputs, as shown in  
Figure 34:  
TEST  
R
G
B
B
TEST pulse = RED  
(A) with respect to GREEN  
(B)  
R
OUT  
OUT  
OUT  
OUT  
A
B
TEST pulse = GREEN  
G
with respect to BLUE  
OUT  
with respect to RED  
OUT  
TEST  
TEST pulse = BLUE  
B
Averaging the current gives a direct measure of the delay  
between the two edges. When A precedes B, the current  
pulse is +50µA, and the output voltage goes up. When B  
precedes A, the pulse is -50µA.  
A
B
TEST  
For the logic to work correctly, A and B must have a period of  
overlap while they are high (a delay longer than the pulse  
width cannot be measured).  
A
B
Signals A and B are derived from the video input by  
comparing the video signal with a slicing level, which is set by  
an internal DAC. This enables the delay to be measured  
either from the rising edges of sync-like signals encoded on  
top of the video or from a dedicated set-up signal. The outputs  
can be used to set the correct delays for the signals received.  
OUTPUT  
FIGURE 34. DELAY DETECTOR  
TABLE 3. DAC VOLTAGE RANGE - INPUT REFERRED  
DAC RANGE [mV] DAC RANGE [mV]  
The DAC level is set through the serial input by bits 1  
through 4 directed to the test register (00).  
wxyz  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
(GAIN 1)  
-400  
-350  
-300  
-250  
-200  
-150  
-100  
-50  
(GAIN 2)  
-200  
-175  
-150  
-125  
-100  
-75  
Internal DAC Voltage  
The slice level of the internal DAC may be programmed by  
writing a byte to the test register (00). Table 3 shows the  
values that should be written to change the DAC slice level.  
Please keep in mind when writing to the test register that the  
LSB should always be zero.  
Referred to the input, the DAC slice range for the ISL5992x  
is cut in half for gain of 2 mode because the slicing occurs  
after the x1/x2 stage output amplifier. (In the EL9115, the  
slicing occurred before the amplifier so the range of the DAC  
voltage was the same for either gain of 1 or gain of 2).  
-50  
-25  
0
0
50  
25  
100  
150  
200  
250  
300  
350  
50  
75  
100  
125  
150  
175  
NOTE: Test Register word = 000wxyz0. wxyz fed to DAC. z is LSB  
FN6826.2  
August 31, 2010  
14  
ISL59920, ISL59921, ISL59922, ISL59923  
Power Dissipation  
As the delay setting increases, additional filter blocks turn on  
and insert into the signal path. When the delay per channel  
increments, V current increases by 0.9mA while V  
SP SM  
does not change significantly. Under the extreme settings,  
the positive supply current reaches 141mA and the negative  
supply current can be 41mA. Operating at ±5V power supply,  
the worst-case ISL5992x power dissipation is:  
(EQ. 1)  
PD = 5 141mA + 5 41mA = 910mW  
The minimum θ required for long term reliable operation of  
JA  
the ISL5992x is calculated using Equation 2:  
(EQ. 2)  
θ
= (T T ) ⁄ PD = 55°C W  
J A  
JA  
Where:  
T is the maximum junction temperature (+135°C)  
J
T is the maximum ambient temperature (+85°C)  
A
For a 20 Ld package on a well laid-out PCB with good  
connectivity between the QFN’s pad and the PCB copper  
area, 31°C/W θ thermal resistance can be achieved. This  
JA  
yields a much higher power dissipation of 3.54W using  
Equation 2 (see Figure 31). To disperse the heat, the bottom  
heat spreader must be soldered to the PCB. Heat flows  
through the heat spreader to the circuit board copper then  
spreads and convects to air. Thus, the PCB copper plane  
becomes the heatsink (see TB389). This has proven to be a  
very effective technique. A separate application note, which  
details the 20 Ld QFN PCB design considerations, is  
available.  
FN6826.2  
August 31, 2010  
15  
ISL59920, ISL59921, ISL59922, ISL59923  
Quad Flat No-Lead Plastic Package (QFN)  
L20.5x5C  
20 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE  
(COMPLIANT TO JEDEC MO-220)  
B
A
D
MILLIMETERS  
SYMBOL  
MIN  
0.80  
0.00  
0.28  
NOMINAL  
0.90  
MAX  
1.00  
0.05  
0.32  
NOTES  
A
A1  
b
-
1
2
3
PIN #1  
I.D. MARK  
0.02  
-
E
0.30  
-
c
0.20 REF  
5.00 BASIC  
3.70 REF  
5.00 BASIC  
3.70 REF  
0.65 BASIC  
0.40  
-
(2X)  
D
-
0.075 C  
D2  
E
8
-
E2  
e
8
TOP VIEW  
-
L
0.35  
0.45  
-
N
20  
4
0.10 C  
e
C
ND  
NE  
5 REF  
6
5 REF  
5
SEATING  
PLANE  
Rev. 0 6/06  
0.08 C  
N LEADS AND  
NOTES:  
SEE DETAIL “X”  
1. Dimensioning and tolerancing per ASME Y14.5M-1994.  
2. Tiebar view shown is a non-functional feature.  
EXPOSED PAD  
SIDE VIEW  
3. Bottom-side pin #1 I.D. is a diepad chamfer as shown.  
4. N is the total number of terminals on the device.  
0.01 M C A B  
5. NE is the number of terminals on the “E” side of the package  
(or Y-direction).  
b
PIN #1 I.D.  
L
N LEADS  
3
6. ND is the number of terminals on the “D” side of the package  
(or X-direction). ND = (N/2)-NE.  
1
2
3
7. Inward end of terminal may be square or circular in shape with  
radius (b/2) as shown.  
(E2)  
8. If two values are listed, multiple exposed pad options are  
available. Refer to device-specific datasheet.  
5
NE  
9. One of 10 packages in MDP0046  
7
(D2)  
BOTTOM VIEW  
C
A
2
(c)  
(L)  
N LEADS  
A1  
DETAIL “X”  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6826.2  
August 31, 2010  
16  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY