ISL6410AIR-TK [INTERSIL]

Single Synchronous Buck Regulators with Integrated FET; 单同步降压型稳压器具有集成FET
ISL6410AIR-TK
型号: ISL6410AIR-TK
厂家: Intersil    Intersil
描述:

Single Synchronous Buck Regulators with Integrated FET
单同步降压型稳压器具有集成FET

稳压器 开关
文件: 总13页 (文件大小:392K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISL6410, ISL6410A  
®
Data Sheet  
September 17, 2004  
FN9149.3  
Single Synchronous Buck Regulators  
with Integrated FET  
Features  
• Fully Integrated Synchronous Buck Regulator  
The ISL6410, ISL6410A are synchronous current-mode  
PWM regulators designed to provide a total DC-DC solution  
for microcontrollers, microprocessors, CPLDs, FPGAs, core  
processors/BBP/MAC, and ASICs. The ISL6410 should be  
selected for applications using 3.3V ±10% as an input  
voltage and the ISL6410A in applications requiring 5.0V  
±10%.  
• PWM Fixed Output Voltage Options  
- 1.8V, 1.5V or 1.2V with ISL6410 (VIN = 3.3V)  
- 3.3V, 1.8V or 1.2V with ISL6410A (VIN = 5.0V)  
• Continuous Output Current . . . . . . . . . . . . . . . . . . 600mA  
• Ultra-Compact DC-DC Converter Design  
• Stable with Small Ceramic Output Capacitors  
• High Conversion Efficiency  
These synchronous current mode PWM regulators have  
integrated N- and P-Channel power MOSFETs and provide  
pre-set pin programmable outputs. Synchronous rectification  
with internal MOSFETs is used to achieve higher efficiency  
and a reduced external component count. The operating  
frequency of 750kHz typical allows the use of small inductor  
and capacitor values. The device can be synchronized to an  
external clock signal in the range of 500kHz to 1MHz. A  
power good signal “PG” is generated when the output  
voltage falls outside the regulation limits. Other features  
include overcurrent protection and thermal overload  
shutdown. The ISL6410, ISL6410A are available in an  
MSOP 10 lead package.  
• Extensive Circuit Protection and Monitoring features  
- Overvoltage, UVLO  
- Overcurrent  
- Thermal Shutdown  
• Available in MSOP and QFN packages  
• QFN Package:  
- Compliant to JEDEC PUB95 MO-220  
QFN - Quad Flat No Leads - Package Outline  
- Near Chip Scale Package footprint, which improves  
PCB efficiency and has a thinner profile  
• Pb-Free Packaging Available  
Ordering Information  
TEMP.  
PKG.  
Applications  
• CPUs, DSP, CPLDs, FPGAs  
PART NUMBER* RANGE (°C)  
PACKAGE  
DWG. #  
ISL6410IR  
-40 to 85 16 Ld 4x4 QFN  
L16.4x4  
L16.4x4  
• ASICs  
ISL6410IRZ (Note)  
-40 to 85 16 Ld 4x4 QFN  
(Pb-free)  
• DVD and DSL applications  
• WLAN Cards  
ISL6410IU  
-40 to 85 10 Ld MSOP  
M10.118  
ISL6410IUZ (Note)  
ISL6410AIR  
-40 to 85 10 Ld MSOP (Pb-free) M10.118  
• Generic 5V to 3.3V Conversion  
-40 to 85 16 Ld 4x4 QFN  
L16.4x4  
L16.4x4  
ISL6410AIRZ (Note) -40 to 85 16 Ld 4x4 QFN  
(Pb-free)  
Pinouts  
ISL6410 (MSOP)  
ISL6410 (QFN)  
ISL6410AIU  
-40 to 85 10 Ld MSOP  
M10.118  
TOP VIEW  
TOP VIEW  
ISL6410AIUZ (Note) -40 to 85 10 Ld MSOP (Pb-free) M10.118  
*For tape and reel, add “-T”, “-TK” or “-T5K” suffix.  
PVCC  
VIN  
1
10 PGND  
NOTE: Intersil Pb-free products employ special Pb-free material  
sets; molding compounds/die attach materials and 100% matte tin  
plate termination finish, which is compatible with both SnPb and  
Pb-free soldering operations. Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed  
the Pb-free requirements of IPC/JEDEC J Std-020B.  
16  
15  
14  
13  
2
3
4
5
9
8
7
6
L
VIN  
CT  
1
2
3
4
12 NC  
GND  
PG  
EN  
SYNC  
VSET  
11 RESET  
10 EN  
FB  
GND  
PG  
9
SYNC  
5
6
7
8
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2004. All Rights Reserved  
All other trademarks mentioned are the property of their respective owners.  
Functional Block Diagram for MSOP Version  
VIN  
0.1µF  
10µF  
1
PVCC  
CURRENT  
SENSE  
2
3
VIN  
SLOPE  
SOFT  
GND  
COMPENSATION  
START  
L1  
EN  
8.2µH  
VOUT  
PWM  
9
L
OVERCURRENT,  
OVERVOLTAGE  
LOGIC  
GATE  
EA  
GM  
DRIVE  
10µF  
COMPENSATION  
10  
PGND  
7
6
SYNC  
VSET  
750kHz  
OSCILLATOR  
POWER GOOD  
PWM  
V
OUT  
UVLO  
PWM  
8
EN  
REFERENCE  
0.45V  
FB  
5
4
PG  
NOTES:  
1. VIN is 3.3V for ISL6410 and 5.0V for ISL6410A.  
2. VSET in the above schematic is connected to VIN, so the VOUT is 1.8V for ISL6410 and 3.3V for ISL6410A.  
Functional Block Diagram for QFN Version  
VIN  
0.1µF  
10µF  
15  
PVCC  
CURRENT  
SENSE  
16 VIN  
SLOPE  
SOFT  
START  
3
GND  
COMPENSATION  
L1  
EN  
8.2µH  
VOUT  
PWM  
14  
13  
L
OVERCURRENT,  
OVERVOLTAGE  
LOGIC  
GATE  
EA  
GM  
DRIVE  
10µF  
COMPENSATION  
PGND  
9
7
SYNC  
VSET  
750kHz  
OSCILLATOR  
POWER GOOD  
PWM  
V
IN  
11  
RESET  
V
OUT  
UVLO  
RESET  
BLOCK  
PWM  
10 EN  
REFERENCE  
0.45V  
FB  
5
4
8
2
C
T
PG  
PG  
NOTES:  
1. VIN is 3.3V for ISL6410 and 5.0V for ISL6410A.  
2. VSET in the above schematic is connected to VIN, so the VOUT is 1.8V for ISL6410 and 3.3V for ISL6410A.  
ISL6410, ISL6410A  
Typical Application Schematics  
VIN  
3.3V  
±10%  
C
IN  
10µF  
0.1µF  
L1  
PVCC  
VIN  
PGND  
L
1
2
3
4
5
10  
9
8.2µH  
V
OUT  
1.8V  
ISL6410  
GND  
PG  
EN  
8
C
OUT  
10µF  
7
SYNC  
VSET  
6
FB  
FIGURE 1. SCHEMATIC USING THE ISL6410 MSOP  
VIN  
5.0V  
±10%  
C
IN  
10µF  
0.1µF  
L1  
12µH  
PVCC  
VIN  
PGND  
L
1
2
3
4
5
10  
9
V
OUT  
3.3V  
ISL6410A  
GND  
EN  
8
C
OUT  
10µF  
7
PG  
SYNC  
VSET  
6
FB  
FIGURE 2. SCHEMATIC USING THE ISL6410A MSOP  
L1  
+1.2V  
VOUT  
+3.3V  
VIN  
8.2µH  
C
16 15 14 13  
C
IN  
OUT  
10µF  
1µF  
10µF  
GND  
12  
11  
10  
9
1
2
3
4
GND  
NC  
RESET  
EN  
VIN  
CT  
U1  
GND ISL6410IR  
PG  
EP  
C
C7  
0.1µF  
T
SYNC  
0.01µF  
17  
RESET  
BAR  
5
6
7
8
FIGURE 3. SCHEMATIC USING THE ISL6410 QFN  
4
ISL6410, ISL6410A  
Absolute Maximum Ratings  
Thermal Information  
Thermal Resistance (Typical)  
MSOP Package (Note 4) . . . . . . . . . . .  
QFN Package (Notes 4, 5). . . . . . . . . .  
Supply Voltage, V  
. . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +6.0V  
θ
(°C/W)  
128  
45  
θ
(°C/W)  
JC  
NA  
7.5  
CC  
JA  
SYNC, FB, VSET & Enable Input (Note 3) . . . . -0.3V to VCC+0.3V  
ESD Classification (Human Body Model) . . . . . . . . . . . . . . . Class 2  
Maximum Junction Temperature (Plastic Package) . . . . . . . . 150°C  
Maximum Storage Temperature Range. . . . . . . . . . .-65°C to 150°C  
Maximum Lead Temperature (10s, soldering . . . . . . . . . . . . . 260°C  
Ambient Temperature Range. . . . . . . . . . . . . . . . . . . .-40°C to 85°C  
Junction Temperature Range. . . . . . . . . . . . . . . . . . .-40°C to 125°C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
3. All voltages are with respect to GND.  
4. θ is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See  
JA  
Tech Brief TB379.  
5. For θ , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
Electrical Specifications Recommended operating conditions unless otherwise noted. V = 3.3V ±10% (ISL6410) or 5V ±10%  
IN  
(ISL6410A), T = 25°C (Note 6).  
A
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
SUPPLY  
CC  
Supply Voltage Range  
VIN (ISL6410)  
3.0  
3.3  
5.0  
2.68  
2.59  
4.37  
4.22  
2.3  
5
3.6  
5.5  
2.73  
2.64  
4.45  
4.32  
-
V
V
VIN (ISL6410A)  
4.5  
Input UVLO Threshold  
V
V
V
V
(ISL6410) Rising  
(ISL6410) Falling  
(ISL6410A) Rising  
(ISL6410A) Falling  
2.62  
V
TR  
TF  
2.53  
V
4.27  
V
TR  
4.1  
V
TF  
Quiescent Supply Current  
Shutdown Supply Current  
I
= 0mA  
-
-
-
-
-
mA  
µA  
µA  
°C  
°C  
OUT  
EN = GND, T = 25°C  
10  
A
EN = GND, T = 85°C  
A
10  
15  
Thermal Shutdown Temperature (Note 7)  
Thermal Shutdown Hysteresis (Note 7)  
SYNCHRONOUS BUCK PWM REGULATOR  
Output Voltage  
Rising Threshold  
150  
20  
-
25  
ISL6410, VSET = L  
-
1.2  
1.8  
1.5  
1.2  
3.3  
1.8  
-
-
V
V
ISL6410, VSET = H  
-
-
ISL6410, VSET = OPEN  
ISL6410A, VSET = L  
ISL6410A, VSET = H  
ISL6410A, VSET = OPEN  
-
-
V
-
-
V
-
-
-
V
-
-1.5  
-0.5  
-1.5  
-
V
Output Voltage Accuracy  
Line Regulation  
I
I
I
= 3mA, T = -40°C to 85°C  
A
+1.5  
+0.5  
+1.5  
600  
1300  
-
%
OUT  
OUT  
OUT  
= 3mA  
-
%
Load Regulation  
= 3mA to 600mA  
-
%
Maximum Output Current  
Peak Output Current Limit  
-
mA  
mA  
mΩ  
mΩ  
%
700  
-
-
PMOS r  
NMOS r  
I
I
I
= 200mA  
= 200mA  
230  
230  
92  
DS(ON)  
OUT  
OUT  
OUT  
-
-
DS(ON)  
Efficiency  
= 200mA, V = 3.3V, V = 1.8V (ISL6410)  
IN  
-
-
O
5
ISL6410, ISL6410A  
Electrical Specifications Recommended operating conditions unless otherwise noted. V = 3.3V ±10% (ISL6410) or 5V ±10%  
IN  
(ISL6410A), T = 25°C (Note 6). (Continued)  
A
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
93  
MAX  
UNITS  
%
Efficiency  
I
= 200mA, V = 5.0V, V = 3.3V (ISL6410A)  
IN  
-
-
-
-
-
-
OUT  
O
Efficiency  
I
= 600mA, V = 5.0V, V = 3.3V (ISL6410A)  
IN  
91  
%
OUT  
O
Soft-Start Time  
OSCILLATOR  
4096 Clock Cycles @ 750kHz  
5.5  
ms  
Oscillator Frequency  
620  
500  
70  
-
750  
860  
1000  
-
kHz  
kHz  
%
Frequency Synchronization Range (f  
SYNC High Level Input Voltage  
SYNC Low Level Input Voltage  
Sync Input Leakage Current  
)
Clock signal on SYNC pin  
As % of VIN  
-
-
-
-
-
SYNC  
As % of VIN  
30  
1
%
SYNC = GND or V  
-1  
µA  
%
IN  
Duty Cycle of External Clock Signal (Note 7)  
PGOOD (ISL6410 interfaces to 3.3V Logic, ISL6410A interfaces to 5.0V Logic)  
20  
60  
Rising Threshold  
1mA minimum source/sink  
+5.0  
-10.5  
-
8.0  
-8.0  
1
+10.5  
-5.0  
-
%
%
%
Falling Threshold  
Rising/Falling Hysteresis  
ENABLE  
EN High Level Input Voltage  
EN Low Level Input Voltage  
EN Input Leakage Current  
OVERVOLTAGE  
As % of VIN  
As % of VIN  
70  
-
-
-
-
30  
1
%
%
EN = GND or V  
-1  
µA  
IN  
Overvoltage Threshold  
RESET BLOCK SPECIFICATIONS  
RESET (reset released)  
RESET (reset asserted)  
RESET Rising Threshold  
RESET Falling Threshold  
RESET (reset released)  
RESET (reset asserted)  
RESET Rising Threshold  
RESET Falling Threshold  
RESET Threshold Hysteresis  
RESET Threshold Hysteresis  
RESET Active Timeout Period (Note 8)  
27  
30  
33  
%
ISL6410, ISOURCE = 500µA, VIN = 2.90V  
0.8V  
-
-
-
-
0.3  
2.81  
2.79  
-
V
V
IN  
ISL6410, ISINK = 1.2mA, VIN = 2.50V  
ISL6410  
2.74  
2.72  
2.78  
2.77  
-
V
ISL6410  
V
ISL6410A, ISOURCE = 800µA, VIN = 4.70V  
0.8V  
-
V
IN  
ISL6410A, ISINK = 3.2mA, VIN = 4.10V  
-
0.4  
4.64  
4.61  
-
V
ISL6410A  
ISL6410A  
ISL6410  
4.5  
4.58  
4.55  
20  
30  
25  
V
4.47  
V
-
-
-
mV  
mV  
ms  
ISL6410A  
CT = 0.01mF  
-
-
V
V
V
V
SET  
SET  
SET  
SET  
High Level Input  
Low Level Input  
Open Level Input  
V
-0.4V  
-
-
-
0.4  
-
V
V
V
IN  
-
-
V
/2  
IN  
NOTES:  
6. Specifications at -40°C and +85°C are guaranteed by design, not production tested.  
7. Guaranteed by design, not production tested.  
8. The RESET Timeout period is linear with C at a slope of 2.5ms/nF, thus a 10nF capacitor provides for 25ms.  
T
6
ISL6410, ISL6410A  
efficiency and reduced number of external components.  
Pin Description  
Operating frequency of 750kHz typical allows the use of  
small inductor and capacitor values. The device can be  
synchronized to an external clock signal in the range of  
500kHz to 1MHz. The PG output indicates loss of regulation  
on PWM output.  
VIN - Supply voltage for the IC. It is recommended to place a  
1µF decoupling capacitor as close as possible to the IC.  
GND - Small signal ground for the PWM controller stage. All  
internal control circuits are referenced to this pin.  
PG - The Power good is an open-drain output. A pull-up  
resistor should be connected between PG and VIN. It is  
asserted active high when the output voltage reaches  
94.5% of the nominal value.  
The PWM is based on the peak current mode control  
topology with internal slope compensation. At the beginning  
of each clock cycle, the high side P-channel MOSFET is  
turned on. The current in the inductor ramps up and is  
sensed via an internal circuit. On exceeding a preset limit the  
high side switch is turned off causing the PWM comparator  
to trip. This occurs whenever the output voltage is in  
regulation or when the inductor current reaches the current  
limit. After a minimum dead time to prevent shoot through  
current, the low side N-channel MOSFET turns on and the  
current ramps down. As the clock cycle is completed, the low  
side switch turns off and the next clock cycle is initiated.  
FB - The Feedback pin is used to sense the output voltage,  
and should be connected to VOUT for normal operation.  
VSET - This pin is used to program the output voltages.  
Refer to Table 1 below for details.  
TABLE 1.  
ISL6410  
Vo  
ISL6410A  
Vo  
VSET  
High  
1.8V  
1.5V  
1.2V  
3.3V  
1.8V  
1.2V  
The control loop is internally compensated thus reducing the  
amount of external components.  
Open (NC)  
Low  
The switch current is internally sensed and the maximum  
current limit is 1300mA peak.  
SYNC - This pin is used for synchronization. The converter  
switching frequency can be synchronized to an external  
CMOS clock signal in the range of (500kHz to 1MHz).  
Synchronization  
The typical operating frequency for the converter is 750kHz.  
It is possible to synchronize the converter to an external  
clock frequency in the range of 500kHz to 1000kHz when an  
external signal is applied to SYNC pin. The device will  
automatically detect and synchronize to the rising edge of  
the first clock pulse. If the clock signal is stopped, the  
converter automatically switches back to the internal clock  
and continues its operation without interruption. The switch  
over will be initiated if no rising edge triggers are present on  
the SYNC pin for a duration of four clock cycles.  
EN - A logic high enables the converter, logic low forces the  
device into shutdown mode reducing the supply current to  
less than 10µA at 25°C. This pin should be pulled up to VCC  
via a 10K resistor.  
L - This pin is the drain junction of the internal power  
MOSFETs and is to be connected to the external inductor.  
PGND - Power ground. Connect all power grounds to this pin.  
PVCC - This pin provides the Input supply for the internal  
MOSFETs. It is recommended to place a 1µF decoupling  
capacitor as close as possible to the IC.  
Soft-Start  
As the EN (Enable) pin goes high, the soft-start function will  
generate an internal voltage ramp. This causes the start-up  
current to slowly rise preventing output voltage overshoot  
and high inrush currents. The soft-start duration is typically  
5.5ms with 750kHz switching frequency. When the soft-start  
is completed, the error amplifier will be connected directly to  
the internal voltage reference.  
CT - Timing capacitor connection to set the 25ms minimum  
pulse width for the RESET signal.  
RESET - The outputs of the reset supervisory circuit, which  
monitors VIN. The IC asserts these RESET signals  
whenever the supply voltage drops below a preset threshold  
and keeps it asserted for at least 25ms after VCC (VIN) has  
risen above the reset threshold. These outputs are push-  
pull. RESET is LOW when re-setting the microprocessor.  
The PWM will continue to operate until VIN drops below the  
UVLO threshold.  
Enable  
Logic low on EN pin forces the PWM section into shutdown.  
In the shutdown mode all the major blocks of the PWM  
including power switches, drivers, voltage reference, and  
oscillator are turned off.  
Undervoltage Lockout  
Functional Description  
An undervoltage lockout circuit prevents the converter from  
turning on when the voltage on VIN is less than the values  
specified in the Input UVLO Threshold section of the  
electrical specification.  
The ISL6410, ISL6410A is a synchronous buck regulator  
with integrated N- and P-channel power MOSFET and  
provides pre-set pin programmable outputs. Synchronous  
rectification with internal MOSFETs is used to achieve higher  
7
ISL6410, ISL6410A  
Power Good  
Input Capacitor Selection  
This output is asserted high when the PWM is enabled, and  
Vout is within 8.0% typical of its final value, and is active low  
outside this range. When disabled, the output turns active  
low. It is recommended to leave the PG pin unconnected  
when not used.  
The input current to the buck converter is pulsed, and  
therefore a low ESR input capacitor is required. This results  
in good input voltage filtering and minimizes the interference  
it causes to other circuits. The input capacitor should have a  
minimum value of 10µF and a higher value can be selected  
for improving input voltage filtering. The input capacitor  
should be rated for the maximum input ripple current  
calculated as:  
PWM Overvoltage and Overcurrent Protection  
The PWM output current is sampled at the end of each PWM  
cycle, exceeding the overcurrent limit, causes a 4 bit  
up/down counter to increment by one LSB. A normal current  
state causes the counter to decrement by one LSB (the  
counter will not however “rollover” or count below 0000).  
When the PWM goes into overcurrent, the counter rapidly  
reaches count 1111 and the PWM output is shut down and  
the soft-start counter is reset. After 16 clocks the PWM  
output is enabled and the soft-start cycle is started.  
Vo  
Vo  
---------  
I
= Io(max) ×  
× 1 ---------  
RMS  
Vin  
Vin  
The worst case RMS ripple current occurs at D = 0.5 and is  
calculated as: Irms = Io/2.  
D = Duty Cycle  
Ceramic capacitors are preferred because of their low ESR  
value. They are also less sensitive to voltage transients  
when compared to tantalum capacitors. It is good practice to  
place the input capacitor as close as possible to the input pin  
of the IC for optimum performance.  
If Vout exceeds the overvoltage limit for 32 consecutive clock  
cycles the PWM output is shut off and the soft-start cycle is  
initiated.  
No Load Operation  
If there is no load connected to the output, the converter will  
regulate the output voltage by allowing the inductor current  
to reverse for a short period of time.  
Inductor Selection  
The ISL6410 is an internally compensated device and hence  
a minimum of 8.2µH must be used for the ISL6410 and a  
minimum of 12µH for the ISL6410A. The selected inductor  
must have a low DC resistance and a saturation current  
greater than the maximum inductor current value can be  
calculated from the equations below  
Output Capacitor Selection  
For best performance, a low ESR output capacitor is  
needed. Output voltages below 1.8V require a larger output  
capacitor and ESR value to improve the performance and  
stability of the converter. For 1.8V output applications, a  
ceramic capacitor of 10µF or higher value with ESR 50mΩ  
is recommended.  
Vo  
1 --------  
Vin  
------------------  
dIL = Vo ×  
L × f  
The RMS ripple current is calculated as:  
dIL  
IL max = Io max + --------  
2
Vo  
1 --------  
Vin  
1
2 ×  
------------------ ----------------  
I
= Vo ×  
×
RMS(Co)  
L × f  
where  
3
dIL = the peak to peak inductor current  
L = the inductor value  
f = the switching frequency  
L = the inductor value  
f = the switching frequency  
ILmax = the max inductor current  
The overall output ripple voltage is the sum of the voltage spike  
caused by the output capacitor ESR and the voltage ripple  
caused by charge and discharge of the output capacitor:  
TABLE 3. RECOMMENDED INDUCTORS  
COMPONENT  
SUPPLIER  
Vo  
INDUCTOR VALUE  
DCR (mΩ)  
1 --------  
Vin  
1
------------------  
Vo = Vo ×  
×
------------------------- + ESR  
   
8.2µH  
75  
Coilcraft  
MSS6122-822MX  
L × f  
8 × Co × f  
12µH  
100  
Coilcraft  
MSS6122-123MX  
Where the highest output voltage ripple occurs at the highest  
input voltage VIN.  
TABLE 2. RECOMMENDED OUTPUT CAPACITORS  
CAPACITOR ESR  
COMPONENT  
SUPPLIER  
VALUE  
(mΩ)  
COMMENTS  
10µF  
<50 AVX 08056D106KAT2A  
Ceramic  
8
ISL6410, ISL6410A  
Layout Considerations  
As in all switching power supplies, the layout is an important  
step in the design process, more so at high peak currents  
and switching frequencies. Improper layout practice will give  
rise to Stability and EMI issues. It is recommended that wide  
and short traces are used for the main current paths. The  
input capacitor should be placed as close as possible to the  
IC pins. This applies to the output inductor and capacitor as  
well. The analog ground, GND, and the power ground,  
PGND, need to be separated. Use a common ground node  
to minimize the effects of ground noise.  
Performance Curves and Waveforms  
100  
100  
VOUT = 1.8V  
IOUT = 200mA  
90  
90  
VOUT = 1.5V  
VOUT = 1.2V  
80  
IOUT = 600mA  
80  
70  
60  
50  
70  
60  
50  
2.9  
3.1  
3.3  
3.5  
50  
100  
1000  
IOUT LOAD CURRENT (mA)  
VIN INPUT VOLTAGE (V)  
FIGURE 4. ISL6410 EFFICIENCY vs LOAD CURRENT  
FIGURE 5. ISL6410 VIN vs EFFICIENCY  
100  
100  
90  
VOUT = 3.3V  
VOUT = 1.8V  
IOUT = 200mA  
IOUT = 600mA  
90  
80  
70  
60  
50  
80  
VOUT = 1.2V  
70  
60  
50  
50  
100  
1000  
4.6  
4.4  
4.8  
5.0  
VIN (V)  
5.2  
5.6  
5.4  
IOUT LOAD CURRENT (mA)  
FIGURE 6. ISL6410A EFFICIENCY vs LOAD CURRENT  
FIGURE 7. ISL6410A EFFICIENCY vs VIN  
9
ISL6410, ISL6410A  
Performance Curves and Waveforms (Continued)  
800  
790  
780  
770  
760  
750  
780  
770  
760  
750  
740  
730  
-15  
-15  
-40  
10  
35  
60  
85  
-40  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 8. ISL6410 OSCILLATOR FREQUENCY vs  
TEMPERATURE  
FIGURE 9. ISL6410A OSCILLATOR FREQUENCY vs  
TEMPERATURE  
CH1 = Top, CH2 = Middle, CH4 = Bottom, where applicable  
VOUT  
VOUT  
L PIN VOLTAGE  
L1 CURRENT  
L PIN VOLTAGE  
L1 CURRENT  
VIN = 5.0V, VOUT = 1.2V, IOUT = 0.5A  
0.5µs/DIV  
0.5µs/DIV  
CH1 = 0.1V/DIV, CH2 = 2V/DIV CH4 = 200mA/DIV  
CH1 = 0.1V/DIV, CH2 = 2V/DIV CH4 = 200mA/DIV  
FIGURE 10. SWITCHING WAVEFORM FOR ISL6410  
FIGURE 11. SWITCHING WAVEFORM FOR ISL6410A  
VOUT  
VOUT  
IOUT  
IOUT  
VIN = 3.3V, VOUT = 1.2V  
VIN = 5.0V, VOUT = 1.2V  
0.5ms/DIV  
CH1 = 0.2V/DIV, CH4 = 200mA/DIV  
0.5ms/DIV  
CH1 = 0.1V/DIV, CH4 = 200mA/DIV  
FIGURE 12. TRANSIENT LOAD WAVEFORM FOR ISL6410  
FIGURE 13. TRANSIENT LOAD WAVEFORM FOR ISL6410A  
10  
ISL6410, ISL6410A  
Performance Curves and Waveforms (Continued)  
VOUT  
VOUT  
VIN = 3.3V, VOUT = 1.2V  
VIN = 5.0V, VOUT = 1.2V  
1µs/DIV  
1µs/DIV  
CH1 = 20mV/DIV  
CH1 = 20mV/DIV  
FIGURE 14. RIPPLE WAVEFORM FOR ISL6410  
FIGURE 15. RIPPLE WAVEFORM FOR ISL6410A  
-40  
-50  
-40  
-50  
VIN = 5.0V, VOUT = 1.2V  
VIN = 3.3V, VOUT = 1.2V  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
NOISE LEVEL 732kHz = -65.3dBm  
CENTER 2.75MHz, SPAN = 4.5MHz  
NOISE LEVEL 761kHz = -54.0dBm  
CENTER 2.75MHz, SPAN = 4.5MHz  
FIGURE 16. SWITCHING HARMONICS AND NOISE FOR  
ISL6410  
FIGURE 17. SWITCHING HARMONICS AND NOISE FOR  
ISL6410A  
11  
ISL6410, ISL6410A  
Quad Flat No-Lead Plas tic Package (QFN)  
L16.4x4  
16 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE  
(COMPLIANT TO JEDEC MO-220-VGGC ISSUE C)  
Micro Lead Frame Plas tic Package (MLFP)  
MILLIMETERS  
SYMBOL  
MIN  
NOMINAL  
MAX  
1.00  
0.05  
1.00  
NOTES  
A
A1  
A2  
A3  
b
0.80  
0.90  
-
-
-
-
-
-
9
0.20 REF  
9
0.23  
1.95  
1.95  
0.28  
0.35  
2.25  
2.25  
5, 8  
D
4.00 BSC  
-
D1  
D2  
E
3.75 BSC  
9
2.10  
7, 8  
4.00 BSC  
-
E1  
E2  
e
3.75 BSC  
9
2.10  
7, 8  
0.65 BSC  
-
k
0.25  
0.50  
-
-
-
-
L
0.60  
0.75  
0.15  
8
L1  
N
-
16  
4
4
-
10  
2
Nd  
Ne  
P
3
3
-
-
0.60  
12  
9
θ
-
9
Rev. 5 5/04  
NOTES:  
1. Dimensioning and tolerancing conform to ASME Y14.5-1994.  
2. N is the number of terminals.  
3. Nd and Ne refer to the number of terminals on each D and E.  
4. All dimensions are in millimeters. Angles are in degrees.  
5. Dimension b applies to the metallized terminal and is measured  
between 0.15mm and 0.30mm from the terminal tip.  
6. The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
7. Dimensions D2 and E2 are for the exposed pads which provide  
improved electrical and thermal performance.  
8. Nominal dimensionsare provided toassistwith PCBLandPattern  
Design efforts, see Intersil Technical Brief TB389.  
9. Features and dimensions A2, A3, D1, E1, P & θ are present when  
Anvil singulation method is used and not present for saw  
singulation.  
10. Depending on the method of lead termination at the edge of the  
package, a maximum 0.15mm pull back (L1) maybe present. L  
minus L1 to be equal to or greater than 0.3mm.  
12  
ISL6410, ISL6410A  
Mini Small Outline Plas tic Packages (MSOP)  
N
M10.118 (JEDEC MO-187BA)  
10 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE  
INCHES  
MILLIMETERS  
E1  
E
SYMBOL  
MIN  
MAX  
MIN  
0.94  
0.05  
0.75  
0.18  
0.09  
2.95  
2.95  
MAX  
1.10  
0.15  
0.95  
0.27  
0.20  
3.05  
3.05  
NOTES  
A
A1  
A2  
b
0.037  
0.002  
0.030  
0.007  
0.004  
0.116  
0.116  
0.043  
0.006  
0.037  
0.011  
0.008  
0.120  
0.120  
-
-B-  
0.20 (0.008)  
INDEX  
AREA  
1 2  
A
B
C
-
-
TOP VIEW  
4X θ  
9
0.25  
(0.010)  
R1  
c
-
R
GAUGE  
PLANE  
D
3
E1  
e
4
SEATING  
PLANE  
L
0.020 BSC  
0.50 BSC  
-
-C-  
4X θ  
L1  
A
A2  
E
0.187  
0.016  
0.199  
0.028  
4.75  
0.40  
5.05  
0.70  
-
L
6
SEATING  
PLANE  
L1  
N
0.037 REF  
10  
0.95 REF  
10  
-
0.10 (0.004)  
-A-  
C
C
b
7
-H-  
A1  
e
R
0.003  
0.003  
-
-
0.07  
0.07  
-
-
-
D
0.20 (0.008)  
C
R1  
θ
-
o
o
o
o
a
SIDE VIEW  
5
15  
5
15  
-
C
L
o
o
o
o
0
6
0
6
-
α
E
1
-B-  
Rev. 0 12/02  
0.20 (0.008)  
C
D
END VIEW  
NOTES:  
1. These package dimensions are within allowable dimensions of  
JEDEC MO-187BA.  
2. Dimensioning and tolerancing per ANSI Y14.5M-1994.  
3. Dimension “D” does not include mold flash, protrusions or gate  
burrs and are measured at Datum Plane. Mold flash, protrusion  
and gate burrs shall not exceed 0.15mm (0.006 inch) per side.  
4. Dimension “E1” does not include interlead flash or protrusions  
- H -  
and are measured at Datum Plane.  
Interlead flash and  
protrusions shall not exceed 0.15mm (0.006 inch) per side.  
5. Formed leads shall be planar with respect to one another within  
0.10mm (.004) at seating Plane.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. Dimension “b” does not include dambar protrusion. Allowable  
dambar protrusion shall be 0.08mm (0.003 inch) total in excess  
of “b” dimension at maximum material condition. Minimum space  
between protrusion and adjacent lead is 0.07mm (0.0027 inch).  
- B -  
-A -  
10. Datums  
and  
to be determined at Datum plane  
.
- H -  
11. Controlling dimension: MILLIMETER. Converted inch dimen-  
sions are for reference only  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
13  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY