ISL68201 [INTERSIL]

Single-Phase R4 Digital Hybrid PWM Controller with Integrated Driver;
ISL68201
型号: ISL68201
厂家: Intersil    Intersil
描述:

Single-Phase R4 Digital Hybrid PWM Controller with Integrated Driver

文件: 总32页 (文件大小:755K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
Single-Phase R4™ Digital Hybrid PWM Controller with  
2
Integrated Driver, PMBus/SMBus/I C and PFM  
ISL68200  
Features  
The ISL68200 is a single-phase synchronous-buck PWM  
controller featuring Intersil’s proprietary R4™ Technology. It  
supports a wide 4.5V to 24V input voltage range and a wide  
0.5V to 5.5V output range. Integrated LDOs provide controller  
bias voltage, allowing for single supply operation. The  
• Intersil’s proprietary R4™ Technology  
- Linear control loop for optimal transient response  
- Variable frequency and duty cycle control during load  
transient for fastest possible response  
- Inherent voltage feed-forward for wide range input  
2
ISL68200 includes a PMBus/SMBus/I C interface for device  
configuration and telemetry (V , V , I  
and temperature)  
• Input voltage range: 4.5V to 24V  
IN OUT OUT  
and fault reporting.  
• Output voltage range: 0.5V to 5.5V  
• ±0.5% DAC accuracy with remote sense  
• Support all ceramic solutions  
Intersil’s proprietary R4™ control scheme has extremely fast  
transient performance, accurately regulated frequency control  
and all internal compensation. An efficiency enhancing PFM  
mode can be enabled to greatly improve light-load efficiency.  
The ISL68200’s series bus allows for easy R4™ loop  
• Integrated LDOs for single input rail solution  
2
• SMBus/PMBus/I C compatible, up to 1.25MHz  
optimization, resulting in fast transient performance over a  
wide range of applications, including all ceramic output filters.  
• 256 boot-up voltage levels with a configuration pin  
• Eight switching frequency options from 300kHz to 1.5MHz  
• PFM operation option for improved light-load efficiency  
• Start-up into precharged load  
Built-in MOSFET drivers minimize external components,  
significantly reducing design complexity and board space,  
while also lowering BOM cost. The 4A drive strength allows for  
faster switching time, improving regulator efficiency. An  
integrated high-side gate-to-source resistor helps avoid Miller  
coupling shoot-through and improve system reliability.  
• Precision enable input to set higher input UVLO and power  
sequence as well as fault reset  
• Power-good monitor for soft-start and fault detection  
The ISL68200 has four 8-bit configuration pins, which provide  
• Comprehensive fault protection for high system reliability  
- Over-temperature protection  
very flexible configuration options (frequency, V , R4™ gain,  
etc.) without the need for built-in NVM memory. This results in  
a design flow that closely matches traditional analog  
OUT  
- Output overcurrent and short-circuit protection  
- Output overvoltage and undervoltage protection  
- Open remote sense protection  
controllers, while still offering the design flexibility and feature  
2
set of a digital PMBus/SMBus/I C interface. The ISL68200  
also features remote voltage sensing and completely eliminates  
any potential difference between remote and local grounds. This  
improves regulation and protection accuracy. A precision enable  
input is available to coordinate the start-up of the ISL68200 with  
other voltage rails, especially useful for power sequencing.  
- Integrated high-side gate-to-source resistor to prevent self  
turn-on due to high input bus dv/dt  
• Integrated power MOSFETs 4A drivers with adaptive  
shoot-through protection and bootstrap function  
• Compatible with Intersil’s PowerNavigator™ software  
Applications  
• High efficiency and high density POL digital power  
Related Literature  
UG067, “ISL68200DEMO1Z Demonstration Board User Guide”  
• FPGA, ASIC and memory supplies  
• Datacenter: servers, storage systems  
• Wired infrastructure: routers/switches/optical networking  
• Wireless infrastructure: base station  
TABLE 1. SINGLE-PHASE R4™ DIGITAL HYBRID PWM CONTROLLER OPTIONS  
2
PART  
NUMBER  
INTEGRATED  
DRIVER  
PWM  
OUTPUT  
PMBus/SMBus/I C  
INTERFACE  
COMPATIBLE DEVICES  
ISL68200  
ISL68201  
Yes  
No  
No  
Yes  
Discrete MOSFETs or Dual Channel MOSFETs  
Yes  
Yes  
Intersil Power Stages: ISL99140  
Intersil Drivers: ISL6596, ISL6609, ISL6627, ISL6622, ISL6208  
March 7, 2016  
FN8705.1  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Copyright Intersil Americas LLC 2016. All Rights Reserved.  
Intersil (and design), R3 Technology, R4 Technology and PowerNavigator are trademarks owned by Intersil Corporation or  
one of its subsidiaries. All other trademarks mentioned are the property of their respective owners.  
1
ISL68200  
Table of Contents  
Typical Applications Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Functional Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
IC Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Enable and Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Resistor Reader (Patented) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Soft-Start. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Boot-Up Voltage Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Current Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Thermal Monitoring and Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
I
Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
OUT  
Fault Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
PGOOD Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Adaptive Shoot-Through Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
PFM Mode Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2
SMBus, PMBus and I C Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
R4™ Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
General Application Design Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Output Filter Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Input Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Design and Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Voltage Regulator Design Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
About Intersil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
FN8705.1  
March 7, 2016  
Submit Document Feedback  
2
ISL68200  
Typical Applications Circuits  
1.0µF  
4.7µF  
VCC  
PVCC  
VIN  
7VLDO  
1.0µF  
4.75V TO 24V  
0.1µF  
BOOT  
I2C/SMBus/  
SALERT  
SCL  
PMBus  
V
< 7VLDO - 1.7V  
UGATE  
OUT  
SDA  
0.5V TO 5.5V  
PGOOD  
EN  
PGOOD  
EN  
PHASE  
VCC  
IOUT  
LGATE  
VCC  
10k  
NTC  
1.54k  
VCC  
NTC  
NCP15XH103J03RC  
BETA = 3380  
0.1µF  
4
PROG1-4  
CSEN  
CSRTN  
VSEN  
RGND  
GND  
FIGURE 1. WIDE RANGE INPUT AND OUTPUT APPLICATIONS  
1.0µF  
1.0µF  
4.7µF  
VCC  
PVCC  
VIN  
7VLDO  
4.5V TO 5.5V  
0.1µF  
BOOT  
2
SALERT  
SCL  
I C/SMBus/  
PMBus  
V
< 7VLDO - 1.7V  
0.5V TO 2.5V  
OUT  
UGATE  
SDA  
PGOOD  
EN  
PGOOD  
EN  
PHASE  
LGATE  
VCC  
IOUT  
10k  
VCC  
NTC  
1.54k  
0.1µF  
VCC  
NTC  
NCP15XH103J03RC  
BETA = 3380  
4
PROG1-4  
CSEN  
CSRTN  
VSEN  
RGND  
GND  
FIGURE 2. 5V INPUT APPLICATION  
FN8705.1  
March 7, 2016  
Submit Document Feedback  
3
ISL68200  
Block Diagram  
SDA SALERT  
PROG2 PROG3  
PROG4  
SCL  
7VLDO  
VINPVCC  
VCC  
EN  
POR  
SOFT-START  
AND  
FAULT LOGIC  
2
SMBUS/PMBUS/I C  
INTERFACE  
BOOT  
OTP OCP  
VIN VOUT IOUT TEMP  
DRIVER  
UGATE  
PGOOD  
CIRCUITRY  
PGOOD  
PHASE  
PVCC  
DEAD TIME  
GENERATION  
RGND  
VSEN  
INTERNAL  
COMPENSATION  
AMPLIFIER  
OVERVOLTAGE/  
UNDERVOLTAGE  
+
DRIVER  
LGATE  
GND  
5V LDO  
R4™  
MODULATOR  
VIN  
7V LDO  
7VLDO  
REFERENCE  
VOLTAGE  
CIRCUITRY  
PROG1  
GND  
CSEN  
CURRENT SENSE  
AND TEMPERATURE  
COMPENSATION  
OVERCURRENT (OCP) AND  
OVER-TEMPERATURE (OTP)  
CSRTN  
NTC  
SWITCHING  
FREQUENCY  
IOUT  
FIGURE 3. SIMPLIFIED FUNCTIONAL BLOCK DIAGRAM OF ISL68200  
FN8705.1  
March 7, 2016  
Submit Document Feedback  
4
ISL68200  
Pin Configuration  
ISL68200  
(24 LD 4x4 QFN)  
TOP VIEW  
24 23 22 21 20 19  
EN  
VIN  
PROG1  
PROG2  
PROG3  
PROG4  
IOUT  
18  
17  
16  
15  
14  
13  
1
2
3
4
5
6
7VLDO  
VCC  
25  
GND PAD  
SCL  
SALERT  
NTC  
7
8
9
10 11 12  
Functional Pin Descriptions  
PIN NUMBER SYMBOL  
DESCRIPTION  
1
2
3
4
EN  
Precision Enable input. Pulling EN above the rising threshold voltage initiates the soft-start sequence, while pulling EN below the  
failing threshold voltage suspends the Voltage Regulator (VR) operation.  
VIN  
Input voltage pin for R4™ loop and LDOs (5V and 7V). Place a high quality low ESR ceramic capacitor (1.0μF, X7R) in close  
proximity to the pin. External series resistor is not advised.  
7VLDO 7V LDO from VIN is used to bias current sensing amplifier. Place a high quality low ESR ceramic capacitor (1.0μF, X7R, 10V+)  
in close proximity to the pin.  
VCC  
SCL  
Logic bias supply that should be connected to PVCC rail externally. Place a high quality low ESR ceramic capacitor (1.0μF,  
X7R) from this pin to GND.  
2
5
6
Synchronous clock signal input of SMBus/PMBus/I C.  
SALERT Output pin for transferring the active low signal driven asynchronously from the VR controller to SMBus/PMBus.  
2
7
SDA  
I/O pin for transferring data signals between SMBus/PMBus/I C host and VR controller.  
8
PGOOD Open-drain indicator output.  
9
RGND  
VSEN  
This pin monitors the negative rail of regulator output. Connect to ground at point of regulation.  
This pin monitors the positive rail of regulator output. Connect to point of regulation  
10  
11  
12  
CSRTN This pin monitors the negative flow of output current for overcurrent protection and telemetry.  
CSEN  
This pin monitors the positive flow of output current with a series resistor and for overcurrent protection and telemetry. The  
series resistor sets the current gain and should be within 40Ωand 3.5kΩ.  
13  
NTC  
Input pin for the temperature measurement. Connect this pin through an NTC thermistor (10kΩ, ~ 3380) and a decoupling  
capacitor (~0.1μF) to GND and a resistor (1.54kΩ)to VCC of the controller. The voltage at this pin is inversely proportional to  
the VR temperature.  
14  
15  
16  
IOUT  
Output current monitor pin. An external resistor sets the gain and an external capacitor provides the averaging function; an  
external pull-up resistor to VCC is recommended to calibrate the no load offset. See “I  
Calibration” on page 19.  
OUT  
PROG4 Programming pin for Modulator (R4™) RR impedance and output slew rate during Soft-Start (SS) and Dynamic VID (DVID).  
It also sets AV gain multiplier to 1x or 2x and determines the AV gain on PROG3.  
PROG3 Programming pin for ultrasonic PFM operation, fault behavior, switching frequency and R4™ (AV) control loop gain.  
FN8705.1  
March 7, 2016  
Submit Document Feedback  
5
ISL68200  
Functional Pin Descriptions(Continued)  
PIN NUMBER SYMBOL  
DESCRIPTION  
2
17  
18  
19  
20  
21  
22  
23  
PROG2 Programming pin for PWM/PFM mode, temperature compensation and serial bus (SMBus/PMBus/I C) address.  
PROG1 Programming pin for boot-up voltage.  
GND  
Return current path for the LGATE MOSFET driver. Connect directly to system ground plane.  
LGATE  
Low-side MOSFET gate driver output. Connect to the gate terminal of the low-side MOSFET of the converter.  
PHASE Return path for the UGATE high-side MOSFET driver, and zero inductor current detector input for diode emulation.  
UGATE  
BOOT  
High-side MOSFET gate driver output. Connect to the gate terminal of the high-side MOSFET of the converter.  
Positive input supply for the UGATE high-side MOSFET gate driver. Connect an MLCC (0.22µF, X7R) between BOOT and  
PHASE pins.  
24  
25  
PVCC  
Output of the 5V LDO and input for the LGATE and UGATE MOSFET driver circuits. Place a high quality low ESR ceramic  
capacitor (4.7μF, X7R) in close proximity to the pin.  
GND PAD Return of logic bias supply VCC. Connect directly to system ground plane with at least 5 vias.  
Ordering Information  
PART NUMBER  
(Notes 1, 2, 3)  
PART  
MARKING  
TEMP RANGE  
(°C)  
PACKAGE  
(RoHS Compliant)  
PKG.  
DWG. #  
ISL68200IRZ  
ISL 68200I  
-40 to +85  
24 Ld 4x4 QFN  
L24.4x4C  
ISL68200DEMO1Z  
NOTES:  
20A Demonstration Board with on-board transient  
1. Add “-T” suffix for 6k units, “-T7A” = suffix for 250 units and “-TK” for 1k units. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see product information page for ISL68200. For more information on MSL please see techbrief TB363.  
FN8705.1  
March 7, 2016  
Submit Document Feedback  
6
ISL68200  
Absolute Maximum Ratings  
Thermal Information  
VCC, PVCC, VSEN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +7.0V  
Input Voltage, VIN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +27V  
7VLDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.3V to GND, 7.75V  
Thermal Resistance (Typical)  
24 Ld QFN (Notes 4, 5) . . . . . . . . . . . . . . . .  
Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . .-55°C to +150°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see TB493  
(°C/W)  
39  
(°C/W)  
2.5  
JA  
JC  
BOOT Voltage (V  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 33V  
BOOT-GND  
BOOT to PHASE Voltage (V  
). . . . . . . . . . . . . . . . -0.3V to 7V (DC)  
BOOT-PHASE  
-0.3V to 9V (<10ns)  
PHASE Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (GND - 0.3V) to 28V  
(GND - 9V) (<20ns Pulse Width, 10µJ)  
Recommended Operating Conditions  
UGATE Voltage. . . . . . . . . . . . . . . . . . . . . . . . . (V  
- 0.3V) (DC) to V  
Ambient Temperature Range . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
PHASE  
- 5V) (<20ns Pulse Width, 10µJ) to V  
BOOT  
BOOT  
(V  
Wide Range Input Voltage, V , Figure 1. . . . . . . . . . . . . . . . . 4.75V to 24V  
PHASE  
IN  
LGATE Voltage. . . . . . . . . . . . . . . . . . . . . . . (GND - 0.3V) (DC) to VCC + 0.3V  
5V Application Input Voltage, V , Figure 2. . . . . . . . . . . . . . . . 4.5V to 5.5V  
IN  
(GND - 2.5V) (<20ns Pulse Width, 5µJ) to VCC + 0.3V  
All Other Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to GND, VCC + 0.3V  
ESD Ratings  
Machine Model (Tested per JESD22-A115C) . . . . . . . . . . . . . . . . . . 200V  
Charged Device Model (Tested per JS-002-2014) . . . . . . . . . . . . . . . 1kV  
Human Body Model (Tested per JS-001-2010). . . . . . . . . . . . . . . . .2.5kV  
Latch-Up (Tested per JESD78D, Class 2, Level A). . . . ±100mA at +125°C  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
4. is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech  
JA  
Brief TB379.  
5. For , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
Electrical Specifications All typical specifications T = +25°C, V = 5V. Boldface limits apply across the operating temperature range,  
A
CC  
-40°C to +85°C, unless otherwise stated.  
MIN  
MAX  
PARAMETER  
VCC AND PVCC  
SYMBOL  
TEST CONDITIONS  
(Note 6)  
TYP  
(Note 6)  
UNIT  
VCC Input Bias Current  
I
EN = 5V, V = 5V, f  
CC  
= 500kHz, DAC = 1V  
= 500kHz, DAC = 1V  
14  
14  
2
16.5  
16.5  
mA  
mA  
mA  
mA  
VCC  
SW  
EN = 0V, V = 5V  
CC  
PVCC Input Bias Current  
I
EN = 5V, V = 5V, f  
CC  
PVCC  
SW  
EN = 0V, V = 5V  
CC  
1.0  
VCC AND VIN POR THRESHOLD  
VCC, PVCC Rising POR Threshold Voltage  
VCC, PVCC Falling POR Threshold Voltage  
4.20  
3.95  
4.20  
3.95  
4.35  
4.15  
4.35  
4.15  
V
V
V
V
3.80  
3.80  
V
V
, 7VLDO Rising POR Threshold Voltage  
, 7VLDO Falling O POR Threshold Voltage  
IN  
IN  
ENABLE INPUT  
EN High Threshold Voltage  
EN Low Threshold Voltage  
DAC ACCURACY  
V
0.81  
0.71  
0.84  
0.76  
0.87  
0.81  
V
V
ENTHR  
V
ENTHF  
DAC Accuracy  
2.5V < DAC 5.5V  
1.6V < DAC 2.5V  
1.2V < DAC 1.6V  
0.5V DAC 1.2V  
2.5V < DAC 5.5V  
1.6V < DAC 2.5V  
1.2V < DAC 1.6V  
0.5V DAC 1.2V  
-0.5  
-0.75  
-10  
0.5  
0.75  
10  
%
%
(T = 0°C to +85°C)  
A
mV  
mV  
%
-8  
8
DAC Accuracy  
-0.75  
-1.0  
-11  
0.75  
1.0  
11  
(T = -45°C to +85°C)  
A
%
mV  
mV  
-9  
9
FN8705.1  
March 7, 2016  
Submit Document Feedback  
7
ISL68200  
Electrical Specifications All typical specifications T = +25°C, V = 5V. Boldface limits apply across the operating temperature range,  
A
CC  
-40°C to +85°C, unless otherwise stated. (Continued)  
MIN  
MAX  
PARAMETER  
CHANNEL FREQUENCY  
SYMBOL  
TEST CONDITIONS  
(Note 6)  
TYP  
(Note 6)  
UNIT  
300kHz Configuration  
400kHz Configuration  
500kHz Configuration  
600kHz Configuration  
700kHz Configuration  
850kHz Configuration  
1000kHz Configuration  
1500kHz Configuration  
SOFT-START AND DYNAMIC VID  
Soft-Start and DVID Slew Rate  
PWM mode  
PWM mode  
PWM mode  
PWM mode  
PWM mode  
PWM mode  
PWM mode  
PWM mode  
260  
345  
435  
510  
610  
730  
865  
1320  
300  
400  
335  
450  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
500  
562  
600  
670  
700  
790  
850  
950  
1000  
1500  
1120  
1660  
0.0616 0.078  
0.096  
0.18  
0.37  
0.70  
1.40  
2.80  
5.60  
10.9  
260  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
µs  
0.13  
0.25  
0.53  
1.05  
2.10  
4.20  
8.60  
140  
0.157  
0.315  
0.625  
1.25  
2.50  
5.00  
10.0  
200  
Soft-Start Delay from Enable High  
Excluding 5.5ms POR timeout, See Figures 22  
and 23 on page 22  
REMOTE SENSE  
Bias Current of VSEN and RGND Pins  
Maximum Differential Input Voltage  
POWER-GOOD  
250  
µA  
V
6.0  
PGOOD Pull-Down Impedance  
PGOOD Leakage Current  
LDOs  
R
PGOOD = 5mA sink  
PGOOD = 5V  
10  
5.00  
7.4  
50  
Ω
PG  
I
1.0  
µA  
PG  
5V LDO Regulation  
V
V
= 12V, load = 50mA  
= 4.75V, load = 50mA  
4.85  
4.45  
125  
7.2  
5.15  
7.5  
V
V
IN  
5V LDO Regulation  
IN  
5V LDO Current Capability  
7V LDO Regulation  
mA  
V
250µA load  
= 4.75V, 250µA load  
7V Dropout  
V
4.50  
2
V
IN  
7V LDO Current Capability  
CURRENT SENSE  
Not recommended for external use  
mA  
Average OCP Trip Level  
Short-Circuit Protection Threshold  
Sensed Current Tolerance  
Sensed Current Tolerance  
Maximum Common-Mode Input Voltage  
I
82  
100  
130  
78  
123  
µA  
OC_TRIP  
% I  
OCP  
74  
35  
83  
42  
µA  
38  
µA  
V
7VLDO = 7.4V  
5.7  
2.8  
VCC = PVCC = 7VLDO = 4.5V  
V
FN8705.1  
March 7, 2016  
Submit Document Feedback  
8
ISL68200  
Electrical Specifications All typical specifications T = +25°C, V = 5V. Boldface limits apply across the operating temperature range,  
A
CC  
-40°C to +85°C, unless otherwise stated. (Continued)  
MIN  
MAX  
PARAMETER  
FAULT PROTECTION  
SYMBOL  
TEST CONDITIONS  
(Note 6)  
TYP  
(Note 6)  
UNIT  
UVP Threshold Voltage  
Latch  
68  
74  
1.15  
1.65  
1.95  
2.15  
2.65  
3.45  
5.65  
100  
80  
% DAC  
Start-Up OVP Threshold Voltage  
0V V  
1.08V  
1.10  
1.58  
1.88  
2.09  
2.56  
3.36  
5.52  
1.25  
1.75  
2.05  
2.25  
2.75  
3.6  
V
BOOT  
1.08V < V  
1.55V < V  
1.85V < V  
2.08V < V  
2.53V < V  
3.33V < V  
1.55V  
1.85V  
2.08V  
2.53V  
3.33V  
5.5V  
V
BOOT  
BOOT  
BOOT  
BOOT  
BOOT  
BOOT  
V
V
V
V
5.85  
V
Start-Up OVP Hysteresis  
mV  
OVP Rising Threshold Voltage  
V
0.5 DAC 5.5  
0.5 DAC 5.5  
READ_TEMP = 72h  
READ_TEMP = 8Eh  
114  
96  
120  
127  
108  
26  
% DAC  
% DAC  
% VCC  
% VCC  
OVRTH  
OVP Falling Threshold Voltage  
V
100  
OVFTH  
Over-Temperature Shutdown Threshold  
Over-Temperature Shutdown Reset Threshold  
20  
22.31  
27.79  
25  
30  
2
SMBus/PMBus/I C  
Signal Input Low Voltage  
Signal Input High Voltage  
Signal Output Low Voltage  
DATE, ALERT # Pull-Down Impedance  
CLOCK Maximum Speed  
CLOCK Minimum Speed  
Telemetry Update Rate  
Timeout  
1
V
V
1.6  
1.25  
25  
4mA pull-up current  
0.4  
50  
V
11  
Ω
MHz  
MHz  
µs  
0.05  
108  
30  
35  
ms  
ms  
PMBus Accessible Timeout from All Rails’ POR  
GATE DRIVER  
See Figure 22 on page 22  
5.5  
6.5  
UGATE Pull-Up Resistance  
UGATE Source Current  
UGATE Sink Resistance  
UGATE Sink Current  
R
200mA source current  
UGATE - PHASE = 2.5V  
250mA sink current  
1.0  
2.0  
1.0  
2.0  
1.0  
2.0  
0.5  
4.0  
10  
Ω
A
UGPU  
I
UGSRC  
R
Ω
A
UGPD  
I
UGATE - PHASE = 2.5V  
250mA source current  
LGATE - GND = 2.5V  
UGSNK  
LGATE Pull-Up Resistance  
LGATE Source Current  
LGATE Sink Resistance  
LGATE Sink Current  
R
Ω
A
LGPU  
I
LGSRC  
R
250mA sink current  
Ω
A
LGPD  
I
LGATE - GND = 2.5V  
LGSNK  
UGATE to LGATE Dead Time  
LGATE to UGATE Dead Time  
BOOTSTRAP DIODE  
t
UGATE falling to LGATE rising, no load  
LGATE falling to UGATE rising, no load  
ns  
ns  
UGFLGR  
LGFUGR  
t
18  
ON-Resistance  
R
16  
30  
Ω
F
NOTE:  
6. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
FN8705.1  
March 7, 2016  
Submit Document Feedback  
9
ISL68200  
In addition, based upon ON_OFF_CONFIG [02h] setting, the IC be  
enabled or disabled by series bus command “OPERATION [01h]”  
and/or EN pin. See Table 11 on page 25 for more details.  
Operation  
The following sections will provide a detailed description of the  
ISL68200 operation.  
Resistor Reader (Patented)  
IC Supplies  
The ISL68200 offers four programming pins to customize their  
regulator specifications. The details of these pins are summarized  
in Table 2, followed by the detailed description of resistor reader  
operation.  
The ISL68200 has 4 bias pins: VIN, 7VLDO, PVCC and VCC. The  
PVCC and 7VLDO voltage rails are 5V LDO and 7.4V LDO supplied  
by VIN, respectively, while the VCC pin needs to connect to PVCC  
rail externally to be biased. For 5V input applications, all these  
pins should be tied together and biased by a 5V supply. Since the  
VIN pin voltage information is used by the R4™ Modulator loop,  
the user CANNOT bias VIN with a series resistor. In addition, the  
VIN pin CANNOT be biased independently from other rails.  
TABLE 2. DEFINITION OF PROG PINS  
PIN  
BIT  
NAME  
DESCRIPTION  
PROG1 [7:0]  
BOOT-UP  
VOLTAGE  
Set output boot-up voltage, 256 different  
options: 0, 0.5V to 5.5V (see Table 7)  
Enable and Disable  
PROG2 [7:7]  
PWM/PFM  
Enables PFM mode or forced PWM.  
The IC is disabled until the 7VLDO, PVCC, VCC, VIN and EN pins  
increase above their respective rising threshold voltages and the  
typical 5.5ms timeout (worst case = 6.5ms) expires, as shown in  
Figures 22 and 23 on page 22. The controller will become  
disabled when the 7VLDO, PVCC, VCC, VIN or EN pins drop below  
their respective falling POR threshold voltages.  
[6:5] Temperature Adjust NTC temperature compensation:  
Compensation OFF, +5, +15, +30°C.  
[4:0]  
ADDR  
Set serial bus 32 different addresses  
(see Table 10).  
PROG3 [7:7]  
uSPFM  
Ultrasonic (25kHz clamp) PFM enable  
The precision threshold EN pin allows the user to set a precision  
input UVLO level with an external resistor divider, as shown in  
Figure 4. For 5V input applications or wide range input  
applications, the EN pin can directly connect to VCC, as shown in  
Figure 5. If an external enable control signal is available and is an  
open-drain signal, a pull-up impedance (100k or higher) can be  
used.  
[6:6] Fault Behavior OCP fault behavior:  
Latch, Infinite 9ms retry  
[5:3]  
[2:0]  
FSW  
Set switching frequency (f ).  
SW  
R4™ Gain  
Set error amplifier gain (AV).  
PROG4 [7:5] RAMP_RATE Set soft-start and DVID ramp rate.  
[4:3]  
[2:2]  
[1:0]  
RR  
Select RR impedance for R4™ loop.  
Select AV Gain Multiplier (1x or 2x)  
EXTERNAL CIRCUIT  
ISL68200  
AVMLTI  
Not Used  
VIN  
100k  
Intersil has developed a high resolution ADC using a patented  
technique with a simple 1%, 100ppm/K or better temperature  
coefficient resistor divider. The same type of resistors are  
preferred so that it has similar change over-temperature. In  
SOFT-  
START  
EN  
addition, the divider is compared to the internal divider off V  
9.09k  
CC  
and GND nodes and therefore must refer to V and GND pins,  
CC  
VIN UVLO = 10.2V/9.24V  
not through any RC decoupling network.  
FIGURE 4. INPUT UVP CONFIGURATION  
EXTERNAL CIRCUIT  
ISL68200  
V
CC  
EXTERNAL CIRCUIT  
ISL68200  
R
UP  
VCC  
EN  
REGISTER  
TABLE  
ADC  
R
OPTIONAL  
EN  
R
DW  
SOFT-  
START  
VIN UVLO = 4.20/3.95V  
is ONLY needed when the user wants to  
FIGURE 6. SIMPLIFIED RESISTOR DIVIDER ADC  
R
EN  
control the IC with an external enable signal  
FIGURE 5. 5V INPUT OR WIDE RANGE INPUT CONFIGURATION  
FN8705.1  
March 7, 2016  
Submit Document Feedback  
10  
ISL68200  
Tables 3 through 6 show the R and R  
UP  
values of each pin for  
TABLE 5. PROG 3 RESISTOR READER EXAMPLE  
DW  
a specific system design with some tie-high and tie-low options,  
which are for easy programming with reduced resistors and can  
be used to validate the regulator operation during In-Circuit Test  
(ICT) for 0V boot-up voltage option. Additional options are  
available using Intersil’s PowerNavigator™ or Resistor Reader  
calculator, please contact Intersil Application support at  
www.intersil.com/en/support. DATA for corresponding registers  
can be read out via series bus command (DC to DF). Note that  
more options are in PowerNavigator™ GUI or Resistor Reader  
calculator and the case of 10kΩ tie-high or tie-low is equivalent  
0Ω tie-high or tie-low.  
R4 GAIN  
PROG3  
(DE)  
R
(kΩ)  
R
(kΩ)  
ULTRASONIC  
PFM  
FAULT  
BEHAVIOR (kHz)  
f
SW  
UP  
DW  
1x  
42  
42  
42  
42  
42  
42  
42  
42  
1
2x  
84  
84  
84  
84  
84  
84  
84  
84  
2
00h  
20h  
40h  
60h  
80h  
A0h  
C0h  
E0h  
1Fh  
3Fh  
5Fh  
7Fh  
9Fh  
BFh  
DFh  
FFh  
Open  
0
Disabled  
Disabled  
Disabled  
Disabled  
Enabled  
Enabled  
Enabled  
Enabled  
Disabled  
Disabled  
Disabled  
Disabled  
Enabled  
Enabled  
Enabled  
Enabled  
Retry  
Retry  
Latch  
Latch  
Retry  
Retry  
Latch  
Latch  
Retry  
Retry  
Latch  
Latch  
Retry  
Retry  
Latch  
Latch  
300  
700  
300  
700  
300  
700  
300  
700  
600  
1500  
600  
1500  
600  
1500  
600  
1500  
Open 21.5  
Open 34.8  
Open 52.3  
Open  
Open  
Open  
Open  
0
75  
105  
147  
499  
Open  
TABLE 3. PROG 1 RESISTOR READER EXAMPLE  
R
R
(kΩ)  
VOUT  
(V)  
UP  
DW  
PROG1 (DC)  
00h  
20h  
40h  
60h  
80h  
A0h  
C0h  
(kΩ)  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
0
0
0.797  
0.852  
0.898  
0.953  
1.000  
1.047  
1.102  
1.203  
1.352  
1.500  
1.797  
2.500  
3.000  
3.297  
5.000  
0.000  
20  
21.5 Open  
34.8 Open  
52.3 Open  
1
2
34.8  
52.3  
75  
1
2
1
2
75  
Open  
Open  
Open  
Open  
1
2
105  
147  
105  
147  
499  
1
2
1
2
E0h  
499  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
1Fh  
1
2
3Fh  
20  
TABLE 6. PROG 4 RESISTOR READER EXAMPLE  
5Fh  
34.8  
52.3  
75  
PROG4  
(DF  
R
R
DW  
(kΩ)  
SS RATE  
(mV/µs)  
RR  
(kΩ  
7Fh  
UP  
(kΩ)  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
0
AVMLTI  
9Fh  
00h  
20h  
40h  
60h  
80h  
A0h  
C0h  
E0h  
1Fh  
3Fh  
5Fh  
7Fh  
9Fh  
BFh  
DFh  
FFh  
0
1.25  
2.5  
200  
200  
200  
200  
200  
200  
200  
200  
800  
800  
800  
800  
800  
800  
800  
800  
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
BFh  
105  
147  
20  
DFh  
FFh  
499  
34.8  
52.3  
75  
5
10  
TABLE 4. PROG 2 RESISTOR READER EXAMPLE  
0.078  
0.157  
0.315  
0.625  
1.25  
2.5  
PROG2  
(DD)  
R
R
(kΩ)  
TEMP  
COMP  
PM_ADDR  
(7-BIT)  
UP  
DW  
105  
147  
(kΩ)  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
0
PWM/PFM  
Enabled  
Enabled  
Enabled  
Enabled  
Disabled  
Disabled  
Disabled  
Disabled  
Enabled  
Enabled  
Enabled  
Enabled  
Disabled  
Disabled  
Disabled  
Disabled  
00h  
20h  
40h  
60h  
80h  
A0h  
C0h  
E0h  
1Fh  
3Fh  
5Fh  
7Fh  
9Fh  
BFh  
DFh  
FFh  
0
30  
15  
5
60h  
60h  
60h  
60h  
60h  
60h  
60h  
60h  
7F  
20  
499  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
34.8  
52.3  
75  
OFF  
30  
15  
5
20  
34.8  
52.3  
75  
5
105  
147  
10  
0.078  
0.157  
0.315  
0.625  
499  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
OFF  
30  
15  
5
105  
147  
20  
7F  
34.8  
52.3  
75  
7F  
499  
OFF  
30  
15  
5
7F  
7F  
105  
147  
7F  
7F  
499  
OFF  
7F  
FN8705.1  
March 7, 2016  
Submit Document Feedback  
11  
ISL68200  
ISL68200 supports precharged load start-up up to the maximum  
of 5.5V with sufficient boot capacitor charge. For an  
Soft-Start  
V
OUT  
extended precharged load, the boot capacitor will be discharged  
to “PVCC - V - V ” by high-side drive circuits’ standby current.  
The ISL68200 based regulator has 4 periods during soft-start, as  
shown in Figure 7 on page 12. After a 5.5ms timeout (worst  
case = 6.5ms) of bias supplies, as shown in Figures 22 and 23 on  
page 22, once the EN pin reaches above its enable threshold, the  
controller begins the first soft-start ramp after a fixed soft-start  
OUT  
D
For instance, an extended 4V precharged load, the boot capacitor  
will reduce to a less than 1V boot capacitor voltage, which is  
insufficient to power-up the VR. In this case, it is recommended  
to let the output drop below 2.5V with an external bleed resistor  
before issuing another soft-start command.  
delay period of t . The output voltage reaches the boot-up voltage  
D1  
(V  
) at a fixed slew rate in period t . Then, the controller will  
BOOT D2  
regulate the output voltage at V  
SMBus/PMBus/ I C sends a new V  
command is valid, the ISL68200 will initiate the ramp until the  
voltage reaches the new V command voltage in period t . The  
soft-start time is the sum of the 4 periods, as shown in  
Equation 1.  
for another period t until the  
BOOT D3  
2
command. If the V  
OUT OUT  
Boot-Up Voltage Programming  
An 8-bit pin PROG1 is dedicated for the boot-up voltage  
programmability, which offers 256 options 0V and 0.5V to 5.5V,  
as in Table 7. The most popular boot-up voltage levels are placed  
on the tie-low spots (0h, 20h, 40h, 60h, 80h, A0h, C0h, E0h) and  
the tie-high spots (1Fh, 3Fh, 5Fh, 7Fh, 9Fh, BFh, DFh, FFh) for  
easy programming, as summarized in Table 3. 0V boot-up  
voltage is considered as “OFF,” the driver will be in tri-state and  
the internal DAC will set to 0V.  
OUT D4  
t
= t + t + t + t  
D1 D2 D3 D4  
(EQ. 1)  
SS  
t
is a fixed delay with the typical value as 200µs. t is  
D3  
D1  
determined by the time to obtain a new valid V  
command  
command is  
OUT  
voltage from the SMBus/PMBus/I C bus. If the V  
2
OUT  
valid before the output reaches the boot-up voltage, the output will  
turn around to respond to the new V command code.  
In addition, if the VOUT_COMMAND (21h) is executed  
successfully 5.5ms (typically, worst 6.5ms) after VCC POR and  
prior to Enable, it will override the boot-up voltage set by the  
PROG1 pin.  
OUT  
V
OUT  
V
< PRECHARGED < OVP  
BOOT  
TABLE 7. PROG1 8-BIT (BOOT-UP VOLTAGE)  
V
BOOT  
VOUT  
COMMAND  
CODE (HEX)  
DELTA FROM  
PREVIOUS  
CODE (mV)  
PRECHARGED <  
0V  
V
BOOT  
BINARY  
CODE  
V
BOOT  
(V)  
HEX CODE  
00000000  
00000001  
00000010  
00000011  
00000100  
00000101  
00000110  
00000111  
00001000  
00001001  
00001010  
00001011  
00001100  
00001101  
00001110  
00001111  
00010000  
00010001  
00010010  
00010011  
00010100  
00010101  
0
1
0.7969  
0.5000  
0.5078  
0.5156  
0.5234  
0.5313  
0.5391  
0.5469  
0.5547  
0.5625  
0.5703  
0.5781  
0.5859  
0.5938  
0.6016  
0.6094  
0.6172  
0.6250  
0.6328  
0.6406  
0.6484  
0.6563  
66  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
t
t
t
t
D2  
D3  
D1  
D4  
EN  
2
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
3
PGOOD  
4
5
FIGURE 7. SOFT-START WAVEFORMS  
6
During t and t , ISL68200 digitally controls the DAC voltage  
D2 D4  
7
change. The ramp time t and t can be calculated based on  
D2 D4  
Equations 2 and 3, once the slew rate is set by the PROG4 pin.  
8
V
BOOT  
9
-------------------------------------  
t
=
s  
(EQ. 2)  
D2  
RAMP_RATE  
A
V
V  
OUT  
BOOT  
B
-----------------------------------------  
t
=
s  
(EQ. 3)  
D4  
RAMP_RATE  
C
The ISL68200 supports precharged start-up, it initiates the first  
PWM pulse until the internal reference (DAC) reaches the  
pre-charged level at RAMP_RATE, programmed by PROG4 or  
D
E
D5[2:0]. When the precharged level is below V  
, the output  
at RAMP_RATE and releases PGOOD at  
BOOT  
F
walks up to the V  
BOOT  
+ t , when the precharged output is above V  
10  
11  
12  
13  
14  
15  
t
but below  
D1  
D2  
BOOT  
OVP, it walks down to V  
at RAMP_RATE and then releases  
BOOT  
PGOOD at t +t , in which t is defined in Equation 4 and  
longer than a normal start-up.  
D1 D2  
D2  
V
V
V  
PRECHARGED BOOT  
PRECHARGED  
RAMP_RATE  
-------------------------------------------- ----------------------------------------------------------------------  
s  
t
=
+
(EQ. 4)  
D2  
RAMP_RATE  
FN8705.1  
March 7, 2016  
Submit Document Feedback  
12  
ISL68200  
TABLE 7. PROG1 8-BIT (BOOT-UP VOLTAGE) (Continued)  
TABLE 7. PROG1 8-BIT (BOOT-UP VOLTAGE) (Continued)  
VOUT  
COMMAND  
CODE (HEX)  
DELTA FROM  
PREVIOUS  
VOUT  
COMMAND  
CODE (HEX)  
DELTA FROM  
PREVIOUS  
CODE (mV)  
BINARY  
CODE  
V
BINARY  
CODE  
V
BOOT  
(V)  
BOOT  
(V)  
HEX CODE  
16  
17  
CODE (mV)  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
HEX CODE  
3D  
3E  
00010110  
00010111  
00011000  
00011001  
00011010  
00011011  
00011100  
00011101  
00011110  
00011111  
00100000  
00100001  
00100010  
00100011  
00100100  
00100101  
00100110  
00100111  
00101000  
00101001  
00101010  
00101011  
00101100  
00101101  
00101110  
00101111  
00110000  
00110001  
00110010  
00110011  
00110100  
00110101  
00110110  
00110111  
00111000  
00111001  
00111010  
00111011  
00111100  
0.6641  
0.6719  
0.6797  
0.6875  
0.6953  
0.7031  
0.7109  
0.7188  
0.7266  
1.3516  
0.8516  
0.7344  
0.7422  
0.7500  
0.7578  
0.7656  
0.7734  
0.7813  
0.7891  
0.7969  
0.8047  
0.8125  
0.8203  
0.8281  
0.8359  
0.8438  
0.8516  
0.8594  
0.8672  
0.8750  
0.8828  
0.8906  
0.8984  
0.9063  
0.9141  
0.9219  
0.9297  
0.9375  
0.9453  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
AD  
6D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
00111101  
00111110  
00111111  
01000000  
01000001  
01000010  
01000011  
01000100  
01000101  
01000110  
01000111  
01001000  
01001001  
01001010  
01001011  
01001100  
01001101  
01001110  
01001111  
01010000  
01010001  
01010010  
01010011  
01010100  
01010101  
01010110  
01010111  
01011000  
01011001  
01011010  
01011011  
01011100  
01011101  
01011110  
01011111  
01100000  
01100001  
01100010  
01100011  
0.9531  
0.9609  
1.5000  
0.8984  
0.9688  
0.9766  
0.9844  
0.9922  
1.0000  
1.0078  
1.0156  
1.0234  
1.0313  
1.0391  
1.0469  
1.0547  
1.0625  
1.0703  
1.0781  
1.0859  
1.0938  
1.1016  
1.1094  
1.1172  
1.1250  
1.1328  
1.1406  
1.1484  
1.1563  
1.1641  
1.1719  
1.1797  
1.1875  
1.1953  
1.7969  
0.9531  
1.2031  
1.2109  
1.2188  
7A  
7B  
C0  
73  
7C  
7D  
7E  
7F  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
E6  
7A  
9A  
9B  
9C  
7.8125  
7.8125  
18  
19  
1A  
1B  
1C  
1D  
1E  
3F  
40  
41  
42  
43  
44  
45  
46  
47  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
5F  
60  
61  
62  
63  
7.8125  
7.8125  
7.8125  
FN8705.1  
March 7, 2016  
Submit Document Feedback  
13  
ISL68200  
TABLE 7. PROG1 8-BIT (BOOT-UP VOLTAGE) (Continued)  
TABLE 7. PROG1 8-BIT (BOOT-UP VOLTAGE) (Continued)  
VOUT  
COMMAND  
CODE (HEX)  
DELTA FROM  
PREVIOUS  
VOUT  
COMMAND  
CODE (HEX)  
DELTA FROM  
PREVIOUS  
CODE (mV)  
BINARY  
CODE  
V
BINARY  
CODE  
V
BOOT  
(V)  
BOOT  
(V)  
HEX CODE  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
CODE (mV)  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
HEX CODE  
8B  
8C  
8D  
8E  
01100100  
01100101  
01100110  
01100111  
01101000  
01101001  
01101010  
01101011  
01101100  
01101101  
01101110  
01101111  
01110000  
01110001  
01110010  
01110011  
01110100  
01110101  
01110110  
01110111  
01111000  
01111001  
01111010  
01111011  
01111100  
01111101  
01111110  
01111111  
10000000  
10000001  
10000010  
10000011  
10000100  
10000101  
10000110  
10000111  
10001000  
10001001  
10001010  
1.2266  
1.2344  
1.2422  
1.2500  
1.2578  
1.2656  
1.2734  
1.2813  
1.2891  
1.2969  
1.3047  
1.3125  
1.3203  
1.3281  
1.3359  
1.3438  
1.3516  
1.3594  
1.3672  
1.3750  
1.3828  
1.3906  
1.3984  
1.4063  
1.4141  
1.4219  
1.4297  
2.5000  
1.0000  
1.4375  
1.4453  
1.4531  
1.4609  
1.4688  
1.4766  
1.4844  
1.4922  
1.5000  
1.5078  
9D  
9E  
9F  
10001011  
10001100  
10001101  
10001110  
10001111  
10010000  
10010001  
10010010  
10010011  
10010100  
10010101  
10010110  
10010111  
10011000  
10011001  
10011010  
10011011  
10011100  
10011101  
10011110  
10011111  
10100000  
10100001  
10100010  
10100011  
10100100  
10100101  
10100110  
10100111  
10101000  
10101001  
10101010  
10101011  
10101100  
10101101  
10101110  
10101111  
10110000  
10110001  
1.5156  
1.5234  
1.5313  
1.5391  
1.5469  
1.5547  
1.5625  
1.5703  
1.5781  
1.5859  
1.5938  
1.6016  
1.6094  
1.6172  
1.6250  
1.6328  
1.6406  
1.6484  
1.6563  
1.6641  
3.0000  
1.0469  
1.6719  
1.6797  
1.6875  
1.6953  
1.7031  
1.7109  
1.7188  
1.7266  
1.7344  
1.7422  
1.7500  
1.7578  
1.7656  
1.7734  
1.7813  
1.7891  
1.7969  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
140  
80  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
C0  
C1  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
6F  
70  
71  
98  
99  
9A  
9B  
9C  
9D  
9E  
72  
73  
74  
D0  
D1  
D2  
D3  
D4  
D5  
180  
86  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
DD  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7F  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
AF  
B0  
B1  
FN8705.1  
March 7, 2016  
Submit Document Feedback  
14  
ISL68200  
TABLE 7. PROG1 8-BIT (BOOT-UP VOLTAGE) (Continued)  
TABLE 7. PROG1 8-BIT (BOOT-UP VOLTAGE) (Continued)  
VOUT  
COMMAND  
CODE (HEX)  
DELTA FROM  
PREVIOUS  
VOUT  
COMMAND  
CODE (HEX)  
DELTA FROM  
PREVIOUS  
CODE (mV)  
BINARY  
CODE  
V
BINARY  
CODE  
V
BOOT  
(V)  
BOOT  
(V)  
HEX CODE  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
CODE (mV)  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
78.125  
78.125  
78.125  
78.125  
78.125  
78.125  
78.125  
78.125  
HEX CODE  
D9  
DA  
DB  
DC  
DD  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
10110010  
10110011  
10110100  
10110101  
10110110  
10110111  
10111000  
10111001  
10111010  
10111011  
10111100  
10111101  
10111110  
10111111  
11000000  
11000001  
11000010  
11000011  
11000100  
11000101  
11000110  
11000111  
11001000  
11001001  
11001010  
11001011  
11001100  
11001101  
11001110  
11001111  
11010000  
11010001  
11010010  
11010011  
11010100  
11010101  
11010110  
11010111  
11011000  
1.8047  
1.8125  
1.8203  
1.8281  
1.8359  
1.9141  
1.9922  
2.0703  
2.1484  
2.2266  
2.3047  
2.3828  
2.4609  
3.2969  
1.1016  
2.4688  
2.4766  
2.4844  
2.4922  
2.5000  
2.5078  
2.5156  
2.5234  
2.6016  
2.6797  
2.7578  
2.8359  
2.9141  
2.9922  
3.0703  
3.1484  
3.2266  
3.2813  
3.2891  
3.2969  
3.3047  
3.3125  
3.3203  
3.3281  
E7  
11011001  
11011010  
11011011  
11011100  
11011101  
11011110  
11011111  
11100000  
11100001  
11100010  
11100011  
11100100  
11100101  
11100110  
11100111  
11101000  
11101001  
11101010  
11101011  
11101100  
11101101  
11101110  
11101111  
11110000  
11110001  
11110010  
11110011  
11110100  
11110101  
11110110  
11110111  
11111000  
11111001  
11111010  
11111011  
11111100  
11111101  
11111110  
11111111  
3.4063  
3.4844  
3.5625  
3.6406  
3.7188  
3.7969  
5.0000  
1.2031  
3.8750  
3.9531  
4.0313  
4.1094  
4.1875  
4.2656  
4.3438  
4.4219  
4.5000  
4.5781  
4.6563  
4.7344  
4.8125  
4.8906  
4.9688  
4.9766  
4.9844  
4.9922  
5.0000  
5.0078  
5.0156  
5.0234  
5.0313  
5.1094  
5.1875  
5.2656  
5.3438  
5.4219  
5.4922  
5.5000  
0
1B4  
1BE  
1C8  
1D2  
1DC  
1E6  
280  
9A  
78.125  
78.125  
78.125  
78.125  
78.125  
78.125  
E8  
E9  
EA  
EB  
F5  
FF  
109  
113  
11D  
127  
131  
13B  
1A6  
8D  
1F0  
1FA  
204  
20E  
218  
222  
22C  
236  
240  
24A  
254  
25E  
268  
272  
27C  
27D  
27E  
27F  
280  
281  
282  
283  
284  
28E  
298  
2A2  
2AC  
2B6  
2BF  
2C0  
0
78.125  
78.125  
78.125  
78.125  
78.125  
78.125  
78.125  
78.125  
78.125  
78.125  
78.125  
78.125  
78.125  
78.125  
78.125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
78.125  
78.125  
78.125  
78.125  
78.125  
70.3125  
7.8125  
BF  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
13C  
13D  
13E  
13F  
140  
141  
142  
143  
14D  
157  
161  
16B  
175  
17F  
189  
193  
19D  
1A4  
1A5  
1A6  
1A7  
1A8  
1A9  
1AA  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
78.125  
78.125  
78.125  
78.125  
78.125  
78.125  
78.125  
78.125  
78.125  
54.6875  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
7.8125  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
CF  
F6  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
FN8705.1  
March 7, 2016  
Submit Document Feedback  
15  
ISL68200  
-7  
As shown in Table 7, 1 step is 2 = 7.8125mV; some selections  
are higher than 1 step from adjacent codes. However, the  
resolution is ±7.8125mV around the popular voltage regulation  
points, as in Table 3 on page 11, for fine tune purpose. For finer  
than 7.8125mV tuning, a large ratio resistor divider can be  
The inductor DCR value will increase as the temperature  
increases. Therefore, the sensed current will increase as the  
temperature of the current sense element increases. In order to  
compensate the temperature effect on the sensed current signal,  
the integrated temperature compensation function of ISL68200  
should be utilized. The integrated temperature compensation  
function is described in “Thermal Monitoring and Compensation”  
on page 17.  
placed on the VSEN pin between the output (V  
positive offset or V for negative offset, as in Figure 8.  
) and RGND for  
OUT  
CC  
V
CC  
V
IN  
I
s  
L
V
OUT  
V
OUT  
VSEN  
VSEN  
L
+
-
DCR  
V
OUT  
+
-
DRIVER  
INDUCTOR  
-
C
OUT  
V
L
ISL68200  
INTERNAL CIRCUIT  
RGND  
A. V  
PLACE THESE IN CLOSE  
PROXIMITY TO ISL68200  
B. V  
OUT  
LOWER THAN DAC  
HIGHER THAN DAC  
OUT  
-
(s)  
OPTIONAL  
V
C
I
FIGURE 8. EXTERNAL PROGRAMMABLE REGULATION  
OUT  
R
C
Current Sensing  
R
ISEN  
CURRENT  
SENSE  
The ISL68200 supports inductor DCR sensing, or resistive  
sensing techniques, and senses current continuously for fast  
response. The current sense amplifier uses the CSEN and CSRTN  
inputs to reproduce a signal proportional to the inductor current,  
CSEN  
+
-
CSRTN  
I . The sense current, I  
, is proportional to the inductor current  
L
SEN  
and is used for current reporting and overcurrent protection.  
DCR  
= I -------------------  
I
SEN  
L
R
ISEN  
The input bias current of the current sensing amplifier is typically  
10s of nA; less than 15kΩ input impedance connected to CSEN  
pin is preferred to minimize the offset error, i.e., use a larger C  
value (select 0.22µF to 1µF instead of 0.1µF when needed). In  
addition, the current sensing gain resistor connected to CSRTN  
pin should be within 40Ωto 3.5kΩ.  
FIGURE 9. DCR SENSING CONFIGURATION  
RESISTIVE SENSING  
For accurate current sense, a dedicated current-sense resistor  
R
, in series with each output inductor can serve as the current  
SENSE  
INDUCTOR DCR SENSING  
sense element (see Figure 10). This technique, however, reduces  
overall converter efficiency due to the additional power loss on the  
current sense element R  
An inductor’s winding is characteristic of a distributed resistance,  
as measured by the DCR (Direct Current Resistance) parameter.  
A simple R-C network across the inductor extracts the DCR  
voltage, as shown in Figure 9.  
.
SENSE  
I
L
The voltage on the capacitor V , can be shown to be proportional  
C
L
R
ESL  
V
SEN  
R
OUT  
to the inductor current I as in Equation 5.  
L ,  
L
C
SENSE  
OUT  
-------------  
s   
+ 1  DCR I   
-
L
(EQ. 5)  
V
DCR  
R
--------------------------------------------------------------------  
V
s=  
C
ISL68200  
INTERNAL CIRCUIT  
s RC + 1  
PLACE THESE IN CLOSE  
PROXIMITY TO ISL68200  
If the R-C network components are selected such that the RC  
time constant (= R*C) matches the inductor time constant  
I
-
(s)  
R
OUT  
V
C
OPTIONAL  
(= L/DCR), the voltage across the capacitor V is equal to the  
voltage drop across the DCR. With the internal low-offset current  
C
CURRENT  
SENSE  
C
CSEN  
amplifier, the capacitor voltage V is replicated across the sense  
R
C
ISEN  
+
resistor R  
ISEN  
is proportional to the inductor current.  
. Therefore, the current out of the CSRTN pin, I  
,
SEN  
-
CSRTN  
Equation 6 shows that the ratio of the inductor current to the  
R
SEN  
I
sensed current, I , is driven by the value of the sense resistor  
-----------------  
= I  
SEN  
SEN  
L
R
ISEN  
and the DCR of the inductor.  
DCR  
-----------------  
I
= I  
FIGURE 10. SENSE RESISTOR IN SERIES WITH INDUCTORS  
(EQ. 6)  
SEN  
L
R
ISEN  
FN8705.1  
March 7, 2016  
Submit Document Feedback  
16  
ISL68200  
A current sensing resistor has a distributed parasitic inductance,  
known as ESL (equivalent series inductance, typically less than  
1nH) parameter. A simple R-C network across the current sense  
on current sensing will not provide a fast OCP response and hurt  
system reliability.  
resistor extracts the R  
page 16.  
voltage, as shown in Figure 10 on  
SEN  
LOAD  
The voltage on the capacitor V , can be shown to be proportional  
C
to the inductor current I , see Equation 7.  
L
VIOUT  
ESL  
---------------  
s   
+ 1  R  
I   
SEN L  
R
SEN  
FIGURE 13. DESIRED LOAD TRANSIENT RESPONSE WAVEFORMS  
(EQ. 7)  
V
s= -------------------------------------------------------------------------  
C
s RC + 1  
If the R-C network components are selected such that the RC  
time constant matches the ESL-R time constant  
SEN  
), the voltage across the capacitor V is equal  
LOAD  
(R*C = ESL/R  
SEN  
to the voltage drop across the R  
C
, i.e., proportional to the  
SEN  
inductor current. As an example, a typical 1mΩ sense resistor  
can use R = 348 and C = 820pF for the matching. Figures 11 and  
12 show the sensed waveforms without and with matching RC  
when using resistive sense.  
V
IOUT  
FIGURE 14. LOAD TRANSIENT RESPONSE WHEN R-C TIME  
CONSTANT IS TOO SMALL  
LOAD  
FIGURE 11. VOLTAGE ACROSS R WITHOUT RC  
V
IOUT  
FIGURE 15. LOAD TRANSIENT RESPONSE WHEN R-C TIME  
CONSTANT IS TOO LARGE  
FIGURE 12. VOLTAGE ACROSS C WITH MATCHING RC  
Note that the integrated thermal compensation applies to the DC  
current, but not the AC current; therefore, the peak current seen  
by the controller will increase as the temperature decreases and  
can potentially trigger an OCP event. To overcome this issue, the  
RC should be over-matching L/DCR at room temperature by  
(-40°C +25°C) * 0.385%/°C = +25% for -40°C operation.  
Equation 8 shows that the ratio of the inductor current to the  
sensed current, I  
, is driven by the value of the sense resistor  
SEN  
and the R  
.
ISEN  
R
SEN  
(EQ. 8)  
-----------------  
I
= I  
SEN  
L
R
ISEN  
Thermal Monitoring and Compensation  
The block diagram of thermal monitoring function is shown in  
Figure 16 on page 18. One NTC resistor should be placed close to  
the respective power stage of the voltage regulator VR to sense  
the operational temperature and pull-up resistors are needed to  
form the voltage dividers for the NTC pin. As the temperature of  
the power stage increases, the resistance of the NTC will reduce,  
resulting in the reduced voltage at the NTC pin. Figure 18 on  
page 18 shows the TM voltage over the temperature for a typical  
design with a recommended 10kΩ NTC (P/N:  
L/DCR OR ESL/R  
MATCHING  
SEN  
Figure 13 shows the expected load transient response waveforms  
if L/DCR or ESL/R is matching the R-C time constant. When  
SEN  
the load current has a square change, the IOUT pin voltage (V  
without a decoupling capacitor also has a square response.  
)
IOUT  
However, there is always some PCB contact impedance of current  
sensing components between the two current sensing points; it  
hardly accounts into the L/DCR or ESL/R  
Fine tuning the matching is necessarily done at the board level to  
improve overall transient performance and system reliability.  
matching calculation.  
SEN  
NCP15XH103J03RC from Murata, = 3380) and 1.54kΩ resistor  
R
. It is recommended to use those resistors for the accurate  
TM  
temperature compensation since the internal thermal digital  
code is developed based upon these two components. If a  
different value is used, the temperature coefficient must be close  
If the R-C timing constant is too large or too small, V (s) will not  
C
accurately represent real-time output current and will worsen the  
overcurrent fault response. Figure 14 shows the IOUT pin  
transient voltage response when the R-C timing constant is too  
to 3380 and R must be scaled accordingly. For instance, say  
TM  
NTC = 20kΩ (= 3380), then R should be  
20kΩ/10kΩ*1.54kΩ = 3.08kΩ.  
small. V  
will sag excessively upon load insertion and may  
TM  
IOUT  
create a system failure or early overcurrent trip. Figure 15 shows  
the transient response when the R-C timing constant is too large.  
V
is sluggish in reaching its final value. The excessive delay  
IOUT  
FN8705.1  
March 7, 2016  
Submit Document Feedback  
17  
ISL68200  
to the NTC temperature of the practical design should be similar  
to that in Figure 18.  
VCC  
THERMAL TRIP  
+136°C/+122ºC  
100  
90  
80  
70  
60  
50  
40  
30  
20  
RTM  
NTC  
+
OTP  
-
RNTC  
BETA~ 3380  
ºC  
ISL68200  
FIGURE 16. BLOCK DIAGRAM OF THERMAL MONITORING AND  
PROTECTION  
0
20  
40  
60  
80  
100  
120  
140  
TEMPERATURE (°C)  
The ISL68200 supports inductor DCR sensing, or resistive  
sensing techniques. The inductor DCR has a positive temperature  
coefficient, which is about +0.385%/°C. Since the voltage across  
the inductor is sensed for the output current information, the  
sensed current has the same positive temperature coefficient as  
the inductor DCR. In order to obtain the correct current  
information, the ISL68200 utilizes the voltage at the NTC pin and  
“TCOMP” register to compensate the temperature impact on the  
sensed current. The block diagram of this function is shown in  
Figure 17.  
FIGURE 18. THE RATIO OF TM VOLTAGE TO NTC TEMPERATURE  
WITH RECOMMENDED PART  
Since the NTC attaches to the PCB, but not directly to the current  
sensing component, it inherits high thermal impedance between  
the NTC and the current sensing element. The “TCOMP” register  
values can be utilized to correct the temperature difference  
between NTC and the current sense component. As shown in  
Figure 19, the NTC should be placed in proximity to the output  
rail; DON’T place it close to the MOSFET side, which generates  
much more heat.  
VCC  
ISL68200  
CHANNEL  
CURRENT  
SENSE  
CSSEN  
CSRTN  
RTM  
NTC  
OUTPUT  
INDUCTOR  
NON-LINEAR  
A/D  
NTC  
VOUT  
POWER STAGE  
IPH  
oc  
RNTC  
k
i
D/A  
PLACE NTC  
CLOSE TO  
INDUCTOR  
FIGURE 19. RECOMMENDED PLACEMENT OF NTC  
The ISL68200 multiplexes the “TCOMP” value with the NTC  
digital signal to obtain the adjustment gain to compensate the  
temperature impact on the sensed channel current. The  
IOUT MONITOR AND  
OVERCURRENT  
PROTECTION  
A/D  
TCOMP  
compensated current signal is used for I and overcurrent  
OUT  
protection functions. The TCOMP “OFF” code is to disable thermal  
compensation when the current sensing element is the resistor  
or smart power stage (internally thermal compensated) that has  
little thermal drifting.  
FIGURE 17. BLOCK DIAGRAM OF INTEGRATED TEMPERATURE  
COMPENSATION  
When the NTC is placed close to the current sense component  
(inductor), the temperature of the NTC will track the temperature  
of the current sense component. Therefore, the NTC pin voltage  
can be utilized to obtain the temperature of the current sense  
component. Since the NTC could pick up noise from the phase  
node, a 0.1µF ceramic decoupling capacitor is recommended on  
the NTC pin in close proximity to the controller.  
TABLE 8. “TCOMP” VALUES  
D1h  
0h  
TCOMP (°C)  
D1h  
2h  
TCOMP (°C)  
30  
15  
5
1h  
3h  
OFF  
Based on the VCC voltage, the ISL68200 converts the NTC pin  
voltage to a digital signal for temperature compensation. With  
the nonlinear A/D converter of the ISL68200, the NTC digital  
signal is linearly proportional to the NTC temperature. For  
accurate temperature compensation, the ratio of the NTC voltage  
FN8705.1  
March 7, 2016  
Submit Document Feedback  
18  
ISL68200  
Thermal compensation design procedure for inductor current  
sensing is summarized as follows:  
63.875A load current. The IOUT voltage is linearly digitized every  
108µs and stored in the READ_IOUT register (8Ch).  
1. Properly choose the voltage divider for the NTC pin to match  
the NTC voltage vs temperature curve with the recommended  
curve in Figure 18 on page 18.  
EXTERNAL CIRCUIT  
ISL68200  
VCC  
2. Run the actual board under the full load and the desired  
airflow condition.  
R
IOUT_UP  
3. After the board reaches the thermal steady state (often takes  
15 minutes), record the temperature (T  
sense component (inductor) and the voltage at NTC and VCC  
pins.  
) of the current  
CSC  
IOUT  
DIGITIZED  
IOUT (8Ch)  
R
IOUT_DW  
4. Use Equation 9 to calculate the resistance of the NTC, and  
find out the corresponding NTC temperature T  
from the  
NTC  
NTC datasheet or using Equation 10, where is equal to 3380  
for recommended NTC.  
FIGURE 20. IOUT NO LOAD OFFSET CALIBRATION  
V
xR  
TM  
TM  
(EQ. 9)  
R
@T  
= -----------------------------  
A small capacitor can be placed between IOUT and GND to  
reduce the noise impact and provide averaging, > 200µs  
(typically).  
NTC  
NTC  
V
V  
CC  
TM  
-------------------------------------------------------------------------------  
T
=
273.15  
NTC  
0
R
@25 C  
To deal with layout and design variation of different platforms,  
ISL68200 is intentionally trimmed to negative at no load, thus,  
an offset can easily be added to calibrate the digitized IOUT  
reading (8Ch). Hence, the analog vs digitized current slope is set  
NTC  
(EQ. 10)  
------------------------------------------  
-----------------  
ln  
+
R
@T  
NTC  
298.15  
NTC  
5. Choose a number close to the result as in Equation 11 for the  
“TCOMP” register.  
by the equivalent impedance of R  
//R  
=R  
IOUT_UP  
IOUT_DW  
IOUT  
(as in Figure 20); the slope of the ideal curve should set to 1 A/A  
with 0A offset.  
T
= T  
T  
CSC NTC  
(EQ. 11)  
COMP  
6. Run the actual board under full load again.  
For a precision digital I , follow the fine-tune procedure below  
OUT  
step-by-step; steps 1 to 5 must be completed before step 6.  
7. Record the IOUT pin voltage as V1 immediately after the  
output voltage is stable with the full load. Record the IOUT pin  
voltage as V2 after the VR reaches the thermal steady state.  
1. Properly tune L/DCR or ESL/R  
SEN  
matching as shown on  
page 17 over the range of temperature operation. +25% over-  
matching L/DCR at room temperature is needed for -40°C  
operation.  
8. If the IOUT pin voltage increases over 10mV as the  
temperature increases, i.e., V2 - V1 > 10mV, reduce “TCOMP”  
value. If the IOUT pin voltage decreases over 10mV as the  
temperature increases, i.e., V1 - V2 > 10mV, increase  
“TCOMP” value. “TCOMP” value can be adjusted via the series  
bus for easy thermal compensation optimization.  
2. Properly complete thermal compensation as shown on  
“Thermal Monitoring and Compensation” on page 17.  
3. Finalize R  
ISEN  
resistor to set OCP for overall operating  
conditions and board variations as shown in “Overcurrent and  
Short-Circuit Protection” on page 20.  
I
Calibration  
OUT  
4. Collect no load I  
OUT  
current with sufficient prototypes and  
current.  
The current flowing out of the IOUT pin is equal to the sensed  
average current inside ISL68200. A resistor is placed from the  
IOUT pin to GND to generate a voltage, which is proportional to  
the load current and the resistor value, as shown in Equation 12:  
determine the mean of no load I  
OUT  
5. The pull-up impedance on IOUT pin should be  
“VCC/IOUT_NO_LOAD”; for instance, a mean of -2.5µA I  
at  
OUT  
0A load, it will need R  
= 2MΩ.  
IOUT_UP  
R xI  
x
OCP  
6. Start with the value below and then fine tune the R  
IOUT_DW  
------------------------  
2.5Vx  
2.5VxR  
100A  
ISEN  
R
= ---------------------------------- = -----------------------------------------------  
value until the average slope of various boards equals 1A/A.  
IOUT  
63.875AxR  
63.875AxR  
x
x
(EQ. 12)  
R
xR  
IOUT  
R  
IOUT  
IOUT_UP  
(EQ. 13)  
--------------------------------------------------  
=
R
IOUT_DW  
2.5VxI  
25VxI  
R
OCP  
OCP  
IOUT_UP  
--------------------------------------------  
----------------------------  
k  
=
=
63.875Ax100A  
63.875A  
Where V  
IOUT  
between the IOUT pin and GND, I  
is the voltage at the IOUT pin, R  
is the resistor  
is the total output current  
IOUT  
LOAD  
is the sense resistor connected to the  
of the converter, R  
ISEN  
CSRTN pin and R is the DC resistance of the current sense  
X
element, either the DCR of the inductor or R  
depending on  
SENSE  
resistor should be scaled to  
the sensing method. The R  
IOUT  
ensure that the voltage at the IOUT pin is typically 2.5V at  
FN8705.1  
March 7, 2016  
Submit Document Feedback  
19  
ISL68200  
overvoltage threshold (typically 120%). By doing so, the IC protects  
the load when there is a consistent overvoltage condition.  
Fault Protection  
The ISL68200 provides high system reliability with many fault  
protections, as summarized in Table 9.  
In addition to normal operation OVP, 5.5ms (typically, worst  
6.5ms) after all rails (VCC, PVCC, 7VLDO, VIN) POR and prior to  
the end of soft-start, the start-up OVP circuits are enabled to  
protect against OVP event, while the OVP level is set higher than  
TABLE 9. FAULT PROTECTION SUMMARY  
FAULT  
DESCRIPTION  
FAULT ACTION  
V
. See Electrical Specifications on page 7.  
Input UVLO VIN pin UVLO; or set by EN pin with Shutdown and recover  
BOOT  
an external divider for higher  
level. See Figures 4 and 5.  
when VIN > UVLO  
UNDERVOLTAGE PROTECTION  
The UVP fault detection circuit triggers after the output voltage is  
below the undervoltage threshold (typically 74% of DAC). When an  
UVP fault is declared, the controller will be latched off, forcing the  
LGATE and UGATE gate-driver outputs low, and the PGOOD pin will  
be asserted low. The fault will remain latched and can be reset by  
VCC cycling or toggling EN pin and/or series bus OPERATION  
command based upon ON_OFF_CONFIG setting.  
Bias UVLO  
VCC, PVCC, 7VLDO UVLO  
Shutdown and recover  
when Bias > UVLO  
Start-Up  
OVP  
Higher than V . See Electrical Latch OFF, reset by VCC  
BOOT  
Specifications on page 7.  
or toggling Enable  
(including EN pin and/  
or OPERATION  
command based upon  
ON_OFF_CONFIG  
setting)  
Output OVP Rising = 116%; Falling = 100%  
Output UVP 74% of V , Latch OFF  
OUT  
OVERCURRENT AND SHORT-CIRCUIT PROTECTION  
Output OCP Average OCP = 100µA with  
128µs blanking time.  
Latch OFF (reset by  
VCC or toggling enable  
including EN pin and/  
or OPERATION  
command based upon  
ON_OFF_CONFIG  
setting), or retry every  
9ms; option is  
programmable by  
PROG3 or D3[0]  
The average Overcurrent Protection (OCP) is triggered when the  
internal current out of the IOUT pin goes above the fault  
threshold (typically 100µA) with 128µs blanking time. It also has  
a fast (50ns filter) secondary overcurrent protection whose  
threshold is +30% above average OCP; this protects inductor  
saturation from a short-circuit event and provides a more robust  
power train and system protection. When an OCP or short-circuit  
fault is declared, the controller will be latched off, forcing the  
LGATE and UGATE gate-driver outputs low, or retry with a hiccup  
time of 9ms; the fault response is programmable by PROG3 or  
D3[0]. The latched off event however can be reset by VCC cycling  
or toggling EN pin and/or series bus OPERATION command  
Short-Circuit Peak OCP = 130% of Average  
Protection  
OCP with 50ns filter.  
OTP  
Rising = 22.31%VCC (~+136°C); Shut down above  
Falling =27.79%VCC (~+122°C). +136°C and recover  
when temperature  
based upon ON_OFF_CONFIG setting  
drops below +122°C  
.
Equation 14 provides a starting point to set a preliminary OCP trip  
Input UVLO and OTP faults will respond to the current state with  
hysteresis, while output OVP and output UVP faults are latch  
events, while output OCP and output short-circuit faults can be  
latch or retry events depending upon PROG3 or D3[0] setting. All  
fault latch events can be reset by VCC cycling, toggling the Enable  
pin and/or series bus OPERATION command based upon  
ON_OFF_CONFIG setting, while the OCP retry event has a hiccup  
time of 9ms and the regulator can be recovered when the fault is  
removed.  
point, where I  
is the targeted OCP trip point and I (as in  
OCP  
Equation 15 on page 28) is the peak-to-peak inductor ripple  
current.  
R xI  
x
OCP  
R
= ------------------------  
ISEN1  
100A  
I  
2
(EQ. 14)  
-----  
R x  
+ I  
x
OCP  
R
R
= -------------------------------------------------------------  
ISEN2  
ISEN  
100Ax100% + 30%  
OVERVOLTAGE PROTECTION  
= MAX (R  
R
ISEN2  
ISEN1,  
The OVP fault detection circuit triggers after the voltage between  
VSEN+ and VSEN- is above the rising overvoltage threshold. When  
an OVP fault is declared, the controller will be latched off and the  
PGOOD pin will be asserted low. The fault will remain latched and  
can be reset by VCC cycling or toggling EN pin and/or series bus  
To deal with layout and PCB contact impedance variation, follow  
the fine tune procedure below step-by-step for a more precision  
OCP; steps 1 to 3 must be completed before step 4.  
1. Properly tune L/DCR or ESL/R  
SEN  
matching as shown on  
OPERATION command based upon ON_OFF_CONFIG setting  
.
page 17 over the range of temperature operation. +25%  
over-matching L/DCR at room temperature is needed for  
-40°C operation.  
Although the controller has latched-off in response to an OVP  
fault, the LGATE gate-driver output will retain the ability to toggle  
the low-side MOSFET on and off, in response to the output  
voltage transversing the OVP rising and falling thresholds. The  
LGATE gate-driver will turn on the low-side MOSFET to discharge  
the output voltage, protecting the load. The LGATE gate driver will  
turn off the low-side MOSFET once the sensed output voltage is  
lower than the falling overvoltage threshold (typically 100%). If  
the output voltage rises again, the LGATE driver will again turn on  
the low-side MOSFET when the output voltage is above the rising  
2. Properly complete thermal compensation as shown on  
“Thermal Monitoring and Compensation” on page 17.  
3. Collect OCP trip points (IOCP_MEASURED) with sufficient  
prototypes and determine the means for overall operating  
conditions and board variations.  
4. Change R  
by IOCP_TARGETED/IOCP_MEASURED  
percentage to meet the targeted OCP.  
ISEN  
FN8705.1  
March 7, 2016  
Submit Document Feedback  
20  
ISL68200  
Note that if the inductor peak-to-peak current is higher or closer  
PFM Mode Operation  
to 30%, the +30% threshold could be triggered instead of the  
average OCP threshold. However, the fine tune procedure still can  
be used.  
In PFM mode, programmable by PROG2 or series bus D0[0:0],  
the switching frequency is dramatically reduced to minimize the  
switching loss and significantly improve light-load efficiency. The  
ISL68200 can enter and exit PFM mode seamlessly as load  
OVER-TEMPERATURE PROTECTION  
changes. For high V  
applications implemented with high Qg  
OUT  
As shown in Figure 16, there is a comparator with hysteresis to  
compare the NTC pin voltage to the threshold set. When the NTC  
pin voltage is lower than 22.31% of VCC voltage (typically  
+136°C), it triggers Over-Temperature Protection (OTP) and shuts  
down ISL68200 operation, when the NTC pin voltage is above  
27.79% of VCC voltage (typically +122.4°C), it will resume  
normal operation. When an OTP fault is declared, the controller  
will force the LGATE and UGATE gate-driver outputs low.  
MOSFETs, the LGATE might not turn on long enough to charge the  
boot capacitor in PFM mode with 0A load. It is recommended to  
enable ISL68200’s ultrasonic PFM feature (by PROG3 or series  
bus D2[0:0]), which maintains LGATE switching frequency above  
20kHz and keeps the boot capacitor charged for immediate load  
apply event. Alternatively, an external Schottky diode or  
maintaining a minimum load can enhance the boot capacitor  
charge.  
PGOOD Monitor  
2
SMBus, PMBus and I C Operation  
The PGOOD pin indicates when the converter is capable of  
supplying regulated voltage. If there is a fault condition of a rail’s  
(VCC, PVCC, 7VLDO, or VIN) UVLO, output Overcurrent (OCP),  
Overvoltage (OVP), Undervoltage (UVP), or Over-Temperature (OTP),  
PGOOD is asserted low. Note that the PGOOD pin is an undefined  
2
The ISL68200 features SMBus, PMBus and I C with 32  
programmable addresses via PROG2 pin, while SMBus/PMBus  
includes an Alert# line (SALERT) and Packet Error Check (PEC) to  
ensure data properly transmitted. The telemetry update rate is  
108µs (Typically). The supported SMBus/PMBus/I C addresses  
are summarized in Table 10. The 7-bit format address does not  
include the last bit (write and read): 40-47h, 60-67h and 70-7Fh.  
2
impedance with insufficient V (typically <2.5V).  
CC  
Adaptive Shoot-Through Protection  
2
SMBus/PMBus/I C allows to program the registers as in  
Table 11, except for SMBus/PMBus/I C addresses, 5.5ms  
(typically, worst 6.6ms) after all rails (VCC, PVCC, 7VLDO and VIN)  
above POR. Figures 22 and 23 on page 22 show the initialization  
timing diagram for the series bus with different state of EN  
(enable) pin.  
The LGATE and UGATE pins are MOSFET driver outputs. The  
LGATE pin drives the low-side MOSFET of the converter while the  
UGATE pin drives the high-side MOSFET of the converter. Adaptive  
shoot-through protection prevents a gate-driver output from  
turning on until the opposite gate-driver output has fallen below  
approximately 1V. The dead time shown in Figure 21 is extended  
by the additional period that the falling gate voltage remains  
above the 1V threshold. The high-side gate-driver output voltage  
is measured across the UGATE and PHASE pins while the low-side  
gate-driver output voltage is measured across the LGATE and  
GND pins.  
2
For proper operation, users should follow the SMBus, PMBus and  
I C protocol, as shown Figure 24 on page 23. Note that STOP (P)  
bit is NOT allowed before the repeated START condition when  
“reading” contents of register.  
2
When the device’s series bus is not used, simply ground the  
device’s SCL, SDA and SALERT pins and do not connect them to  
the bus.  
2
TABLE 10. SMBus/PMBus/I C 7-BIT FORMAT ADDRESS (HEX)  
7-BIT ADDRESS  
7-BIT ADDRESS  
7-BIT ADDRESS  
UGATE-PHASE  
40  
41  
42  
43  
44  
45  
46  
47  
60  
61  
62  
63  
64  
65  
66  
67  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
1V  
1V  
t
t
UGFLGR  
LGFUGR  
1V  
1V  
LGATE-GND  
FIGURE 21. GATE DRIVE ADAPTIVE SHOOT-THROUGH PROTECTION  
FN8705.1  
March 7, 2016  
Submit Document Feedback  
21  
ISL68200  
VIN, PVCC,  
7VLDO,  
VCC  
200µs  
SS DELAY  
WRITE AND READ  
CONFIGURATION  
WRITE AND READ  
CONFIGURATION  
WRITE AND READ  
CONFIGURATION  
WRITE AND READ  
CONFIGURATION  
VCC POR  
TIMEOUT  
READER  
DONE  
0ms TO INFINITY  
5ms  
0.5ms  
0ms TO INFINITY  
ENABLE  
PMBus COMMUNICATION  
NOT ACTIVATED  
PMBus  
COMMAND  
PMBus  
COMMAND  
PMBus  
COMMAND  
PMBus  
COMMAND  
VBOOT  
0V  
VOUT  
2
FIGURE 22. SIMPLIFIED SMBus/PMBus/I C INITIALIZATION TIMING DIAGRAM WITH ENABLE LOW  
VIN, PVCC,  
7VLDO,  
VCC  
200 µs  
SS DELAY  
WRITE AND READ  
CONFIGURATION  
WRITE AND READ  
CONFIGURATION  
READER  
DONE  
0.5ms  
VCC POR  
TIMEOUT  
5ms  
WRITE AND READ  
CONFIGURATION  
0ms TO INFINITY  
ENABLE  
PMBus COMMUNICATION  
NOT ACTIVATED  
PMBus  
COMMAND  
PMBus  
COMMAND  
PMBus  
COMMAND  
VBOOT  
VOUT  
0V  
2
FIGURE 23. SIMPLIFIED SMBus/PMBus/I C INITIALIZATION TIMING DIAGRAM WITH ENABLE HIGH  
FN8705.1  
March 7, 2016  
Submit Document Feedback  
22  
ISL68200  
S: Start Condition  
1. Send Byte Protocol  
A: Acknowledge (“0”)  
1
7 + 1  
1
8
1
8
1
1
N: Not Acknowledge (“1”)  
S
A
Command Code  
Slave Address_0  
A
PEC  
A
P
W: Write (“0”)  
RS: Repeated Start Condition  
R: Read (“1”)  
Optional 9 Bits for SMBus/PMBus  
2
PEC: Packet Error Checking  
P: Stop Condition  
NOT used in I C  
Example command: 03h Clear Faults  
(This will clear all of the bits in Status Byte for the selected Rail)  
Acknowledge or DATA from Slave,  
ISL68200  
Not Used for One Byte Word  
2. Write Byte/Word Protocol  
1
7 + 1  
1
8
1
8
1
8
1
8
1
1
S
A
Command Code  
Slave Address_0  
A
A
High Data Byte  
Low Data Byte  
A
PEC  
A
P
Optional 9 Bits for SMBus/PMBus  
2
NOT used in I C  
Example command: D0h ENABLE_PFM (one word, High Data Byte and ACK are not used)  
3. Read Byte/Word Protocol  
1
7 + 1  
1
8
1
Not Used for One Byte Word Read  
S
Slave Address_0  
A
Command Code  
A
1
7 + 1  
1
8
1
8
1
8
1
1
RS  
A
Low Data Byte  
Slave Address_1  
A
High Data Byte  
A
PEC  
P
N
Optional 9 Bits for SMBus/PMBus  
2
NOT used in I C  
Example command: 8B READ_VOUT (Two words, read voltage of the selected rail).  
NOTE: That all Writable commands are read with one byte word protocol.  
STOP (P) bit is NOT allowed before the repeated START condition when “reading” contents of a register.  
4. Block Write Protocol  
1
7 + 1  
1
8
1
8
1
8
1
8
1
S
A
Command Code  
Slave Address_0  
A
A
Lowest Data Byte  
Byte Count = N  
A
Data Byte 2  
A
1
1
8
8
1
1
Data Byte N  
A
A
PEC  
A
P
Optional 9 Bits for SMBus/PMBus  
2
NOT used in I C  
Example command: ADh IC_DEVICE_ID (2 Data Byte)  
2
FIGURE 24. SMBus/PMBus/I C COMMAND PROTOCOL  
FN8705.1  
March 7, 2016  
Submit Document Feedback  
23  
ISL68200  
5. Block Read Protocol  
1
7 + 1  
1
1
1
1
8
1
7 + 1  
8
8
S
Byte Count = N  
Lowest Data Byte  
A
Command Code  
A
A
Slave Address_0  
A
RS  
Slave Address_1  
1
8
1
1
8
8
1
1
Data Byte 2  
A
A
Data Byte N  
A
PEC  
P
N
Optional 9 Bits for SMBus/PMBus  
2
NOT used in I C  
Example command: 8B READ_VOUT (Two words, read voltage of the selected rail).  
NOTE: That all Writable commands are read with one byte word protocol.  
STOP (P) bit is NOT allowed before the repeated START condition when “reading” contents of a register.  
6. Group Command Protocol - No more than one command can be sent to the same Address  
1
7 + 1  
1
1
8
8
1
8
1
8
1
S
Slave ADDR1_0  
A
Command Code  
A
A
High Data Byte  
Low Data Byte  
A
PEC  
A
1
7 + 1  
8
1
1
8
1
8
1
RS  
A
Command Code  
Data Byte  
A
Slave ADDR2_0  
A
PEC  
A
1
8
1
7 + 1  
8
1
1
8
1
8
1
1
Command Code  
A
RS  
A
Low Data Byte  
A
High Data Byte  
A
Slave ADDR3_0  
PEC  
A
P
Optional 9 Bits for SMBus/PMBus  
2
NOT used in I C  
2
FIGURE 25. SMBus/PMBus/I C COMMAND PROTOCOL  
FN8705.1  
March 7, 2016  
Submit Document Feedback  
24  
ISL68200  
2
TABLE 11. SMBus, PMBus, AND I C SUPPORTED COMMANDS  
WORD  
LENGTH  
(BYTE)  
COMMAND  
CODE  
DEFAULT  
VALUE  
ACCESS  
R/W  
COMMAND NAME  
OPERATION  
DESCRIPTION  
01h[7:0]  
ONE  
80h  
VR Enable (depending upon ON_OFF_CONFIG configuration):  
Bit[7]: 0 = OFF (0-F); 1 = ON (80-8Fh)  
Bit[6:4] = 0  
Bit[3:0] = Don’t care  
02h[7:0]  
R/W  
ONE  
1Fh  
ON_OFF_CONFIG  
Configure VR Enabled by OPERATION and/or EN pin:  
Bit[7:5] = 0  
Bit[4] = 1  
Bit[3] = OPERATION command Enable  
0h = OPERATION command has no control on VR  
1h = OPERATION command can turn ON/OFF VR  
Bit[2] = CONTROL pin Enable  
0h = EN Pin has no control on VR  
1h = EN pin can turn ON/OFF VR  
Bit[1] = 1  
Bit[0] = 1  
Bit[3:2] = 00b = 13h (ALWAYS ON)  
Bit[3:2] = 01b = 17h (EN controls VR)  
Bit[3:2] = 10b = 1Bh (OPERATION controls VR)  
Bit[3:2] = 11b = 1Fh (EN and OPERATION control VR)  
03h  
SEND BYTE  
R
N/A  
ONE  
CLEAR_FAULTS  
VOUT_MODE  
Clear faults in status registers  
20h[7:0]  
19h  
Set host format of VOUT command.  
Always Linear Format: N = -7  
21h[2:0]  
R/W  
R/W  
TWO  
TWO  
PROG1[7:0]  
VBOOT+500mV  
VOUT_COMMAND  
VOUT_MAX  
Set output voltage  
-7  
HEX Code = DEC2HEX [ROUND(V  
/2 )]  
OUT  
24h[15:0]  
Set maximum output voltage that VR can command  
(DAC VOUT_MAX). Linear Format. N = -7  
HEX Code = DEC2HEX(ROUNDUP(VOUT_MAX/ 2  
-7  
)
33h[15:0]  
R/W  
TWO  
PROG3[5:3]  
FREQUENCY_SWITCH Set VR Switching Frequency (In Linear Format)  
Support 8 options (N = 0):  
12Ch = 300kHz; 190h = 400kHz; 1F4h = 500kHz  
258h = 600kHz; 2BCh = 700kHz; 352h = 850kHz  
3E8h = 1MHz; 5DCh = 1.5MHz*  
* Very high frequency is not recommended for very high duty cycle  
applications as the boot capacitor will not has enough time to be  
charged due to low LGATE ON time.  
78h[8:0]  
R
ONE  
STATUS_BYTE  
Fault Reporting;  
Bit7 = Busy  
Bit6 = OFF (Reflect current state of operation and ON_OFF_CONFIG  
registers as well as VR Operation)  
Bit5 = OVP  
Bit4 = OCP  
Bit3 = 0  
Bit2 = OTP  
Bit1 = Bus communication error  
Bit0 = NONE OF ABOVE (OUTPUT UVP, VOUT_COMAND >  
VOUT_MAX, or VOUT OPEN SENSE)  
88h[15:0]  
8Bh[15:0]  
8Ch[15:0]  
R
R
R
TWO  
TWO  
TWO  
READ_VIN  
READ_VOUT  
READ_IOUT  
Input Voltage (N = - 4, Max = 31.9375V)  
VIN (V) = HEX2DEC(88 hex data - E000h) * 0.0625V  
-7  
VR Output Voltage, Resolution = 7.8125mV = 2  
-7  
VOUT (V) = HEX2DEC(8B hex data) * 2  
VR Output Current (N = -3, IMAX = 63.875A)  
IOUT (A) = HEX2DEC(8C hex data-E800) * 0.125A when IOUT pin  
voltage = 2.5V at 63.875A load.  
FN8705.1  
March 7, 2016  
Submit Document Feedback  
25  
ISL68200  
2
TABLE 11. SMBus, PMBus, AND I C SUPPORTED COMMANDS (Continued)  
WORD  
COMMAND  
CODE  
LENGTH  
(BYTE)  
DEFAULT  
VALUE  
ACCESS  
R
COMMAND NAME  
READ_TEMP  
DESCRIPTION  
8Dh[15:0]  
TWO  
VR Temperature  
TEMP (°C) = 1/{ln[Rup*HEX2DEC(8D hex  
data)/(511 - HEX2DEC(8D hex data)/RNTC(at +25°C)]/Beta +  
1/298.15} -273.15  
98h[7:0]  
AD[15:0]  
AE[15:0]  
D0[0:0]  
R
ONE  
TWO  
TWO  
ONE  
02h  
8200h  
PMBUS_REVISION  
IC_DEVICE_ID  
Indicates PMBus Revision 1.2  
ISL68200 Device ID  
BLOCK R  
BLOCK R  
R/W  
0003h  
IC_DEVICE_REVISION ISL68200 Device Revision  
PROG2[7:7]  
ENABLE_PFM  
TEMP_COMP  
PFM OPERATION  
0h = PFM Enabled (DCM at light load)  
1h = PFM Disabled (always CCM mode)  
D1[1:0]  
D2[0:0]  
R/W  
R/W  
ONE  
ONE  
PROG2[6:5]  
PROG3[7:7]  
Thermal Compensation:  
0h = 30°C; 01h = 15°C; 02h = 5°C; 03h = OFF  
ENABLE_ULTRASONIC Ultrasonic PFM Enable  
0h = 25kHz Clamp Disabled  
1h = 25kHz Clamp Enabled  
D3[0:0]  
D4[2:0]  
R/W  
R/W  
ONE  
ONE  
PROG3[6:6]  
PROG3[2:0]  
OCP_BEHAVIOR  
AV_GAIN  
Set latch or infinite retry for OCP fault:  
0h = Retry every 9ms; 01 = Latch-OFF  
R4 AV GAIN (PROG4, AV Gain Multiplier = 2x)  
0h = 84; 1h = 73; 2h = 61; 3h = 49  
4h = 38; 5h = 26; 6h = 14; 7h = 2  
R4 AV GAIN (PROG4, AV Gain Multiplier = 1x)  
0h = 42; 1h = 36.5; 2h = 30.5; 3h = 29.5  
4h = 19; 5h = 13; 6h = 7; 7h = 1  
D5{2:0]  
D6[1:0]  
R/W  
R/W  
ONE  
ONE  
PROG4[7:5]  
PROG4[4:3]  
RAMP_RATE  
SET_RR  
Soft-Start and Margining DVID Rate (mV/µs)  
0h = 1.25; 1h = 2.5; 2h = 5; 3h = 10; 4h = 0.078; 5h = 0.157  
6h = 0.315; 7h = 0.625;  
Set RR  
0h = 200k; 01h = 400k; 02h = 600k; 03h = 800k  
DC[7:0]  
DD{7:0]  
DE[7:0]  
DF[7:0]  
R
R
R
R
ONE  
ONE  
ONE  
ONE  
READ_PROG1  
READ_PROG2  
READ_PROG3  
READ_PROG4  
Read PROG1  
Read PROG2  
Read PROG3  
Read PROG4  
NOTE: Series bus communication is valid 5.5m (typically, worst 6.5ms) after VCC, VIN, 7VLDO and PVCC above POR. The telemetry update rate is 108µs.  
STABILITY  
R4™ Modulator  
The removal of compensation derives from the R4™ modulator’s  
lack of need for high DC gain. In traditional architectures, high DC  
gain is achieved with an integrator in the voltage loop. The  
integrator introduces a pole in the open-loop transfer function at  
low frequencies. That, combined with the double-pole from the  
output L/C filter, creates a three pole system that must be  
compensated to maintain stability.  
The R4™ modulator is an evolutionary step in R3™ technology.  
Like R3™, the R4™ modulator is a linear control loop and  
variable frequency control during load transients to eliminate  
beat frequency oscillation at the switching frequency and  
maintains the benefits of current-mode hysteretic controllers.  
However, in addition, the R4™ modulator reduces regulator  
output impedance and uses accurate referencing to eliminate  
the need for a high-gain voltage amplifier in the compensation  
loop. The result is a topology that can be tuned to voltage-mode  
hysteretic transient speed while maintaining a linear control  
model and removes the need for any compensation. This greatly  
simplifies the regulator design for customers and reduces  
external component cost.  
Classic control theory requires a single-pole transition through  
unity gain to ensure a stable system. Current-mode architectures  
(includes peak, peak-valley, current-mode hysteric, R3™ and  
R4™) generate a zero at or near the L/C resonant point,  
effectively canceling one of the system’s poles. The system still  
contains two poles, one of which must be canceled with a zero  
before unity gain crossover to achieve stability.  
FN8705.1  
March 7, 2016  
Submit Document Feedback  
26  
ISL68200  
Figure 28 shows the R4™ error-amplifier that does not require an  
integrator for high DC gain to achieve accurate regulation. The  
result to the open-loop response can be seen in Figure 29.  
COMPENSATION TO COUNTER  
INTEGRATOR POLE  
INTEGRATOR  
FOR HIGH DC GAIN  
R4™ LOOP GAIN (dB)  
V
OUT  
V
L/C DOUBLE-POLE  
COMP  
V
DAC  
p1  
SYSTEM HAS 2 POLES  
FIGURE 26. CLASSICAL INTEGRATOR ERROR-AMPLIFIER  
CONFIGURATION  
p2  
AND 1 ZERO  
NO COMPENSATOR IS  
NEEDED  
CURRENT-MODE  
Figure 26 illustrates the classic integrator configuration for a  
voltage loop error amplifier. While the integrator provides the  
high DC gain required for accurate regulation in traditional  
technologies, it also introduces a low-frequency pole into the  
control loop. Figure 27 shows the open-loop response that results  
from the addition of an integrating capacitor in the voltage loop.  
The compensation components found in Figure 26 are necessary  
to achieve stability.  
ZERO  
z1  
f (Hz)  
FIGURE 29. UNCOMPENSATED R4™ OPEN-LOOP RESPONSE  
TRANSIENT RESPONSE  
Because R4™ does not require a high-gain voltage loop, the  
integrator can be removed, reducing the number of inherent  
poles in the loop to two. The current-mode zero continues to  
cancel one of the poles, ensuring a single-pole crossover for a  
wide range of output filter choices. The result is a stable system  
with no need for compensation components or complex  
equations to properly tune the stability.  
In addition to requiring a compensation zero, the integrator in  
traditional architectures also slows system response to transient  
conditions. The change in COMP voltage is slow in response to a  
rapid change in output voltage. If the integrating capacitor is  
removed, COMP moves as quickly as VOUT, and the modulator  
immediately increases or decreases switching frequency to  
recover the output voltage.  
R3™ LOOP GAIN (dB)  
INTEGRATOR POLE  
I
OUT  
t
t
R4™  
p1  
L/C DOUBLE-POLE  
R3™  
V
COMP  
p2  
-20dB CROSSOVER  
p3  
REQUIRED FOR STABILITY  
V
OUT  
COMPENSATOR TO  
CURRENT-MODE  
ADD z2 IS NEEDED  
ZERO  
z1  
t
FIGURE 30. R3™ vs R4™ IDEALIZED TRANSIENT RESPONSE  
The dotted red and blue lines in Figure 30 represent the time  
f (Hz)  
delayed behavior of V  
and V in response to a load  
OUT  
COMP  
FIGURE 27. UNCOMPENSATED INTEGRATOR OPEN-LOOP RESPONSE  
transient when an integrator is used. The solid red and blue lines  
illustrate the increased response of R4™ in the absence of the  
integrator capacitor.  
To optimize transient response and improve phase margin for  
very wide range applications, ISL68200 integrates a couple of  
selectable AV and RR options that move DC gain and z1 point, as  
shown in Figure 27. The defaulted AV gain of 42 and RR of  
200kΩ however, can cover many cases and provides sufficient  
gain and phase margin. For some extreme cases, lower AV gain  
and bigger RR values are needed to provide a better phase  
margin and improve transient ringback. The optimal choice AV  
and RR can be obtained, by simple monitoring transient  
response when playing with AV and RR values via the series bus.  
R
2
V
OUT  
V
COMP  
R
1
V
DAC  
FIGURE 28. NON-INTEGRATED R4™ ERROR-AMPLIFIER  
CONFIGURATION  
FN8705.1  
March 7, 2016  
Submit Document Feedback  
27  
ISL68200  
Thus, once the output capacitors are selected, the maximum  
allowable ripple voltage, V , determines the lower limit on  
General Application Design  
Guide  
This design guide is intended to provide a high-level explanation of  
the steps necessary to design a single-phase buck converter. It is  
assumed that the reader is familiar with many of the basic skills  
and techniques referenced in the following. In addition to this  
guide, Intersil provides complete reference designs that include  
schematics, bills of materials and example board layouts.  
P-P(MAX)  
the inductance, as shown in Equation 16.  
V
V
V
OUT  
   
OUT  
IN  
(EQ. 16)  
L
--------------------------------------------------------------  
ESR   
OUT  
f
V V  
IN PPMAX  
SW  
Since the capacitors are supplying a decreasing portion of the  
load current while the regulator recovers from the transient, the  
capacitor voltage becomes slightly depleted. The output  
inductors must be capable of assuming the entire load current  
Output Filter Design  
before the output voltage decreases more than V  
. This  
MAX  
The output inductors and the output capacitor bank together to  
form a low-pass filter responsible for smoothing the pulsating  
voltage at the phase nodes. The output filter also must provide  
the transient energy until the regulator can respond. Because it  
has a low bandwidth compared to the switching frequency, the  
output filter necessarily limits the system transient response. The  
output capacitor must supply or sink load current while the  
current in the output inductors increases or decreases to meet  
the demand.  
places an upper limit on inductance.  
Equation 17 gives the upper limit on L for cases when the trailing  
edge of the current transient causes a greater output-to-voltage  
deviation than the leading edge. Equation 18 addresses the  
leading edge. Normally, the trailing edge dictates the selection of  
L because duty cycles are usually less than 50%. Nevertheless,  
both inequalities should be evaluated, and L should be selected  
based on the lower of the two results. In each equation, L is the  
per-channel inductance, C is the total output capacitance.  
In high-speed converters, the output capacitor bank is usually the  
most costly (and often the largest) part of the circuit. Output filter  
design begins with minimizing the cost of this part of the circuit.  
The critical load parameters in choosing the output capacitors are  
the maximum size of the load step, I; the load current slew rate,  
di/dt; and the maximum allowable output voltage deviation under  
2 C V  
OUT  
(EQ. 17)  
L
---------------------------------- V  
I ESR  
OUT  
MAX  
2
I  
(EQ. 18)  
C  
1.25  
L
--------------------- V  
I ESR  
V
V  
IN OUT  
OUT  
MAX  
2
I  
transient loading, V  
. Capacitors are characterized according  
MAX  
to their capacitance, ESR and ESL (equivalent series inductance).  
Input Capacitor Selection  
At the beginning of the load transient, the output capacitors  
supply all of the transient current. The output voltage will initially  
deviate by an amount approximated by the voltage drop across  
the ESL. As the load current increases, the voltage drop across  
the ESR increases linearly until the load current reaches its final  
value. The capacitors selected must have sufficiently low ESL and  
ESR so that the total output voltage deviation is less than the  
allowable maximum. Neglecting the contribution of inductor  
current and regulator response, the output voltage initially  
deviates by an amount, as shown in Equation 15:  
The input capacitors are responsible for sourcing the AC  
component of the input current flowing into the upper MOSFETs.  
Their RMS current capacity must be sufficient to handle the AC  
component of the current drawn by the upper MOSFETs, which is  
related to duty cycle and the number of active phases. The input  
RMS current can be calculated with Equation 19.  
D
12  
(EQ. 19)  
2
2
2
------  
I
=
D D   Io  
+
 I  
INRMS  
Use Figure 31 to determine the input capacitor RMS current  
requirement given the duty cycle, maximum sustained output  
current (I ), and the ratio of the per-phase peak-to-peak inductor  
ESL  
1
I  
(EQ. 15)  
---------------  
---------------- -----------------------------  
V  I ESR +  
V  
+
IN  
L
C
8 N f  
OUT  
OUT  
SW  
O
current (I  
to I . Select a bulk capacitor with a ripple current  
V
 1 D  
L(P-P)  
O
OUT  
L
---------------------------------------  
I=  
rating, which will minimize the total number of input capacitors  
required to support the RMS current calculated. The voltage rating of  
the capacitors should also be at least 1.25x greater than the  
maximum input voltage.  
f  
OUT  
SW  
The filter capacitor must have sufficiently low ESL and ESR so  
that V < V  
.
MAX  
Low capacitance, high-frequency ceramic capacitors are needed  
in addition to the bulk capacitors to suppress leading and falling  
edge voltage spikes. The result from the high current slew rates  
produced by the upper MOSFETs turn on and off. Select low ESL  
ceramic capacitors and place one as close as possible to each  
upper MOSFET drain to minimize board parasitic impedances  
and maximize noise suppression.  
Most capacitor solutions rely on a mixture of high-frequency  
capacitors with relatively low capacitance in combination with bulk  
capacitors having high capacitance but limited high-frequency  
performance. Minimizing the ESL of the high-frequency capacitors  
allows them to support the output voltage as the current increases.  
Minimizing the ESR of the bulk capacitors allows them to supply the  
increased current with less output voltage deviation. The ESR of the  
bulk capacitors also creates the majority of the output voltage  
ripple. As the bulk capacitors sink and source the inductor AC  
ripple current, a voltage develops across the bulk-capacitor ESR  
equal to I  
(ESR).  
C(P-P)  
FN8705.1  
March 7, 2016  
Submit Document Feedback  
28  
ISL68200  
TABLE 12. DESIGN AND LAYOUT CHECKLIST  
NOISE  
0.6  
0.4  
0.2  
0
PIN  
NAME  
SENSITIVITY  
DESCRIPTION  
EN  
Yes  
There is an internal 1µs filter. Decoupling the  
capacitor is NOT needed, but if needed, use a  
low time constant one to avoid too large a  
shutdown delay.  
I
= 0.75 I  
O
L(P-P)  
I
= 0  
L(P-P)  
L(P-P)  
I
= 0.5 I  
O
VIN  
7VLDO  
VCC  
Yes  
Yes  
Yes  
Yes  
Place 16V+ X7R 1µF in close proximity to VIN  
pin and the system ground plane.  
Place 10V+ X7R 1µF in close proximity to  
7VLDO pin and the system ground plane.  
Place X7R 1µF in close proximity to VCC pin  
and the system ground plane.  
0
0.2  
0.4  
0.6  
/V  
OUT IN  
0.8  
1.0  
DUTY CYCLE (V  
)
SCL, SDA  
50kHz to 1.25MHz signal when the SMBus,  
2
PMBus, or I C is sending commands. Pairing  
FIGURE 31. NORMALIZED INPUT-CAPACITOR RMS CURRENT vs  
DUTY CYCLE FOR SINGLE-PHASE CONVERTER  
up with SALERT and routing carefully back to  
2
SMBus, PMBus or I C master. 20 mils spacing  
within SDA, SALERT, and SCL; and more than  
30 mils to all other signals. Refer to the  
SMBus, PMBus or I C design guidelines and  
place proper terminated (pull-up) resistance  
for impedance matching. Tie them to GND  
when not used.  
Design and Layout Considerations  
To ensure a first pass design, the schematics design must be  
done right and the board must be carefully laid out.  
2
As a general rule, power layers should be close together, either  
on the top or bottom of the board, with the weak analog or logic  
signal layers on the opposite side of the board or internal layers.  
The ground-plane layer should be in between power layers and  
the signal layers to provide shielding, often the layer below the  
top and the layer above the bottom should be the ground layers.  
SALERT  
PGOOD  
No  
Open drain and high dv/dt pin during  
transitions. Route it in the middle of SDA and  
SCL. Tie it to GND when not used.  
No  
Open-drain pin. Tie it to ground when not used.  
RGND,  
VSEN  
Yes  
Differential pair routed to the remote sensing  
points with sufficient decoupling ceramics  
capacitors and not across or go above/under  
any switching nodes (BOOT, PHASE, UGATE,  
LGATE) or planes (VIN, PHASE, VOUT) even  
though they are not in the same layer. At least  
20 mils spacing from other traces. DO NOT  
share the same trace with CSRTN.  
There are two sets of components in a DC/DC converter, the  
power components and the small signal components. The power  
components are the most critical because they switch large  
amount of energy. The small signal components connect to  
sensitive nodes or supply critical bypassing current and signal  
coupling.  
The power components should be placed first and these include  
MOSFETs, input and output capacitors and the inductor. Keeping  
the distance between the power train and the control IC short  
helps keep the gate drive traces short. These drive signals  
include the LGATE, UGATE, GND, PHASE and BOOT.  
CSRTN  
Yes  
Connect to the output rail side of the output  
inductor or current sensing resistor pin with a  
series resistor in close proximity to the pin. The  
series resistor sets the current gain and should  
be within 40Ωand 3.5kΩ. Decoupling  
(~0.1µF/X7R) on the output end (not the pin)  
is optional and might be required for long  
sense trace and a poor layout (see Figures 9  
and 10 on page 16).  
When placing MOSFETs, try to keep the source of the upper  
MOSFETs and the drain of the lower MOSFETs as close as  
thermally possible. Input high frequency capacitors should be  
placed close to the drain of the upper MOSFETs and the source of  
the lower MOSFETs. Place the output inductor and output  
capacitors between the MOSFETs and the load. High frequency  
output decoupling capacitors (ceramic) should be placed as  
close as possible to the decoupling target, making use of the  
shortest connection paths to any internal planes. Place the  
components in such a way that the area under the IC has less  
noise traces with high dV/dt and di/dt, such as gate signals,  
phase node signals and VIN plane.  
CSEN  
Yes  
Connect to the phase node side of the output  
inductor or current sensing resistor pin with  
L/DCR or ESL/R  
matching network in close  
SEN  
proximity to CSEN and CSRTN pins.  
Differentially routing back to the controller  
with at least 20 mils spacing from other  
traces. Should NOT cross or go above/under  
the switching nodes [BOOT, PHASE, UGATE,  
LGATE] and power planes (VIN, PHASE, VOUT)  
even though they are not in the same layer.  
Tables 12 and 13 provide design and layout checklists that  
designer must pay attention to.  
FN8705.1  
March 7, 2016  
Submit Document Feedback  
29  
ISL68200  
TABLE 12. DESIGN AND LAYOUT CHECKLIST (Continued)  
NOISE  
TABLE 13. TOP LAYOUT TIPS  
DESCRIPTION  
PIN  
#
1
NAME  
SENSITIVITY  
DESCRIPTION  
The layer next to controller (top or bottom) should be a ground  
layer. Separate analog ground and power ground with a 0Ω  
resistor is highly NOT recommended. Directly connect GND  
PAD to low noise area of the system ground with at least 4  
vias.  
NTC  
Yes  
Place NTC 10k (Murata, NCP15XH103J03RC,  
= 3380) in close proximity to the output  
inductor’s output rail, not close to MOSFET side  
(see Figure 19); the return trace should be 20  
mils away from other traces. Place 1.54kΩ  
pull-up and decoupling capacitor (typically  
0.1µF) in close proximity to the controller. The  
pull-up resistor should be exactly tied to the  
same point as VCC pin, not through an RC filter.  
If not used, connect this pin to VCC.  
2
Never place controller and its external components above or  
under VIN plane or any switching nodes.  
3
4
Never share CSRTN and VSEN on the same trace.  
Place the input rail decoupling ceramic capacitors close to  
the high-side FET on the same layer as possible. Never use  
only one via and a trace to connect the input rail decoupling  
ceramics capacitors; must connect to VIN and GND planes.  
IOUT  
Yes  
Scale R such that IOUT pin voltage is 2.5V at  
63.875A load. Place R and C in general  
proximity to the controller. The time constant  
of RC should be sufficient as an averaging  
5
6
Place all decoupling capacitors in close proximity to the  
controller and the system ground plane.  
function for the digital I . An external pull-up  
OUT  
resistor to VCC is recommended cancel I  
OUT  
Calibration” on  
Connect remote sense (VSEN and RGND) to the load and  
ceramic decoupling capacitors nodes; never run this pair  
below or above switching noise plane.  
offset at 0A load. See “I  
page 19  
OUT  
PROG1-4  
GND  
No  
Resistor divider must be referenced to VCC pin  
and the system ground; they can be placed  
anywhere. DO NOT use decoupling capacitors  
on these pins.  
7
Always double check critical component pinout and their  
respective footprints.  
Voltage Regulator Design Materials  
Yes  
Directly connect to low noise area of the  
system ground. The GND PAD should use at  
least 4 vias. Separate analog ground and  
power ground with a 0Ω resistor is highly NOT  
recommended.  
To support VR design and layout, Intersil also developed a set of  
tools and evaluation boards, as listed in Tables 14 and 15,  
respectively. Contact Intersil’s local office or field support at  
www.intersil.com/ask for the latest available information.  
LGATE  
UGATE  
No  
No  
Low-side driver output and short and wide  
trace in between this pin and MOSFET gate pin  
as possible. High dV/dt signals should not be  
close to any sensitive signals.  
TABLE 14. AVAILABLE DESIGN ASSISTANCE MATERIALS  
ITEM  
1
DESCRIPTION  
2
SMBus/PMBus/I C communication tool with  
PowerNavigator GUI  
High-side driver output and short and wide  
trace in between this pin and MOSFET gate pin  
as possible. High dV/dt signals should not be  
close to any sensitive signals.  
2
Evaluation board schematics in OrCAD format and  
layout in allegro format. See Table 15 for details.  
BOOT,  
PHASE  
Yes  
Yes  
Place X7R 0.1µF or 0.22µF in proximity to  
BOOT and PHASE pins. High dV/dt signals  
should not be close to any sensitive signals.  
TABLE 15. AVAILABLE DEMO BOARDS  
DEMO BOARD  
DESCRIPTION  
2
ISL68200DEMO1Z  
17x17mm 1-phase, 20A solution,  
400kHz, with Dual FET  
PVCC  
Place X7R 4.7µF in proximity to PVCC pin and  
the system ground plane.  
2
ISL68201_99140DEMO1Z 17x17mm 1-phase, 35A solution,  
400kHz, with ISL99140  
FN8705.1  
March 7, 2016  
Submit Document Feedback  
30  
ISL68200  
Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted.  
Please go to the web to make sure that you have the latest revision.  
DATE  
REVISION  
FN8705.1  
FN8705.0  
CHANGE  
Removed unreleased parts from Tables 1 and 15  
Initial Release  
March 7, 2016  
March 2, 2016  
About Intersil  
Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products  
address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets.  
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product  
information page found at www.intersil.com.  
You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.  
Reliability reports are also available from our website at www.intersil.com/support.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN8705.1  
March 7, 2016  
Submit Document Feedback  
31  
ISL68200  
Package Outline Drawing  
L24.4x4C  
24 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE  
Rev 2, 10/06  
4X  
2.5  
4.00  
A
20X  
0.50  
PIN #1 CORNER  
(C 0 . 25)  
B
19  
24  
PIN 1  
INDEX AREA  
1
18  
2 . 50 ± 0 . 15  
13  
(4X)  
0.15  
12  
24X 0 . 4 ± 0 . 1  
7
0.10 M C  
A B  
TOP VIEW  
+ 0 . 07  
24X 0 . 23  
4
- 0 . 05  
BOTTOM VIEW  
SEE DETAIL "X"  
C
0.10  
0 . 90 ± 0 . 1  
C
BASE PLANE  
( 3 . 8 TYP )  
SEATING PLANE  
0.08  
SIDE VIEW  
C
(
2 . 50 )  
( 20X 0 . 5 )  
5
0 . 2 REF  
C
( 24X 0 . 25 )  
0 . 00 MIN.  
0 . 05 MAX.  
( 24X 0 . 6 )  
DETAIL "X"  
TYPICAL RECOMMENDED LAND PATTERN  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3.  
Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension b applies to the metallized terminal and is measured  
between 0.15mm and 0.30mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 indentifier may be  
either a mold or mark feature.  
FN8705.1  
March 7, 2016  
Submit Document Feedback  
32  

相关型号:

ISL68201-99125DEMO1Z

Single-Phase R4 Digital Hybrid PWM Controller with PMBus/SMBus/I2C and PFM
RENESAS

ISL68201-99125DEMO1Z

Adaptive shoot-through protection
INTERSIL

ISL68201-99135DEMO1Z

Single-Phase R4 Digital Hybrid PWM Controller with PMBus/SMBus/I2C and PFM
RENESAS

ISL68201-99135DEMO1Z

Adaptive shoot-through protection
INTERSIL

ISL68201-99140DEMO1Z

Single-Phase R4 Digital Hybrid PWM Controller with PMBus/SMBus/I2C and PFM
RENESAS

ISL68201-99140DEMO1Z

Single-Phase R4 Digital Hybrid PWM Controller
INTERSIL

ISL68201IRZ

Single-Phase R4 Digital Hybrid PWM Controller with PMBus/SMBus/I2C and PFM; QFN24; Temp Range: -40&deg; to 85&deg;C
RENESAS

ISL68201IRZ

Single-Phase R4 Digital Hybrid PWM Controller
INTERSIL

ISL68201IRZ-T

Single-Phase R4 Digital Hybrid PWM Controller with PMBus/SMBus/I2C and PFM; QFN24; Temp Range: -40&deg; to 85&deg;C
RENESAS

ISL68201IRZ-T7A

Single-Phase R4 Digital Hybrid PWM Controller with PMBus/SMBus/I2C and PFM; QFN24; Temp Range: -40&deg; to 85&deg;C
RENESAS

ISL68201IRZ-TK

Single-Phase R4 Digital Hybrid PWM Controller with PMBus/SMBus/I2C and PFM; QFN24; Temp Range: -40&deg; to 85&deg;C
RENESAS

ISL68301IRAZ-T7A

Switching Controller
RENESAS