ISL6353IRTZ [INTERSIL]

Multiphase PWM Regulator for VR12 DDR Memory Systems; 多相PWM稳压器用于VR12 DDR内存系统
ISL6353IRTZ
型号: ISL6353IRTZ
厂家: Intersil    Intersil
描述:

Multiphase PWM Regulator for VR12 DDR Memory Systems
多相PWM稳压器用于VR12 DDR内存系统

稳压器 双倍数据速率
文件: 总30页 (文件大小:1278K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Multiphase PWM Regulator for VR12 DDR Memory  
Systems  
ISL6353  
Features  
The ISL6353 is a three-phase PWM buck regulator controller for  
VR12 DDR memory applications. The multi-phase implementation  
results in better system performance, superior thermal  
• VR12 Serial Communications Bus  
• Precision Voltage Regulation  
- 5mV Steps with VID Fast/Slow Slew Rates  
• Supports Two Current Sensing Methods  
- Lossless Inductor DCR Current Sensing  
- Precision Resistor Current Sensing  
management, lower component cost and smaller PCB area.  
The ISL6353 has two integrated power MOSFET drivers for  
implementing a cost effective and space saving power  
management solution.  
• Programmable 1, 2 or 3-Phase Operation  
• Adaptive Body Diode Conduction Time Reduction  
• Superior Noise Immunity and Transient Response  
• Pin Programmable Output Voltage and Power State Mode  
The PWM modulator of the ISL6353 is based on Intersil’s Robust  
Ripple Regulator™ (R ) technology. Compared with the traditional  
multi-phase buck regulator, the R modulator commands variable  
PWM switching frequency during load transients, achieving faster  
transient response. R also naturally goes into pulse frequency  
modulation operation in light load conditions to achieve higher light  
load efficiency.  
3
3
3
• Output Current Monitor and Thermal Monitor  
• Differential Remote Voltage Sensing  
• High Efficiency Across Entire Load Range  
• Programmable Switching Frequency  
The ISL6353 is designed to be completely compliant with VR12  
specifications. The ISL6353 has a serial VID (SVID) bus  
communicating with the CPU. The output can be programmed for  
1-, 2- or 3-phase interleaved operation. The output voltage and  
power state can also be controlled independent of the serial VID  
bus.  
• Resistor Programmable VBOOT, Power State Operation, SVID  
Address Setting, I  
MAX  
• Excellent Dynamic Current Balance Between Phases  
• OCP/WOC, OVP, OT Alert, PGOOD  
The ISL6353 has several other key features. It supports DCR  
current sensing with a single NTC thermistor for DCR  
temperature compensation or accurate resistor current sensing.  
It also has remote voltage sense, adjustable switching frequency,  
current monitor, OC/OV protection and power-good. Temperature  
monitor and thermal alert is available too.  
• Small Footprint 40 Ld 5x5 TQFN Package  
• Pb-Free (RoHS Compliant)  
Applications  
• DDR Memory  
95  
1.5V PS0  
COMP  
200mV/DIV  
1.5V PS1 2ph CCM  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
1.5V PS2 1ph DE  
1.35VPS0  
VDDQ = 1.5V  
50mV/DIV  
PHASE1/2/3  
5V/DIV  
1.35V PS1 2ph CCM  
1.35VPS2 1ph DE  
26A STEP LOAD  
1V/DIV  
0
10  
20  
30  
40  
50  
60  
70  
80  
20µs/DIV  
LOAD (A)  
FIGURE 2. ISL6353EVAL1Z EFFICIENCY vs LOAD  
FIGURE 1. FAST TRANSIENT RESPONSE  
FN6897.0  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 |Copyright Intersil Americas Inc. 2011. All Rights Reserved  
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners.  
1
September 15, 2011  
ISL6353  
Simplified Application Circuit Using Inductor DCR Current Sensing  
VIN  
+5VDUAL  
+5VDUAL  
VIN (5VSB/12V DUAL)  
ADDR  
PROG2  
BOOT1  
PROG1  
NTC  
UG1  
PH1  
RNTC  
°C  
PH1  
VO1  
SDA  
ALERT#  
SCLK  
LG1  
{
µP  
GND  
+12V  
VW  
COMP  
FB  
BOOT2  
UG2  
PH2  
VDDQ  
PH2  
VO2  
ISL6353  
LG2  
VCCSENSE  
VSSSENSE  
VSEN  
RTN  
FB2  
GND  
+5V  
+12V  
BOOT  
UGATE  
VCTRL  
VCC  
PHASE  
ISL6596  
ISEN1  
ISEN2  
ISEN3  
GND  
DRIVER  
PWM  
LGATE  
PWM3  
PH3  
VO3  
VSET1  
VSET2  
PSI  
VSUMN  
VO1  
ISUMN  
VO2  
VO3  
°C  
ISUMP  
IMON  
September 15, 2011  
FN6897.0  
2
ISL6353  
Block Diagram  
VR_ON  
PSI  
VREADY  
PROG  
POWER-ON RESET  
(POR)  
VDD  
A/D  
T_MONITOR  
IMON  
SDA  
ALERT#  
SCLK  
DIGITAL  
INTERFACE  
ISEN1  
ISEN2  
ISEN3  
VSET1  
VSET2  
DAC  
D/A  
IBAL  
PHASE CURRENT  
BALANCE  
ADDR  
IMAX  
VBOOT  
TMAX  
PROG1  
PROG2  
PROG  
DROOP  
VIN  
# OF PHASES FOR PS1  
SET (A/D)  
BOOT2  
T_MONITOR  
DRIVER  
UG2  
PH2  
NTC  
TEMP MONITOR  
VR_HOT#  
VW  
DAC  
+
DRIVER  
LG2  
RTN  
FB2  
?
+
+
GND  
E/A  
R3  
PWM3  
MODULATOR  
-
FB  
BOOT1  
UG1  
COMP  
DRIVER  
PH1  
DROOP  
VDDP  
CURRENT  
SENSE  
ISUMP  
ISUMN  
+
-
LG1  
DRIVER  
OC AND WOC  
PROTECTION  
GND  
IMON  
PGOOD  
OV PROTECTION  
VSEN  
OVP  
September 15, 2011  
FN6897.0  
3
ISL6353  
Pin Configuration  
ISL6353  
(40 LD TQFN)  
TOP VIEW  
40 39 38 37 36 35 34 33 32 31  
SDA  
1
2
3
4
5
6
7
8
9
30 LG2  
ALERT#  
SCLK  
29 VDDP  
28 PWM3  
27  
26  
25  
24  
23  
22  
VR_ON  
PGOOD  
IMON  
LG1  
GND  
GND  
(BOTTOM PAD)  
PH1  
VR_HOT#  
NTC  
UG1  
BOOT1  
PROG1  
VW  
COMP 10  
21 VIN  
11 12 13 14 15 16 17 18 19 20  
Pin Descriptions  
PIN NUMBER  
SYMBOL  
DESCRIPTION  
1, 2, 3  
SDA, ALERT#, SCLK Serial communication bus signals connected between the CPU and the voltage regulator.  
4
5
VR_ON  
PGOOD  
Voltage regulator enable input. A high level logic signal on this pin enables the VR.  
Open-drain output to indicate the regulator is ready to supply regulated voltage. Use an appropriate external pull-up  
resistor.  
6
IMON  
Output current monitor pin. IMON sources a current proportional to the regulator output current. A resistor  
connected from this pin to ground will set a voltage that is proportional to the load current. This voltage is sampled  
with an internal ADC to produce a digital IMON signal that can be read through the serial communications bus.  
7
8
9
VR_HOT#  
NTC  
Thermal overload output indicator.  
Thermistor input to the VR_HOT# circuit.  
VW  
Window voltage set pin used to set the switching frequency. A resistor from this pin to COMP programs the  
switching frequency (18kΩ gives approximately 300kHz).  
10  
11  
12  
COMP  
FB  
This pin is the output of the error amplifier.  
This pin is the inverting input of the error amplifier.  
FB2  
This pin switches in an RC network from VOUT to FB in PS1 and PS2 modes to help improve transient performance  
and phase margin when dropping phases in low power states. There is a switch between the FB2 pin and the FB  
pin. The switch is off in the PS0 state and on in the PS1 and PS2 states. If this function is not needed, the pin can  
be left open.  
13  
14  
ISEN3  
ISEN2  
Individual current sensing input for Phase 3. Leave this pin open when ISL6353 is configured in 2-phase mode.  
Individual current sensing input for Phase 2. When ISEN2 is pulled to 5V VDD, the controller will disable Phase 2,  
and the controller will run in 1-phase mode.  
15  
16  
ISEN1  
VSEN  
Individual current sensing input for Phase 1.  
Output voltage sense pin. Connect to the output voltage (typically VDDQ) at the desired remote voltage sensing  
location.  
September 15, 2011  
FN6897.0  
4
ISL6353  
Pin Descriptions(Continued)  
PIN NUMBER  
SYMBOL  
DESCRIPTION  
17  
18, 19  
20  
RTN  
Output voltage sense return pin. Connect to the ground at desired remote sensing location.  
ISUMN and ISUMP Inverting and non-inverting input of the transconductance amplifier for current monitoring and OCP.  
VDD  
VIN  
5V bias power.  
21  
Input supply voltage, used for input supply feed-forward compensation.  
22  
PROG1  
BOOT1  
The program pin for the voltage regulator I  
setting. Refer to Table 6.  
MAX  
23  
Connect an MLCC capacitor across the BOOT1 and the PH1 pins. The boot capacitor is charged through an internal  
switch connected from the VDDP pin to the BOOT1 pin.  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
UG1  
PH1  
Output of the Phase 1 high-side MOSFET gate driver. Connect the UG1 pin to the gate of the Phase 1 high-side  
MOSFET.  
Current return path for the Phase 1 high-side MOSFET gate driver. Connect the PH1 pin to the node consisting of  
the high-side MOSFET source, the low-side MOSFET drain, and the output inductor of Phase 1.  
GND  
This is an electrical ground connection for the IC. Connect this pin to the ground plane of the PCB right next to the  
controller or to the exposed pad on the back of the IC using a low impedance path.  
LG1  
Output of the Phase 1 low-side MOSFET gate driver. Connect the LG1 pin to the gate of the Phase 1 low-side  
MOSFET.  
PWM3  
VDDP  
LG2  
PWM output for Phase 3. When PWM3 is pulled to 5V VDD, the controller will disable Phase 3 and allow other  
phases to operate.  
Input voltage bias for the internal gate drivers. Connect +5V to the VDDP pin. Decouple with at least 1µF using an  
MLCC capacitor to the ground plane close to the IC.  
Output of the Phase 2 low-side MOSFET gate driver. Connect the LG2 pin to the gate of the Phase 2 low-side  
MOSFET.  
GND  
This is an electrical ground connection for the IC. Connect this pin to the ground plane of the PCB right next to the  
controller or to the exposed pad on the back of the IC using a low impedance path.  
PH2  
Current return path for the Phase 2 high-side MOSFET gate driver. Connect the PH2 pin to the node consisting of  
the high-side MOSFET source, the low-side MOSFET drain, and the output inductor of Phase 2.  
UG2  
Output of the Phase 2 high-side MOSFET gate driver. Connect the UG2 pin to the gate of the Phase 2 high-side  
MOSFET.  
BOOT2  
PROG2  
PSI  
Connect an MLCC capacitor across the BOOT2 and the PH2 pins. The boot capacitor is charged through an internal  
switch connected from the VDDP pin to the BOOT2 pin.  
The program pin for the voltage regulator V  
for PS1 mode.  
voltage, droop enable/disable and the number of active phases  
BOOT  
This pin can be used to set the power state of the controller with external logic signals. By connecting this pin to  
ground, the controller will refer only to the power state indicated by the serial communication bus register. If the  
pin is connected to a high impedance, the controller will enter the PS1 state. If the pin is connected to a logic high,  
the controller will enter the PS2 state.  
37  
38  
VSET2  
VSET1  
This pin is a logic input that can be used in conjunction with VSET1 to program the output voltage of the regulator  
with external logic signals. Refer to Table 9. By connecting VSET1 and VSET2 to ground, the controller will refer to  
the VID setting indicated by the serial communication bus register.  
This pin is a logic input that can be used in conjunction with VSET2 to program the output voltage of the regulator  
with external signals. Refer to Table 9. By connecting VSET1 and VSET2 to ground, the controller will refer to the  
VID setting indicated by the serial communication bus register.  
39  
40  
-
OVP  
An inverter output, latched high for an overvoltage event. It is reset by POR.  
This pin sets the address offset register, range from 0 to 13 (0h to Dh).  
ADDR  
GND (Bottom Pad) Electrical ground of the IC. Unless otherwise stated, all signals are referenced to the GND pin. Connect this ground  
pad to the ground plane through a low impedance path. Recommend use of at least 5 vias to connect to ground  
planes in PCB internal layers.  
September 15, 2011  
5
FN6897.0  
ISL6353  
Ordering Information  
PART NUMBER  
PART  
TEMP. RANGE  
(°C)  
PACKAGE  
(Pb-free)  
PKG.  
DWG. #  
(Notes 1, 2, 3)  
MARKING  
ISL6353CRTZ  
ISL6353 CRTZ  
0 to +70  
40 Ld 5x5 TQFN  
40 Ld 5x5 TQFN  
L40.5x5  
L40.5x5  
ISL6353IRTZ  
ISL6353EVAL1Z  
NOTES:  
ISL6353 IRTZ  
-40 to +85  
Evaluation Board  
1. Add “-T*” suffix for tape and reel. Please refer to TB347 for details on reel specifications.  
2. Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate  
termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL6353. For more information on MSL please see techbrief TB363.  
September 15, 2011  
6
FN6897.0  
ISL6353  
Table of Contents  
Simplified Application Circuit Using Inductor DCR Current Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Recommended Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Gate Driver Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Theory of Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Multiphase R3 Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Diode Emulation and Period Stretching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Start-up Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Voltage Regulation and Differential Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
VID Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
VID OFFSET Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Inductor DCR Current-Sensing Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Resistor Current-Sensing Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Overcurrent Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Current Monitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Phase Current Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
CCM Switching Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Phase Count Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Dynamic Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
FB2 Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Adaptive Body Diode Conduction Time Reduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
System Parameter Programming PROG1/2 Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
SVID ADDRESS Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
External Control of VOUT and Power State VSET1/2, PSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Supported Serial VID Data And Configuration Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Layout Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
September 15, 2011  
7
FN6897.0  
ISL6353  
Absolute Maximum Ratings  
Thermal Information  
Supply Voltage, VDD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +7V  
Input Supply Voltage, VIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +28V  
Boot Voltage (BOOT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +33V  
Boot to Phase Voltage (BOOT-PHASE) . . . . . . . . . . . . . . . . -0.3V to +7V(DC)  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +9V(<10ns)  
Phase Voltage (PHASE) . . . . . . . . . . . . . . . . -7V (<20ns Pulse Width, 10µJ)  
UGATE Voltage (UGATE) . . . . . . . . . . . . . . . . . . . PHASE - 0.3V (DC) to BOOT  
. . . . . . . . . . . . . . . . . . . . . . .PHASE-5V (<20ns Pulse Width, 10µJ) to BOOT  
LGATE Voltage (LGATE). . . . . . . . . . . . . . . . . . . . . . -0.3V (DC) to VDD + 0.3V  
. . . . . . . . . . . . . . . . . . . . . . . -2.5V (<20ns Pulse Width, 5µJ) to VDD + 0.3V  
All Other Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to (VDD +0.3V)  
Open Drain Outputs, PGOOD, VR_HOT#, ALERT#. . . . . . . . . . -0.3V to +7V  
ESD Rating  
Thermal Resistance (Typical)  
40 Ld TQFN Package (Notes 4, 5) . . . . . . .  
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . .+150°C  
Maximum Storage Temperature Range . . . . . . . . . . . . . .-65°C to +150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
θ
JA (°C/W)  
32  
θ
JC (°C/W)  
3
Recommended Operating Conditions  
Supply Voltage, VDD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+5V ±5%  
Input Voltage, VIN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +4.5V to 25V  
Ambient Temperature  
ISL6353CRTZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to +70°C  
ISL6353IRTZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Junction Temperature  
ISL6353CRTZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to +125°C  
ISL6353IRTZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +125°C  
Human Body Model (Tested per JESD22-A114E). . . . . . . . . . . . . . 2000V  
Machine Model (Tested per JESD22-A115-A). . . . . . . . . . . . . . . . . 200V  
Charged Device Model (Tested per JESD22-C101A) . . . . . . . . . . . 750V  
Latch Up (Tested per JESD-78B; Class 2, Level A) . . . . . . . . . . . . . . 100mA  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
4. θ is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech  
JA  
Brief TB379.  
5. For θ , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
Electrical Specifications Operating Conditions: V = 5V, T = 0°C to +70°C for ISL6353CRTZ and T = -40°C to +85°C for ISL6353IRTZ,  
DD  
A
A
f
= 300kHz, unless otherwise noted. Boldface limits apply over the operating temperature range.  
SW  
MIN  
MAX  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
(Note 6) TYP (Note 6) UNITS  
INPUT POWER SUPPLY  
+5V Supply Current  
I
VR_ON = 1V  
VR_ON = 0V  
VR_ON = 0V  
4
4.6  
1
mA  
µA  
µA  
V
VDD  
Input Supply Current  
I
1
VIN  
Power-On-Reset Threshold  
POR  
POR  
POR  
POR  
V
V
rising  
4.35  
4.15  
4.00  
3.50  
4.5  
r
f
r
f
DD  
DD  
falling  
4.00  
2.8  
V
VIN pin rising  
VIN pin falling  
4.35  
+0.5  
V
V
SYSTEM AND REFERENCES  
System Accuracy  
CRTZ  
%Error (V  
No load; closed loop, active mode range  
) VID = 0.75V to 1.50V,  
-0.5  
%
CC_CORE  
VID = 0.5V to 0.7375V  
VID = 0.3V to 0.4875V  
-8  
8
mV  
mV  
%
-15  
-0.8  
15  
0.8  
IRTZ  
No load; closed loop, active mode range  
) VID = 0.75V to 1.50V,  
%Error (V  
CC_CORE  
VID = 0.5V to 0.7375V  
VID = 0.3V to 0.4875V  
-10  
-18  
10  
18  
mV  
mV  
V
Maximum Output Voltage + Offset  
Minimum Output Voltage  
V
VID = FFh  
OFFSET = 7Fh  
1.520+  
0.635 =  
2.155  
CC_CORE(max)  
V
VID = 01h  
0.25  
V
CC_CORE(min)  
OFFSET = 00h  
September 15, 2011  
FN6897.0  
8
ISL6353  
Electrical Specifications Operating Conditions: V = 5V, T = 0°C to +70°C for ISL6353CRTZ and T = -40°C to +85°C for ISL6353IRTZ,  
DD  
A
A
f
= 300kHz, unless otherwise noted. Boldface limits apply over the operating temperature range. (Continued)  
SW  
MIN  
MAX  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
(Note 6) TYP (Note 6) UNITS  
CHANNEL FREQUENCY  
Nominal Channel Frequency  
Adjustment Range  
f
R
= 18k, 3-channel operation, V = 1V  
COMP  
280  
200  
300  
320  
500  
kHz  
kHz  
SW(nom)  
FSET  
AMPLIFIERS  
Current-Sense Amplifier Input Offset  
Error Amp DC Gain  
I
= 0A  
-0.1  
+0.1  
mV  
dB  
FB  
A
119  
17  
v0  
GBW  
Error Amp Gain-Bandwidth Product  
ISEN1/2/3  
C = 20pF  
MHz  
L
Input Bias Current  
20  
0.26  
7
nA  
POWER GOOD AND PROTECTION MONITORS  
PGOOD Low Voltage  
V
I
= 4mA  
PGOOD  
0.4  
1
V
OL  
PGOOD Leakage Current  
ALERT# Pull-Down Resistance  
ALERT# Leakage Current  
VR_HOT# Pull-Down Resistance  
VR_HOT# Leakage Current  
GATE DRIVER  
I
PGOOD = 3.3V  
-1  
µA  
OH  
13  
1
µA  
7
13  
1
µA  
UGATE Pull-Up Resistance  
UGATE Source Current  
UGATE Sink Resistance  
UGATE Sink Current  
R
200mA Source Current  
UGATE - PHASE = 2.5V  
1.0  
2.0  
1.0  
2.0  
1.0  
2.0  
0.5  
4.0  
23  
1.5  
1.5  
1.5  
0.9  
A
UGPU  
I
UGSRC  
R
250mA Sink Current  
A
UGPD  
I
UGATE - PHASE = 2.5V  
UGSNK  
LGATE Pull-Up Resistance  
LGATE Source Current  
R
250mA Source Current  
LGATE - GND = 2.5V  
A
LGPU  
I
LGSRC  
LGATE Sink Resistance  
LGATE Sink Current  
R
250mA Sink Current  
A
LGPD  
I
LGATE - GND = 2.5V  
LGSNK  
UGATE to LGATE Deadtime  
LGATE to UGATE Deadtime  
PROTECTION FUNCTIONS  
Pre-Charge Overvoltage Threshold  
Overvoltage Threshold  
OVP Pin Sink Current  
t
t
UGATE falling to LGATE rising, no load  
LGATE falling to UGATE rising, no load  
ns  
ns  
UGFLGR  
LGFUGR  
28  
OV  
OV  
VSEN rising above setpoint for >1ms  
VSEN rising above setpoint for >1ms  
2.29  
145  
20  
2.35  
175  
V
P
200  
mV  
mA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
H
I
V
= VDD - 1V  
OVP  
OVP  
Overcurrent Threshold  
CRTZ  
IRTZ  
CRTZ  
IRTZ  
CRTZ  
IRTZ  
CRTZ  
IRTZ  
3/2/1-Phase Config, PS0  
3/2/1-Phase Config, PS0  
56.5  
54.5  
38.3  
37  
60  
60  
40  
40  
20  
20  
30  
30  
64.5  
64.5  
43.2  
43.2  
22.25  
22.25  
33  
3-Phase Config, PS1 - Drop to 2-Phase  
3-Phase Config, PS1 - Drop to 2-Phase  
3-Phase Config, PS1/2 - Drop to 1-Phase  
3-Phase Config, PS1/2 - Drop to 1-Phase  
2-Phase Config, PS1/2 - Drop to 1-Phase  
2-Phase Config, PS1/2 - Drop to 1-Phase  
19  
18.5  
28  
27  
33  
September 15, 2011  
FN6897.0  
9
ISL6353  
Electrical Specifications Operating Conditions: V = 5V, T = 0°C to +70°C for ISL6353CRTZ and T = -40°C to +85°C for ISL6353IRTZ,  
DD  
A
A
f
= 300kHz, unless otherwise noted. Boldface limits apply over the operating temperature range. (Continued)  
SW  
MIN  
MAX  
PARAMETER  
SYMBOL  
CRTZ  
IRTZ  
TEST CONDITIONS  
3/2/1-Phase Config, PS0  
(Note 6) TYP (Note 6) UNITS  
Way Overcurrent Threshold  
76.8  
74  
88  
88  
60  
60  
32  
32  
46  
46  
20  
100  
100  
68  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
mV  
3/2/1-Phase Config, PS0  
CRTZ  
IRTZ  
3-Phase Config, PS1 - Drop to 2-Phase  
3-Phase Config, PS1 - Drop to 2-Phase  
3-Phase Config, PS1/2 - Drop to 1-Phase  
3-Phase Config, PS1/2 - Drop to 1-Phase  
2-Phase Config, PS1/2 - Drop to 1-Phase  
2-Phase Config, PS1/2 - Drop to 1-Phase  
One ISEN above another ISEN for >1.2ms  
52  
50  
68  
CRTZ  
IRTZ  
28  
35.8  
35.8  
52  
27  
CRTZ  
IRTZ  
40  
39.5  
52  
Current Imbalance Threshold  
PWM  
PWM3 Output Low  
PWM3 Output High  
PWM3 Tri-State Leakage  
THERMAL MONITOR  
NTC Source Current  
V
Sinking 5mA  
Sourcing 5mA  
PWM3 = 2.5V  
1.0  
V
V
OL_MAX  
V
3.5  
OH_MIN  
2
µA  
CRTZ  
IRTZ  
NTC = 1.3V  
NTC = 1.3V  
Falling  
58  
56  
60  
62  
62  
µA  
µA  
V
60  
VR_HOT# Trip Voltage  
VR_HOT# Reset Voltage  
ALERT# Trip Voltage  
ALERT# Reset Voltage  
CURRENT MONITOR  
IMON Output Current  
0.895  
0.91  
0.95  
0.93  
0.97  
Rising  
0.965  
0.985  
V
Falling  
0.915  
V
Rising  
V
I
ISUM- pin current = 50µA  
ISUM- pin current = 2µA  
Rising  
12.3  
400  
12.45  
500  
12.6  
600  
µA  
nA  
V
IMON  
IccMAX Alert Trip Voltage  
IccMAX Alert Reset Voltage  
INPUTS  
V
1.2  
1.225  
IMONMAX  
Falling  
1.05  
1.14  
V
VR_ON Input Low  
V
0.3  
V
V
IL_MAX  
VR_ON Input High  
V
0.8  
-1  
IH_MIN  
VR_ON  
VR_ON Leakage Current  
I
VR_ON = 0V  
0
µA  
µA  
V
VR_ON = 1V, 300kTypical Pull-Down  
3.3  
VSET1/2 Input Low  
VSET1/2 Input High  
PSI Sink/Source Current  
PSI Pin State  
VSET  
VSET  
1.5  
IL_MAX  
3.1  
12  
V
IH_MIN  
PSI Voltage  
16  
20  
0.51  
3.91  
5
µA  
V
PS0, V = 5V  
DD  
0
PS1, V = 5V  
DD  
1.06  
4.47  
2.12  
V
PS2, V = 5V  
DD  
V
PSI High-Z Voltage  
SCLK, SDA  
2.37  
2.60  
V
SCLK, SDA Leakage  
VR_ON = 0V, SCLK & SDA = 0V & 1V  
VR_ON = 1V, SCLK & SDA = 1V  
VR_ON = 1V, SDA = 0V  
-1  
-5  
1
1
µA  
µA  
µA  
µA  
20  
40  
VR_ON = 1V, SCLK = 0V  
NOTE:  
6. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
September 15, 2011  
FN6897.0  
10  
ISL6353  
Gate Driver Timing Diagram  
PWM  
t
LGFUGR  
t
FU  
t
RU  
1V  
UGATE  
LGATE  
1V  
t
RL  
t
FL  
t
UGFLGR  
Theory of Operation  
Multiphase R Modulator  
VW  
3
HYSTERETIC  
WINDOW  
Vcrm  
COMP  
MASTER CLOCK CIRCUIT  
VW  
MASTER  
CLOCK  
Clock1  
Clock2  
Clock3  
COMP  
Vcrm  
MASTER  
CLOCK  
Phase  
Sequencer  
MASTER  
CLOCK  
gmVo  
Crm  
CLOCK1  
PWM1  
SLAVE CIRCUIT 1  
L1  
IL1  
Phase1  
Clock1  
PWM1  
Vo  
S
R
VW  
Q
CLOCK2  
PWM2  
Co  
Vcrs1  
gm  
Crs1  
Crs2  
Crs3  
CLOCK3  
PWM3  
SLAVE CIRCUIT 2  
L2  
IL2  
Phase2  
PWM2  
Clock2  
S
R
VW  
Q
VW  
Vcrs2  
gm  
Vcrs2  
Vcrs3  
Vcrs1  
SLAVE CIRCUIT 3  
L3  
IL3  
Phase3  
PWM3  
Clock3  
S
R
VW  
Q
3
FIGURE 4. R MODULATOR OPERATION PRINCIPLES IN  
STEADY STATE  
Vcrs3  
gm  
3
FIGURE 3. R MODULATOR CIRCUIT  
September 15, 2011  
FN6897.0  
11  
ISL6353  
voltage V hits VW, the slave circuit turns off the PWM pulse,  
Crs  
VW  
and the current source discharges C .  
rs  
Since the ISL6353 individual phase modulators use a  
large-amplitude and noise-free synthesized signal, V , to  
crs  
COMP  
determine the pulse width, phase jitter is lower than conventional  
hysteretic mode and fixed PWM mode controllers. Unlike  
conventional hysteretic mode converters, the ISL6353 has an  
error amplifier that allows the controller to maintain 0.5% output  
voltage accuracy.  
Vcrm  
Master  
Clock  
Clock1  
PWM1  
Figure 5 shows the principle of operation during a load step-up  
response. The COMP voltage rises after the load step up,  
Clock2  
PWM2  
generating master clock pulses more quickly, so PWM pulses  
turn on earlier, increasing the effective switching frequency. This  
allows for higher control loop bandwidth than conventional fixed  
frequency PWM controllers. The VW voltage rises as the COMP  
voltage rises, making the PWM pulses wider as well. During load  
step-down response, COMP voltage falls. It takes the master  
clock circuit longer to generate the next clock signal, so the PWM  
pulse is held off until needed. The VW voltage falls as the COMP  
voltage falls, reducing the current PWM pulse width. This kind of  
behavior gives the ISL6353 excellent load transient response.  
Clock3  
PWM3  
VW  
Vcrs1  
Vcrs3  
Vcrs2  
The fact that all the phases share the same VW window voltage  
also ensures excellent dynamic current balance among phases.  
3
FIGURE 5. R MODULATOR OPERATION DURING A LOAD  
STEP-UP RESPONSE  
Diode Emulation and Period Stretching  
The ISL6353 is a multiphase regulator controller implementing  
the Intel VR12™ protocol primarily intended for use in DDR  
memory regulator applications. It can be programmed for 1-, 2- or  
P H A S E  
3
3-phase operation. It uses Intersil’s patented R (Robust Ripple  
3
Regulator™) modulator. The R modulator combines the best  
U G A TE  
LG A TE  
features of fixed frequency PWM and hysteretic PWM while  
eliminating many of their respective shortcomings. Figure 3  
3
conceptually shows the ISL6353 multiphase R modulator circuit,  
and Figure 4 shows the principle of operation.  
A current source flows from the VW pin to the COMP pin, creating  
a voltage window set by the resistor between the two pins. This  
voltage window is called the VW window in the following  
discussion.  
IL  
FIGURE 6. DIODE EMULATION OPERATION  
Inside the IC, the modulator uses the master clock circuit to  
generate the clocks for the slave circuits. The modulator discharges  
ISL6353 can operate in diode emulation (DE) mode to improve  
light load efficiency. In DE mode, the low-side MOSFET conducts  
when the current is flowing from source to drain and does not  
allow reverse current, thus emulating a diode. As Figure 6 shows,  
when LGATE is on, the low-side MOSFET carries current, creating  
negative voltage on the phase node due to the voltage drop across  
the ON-resistance. The ISL6353 monitors the current by  
monitoring the phase node voltage. It turns off LGATE when the  
phase node voltage reaches zero to prevent the inductor current  
from reversing direction and creating unnecessary power loss.  
the ripple capacitor C with a current source equal to g V , where  
rm  
m o  
g
is a gain factor. The C voltage V  
is a sawtooth waveform  
m
rm crm  
traversing between the VW and COMP voltages. It resets to VW  
when it hits COMP, and generates a one-shot master clock signal. A  
phase sequencer distributes the master clock signal to the slave  
circuits. If the ISL6353 is in 3-phase mode, the master clock signal  
will be distributed to the three phases, and the Clock1~3 signals will  
be 120° out-of-phase. If the ISL6353 is in 2-phase mode, the  
master clock signal will be distributed to Phases 1 and 2, and the  
Clock1 and Clock2 signals will be 180° out-of-phase. If the ISL6353  
is in 1-phase mode, the master clock signal will be distributed to  
Phase 1 only and is the Clock1 signal.  
If the load current is light enough, as Figure 6 shows, the inductor  
current will reach and stay at zero before the next phase node  
pulse, and the regulator is in discontinuous conduction mode  
(DCM). If the load current is heavy enough, the inductor current  
will never reach 0A, and the regulator is in CCM although the  
controller is in DE mode.  
Each slave circuit has its own ripple capacitor C , whose voltage  
rs  
mimics the inductor ripple current. A g amplifier converts the  
m
inductor voltage into a current source to charge and discharge  
C . The slave circuit turns on its PWM pulse upon receiving the  
rs  
clock signal, and the current source charges C . When C  
rs  
rs  
September 15, 2011  
FN6897.0  
12  
ISL6353  
CCM/DCM BOUNDARY  
VW  
VDD  
VR_ON  
Vcrs  
2.5mV/µs  
VBOOT  
1.3ms  
DAC  
iL  
LIGHT DCM  
VW  
PGOOD  
Vcrs  
READY FOR SVID COMMAND  
FIGURE 8. SOFT-START WAVEFORMS  
iL  
Voltage Regulation and Differential Sensing  
DEEP DCM  
VW  
After the start sequence, the ISL6353 regulates the output voltage  
to the value set by the SetVID commands through the SVID bus or  
to the value set by the status of the VSET1/2 pins. The ISL6353  
will regulate the output voltage to VID + OFFSET (Register 33h). A  
differential amplifier allows remote voltage sensing for precise  
voltage regulation.  
Vcrs  
iL  
VID Table  
FIGURE 7. PERIOD STRETCHING  
The ISL6353 will regulate the output voltage to VID+OFFSET (33h).  
Table 1 shows the output voltage setting based on the VID register  
setting.  
Figure 7 shows the principle of operation in diode emulation mode  
at light load. The load gets incrementally lighter in the three cases  
from top to bottom. The PWM on-time is determined by the VW  
window size and therefore it is the same, making the inductor  
current triangle the same in the three cases. The ISL6353 clamps  
TABLE 1. VID TABLE  
V
O
(V)  
the ripple capacitor voltage V in DE mode to make it mimic the  
crs  
VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0  
Hex  
inductor current. It takes the COMP voltage longer to hit V  
,
crs  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0.0000  
0.2500  
0.2550  
0.2600  
0.2650  
0.2700  
0.2750  
0.2800  
0.2850  
0.2900  
0.2950  
0.3000  
0.3050  
0.3100  
0.3150  
0.3200  
0.3250  
0.3300  
0.3350  
0.3400  
0.3450  
0.3500  
naturally stretching the switching period. The inductor current  
triangles move further apart from each other such that the  
inductor current average value is equal to the load current. The  
reduced switching frequency helps increase light load efficiency.  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
Start-up Timing  
With the controller's V voltage above the POR threshold, the  
DD  
start-up sequence begins about 1.3ms after VR_ON exceeds the  
logic high threshold. The ISL6353 uses digital soft-start to ramp  
up the DAC to the boot voltage, V  
. V is set by the PROG2  
BOOT BOOT  
pin resistor and the status of the VSET1/2 pins. The DAC slew  
rate during soft-start is about 2.5mV/µs. PGOOD is asserted high  
at the end of the start-up sequence indicating that the output  
voltage has moved to the V  
setting, the VR is operating  
BOOT  
properly and all phases are switching. Figure 8 shows the typical  
start-up timing.  
0
1
2
3
4
5
September 15, 2011  
FN6897.0  
13  
ISL6353  
TABLE 1. VID TABLE (Continued)  
TABLE 1. VID TABLE (Continued)  
V
(V)  
V
(V)  
O
O
VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0  
Hex  
VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0  
Hex  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
6
7
8
9
A
B
C
D
E
F
0.3550  
0.3600  
0.3650  
0.3700  
0.3750  
0.3800  
0.3850  
0.3900  
0.3950  
0.4000  
0.4050  
0.4100  
0.4150  
0.4200  
0.4250  
0.4300  
0.4350  
0.4400  
0.4450  
0.4500  
0.4550  
0.4600  
0.4650  
0.4700  
0.4750  
0.4800  
0.4850  
0.4900  
0.4950  
0.5000  
0.5050  
0.5100  
0.5150  
0.5200  
0.5250  
0.5300  
0.5350  
0.5400  
0.5450  
0.5500  
0.5550  
0.5600  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
4
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0.5650  
0.5700  
0.5750  
0.5800  
0.5850  
0.5900  
0.5950  
0.6000  
0.6050  
0.6100  
0.6150  
0.6200  
0.6250  
0.6300  
0.6350  
0.6400  
0.6450  
0.6500  
0.6550  
0.6600  
0.6650  
0.6700  
0.6750  
0.6800  
0.6850  
0.6900  
0.6950  
0.7000  
0.7050  
0.7100  
0.7150  
0.7200  
0.7250  
0.7300  
0.7350  
0.7400  
0.7450  
0.7500  
0.7550  
0.7600  
0.7650  
0.7700  
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6
6
6
6
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
September 15, 2011  
FN6897.0  
14  
ISL6353  
TABLE 1. VID TABLE (Continued)  
TABLE 1. VID TABLE (Continued)  
V
(V)  
V
(V)  
O
O
VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0  
Hex  
VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0  
Hex  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
6
A
B
C
D
E
F
0.7750  
0.7800  
0.7850  
0.7900  
0.7950  
0.8000  
0.8050  
0.8100  
0.8150  
0.8200  
0.8250  
0.8300  
0.8350  
0.8400  
0.8450  
0.8500  
0.8550  
0.8600  
0.8650  
0.8700  
0.8750  
0.8800  
0.8850  
0.8900  
0.8950  
0.9000  
0.9050  
0.9100  
0.9150  
0.9200  
0.9250  
0.9300  
0.9350  
0.9400  
0.9450  
0.9500  
0.9550  
0.9600  
0.9650  
0.9700  
0.9750  
0.9800  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
9
4
5
6
7
8
9
A
B
C
D
E
F
0.9850  
0.9900  
0.9950  
1.0000  
1.0050  
1.0100  
1.0150  
1.0200  
1.0250  
1.0300  
1.0350  
1.0400  
1.0450  
1.0500  
1.0550  
1.0600  
1.0650  
1.0700  
1.0750  
1.0800  
1.0850  
1.0900  
1.0950  
1.1000  
1.1050  
1.1100  
1.1150  
1.1200  
1.1250  
1.1300  
1.1350  
1.1400  
1.1450  
1.1500  
1.1550  
1.1600  
1.1650  
1.1700  
1.1750  
1.1800  
1.1850  
1.1900  
6
6
6
6
6
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
B
B
B
B
B
B
B
B
B
B
B
B
B
B
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
0
1
2
3
September 15, 2011  
FN6897.0  
15  
ISL6353  
TABLE 1. VID TABLE (Continued)  
TABLE 1. VID TABLE (Continued)  
V
(V)  
V
(V)  
O
O
VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0  
Hex  
VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0  
Hex  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
B
E
F
1.1950  
1.2000  
1.2050  
1.2100  
1.2150  
1.2200  
1.2250  
1.2300  
1.2350  
1.2400  
1.2450  
1.2500  
1.2550  
1.2600  
1.2650  
1.2700  
1.2750  
1.2800  
1.2850  
1.2900  
1.2950  
1.3000  
1.3050  
1.3100  
1.3150  
1.3200  
1.3250  
1.3300  
1.3350  
1.3400  
1.3450  
1.3500  
1.3550  
1.3600  
1.3650  
1.3700  
1.3750  
1.3800  
1.3850  
1.3900  
1.3950  
1.4000  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
E
8
9
A
B
C
D
E
F
1.4050  
1.4100  
1.4150  
1.4200  
1.4250  
1.4300  
1.4350  
1.4400  
1.4450  
1.4500  
1.4550  
1.4600  
1.4650  
1.4700  
1.4750  
1.4800  
1.4850  
1.4900  
1.4950  
1.5000  
1.5050  
1.5100  
1.5150  
1.5200  
B
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
E
E
E
E
E
E
E
E
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
VID OFFSET Table  
The ISL6353 will regulate the output voltage to VID+OFFSET (33h).  
Table 2 shows the output voltage setting based on the VID register  
setting.  
TABLE 2. VID TABLE  
V
(V)  
OFS  
OFS7 OFS6 OFS5 OFS4 OFS3 OFS2 OFS1 OFS0  
Hex  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
2
3
4
5
6
7
8
9
A
0.0000  
0.005  
0.010  
0.015  
0.020  
0.025  
0.030  
0.035  
0.040  
0.045  
0.050  
0
0
0
0
0
0
0
0
0
0
0
1
2
3
4
5
6
7
E
E
E
E
E
E
E
September 15, 2011  
FN6897.0  
16  
ISL6353  
TABLE 2. VID TABLE (Continued)  
TABLE 2. VID TABLE (Continued)  
V
V
(V)  
OFS  
(V)  
OFS  
OFS7 OFS6 OFS5 OFS4 OFS3 OFS2 OFS1 OFS0  
Hex  
OFS7 OFS6 OFS5 OFS4 OFS3 OFS2 OFS1 OFS0  
Hex  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
B
C
D
E
F
0.055  
0.060  
0.065  
0.070  
0.075  
0.080  
0.085  
0.090  
0.095  
0.100  
0.105  
0.110  
0.115  
0.120  
0.125  
0.130  
0.135  
0.140  
0.145  
0.150  
0.155  
0.160  
0.165  
0.170  
0.175  
0.180  
0.185  
0.190  
0.195  
0.200  
0.205  
0.210  
0.215  
0.220  
0.225  
0.230  
0.235  
0.240  
0.245  
0.250  
0.255  
0.260  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
3
5
6
7
8
9
A
B
C
D
E
F
0.265  
0.270  
0.275  
0.280  
0.285  
0.290  
0.295  
0.300  
0.305  
0.310  
0.315  
0.320  
0.325  
0.330  
0.335  
0.340  
0.345  
0.350  
0.355  
0.360  
0.365  
0.370  
0.375  
0.380  
0.385  
0.390  
0.395  
0.400  
0.405  
0.410  
0.415  
0.420  
0.425  
0.430  
0.435  
0.440  
0.445  
0.450  
0.455  
0.460  
0.465  
0.470  
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
0
1
2
3
4
September 15, 2011  
FN6897.0  
17  
ISL6353  
TABLE 2. VID TABLE (Continued)  
V
OFS  
(V)  
OFS7 OFS6 OFS5 OFS4 OFS3 OFS2 OFS1 OFS0  
Hex  
VCCSENSE  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
5
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0.475  
0.480  
0.485  
0.490  
0.495  
0.500  
0.505  
0.510  
0.515  
0.520  
0.525  
0.530  
0.535  
0.540  
0.545  
0.550  
0.555  
0.560  
0.565  
0.570  
0.575  
0.580  
0.585  
0.590  
0.595  
0.600  
0.605  
0.610  
0.615  
0.620  
0.625  
0.630  
0.635  
FB  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
VR LOCAL  
VO  
“CATCH”  
RESISTOR  
E/A  
COMP  
DAC  
X 1  
Σ
VDAC  
RTN  
VSS  
VSSSENSE  
INTERNAL TO IC  
“CATCH”  
RESISTOR  
FIGURE 9. DIFFERENTIAL SENSING  
Figure 9 shows the differential voltage sensing scheme. VCC  
SENSE  
and VSS  
are the remote voltage sensing signals from the DDR  
SENSE  
memory. A unity gain differential amplifier senses the VSS  
SENSE  
voltage and adds it to the DAC output. The error amplifier regulates  
the inverting and the non-inverting input voltages to be equal as  
shown in Equation 1:  
(EQ. 1)  
VCC  
= V  
+ VSS  
DAC SENSE  
SENSE  
Rewriting Equation 1 gives Equation 2:  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
VCC  
VSS  
= V  
SENSE DAC  
(EQ. 2)  
SENSE  
The VCC  
and VSS  
signals are routed from the  
SENSE  
SENSE  
memory socket. In most cases the remote sensing location will  
be on the PCB right next to one of the DDR memory sockets. If a  
remote sensing location is used on a module that passes through  
a socket then the feedback signals will be open circuit in the  
absence of the module. As shown in Figure 9, a “catch” resistor  
should be added in this case to feed the local VR output voltage  
back to the compensator, and another “catch” resistor should be  
added to connect the local VR output ground to the RTN pin.  
These resistors, typically 10Ω~100Ω, will provide voltage  
feedback if the system is powered up without any memory cards  
installed.  
Inductor DCR Current-Sensing Network  
The ISL6353 can sense the inductor current through the intrinsic DC  
Resistance (DCR) of the inductors or through precision resistors in  
series with the inductors. With both current-sensing methods, the  
voltage across capacitor C represents the total inductor current  
n
from all phases. An amplifier converts the C voltage, V , into an  
n
Cn  
internal current source, I  
in Equation 3.  
, with the gain set by resistor R shown  
sense  
i
V
Cn  
(EQ. 3)  
---------  
I
=
sense  
R
i
September 15, 2011  
FN6897.0  
18  
ISL6353  
The sensed current is used for current monitoring and overcurrent  
protection.  
(EQ. 7)  
(EQ. 8)  
DCR  
L
-----------  
ω
=
L
Phase1 Phase2 Phase3  
1
------------------------------------------------------  
ω
=
sns  
R
sum  
N
Rsum  
Rsum  
Rsum  
--------------  
R
×
ntcnet  
-----------------------------------------  
× C  
n
R
sum  
N
--------------  
R
+
ntcnet  
ISUM+  
where N is the number of phases.  
Transfer function A (s) always has unity gain at DC. The inductor  
cs  
Rntcs  
L
L
L
DCR value increases as the winding temperature increases,  
giving higher a reading of the inductor DC current. The NTC R  
Cn Vcn  
Ri  
Rp  
ntc  
values decreases as its temperature increases. Proper selections  
of R , R , R and R parameters ensure that V  
Rntc  
Ro  
DCR  
DCR  
DCR  
sum ntcs ntc Cn  
p
ISUM-  
represents the total inductor DC current over the temperature  
range of interest.  
Ro  
Ro  
There are many sets of parameters that can properly temperature-  
compensate the DCR change. Since the NTC network and the R  
sum  
resistors form a voltage divider, V is always a fraction of the  
cn  
inductor DCR voltage. A higher ratio of V to the inductor DCR  
cn  
Io  
voltage is recommended so the current monitor and OCP circuit has  
a higher signal level to work with.  
FIGURE 10. DCR CURRENT-SENSING NETWORK  
A typical set of parameters that provide good temperature  
Figure 10 shows the inductor DCR current-sensing network for a  
3-phase regulator. Inductor current flows through the DCR and  
compensation are: R  
= 3.65kΩ, R = 11kΩ, R = 2.61kΩ  
sum  
p
ntcs  
and R = 10kΩ (ERT-J1VR103J). The NTC network component  
creates a voltage drop. Each inductor has two resistors R  
and  
R connected to the pads to accurately sense the inductor current  
ntc  
sum  
values may need to be fine tuned on actual boards. To help fine  
tune the network apply a full load condition to the regulator and  
record the IMON pin voltage reading immediately; then record the  
IMON voltage reading again when the board has reached thermal  
steady state. A good NTC network can limit the IMON voltage drift  
to within 1% over the temperature range. If droop is used for the  
ISL6353 based regulator the output voltage can be used for this  
test rather than IMON. DDR memory regulators typically do not  
operate with droop enabled. The Intersil evaluation board layout  
and current-sensing network parameters can be referred to in  
order to help minimize engineering time.  
o
by sensing the DCR voltage drop. The R  
and R resistors are  
sum  
o
connected in a summing network as shown, and feed the total  
current information to the NTC network (consisting of R , R  
ntcs ntc  
and R ) and capacitor C . R is a negative temperature  
p
n
ntc  
coefficient (NTC) thermistor, used to compensate for the increase  
in inductor DCR as temperature increases.  
The inductor output pads are electrically shorted in the schematic,  
but have some parasitic impedance in the actual board layout,  
which is why the signals cannot simply be shorted together for the  
current-sense summing network. A resistor from 1Ω~10Ω for R is  
o
V
(s) needs to represent real-time I (s) for the controller to  
recommended to create quality signals. Since the R value is much  
Cn  
o
o
achieve best OCP and IMON response. The transfer function  
smaller than the rest of the current sensing circuit, the following  
analysis will ignore it for simplicity.  
A
(s) has a pole ω and a zero ω . ω and ω should be  
cs  
sns  
L
L
sns  
matched so A (s) is unity gain at all frequencies. By forcing ω  
cs  
L
The summed inductor current information is represented at  
equal to ω  
value.  
and solving for the solution, Equation 9 gives Cn  
sns  
capacitor C . Equations 4 through 8 describe the  
n
frequency-domain relationship between total inductor current  
L
-----------------------------------------------------------  
C =  
n
I (s) and the C voltage V (s):  
o
n
Cn  
R
sum  
--------------  
R
×
(EQ. 9)  
ntcnet  
N
-----------------------------------------  
× DCR  
R
DCR  
N
ntcnet  
R
sum  
----------------------------------------- -----------  
V
(s) =  
×
× I (s) × A (s)  
(EQ. 4)  
(EQ. 5)  
--------------  
Cn  
o
cs  
R
+
R
ntcnet  
sum  
N
--------------  
+
R
ntcnet  
N
For example, given N = 3, R  
= 3.65kΩ, R = 11kΩ,  
p
sum  
= 2.61kΩ, R = 10kΩ, DCR = 0.29mΩ and L = 0.22µH,  
(R  
+ R ) × R  
ntc p  
ntcs  
R
ntcs  
ntc  
--------------------------------------------------  
R
A
=
ntcnet  
R
+ R  
+ R  
ntc p  
Equation 9 gives C = 0.79µF.  
ntcs  
n
s
C is the capacitor used to match the inductor time constant.  
n
------  
1 +  
ω
(EQ. 6)  
Sometimes it takes the parallel combination of two or more  
capacitors to get the desired value. To verify the capacitor value  
is correct a repetitive load can be placed on the output voltage  
and the IMON voltage can be monitored. The capacitor in parallel  
with the IMON resistor needs to be removed for this test. The  
L
----------------------  
1 +  
(s) =  
cs  
s
------------  
ω
sns  
September 15, 2011  
FN6897.0  
19  
ISL6353  
IMON voltage should be approximately a square wave with little  
and 20µA in PS2 mode. For a 2-phase design, the OCP threshold  
is 60µA in PS0 mode and 30µA in PS1 and PS2 mode. The  
or no overshoot. In regulators without droop control the capacitor  
value can be selected to err on the high side to overdamp the  
current sense input to the controller to avoid overshoots.  
ISL6353 declares a OCP fault when I  
for 120µs.  
is above the threshold  
sense  
Referring to Equation 3 and Figure 10, resistor R sets the sensed  
i
Resistor Current-Sensing Network  
current I  
. In general, I  
can be set to 40µA at the  
sense  
sense  
Phase1 Phase2 Phase3  
maximum load current expected in the design. The OCP trip level  
will be 1.5 times the maximum load current with a threshold at  
60µA. The OCP ratio can be set to something other than 1.5  
times the maximum load current by setting  
L
L
L
I
= 60µA/OCP  
.
sense  
ratio  
DCR  
DCR  
DCR  
Rsum  
Rsum  
Rsum  
For inductor DCR sensing, Equation 13 gives the DC relationship  
of V (s) and I (s).  
cn  
o
ISUM+  
ISUM-  
R
DCR  
N
ntcnet  
----------------------------------------- -----------  
V
=
×
× I  
(EQ. 13)  
Cn  
o
R
sum  
--------------  
+
R
ntcnet  
Rsen  
Rsen  
Rsen  
Vcn  
Cn  
Ri  
N
Ro  
Ro  
Ro  
Substitution of Equation 13 into Equation 3 gives Equation 14:  
R
1
DCR  
N
ntcnet  
---- ----------------------------------------- -----------  
II  
=
×
×
× I  
(EQ. 14)  
sense  
o
R
R
i
sum  
--------------  
+
R
ntcnet  
N
Io  
Therefore:  
R
× DCR × I  
o
FIGURE 11. RESISTOR CURRENT-SENSING NETWORK  
ntcnet  
-------------------------------------------------------------------------------  
R
=
(EQ. 15)  
i
R
sum  
--------------  
N × R  
+
× I  
Figure 11 shows the precision resistor current-sensing network  
for a 3-phase solution. Each inductor has a series current-sensing  
ntcnet  
sense  
N
Substitution of Equation 5 and application of the full load  
condition in Equation 15 gives Equation 16:  
resistor, R . R  
accurately capture the inductor current information. The R  
and R are connected to the R  
pads to  
sen sum  
o
sen  
sum  
and R resistors are connected to capacitor C . R  
form a filter for noise attenuation. Equations 10 through 12 give  
and C  
n
(R  
+ R ) × R  
ntc p  
o
n
sum  
ntcs  
--------------------------------------------------  
× DCR × I  
omax  
R
+ R  
+ R  
ntc p  
ntcs  
-------------------------------------------------------------------------------------------------------------------------  
=
R
V
(s) expressions:  
(EQ. 16)  
Cn  
i
(R  
+ R ) × R  
R
ntcs  
ntc  
p
sum  
R
(EQ. 10)  
(EQ. 11)  
sen  
------------  
-------------------------------------------------- --------------  
N ×  
+
× I  
sensemax  
V
(s) =  
× I (s) × A  
(s)  
Rsen  
R
+ R  
+ R  
p
N
Cn  
o
ntcs  
ntc  
N
where I  
is the full load current, and I is the  
sensemax  
1
omax  
----------------------  
(s) =  
A
Rsen  
Rsen  
s
corresponding sensed current based on the desired OCP to I  
ratio.  
omax  
------------  
1 +  
ω
sns  
For resistor sensing, Equation 17 gives the DC relationship of  
1
(EQ. 12)  
---------------------------  
ω
=
V
(s) and I (s).  
R
cn  
o
sum  
--------------  
× C  
n
R
N
(EQ. 17)  
sen  
------------  
V
=
× I  
Cn  
o
N
Transfer function A  
current-sensing resistor R  
sen  
(s) always has unity gain at DC. The  
value will not have a significant  
Rsen  
Substitution of Equation 17 into Equation 3 gives Equation 18:  
R
variation over temperature, so there is no need for the NTC  
network.  
1
sen  
(EQ. 18)  
---- ------------  
× I  
o
I
=
×
sense  
R
N
i
Recommended values are R  
sum  
= 1kΩ and C = 5600pF.  
n
Therefore:  
R
× I  
Overcurrent Protection  
The ISL6353 implements overcurrent protection (OCP) by  
comparing the average value of the measured current I  
an internal current source reference. The OCP threshold is 60µA  
for 3-phase, 2-phase and 1-phase PS0 operation. In PS1/2 mode  
the OCP threshold is scaled based on the number of active  
phases in PS1/2 mode divided by the number of active phases in  
PS0 mode. For example, if the regulator operates in 3-phase  
mode in PS0, 2-phase in PS1 mode and 1-phase in PS2 mode,  
the OCP threshold will be 60µA in PS0 mode, 40µA in PS1 mode  
sen  
o
(EQ. 19)  
(EQ. 20)  
--------------------------  
=
R
i
N × I  
sense  
with  
sense  
Application of the full load condition gives Equation 20:  
R
× I  
sen  
omax  
-------------------------------------  
=
R
i
N × I  
sensemax  
where I  
is the full load current, and I is the  
sensemax  
omax  
corresponding sensed current.  
September 15, 2011  
FN6897.0  
20  
ISL6353  
time constant for R C should be used such that the ISEN  
voltages have minimal ripple and represent the DC current  
flowing through the inductors. Recommended values are  
Current Monitor  
The ISL6353 provides a current monitor function. The IMON pin  
outputs a high-speed analog current source that is 1/4 times the  
s s  
R = 10kΩ and C = 0.22µF.  
s
s
I
current.  
sense  
R should be routed to the inductor phase-node pad in order to  
s
help eliminate the effect of phase node parasitic PCB DCR.  
Equations 26 through 28 give the ISEN pin voltages:  
1
4
(EQ. 21)  
--  
× I  
sense  
I
=
IMON  
A resistor R  
is connected to the IMON pin to convert the  
imon  
(EQ. 26)  
(EQ. 27)  
(EQ. 28)  
V
V
V
= (R  
= (R  
= (R  
+ R  
+ R  
+ R  
) × I  
) × I  
) × I  
ISEN1  
ISEN2  
ISEN3  
dcr1  
dcr2  
dcr3  
pcb1  
pcb2  
pcb3  
L1  
L2  
IMON pin current to a voltage. The voltage across R  
expressed in Equation 22:  
is  
imon  
1
4
(EQ. 22)  
--  
V
=
× I  
× R  
imon  
Rimon  
sense  
L3  
Substitution of Equation 14 into Equation 22 gives Equation 23:  
R
where R  
, R  
and R  
are inductor DCR; R  
, R  
dcr1 dcr2  
pcb3  
dcr3  
pcb1 pcb2  
1
DCR  
N
ntcnet  
-------- ----------------------------------------- -----------  
× I × R  
o imon  
V
=
×
×
(EQ. 23)  
and R are parasitic PCB DCR between the inductor output  
pad and the output voltage rail; and I , I and I are inductor  
Rimon  
4R  
R
i
sum  
--------------  
+
R
L1 L2 L3  
ntcnet  
N
average currents.  
Rewriting Equation 23 gives Equation 24:  
The ISL6353 will adjust the phase pulse-width relative to the  
other phases to make V  
= V  
= V  
, thus to achieve  
V
× R × (NR  
+ R  
)
sum  
ISEN1  
= R  
ISEN2  
= R  
ISEN3  
and  
dcr3  
Rimon  
i
ntcnet  
(EQ. 24)  
---------------------------------------------------------------------------------------  
=
R
I
= I = I , when R  
imon  
L1 L2 L3 dcr1  
dcr2  
1
--  
R
× DCR × I  
ntcnet  
o
R
= R  
pcb2  
= R .  
pcb3  
4
pcb1  
Using the same components for L1, L2 and L3 will provide a good  
match of R , R and R . Board layout will determine  
Substitution of Equation 5 and application of the full load  
condition in Equation 24 gives Equation 25:  
dcr1 dcr2 dcr3  
R
, R  
and R . Each phase should be as symmetric as  
pcb1 pcb2  
pcb3  
(R  
+ R ) × R  
ntc p  
possible in the PCB layout for the power delivery path between  
each inductor and the output voltage load, such that  
ntcs  
--------------------------------------------------  
V
× R × N  
+ R  
Rimon  
i
sum  
R
+ R  
+ R  
ntc p  
ntcs  
(EQ. 25)  
-----------------------------------------------------------------------------------------------------------------------  
R
=
R
= R  
= R .  
pcb1  
pcb2  
pcb3  
imon  
1
--  
(R  
+ R ) × R  
ntcs  
ntc p  
L3  
L2  
Rdcr3  
4
Rpcb3  
Rpcb2  
Rpcb1  
V3p  
V2p  
------------------------------------------------------  
× DCR × I  
omax  
Phase3  
Rs  
R
+ R  
+ R  
ntc p  
ntcs  
IL3  
ISEN3  
V3n  
Rs  
Rs  
where I  
is the full load current.  
omax  
Cs  
INTERNAL  
TO IC  
A capacitor C  
imon  
can be paralleled with R  
to filter the IMON  
time constant is the user’s choice.  
imon  
Rdcr2  
V
o
pin voltage. The R  
C
imon imon  
Phase2  
Rs  
Rs  
Rs  
The time constant should be long enough such that switching  
frequency ripple is removed.  
IL2  
ISEN2  
V2n  
Cs  
Cs  
Phase Current Balancing  
L1 Rdcr1  
IL1  
V1p  
Phase1  
L3  
L2  
L1  
Rdcr3  
Rdcr2  
Rdcr1  
Rpcb3  
Rpcb2  
Rpcb1  
Rs  
Phase3  
ISEN1  
V1n  
Rs  
Rs  
Rs  
IL3  
IL2  
IL1  
ISEN3  
Cs  
V
INTERNAL  
TO IC  
o
Phase2  
Rs  
FIGURE 13. DIFFERENTIAL-SENSING CURRENT BALANCING  
CIRCUIT  
ISEN2  
Cs  
Phase1  
Sometimes, it is difficult to implement a symmetric layout. For  
the circuit shown in Figure 12, an asymmetric layout causes  
Rs  
ISEN1  
different R  
, R  
and R resulting in phase current  
Cs  
pcb1 pcb2  
pcb3  
imbalance. Figure 13 shows a differential-sensing current  
balancing circuit recommended for the ISL6353. The current  
sensing traces should be routed to the inductor pads so they only  
pick up the inductor DCR voltage. Each ISEN pin sees the average  
voltage of three sources: its own phase inductor phase-node pad,  
FIGURE 12. CURRENT BALANCING CIRCUIT  
The ISL6353 monitors individual phase current by monitoring the  
ISEN1, ISEN2, and ISEN3 pin voltages. Figure 12 shows the  
current balancing circuit recommended for the ISL6353. Each  
phase node voltage is averaged by a low-pass filter consisting of  
R and C , and presented to the corresponding ISEN pin. A long  
s
s
September 15, 2011  
FN6897.0  
21  
ISL6353  
and the other two phases inductor output pads. Equations 29  
through 31 give the ISEN pin voltages:  
7  
2
(EQ. 38)  
R
(Ω) = 1.293 10 F  
0.1445 F  
+ 52055  
SW  
fset  
SW  
(EQ. 29)  
(EQ. 30)  
(EQ. 31)  
V
= V + V + V  
1p 2n  
ISEN1  
3n  
Phase Count Configurations  
The ISL6353 can be configured for 1, 2 or 3-phase operation.  
V
= V + V + V  
ISEN2  
1n  
2p  
3n  
For 2-phase configuration, tie the PWM3 pin to VDD. Phase 1 and  
Phase 2 PWM pulses are 180° out-of-phase. Leave the ISEN3 pin  
open for 2-phase configuration.  
V
= V + V + V  
1n 2n 3p  
ISEN3  
The ISL6353 will make V  
Equations 32 and 33:  
= V  
= V as in  
ISEN3  
For 1-phase configuration, tie the PWM3 and ISEN2 pins to VDD.  
In this configuration, only Phase 1 is active. The ISEN3, ISEN2,  
ISEN1, and FB2 pins are not used because there is no need for  
current balancing or the FB2 function.  
ISEN1  
ISEN2  
(EQ. 32)  
(EQ. 33)  
V
V
+ V + V  
= V + V + V  
1n 2p  
1p  
1n  
2n  
3n  
3n  
3n  
3p  
Modes of Operation  
+ V + V  
= V + V + V  
1n 2n  
2p  
TABLE 3. ISL6353 MODES OF OPERATION  
Rewriting Equation 32 gives Equation 34:  
CONFIGURATION  
PS#  
PS0  
PS1  
OPERATIONAL MODE  
3-phase CCM  
(EQ. 34)  
(EQ. 35)  
(EQ. 36)  
V
V  
= V V  
1n 2p 2n  
3-phase Configuration  
1p  
2-phase CCM or  
1-phase CCM  
and rewriting Equation 33 gives Equation 35:  
V
V  
= V V  
2n 3p 3n  
2p  
PS2  
PS3  
PS0  
PS1  
PS2  
PS3  
PS0  
PS1  
PS2  
PS3  
1-phase DE  
1-phase DE  
2-phase CCM  
1-phase CCM  
1-phase DE  
1-phase DE  
1-phase CCM  
1-phase CCM  
1-phase DE  
1-phase DE  
Combining Equations 34 and 35 gives Equation 36:  
2-phase Configuration  
1-phase Configuration  
V
V  
= V V  
= V V  
3n  
1p  
1n  
2p  
2n  
3p  
Therefore:  
(EQ. 37)  
R
× I  
= R  
× I  
= R  
× I  
dcr3 L3  
dcr1  
L1  
dcr2  
L2  
Current balancing (I = I = I ) is achieved when  
L1 L2 L3  
R
= R  
= R  
. R , R  
and R  
will not have any  
dcr1  
effect.  
dcr2  
dcr3 pcb1 pcb2  
pcb3  
Since the slave ripple capacitor voltages mimic the inductor  
3
currents, the R ™ modulator can naturally achieve excellent current  
balancing during steady-state and dynamic operation. The inductor  
currents follow the load current dynamic change, with the output  
capacitors supplying the difference. The inductor currents can  
track the load current well at low rep rate, but cannot keep up  
when the rep rate gets into the hundred-kHz range, where it is out  
of the control loop bandwidth. The controller achieves excellent  
current balancing in all cases.  
Table 3 shows the modes of operation for the various power states  
programmed using the SetPS command through the SVID bus or  
by changing the state of the PSI pin. Table 3 is used in conjunction  
with the status of the PROG2 pin. Refer to Table 7 for the PROG2  
programming options.  
Dynamic Operation  
CCM Switching Frequency  
The controller responds to VID changes by slewing to the new  
voltage at a slew rate indicated in the SetVID command. There  
are three SetVID slew rates SetVID_fast, SetVID_slew and  
SetVID_decay.  
The resistor connected between the COMP pin and the VW pin  
sets the VW windows size, therefore setting the steady state  
PWM switching frequency. When the ISL6353 is in continuous  
conduction mode (CCM), the switching frequency is not  
The SetVID_fast command prompts the controller to enter CCM  
and to actively drive the output voltage to the new VID value at a  
minimum 10mV/µs slew rate.  
3
absolutely constant due to the nature of the R modulator. As  
explained in the “Multiphase R3 Modulator” on page 11, the  
effective switching frequency will increase during load step-up  
and will decrease during load step-down to achieve fast transient  
response. On the other hand, the switching frequency is relatively  
constant at steady state. Equation 38 gives an estimate of the  
The SetVID_slow command prompts the controller to enter CCM  
and to actively drive the output voltage to the new VID value at a  
minimum 2.5mV/µs slew rate.  
frequency-setting resistor R  
approximately 300kHz switching frequency. Lower resistance  
yields higher switching frequency.  
value. 20kΩ R gives  
fset  
fset  
The SetVID_decay command prompts the controller to enter DE  
mode. The output voltage will decay down to the new VID value at  
a slew rate determined by the load. If the voltage decay rate is  
September 15, 2011  
FN6897.0  
22  
ISL6353  
too fast, the controller will limit the voltage slew rate at the  
SetVID_slow slew rate.  
system. The VR_HOT# pin will be pulled back high if the voltage  
on the NTC pin goes above 0.95V.  
ALERT# will be asserted low at the end of SetVID_fast and  
SetVID_slow VID transitions.  
If the voltage on the NTC pin goes below 0.93V the ALERT# pin  
will be pulled low indicating a thermal alert. ALERT# is reset by  
checking the status register. ALERT# will be pulled low again if  
the NTC pin voltage goes above 0.97V.  
When the ISL6353 is in DE mode, it will actively drive the output  
voltage up when the VID changes to a higher value. DE operation  
will resume after reaching the new voltage level. If the load is  
light enough to warrant DCM, it will enter DCM after the inductor  
current has crossed zero for four consecutive cycles. The ISL6353  
will remain in DE mode when the VID changes to a lower value.  
The output voltage will decay to the new value and the load will  
determine the slew rate.  
All the above fault conditions can be reset by bringing VR_ON low  
or by bringing V below the POR threshold. When VR_ON and  
DD  
V
return to their high operating levels, a soft-start will occur.  
DD  
VR_HOT#/ALERT# BEHAVIOR  
VR Temperature  
3% Hysteris  
Temp Zone  
Bit 7 =1  
1111 1111  
0111 1111  
0011 1111  
0001 1111  
7
Protection Functions  
The ISL6353 provides overcurrent, current-balance, overvoltage,  
and over-temperature protection.  
1
10  
Bit 6 =1  
Bit 5 =1  
12  
OVERCURRENT PROTECTION  
Temp Zone  
Register  
The ISL6353 determines overcurrent protection (OCP) by  
2
8
comparing the average value of the measured current I  
with  
sense  
an internal current source threshold. ISL6353 declares OCP when  
is above the threshold for 120µs.  
0001 1111 0011 1111 0111 1111 1111 1111 0111 1111 0011 1111 0001 1111  
Status 1  
Register  
3
= “001”  
= “011”  
= “001”  
I
sense  
13  
14  
15  
5
GerReg  
Status1  
GerReg  
Status1  
The way-overcurrent protection threshold is significantly above  
the standard overcurrent protection threshold. The  
way-overcurrent function is intended to provide a fast overcurrent  
detection and action mechanism in a short circuit output  
condition. Once the way-overcurrent condition is detected, the  
PWM outputs will immediately shut off and PGOOD will go low to  
maximize protection.  
SVID  
ALERT#  
4
6
16  
VR_HOT#  
9
11  
FIGURE 14. VR_HOT#/ALERT# BEHAVIOR  
The controller drives a 60µA current source out of the NTC pin.  
The current source flows through the NTC resistor network on the  
pin and creates a voltage that is monitored by the controller  
through an A/D converter (ADC) to generate the Tzone value.  
Table 4 shows the typical programming table for Tzone. The user  
needs to scale the NTC a network resistance such that it  
generates the NTC pin voltage that corresponds to the left-most  
column.  
CURRENT BALANCE FAULT  
The ISL6353 monitors the ISEN pin voltages to detect severe  
phase current imbalances. If any ISEN pin voltage is more than  
20mV different than the average ISEN voltage for 1ms, the  
controller will declare a fault and latch off.  
OVERVOLTAGE PROTECTION  
The ISL6353 will declare an OVP fault if the output voltage  
exceeds 175mV above the VID set value + positive offset. In the  
event of an OVP condition, the OVP pin is pulled high. OVP is  
blanked during dynamic VID events to prevent false trigger.  
During soft-start, the OVP threshold is set at 2.33V to avoid a  
false trigger due to turn on into a precharged output capacitor  
bank.  
TABLE 4. TZONE TABLE  
VNTC (V)  
0.86  
0.88  
0.92  
0.96  
1.00  
1.04  
1.08  
1.12  
1.16  
1.20  
>1.20  
TMAX (%)  
>100  
100  
97  
TZONE  
FFh  
FFh  
7Fh  
3Fh  
1Fh  
0Fh  
07h  
03h  
01h  
01h  
00h  
94  
POWER GOOD INDICATOR  
91  
The ISL6353 takes the same actions for all of the above fault  
protection functions: PGOOD is set low and the high-side and low-  
side MOSFETs are turned off. Any residual inductor current will  
decay through the MOSFET body diodes. These fault conditions  
can be reset by bringing VR_ON low or by bringing V below the  
POR threshold. When VR_ON and V return to their high  
DD  
88  
85  
82  
DD  
79  
operating levels, a soft-start will occur.  
76  
THERMAL MONITOR  
<76  
The ISL6353 has a thermal throttling feature. If the voltage on  
the NTC pin goes below the 0.91V threshold, the VR_HOT# pin is  
pulled low indicating the need for thermal throttling to the  
September 15, 2011  
FN6897.0  
23  
ISL6353  
Figure 14 shows the how the NTC network should be designed to get  
FB2 Function  
correct VR_HOT#/ALERT# behavior when the system temperature  
rises and falls, manifested as the NTC pin voltage falling and rising.  
The series of events are:  
CONTROLLER IN  
3 OR 2-PHASE  
MODE  
CONTROLLER IN  
PS1 OR PS2  
MODE  
C1  
C3  
C1  
C3  
R2  
R2  
C2.1  
R3.1  
C2.1  
R3.1  
1. The temperature rises so the NTC pin voltage drops. Tzone  
value changes accordingly.  
R1  
C2.2  
R1  
FB  
FB  
VSEN  
VSEN  
COMP  
E/A  
E/A  
C2.2  
R3.2  
R3.2  
COMP  
2. The temperature crosses the threshold where Tzone register  
Bit 6 changes from 0 to 1.  
FB2  
FB2  
Vref  
Vref  
FIGURE 15. FB2 FUNCTION IN 2-PHASE MODE  
3. The controller changes Status_1 register bit 1 from 0 to 1.  
4. The controller asserts ALERT#.  
Figure 15 shows the FB2 function. In order to improve transient  
response and stability when phases are disabled in PS1 or PS2  
mode, the ISL6353 FB2 function allows a second type 3  
compensation network to be connected from the output voltage  
to the FB pin.  
5. The CPU reads Status_1 register value to know that the alert  
assertion is due to Tzone register bit 6 flipping.  
6. The controller clears ALERT#.  
7. The temperature continues rising.  
In PS0 mode of operation the FB2 switch is open (off). In PS1 or  
PS2 mode of operation the FB2 switch closes (on).  
8. The temperature crosses the threshold where Tzone register  
Bit 7 changes from 0 to 1.  
The FB2 function ensures excellent transient response in both  
PS0 mode and PS1/2 mode. If the FB2 function is not needed  
C2.2 and R3.2 can be unpopulated and the FB2 pin can be left  
unconnected.  
9. The controllers asserts VR_HOT# signal. The CPU throttles  
back and the system temperature starts dropping eventually.  
10. The temperature crosses the threshold where Tzone register  
bit 6 changes from 1 to 0. This threshold is 1 ADC step lower  
than the one when VR_HOT# gets asserted, to provide 3%  
hysteresis.  
Adaptive Body Diode Conduction Time  
Reduction  
In DCM, the controller turns off the low-side MOSFET when the  
inductor current approaches zero. During the on-time of the  
low-side MOSFET, the phase voltage is negative and the amount  
11. The controllers de-asserts VR_HOT# signal.  
12. The temperature crosses the threshold where Tzone register  
bit 5 changes from 1 to 0. This threshold is 1 ADC step lower  
than the one when ALERT# gets asserted during the  
temperature rise to provide 3% hysteresis.  
is the MOSFET r  
voltage drop, which is proportional to the  
DS(ON)  
inductor current. A phase comparator inside the controller  
monitors the phase voltage during on-time of the low-side  
MOSFET and compares it with a threshold to determine the  
zero-crossing point of the inductor current. If the inductor current  
has not reached zero when the low-side MOSFET turns off, it will  
flow through the low-side MOSFET body diode, causing the phase  
node to have a larger voltage drop until it decays to zero. If the  
inductor current has crossed zero and reversed the direction  
when the low-side MOSFET turns off, it will flow through the  
high-side MOSFET body diode, causing the phase node to have a  
spike until the current decays to zero. The controller continues  
monitoring the phase voltage after turning off the low-side  
MOSFET and adjusts the phase comparator threshold voltage  
accordingly in iterative steps such that the low-side MOSFET body  
diode conducts for approximately 40ns to minimize the body  
diode-related loss.  
13. The controller changes Status_1 register bit 1 from 1 to 0.  
14. The controller asserts ALERT#.  
15. The CPU reads Status_1 register value to know that the alert  
assertion is due to Tzone register bit 5 flipping.  
16. The controller clears ALERT#.  
Table 5 summarizes the fault protection functionality.  
TABLE 5. FAULT PROTECTION SUMMARY  
FAULT DURATION  
BEFORE  
PROTECTION  
PROTECTION  
ACTION  
FAULT  
RESET  
FAULT TYPE  
Overcurrent  
120µs  
1ms  
PWM tri-state,  
PGOOD latched low toggle or  
VDD toggle  
VR_ON  
Phase Current  
Unbalance  
Way-Overcurrent  
(1.5xOC)  
Immediately  
System Parameter Programming PROG1/2  
Pins  
ISL6353 has two system parameter programming pins PROG1  
and PROG2. Some system parameters, such as maximum output  
current, boot voltage, number of phases for PS1 state, can be  
programmed by changing the resistors connected to these three  
pins.  
Overvoltage  
+175mV  
PGOODlatchedlow.  
Actively pulls the  
output voltage to  
below VID value,  
then tri-state.  
September 15, 2011  
FN6897.0  
24  
ISL6353  
TABLE 7. DEFINITION OF PROG2 (Continued)  
WORKING MODE  
Table 6 shows the definition of PROG1. PROG1 defines the  
maximum output current setting in the IMAX register of the  
ISL6353.  
R
V
PROG2  
()  
BOOT  
(V)  
DROOP  
AT PS1  
TABLE 6. DEFINITION OF PROG1  
3480  
4120  
4750  
Disabled  
2 phase CCM (3-phase  
Configuration)  
1-Phase CCM (2-phase  
configuration)  
1.20  
1.35  
1.50  
R
I
I
I
MAX 1-PHASE  
PROG1  
MAX 3-PHASE  
MAX 2-PHASE  
()  
(A)  
(A)  
(A)  
MODE  
MODE  
MODE  
158  
475  
787  
99  
66  
33  
Disabled  
Disabled  
2 phase CCM (3-phase  
Configuration)  
1-Phase CCM (2-phase  
configuration)  
90  
84  
81  
75  
69  
66  
60  
54  
51  
45  
39  
60  
56  
54  
50  
46  
44  
40  
36  
34  
30  
26  
30  
28  
27  
25  
23  
22  
20  
18  
17  
15  
13  
1100  
1430  
1740  
2050  
2370  
2870  
3480  
4120  
4750  
2 phase CCM (3-phase  
Configuration)  
1-Phase CCM (2-phase  
configuration)  
5360  
6040  
6650  
7500  
Disabled  
Disabled  
Disabled  
Disabled  
1 phase CCM  
1 phase CCM  
1 phase CCM  
1 phase CCM  
1.50  
1.35  
1.20  
0
SVID ADDRESS Setting  
The SVID address of ISL6353 can be programmed by changing  
the resistor connected to the ADDR pin. Table 8 shows the SVID  
address definition.  
Table 7 shows the definition of PROG2. PROG2 defines the boot  
voltage, enable/disable droop and the working mode for PS1.  
TABLE 8. SVID ADDRESS DEFINITION  
TABLE 7. DEFINITION OF PROG2  
R
ADDR  
()  
R
WORKING MODE  
AT PS1  
V
PROG2  
()  
BOOT  
(V)  
ADDRESS  
DROOP  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
158  
475  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
158  
475  
787  
1-phase CCM  
1- phase CCM  
1-phase CCM  
1- phase CCM  
0
1.20  
1.35  
1.50  
1.50  
787  
1100  
1430  
1740  
2050  
2370  
2870  
3480  
4120  
4750  
5360  
6040  
1100  
1430  
2-Phase CCM (3-Phase  
Configuration)  
1-Phase CCM (2-phase  
configuration)  
1740  
2050  
2370  
2870  
Enabled  
Enabled  
Enabled  
Disabled  
2-Phase CCM (3-Phase  
Configuration)  
1-Phase CCM (2-phase  
configuration)  
1.35  
1.20  
0
2-Phase CCM (3-Phase  
Configuration)  
1-Phase CCM (2-phase  
configuration)  
2-Phase CCM (3-Phase  
Configuration)  
1-Phase CCM (2-Phase  
configuration)  
External Control of VOUT and Power State  
VSET1/2, PSI  
For additional design flexibility, the ISL6353 has 3 pins that can be  
used to set the output voltage and power state of the regulator  
with external signals independent of the serial communication bus  
register settings.  
2-Phase CCM (3-Phase  
Configuration)  
1-Phase CCM (2-Phase  
configuration)  
0
September 15, 2011  
FN6897.0  
25  
ISL6353  
VSET1 and VSET2 can be used to set the output voltage of the  
Supported Serial VID Data And Configuration  
Registers  
The controller supports the following data and configuration  
registers.  
regulator. Table 9 shows the available options. If VSET1 and VSET2  
are connected to ground, the controller will refer only to the SVID  
register setting to program the output voltage. If any other logic  
combination is used on VSET1/2, the controller will ignore the  
SVID register setting and program the output voltage based on  
Table 8 for soft-start and steady state.  
TABLE 11. SUPPORTED DATA AND CONFIGURATION  
REGISTERS  
TABLE 9. VSET1/2 PIN DEFINITION  
REGISTER  
NAME  
DEFAULT  
VALUE  
INDEX  
DESCRIPTION  
V
BOOT  
from PROG2  
OUTPUT  
VOLTAGE  
00h Vendor ID  
Uniquely identifies the VR  
vendor. Assigned by Intel.  
12h  
(V)  
VSET1  
VSET2  
1.5  
1.5  
1.5  
1.5  
1.35  
1.35  
1.35  
1.35  
1.2  
1.2  
1.2  
1.2  
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
SVID Setting  
1.35V  
01h Product ID  
Uniquely identifies the VR  
product. Intersil assigns this  
number.  
35h  
1.6V  
02h Product  
Revision  
Uniquely identifies the revision  
of the VR control IC. Intersil  
assigns this data.  
1.65V  
SVID Setting  
1.2V  
05h Protocol ID  
06h Capability  
Identifies which revision of SVID 01h  
protocol the controller supports.  
1.4V  
Identifies the SVID VR  
capabilities and which of the  
optional telemetry registers are  
supported.  
81h  
1.45V  
SVID Setting  
1.1V  
10h Status_1  
Data register read after ALERT# 00h  
signal; indicating if a VR rail has  
settled, has reached VRHOT  
condition or has reached ICC  
max.  
1.25V  
1.3V  
SVID Setting  
1.05V  
11h Status_2  
Data register showing Status_2 00h  
communication.  
0
0
1.55V  
12h Temperature Data register showing  
00h  
Zone  
temperature zones that have  
been entered.  
0
1.15V  
The PSI pin can be used to set the power state of the regulator as  
indicated on Table 10. If PSI is connected to ground the controller  
will refer only to the SVID register contents to set the power state. If  
PSI is pulled high, the controller will enter the PS2 state. If PSI is  
connected to a high impedance, the controller will enter the PS1  
state.  
15h IOUT  
Data register showing output  
current information. The voltage  
at the IMON pin is digitized and  
stored in this register.  
00h  
1Ch Status_2_  
LastRead  
This register contains a copy of 00h  
the Status_2 data that was last  
read with the GetReg (Status_2)  
command.  
TABLE 10. PSI PIN DEFINITION  
PSI  
0
ADDRESS  
21h ICC max  
Data register containing the ICC Refer to  
max the platform supports; set Table 6  
at start-up by resistor on PROG1  
pin. The platform design  
engineer programs this value  
during the design process.  
Internal SVID Power State  
High-Z  
1
PS1  
PS2  
Binary format in amps, for  
example 100A = 64h.  
24h SR-fast  
25h SR-slow  
Slew Rate Normal. The fastest 0Ah  
slew rate the platform VR can  
sustain. Binary format in  
mV/µs. i.e. 0Ah = 10mV/µs.  
Is 4x slower than normal. Binary 02h  
format in mV/µs. i.e.  
02h = 2.5mV/µs  
September 15, 2011  
FN6897.0  
26  
ISL6353  
TABLE 11. SUPPORTED DATA AND CONFIGURATION  
REGISTERS (Continued)  
REGISTER  
NAME  
DEFAULT  
VALUE  
INDEX  
26h  
DESCRIPTION  
Vboot  
If programmed by the platform, Refer to  
the VR supports V voltage Table 6  
BOOT  
during start-up ramp. The VR  
will ramp to V and hold at  
BOOT  
until it receives a new  
V
BOOT  
SetVID command to move to a  
different voltage.  
30h  
31h  
Vout max  
This register is programmed by FBh  
the master and sets the  
maximum VID the VR will  
support. If a higher VID code is  
received, the VR will respond  
with “not supported”  
acknowledge.  
VID Setting  
Power State  
Data register containing  
currently programmed VID  
voltage. VID data format.  
00h  
00h  
32h  
33h  
Register containing the  
programmed power state.  
Voltage Offset Sets offset in VID steps added to 00h  
the VID setting for voltage  
margining. Bit 7 is a sign bit,  
0 = positive margin,  
1 = negative margin.  
Remaining 7 bits are # VID  
steps for the margin.  
00h = no margin,  
01h = +1 VID step  
02h = +2 VID steps...  
34h  
Multi VR  
Config  
Data register that configures  
multiple VRs behavior on the  
same SVID bus.  
VR1: 00h  
VR2: 01h  
Layout Guidelines  
ISL6353  
PIN NUMBER  
SYMBOL  
GND  
LAYOUT GUIDELINES  
BOTTOM PAD  
Connect this ground pad to the ground plane through low impedance path. Recommend use of at least 5 vias to connect  
to ground planes in PCB internal layers.  
1, 2, 3  
SDA,  
ALERT#,  
SCLK  
Follow Intel recommendations.  
4, 5, 6, 7, 22,  
28, 36, 37, 38,  
39  
VR_ON,  
PGOOD,  
IMON,  
No special consideration.  
VR_HOT#,  
PROG1,  
PWM3, PSI,  
VSET1,  
VSET2, OVP  
8
9
NTC  
The NTC thermistor needs to be placed close to the thermal source that is monitored to determine the desired VR_HOT#  
and thermal ALERT# toggling. Recommend placing it at the hottest spot of the ISL6353 based regulator.  
VW  
Place the resistor and capacitor from VW to COMP in close proximity of the controller.  
September 15, 2011  
27  
FN6897.0  
ISL6353  
Layout Guidelines(Continued)  
ISL6353  
PIN NUMBER  
SYMBOL  
LAYOUT GUIDELINES  
10, 11, 12  
COMP, FB, Place the compensator components in general proximity of the controller  
FB2  
13, 14, 15  
ISEN3,  
Each ISEN pin has a capacitor (Cisen) decoupling it to VSUMN, then through another capacitor (Cvsumn) to GND. Place  
ISEN2, ISEN1 Cisen capacitors as close as possible to the controller and keep the following loops small:  
1. Any ISEN pin to another ISEN pin  
2. Any ISEN pin to GND  
The red traces in the following drawing show the loops that need to minimized.  
Phase1  
L3  
Risen  
Ro  
Ro  
Ro  
ISEN3  
ISEN2  
Cisen  
Cisen  
Cisen  
V
o
Phase2  
Risen  
L2  
L1  
Phase3  
Risen  
ISEN1  
GND  
Vsumn  
Cvsumn  
16, 17  
18, 19  
VSEN, RTN Place the VSEN/RTN filter in close proximity of the controller for good decoupling. Route these signals differentially  
from the remote sense location back to the controller.  
ISUMN,  
ISUMP  
Place the current sensing circuit in general proximity of the controller.  
Place capacitor Cn very close to the controller.  
Place the NTC thermistor next to the phase 1 inductor so it senses the inductor temperature correctly.  
Each phase of the power stage sends a pair of VSUMP and VSUMN signals to the controller. Run these two signals traces  
in parallel fashion.  
IMPORTANT: Sense the inductor current by routing the sensing circuit to the inductor pads. If possible, route the traces  
on a different layer from the inductor pad layer and use vias to connect the traces to the center of the pads. If no via is  
allowed on the pad, consider routing the traces into the pads from the inside of the inductor. The following drawings  
show the two preferred ways of routing current sensing traces. If possible connect the traces to the inductor pad in only  
one place and isolate this connection from other planes of the same net that may be present on other layers. Also make  
the connections a symmetric as possible for all phases.  
Inductor  
Inductor  
Vias  
Current-Sensing  
Traces  
Current-Sensing  
Traces  
20  
21  
VDD  
VIN  
Place the decoupling capacitor a close as possible to this pin.  
Place the decoupling capacitor a close as possible to this pin.  
September 15, 2011  
FN6897.0  
28  
ISL6353  
Layout Guidelines(Continued)  
ISL6353  
PIN NUMBER  
SYMBOL  
BOOT1  
LAYOUT GUIDELINES  
23  
Use a fairly wide trace (>30mil). Avoid routing or crossing any sensitive analog signals near this trace.  
24, 25  
UG1, PH1  
Run these two traces in parallel with fairly wide traces (>30mil). Avoid routing or crossing any sensitive analog signals  
near this trace. Recommend routing the PH1 trace to the phase 1 high-side MOSFET source pins instead of general  
copper.  
26  
27  
GND  
LG1  
Connect this pin to ground right next to the controller or to the exposed pad underneath the controller.  
Use a fairly wide trace (>30mil). Avoid routing or crossing any sensitive analog signals near this trace.  
Place the decoupling capacitor a close as possible to this pin.  
29  
VDDP  
LG2  
30  
Use a fairly wide trace (>30mil). Avoid routing or crossing any sensitive analog signals near this trace.  
Connect this pin to ground right next to the controller or to the exposed pad underneath the controller.  
31  
GND  
32, 33  
PH2, UG2  
Run these two traces in parallel with fairly wide traces (>30mil). Avoid routing or crossing any sensitive analog signals  
near this trace. Recommend routing the PH1 trace to the phase 1 high-side MOSFET source pins instead of general  
copper.  
34  
35  
40  
BOOT2  
PROG2  
ADDR  
Use fairly wide trace (>30mil). Avoid routing or crossing any sensitive analog signals near this trace.  
Place resistor close to the controller.  
Place resistor close to the controller.  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make  
sure you have the latest Rev.  
DATE  
REVISION  
FN6897.0  
CHANGE  
09/15/2011  
Initial Release.  
Products  
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products  
address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks.  
Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a  
complete list of Intersil product families.  
For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on  
intersil.com: ISL6353  
To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff  
FITs are available from our website at http://rel.intersil.com/reports/search.php  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
September 15, 2011  
29  
FN6897.0  
ISL6353  
Package Outline Drawing  
L40.5x5  
40 LEAD THIN QUAD FLAT NO-LEAD PLASTIC PACKAGE  
Rev 1, 9/10  
4X 3.60  
36X 0.40  
A
B
5.00  
6
6
PIN #1 INDEX AREA  
PIN 1  
INDEX AREA  
0.15  
(4X)  
40X 0.4± 0 .1  
0.20  
b
BOTTOM VIEW  
TOP VIEW  
0.10 M  
C A B  
4
PACKAGE OUTLINE  
0.40  
0.750  
SEE DETAIL “X”  
0.10 C  
//  
BASE PLANE  
SEATING PLANE  
0.08 C  
C
0.050  
SIDE VIEW  
(36X 0.40  
(40X 0.20)  
0.2 REF  
5
C
(40X 0.60)  
0.00 MIN  
0.05 MAX  
TYPICAL RECOMMENDED LAND PATTERN  
DETAIL "X"  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3. Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension b applies to the metallized terminal and is measured  
between 0.15mm and 0.27mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 indentifier may be  
either a mold or mark feature.  
JEDEC reference drawing: MO-220WHHE-1  
7.  
September 15, 2011  
FN6897.0  
30  

相关型号:

ISL6353IRTZ-T

PCN13024 – ASECL Reliability Qualification Summary
INTERSIL

ISL6353IRTZ-T13

Switching Controller
RENESAS

ISL6363

Multiphase PWM Regulator for VR12? Desktop CPUs
INTERSIL

ISL6363CRTZ

Multiphase PWM Regulator for VR12? Desktop CPUs
INTERSIL

ISL6363CRTZ-T13

SWITCHING CONTROLLER
RENESAS

ISL6363IRTZ

Multiphase PWM Regulator for VR12? Desktop CPUs
INTERSIL

ISL6363IRTZ-T

Multiphase PWM Regulator for VR12 Desktop CPUs, TQFN, /Reel
RENESAS

ISL6363IRTZ-T7

SWITCHING CONTROLLER
RENESAS

ISL6364

Dual 4-Phase + 1-Phase PWM Controller for VR12/IMVP7 Applications
INTERSIL

ISL6364ACRZ

Green Dual 4+1 PWM Controller for VR12/IMVP7 Applications with AUTO Phase Shedding
RENESAS

ISL6364ACRZ

PCN13024 – ASECL Reliability Qualification Summary
INTERSIL

ISL6364ACRZ-T

暂无描述
RENESAS