ISL70218SEHX/SAMPLE [INTERSIL]

Rad Hard Dual 36V Precision Single-Supply, Rail-to-Rail Output, Low-Power Operational Amplifiers; 抗辐射双路36V精密单电源,轨到轨输出,低功耗运算放大器
ISL70218SEHX/SAMPLE
型号: ISL70218SEHX/SAMPLE
厂家: Intersil    Intersil
描述:

Rad Hard Dual 36V Precision Single-Supply, Rail-to-Rail Output, Low-Power Operational Amplifiers
抗辐射双路36V精密单电源,轨到轨输出,低功耗运算放大器

运算放大器
文件: 总20页 (文件大小:1049K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Rad Hard Dual 36V Precision Single-Supply, Rail-to-Rail  
Output, Low-Power Operational Amplifiers  
ISL70218SEH  
Features  
The ISL70218SEH is a dual, low-power precision amplifier  
optimized for single-supply applications. This op amp features  
a common mode input voltage range extending to 0.5V below  
the V- rail, a rail-rail differential input voltage range, and  
rail-to-rail output voltage swing, which makes it ideal for  
single-supply applications where input operation at ground is  
important.  
• DLA SMD# 5962-12222  
• Wide Single and Dual Supply Range . . . . 3V to 42V, Abs. Max.  
• Low Current Consumption . . . . . . . . . . . . . . . . . . . 850µA, Typ.  
• Low Input Offset Voltage . . . . . . . . . . . . . . . . . . . . . 40µV, Typ.  
• Rail-to-Rail Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <10mV  
• Rail-to-Rail Input Differential Voltage Range for Comparator  
Applications  
This op amp features low power, low offset voltage, and low  
temperature drift, making it ideal for applications requiring  
both high DC accuracy and AC performance. This amplifier is  
designed to operate over a single supply range of 3V to 36V or a  
split supply voltage range of +1.8V/-1.2V to ±18V. The  
combination of precision and small footprint provides the user  
with outstanding value and flexibility relative to similar  
competitive parts.  
• Operating Temperature Range. . . . . . . . . . .-55°C to +125°C  
• Below-ground (V-) Input Capability to -0.5V  
• Low Noise Voltage . . . . . . . . . . . . . . . . . . . . . . 5.6nV/Hz, Typ.  
• Low Noise Current . . . . . . . . . . . . . . . . . . . . . .355fA/Hz, Typ.  
• Offset Voltage Temperature Drift. . . . . . . . . . . 0.3µV/°C, Typ.  
• No Phase Reversal  
Applications for this amplifier include precision  
instrumentation, data acquisition and precision power supply  
controls.  
• Radiation Tolerance  
- SEL/SEB LETTH (VS = ±18V) . . . . . . . . .86.4 MeV * cm2/mg  
- High Dose Rate. . . . . . . . . . . . . . . . . . . . . . . . . . 100krad(Si)  
- Low Dose Rate . . . . . . . . . . . . . . . . . . . . . . . . . . 100krad(Si)  
The ISL70218SEH is available in a 10 lead hermetic ceramic  
flatpack and operates over the extended temperature range of  
-55°C to +125°C.  
* Product capability established by initial characterization. The  
EH version is acceptance tested on a wafer by wafer basis to  
50krad(Si) at low dose rate.  
Related Literature  
AN1653, “ISL70218SRH Evaluation Board User’s Guide”  
Applications  
• Precision Instruments  
• Active Filter Blocks  
• Data Acquisition  
AN1677, “Single Events Effects Testing of the  
ISL70218SRH, Dual 36V Rad Hard Low Power Operational  
Amplifiers”  
• Power Supply Control  
R
F
400  
100k  
LOAD  
+25°C  
300  
+3V  
to 36V  
R
-
IN  
IN-  
-
+125°C  
200  
V
OUT  
V+  
10kΩ  
R
SENSE  
ISL70218SEH  
100  
0
R
+
V-  
IN  
IN+  
+
10kΩ  
GAIN = 10  
-100  
R
+
REF  
-40°C  
-200  
-300  
-400  
-55°C  
100kΩ  
V
REF  
-16  
-15  
-14  
-13 13  
14  
15  
16  
INPUT COMMON MODE VOLTAGE (V)  
FIGURE 2. INPUT OFFSET VOLTAGE vs INPUT COMMON MODE  
VOLTAGE, VS = ±15V  
FIGURE 1. TYPICAL APPLICATION: SINGLE-SUPPLY, LOW-SIDE  
CURRENT SENSE AMPLIFIER  
August 24, 2012  
FN7957.1  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Copyright Intersil Americas Inc. 2012. All Rights Reserved  
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners.  
1
ISL70218SEH  
Pin Configuration  
Pin Descriptions  
ISL70218SEH  
(10 LD FLATPACK)  
TOP VIEW  
OUT_A  
-IN_A  
+IN_A  
NC  
1
2
3
4
5
10  
9
V+  
OUT_B  
-IN_B  
+IN_B  
NC  
- +  
8
+ -  
7
V-  
6
PIN NUMBER  
PIN NAME  
EQUIVALENT CIRCUIT  
Circuit 2  
DESCRIPTION  
1
2
OUT_A  
-IN_A  
+IN_A  
NC  
Amplifier A output  
Circuit 1  
Amplifier A inverting input  
Amplifier A non-inverting input  
No connect  
3
Circuit 1  
4
5
V-  
Circuit 1, 2, 3  
Negative power supply  
No connect  
6
NC  
7
+IN_B  
-IN_B  
OUT_B  
V+  
Circuit 1  
Circuit 1  
Amplifier B non-inverting input  
Amplifier B inverting input  
Amplifier B output  
8
9
Circuit 2  
10  
Circuit 1, 2, 3  
Positive power supply  
V
+
V
+
V
+
CAPACITIVELY  
TRIGGERED ESD  
CLAMP  
OUT  
IN-  
IN  
+
V
-
V
V
-
-
CIRCUIT 1  
CIRCUIT 2  
CIRCUIT 3  
Ordering Information  
ORDERING NUMBER  
PART  
NUMBER  
TEMP RANGE  
(°C)  
PKG.  
DWG. #  
(Notes 1, 2)  
PACKAGE  
10 Ld Flatpack  
10 Ld Flatpack  
Die  
5962R1222201VXC  
ISL70218SEHVF  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
K10.A  
K10.A  
ISL70218SEHF/PROTO  
5962R1222201V9A  
ISL70218SEHX/SAMPLE  
ISL70218SRHMEVAL1Z  
NOTES:  
ISL70218 SEHF/PROTO  
ISL70218SEHVX  
ISL70218SEHVX/SAMPLE  
Evaluation Board  
Die  
1. These Intersil Pb-free Hermetic packaged products employ 100% Au plate - e4 termination finish, which is RoHS compliant and compatible with both  
SnPb and Pb-free soldering operations.  
2. For Moisture Sensitivity Level (MSL), please see device information page for ISL70218SEH. For more information on MSL, please see Tech Brief TB363.  
FN7957.1  
August 24, 2012  
2
ISL70218SEH  
Absolute Maximum Ratings  
Thermal Information  
Maximum Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42V  
Maximum Supply Voltage (LET = 86.4 MeVcm2/mg). . . . . . . . . . . . . 36V  
Maximum Differential Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . 20mA  
Maximum Differential Input Voltage . . . . . . . . . . . . . . .V- - 0.5V to V+ + 0.5V  
Min/Max Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . .V- - 0.5V to V+ + 0.5V  
Max/Min Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20mA  
Output Short-Circuit Duration (1 output at a time) . . . . . . . . . . . . . . Indefinite  
ESD Tolerance  
Thermal Resistance (Typical)  
10 Ld Flatpack Package (Notes 3, 4). . . . .  
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
θ
JA (°C/W)  
130  
θ
JC (°C/W)  
20  
Recommended Operating Conditions  
Human Body Model (Tested per MIL-PRF-883 3015.7). . . . . . . . . . . 2kV  
Machine Model (Tested per JESD22-A115-A). . . . . . . . . . . . . . . . . . 300V  
Charged Device Model (Tested per CDM-22CI0ID). . . . . . . . . . . . . . 750V  
Di-electrically Isolated PR40 Process . . . . . . . . . . . . . . . . . . . Latch-up free  
Ambient Operating Temperature Range . . . . . . . . . . . . . .-55°C to +125°C  
Maximum Operating Junction Temperature . . . . . . . . . . . . . . . . . .+150°C  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . 3V (+1.8V/-1.2V) to 30V (±15V)  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
3. θJA is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
4. For θJC, the “case temp” location is the center of the package underside.  
Electrical Specifications VS ±15V, VCM = 0, VO = 0V, RL = Open, TA= +25°C, unless otherwise noted. Boldface limits apply over the  
operating temperature range, -55°C to +125°C.  
MIN  
MAX  
PARAMETER  
VOS  
DESCRIPTION  
Offset Voltage  
CONDITIONS  
(Note 5)  
TYP  
40  
(Note 5)  
UNIT  
µV  
230  
290  
1.4  
µV  
TCVOS  
Offset Voltage Drift  
0.3  
44  
µV/°C  
ΔVOS  
Input Offset Voltage Match Channel to  
Channel  
280  
365  
50  
µV  
µV  
nA  
IOS  
Input Offset Current  
-50  
-75  
4
75  
nA  
nA  
nA  
V
IB  
Input Bias Current  
-575  
-800  
(V-) - 0.5  
V-  
-230  
VCMIR  
Common Mode Input Voltage Range  
Guaranteed by CMRR Test  
(V+) - 1.8  
(V+) - 1.8  
V
CMRR  
PSRR  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
V
CM = V- to V+ -1.8V  
100  
97  
118  
124  
dB  
dB  
VCM = V- to V+ -1.8V  
VS = 3V to 40V,  
105  
100  
120  
115  
dB  
dB  
VCMIR = Valid Input Voltage  
AVOL  
VOH  
VOL  
IS  
Open-Loop Gain  
RL = 10kΩ to ground  
O = -13V to +13V  
130  
dB  
V
dB  
Output Voltage High,  
V+ to VOUT  
RL = 10kΩ  
RL = 10kΩ  
110  
120  
70  
mV  
mV  
mV  
mV  
mA  
mA  
mA  
mA  
V
Output Voltage Low,  
VOUT to V-  
80  
Supply Current/Amplifier  
0.85  
1.1  
1.4  
IS+  
IS-  
Source Current Capability  
Sink Current Capability  
Supply Voltage Range  
10  
10  
3
VSUPPLY  
Guaranteed by PSRR  
40  
FN7957.1  
August 24, 2012  
3
ISL70218SEH  
Electrical Specifications VS ±15V, VCM = 0, VO = 0V, RL = Open, TA= +25°C, unless otherwise noted. Boldface limits apply over the  
operating temperature range, -55°C to +125°C. (Continued)  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
CONDITIONS  
(Note 5)  
TYP  
4
(Note 5)  
UNIT  
MHz  
AC SPECIFICATIONS  
GBW  
Gain Bandwidth Product  
ACL = 101, VOUT = 100mVP-P  
RL = 2k  
;
enp-p  
Voltage Noise  
0.1Hz to 10Hz, VS = ±18V  
f = 10Hz, VS = ±18V  
f = 100Hz, VS = ±18V  
f = 1kHz, VS = ±18V  
f = 10kHz, VS = ±18V  
f = 1kHz, VS = ±18V  
300  
8.5  
nVP-P  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
fA/Hz  
%
en  
en  
Voltage Noise Density  
Voltage Noise Density  
Voltage Noise Density  
Voltage Noise Density  
Current Noise Density  
Total Harmonic Distortion + Noise  
5.8  
en  
5.6  
en  
5.6  
in  
355  
0.0003  
THD + N  
1kHz, G = 1, VO = 3.5VRMS,  
RL = 10kΩ  
TRANSIENT RESPONSE  
SR  
Slew Rate  
AV = 1, RL = 2kΩ, VO = 10VP-P  
±1.0  
±0.4  
±1.2  
V/µs  
V/µs  
tr, tf, Small  
Signal  
Rise Time  
10% to 90% of VOUT  
AV = 1, VOUT = 100mVP-P, Rf = 0Ω,  
RL = 2kΩ to VCM  
100  
100  
200  
400  
230  
400  
ns  
ns  
ns  
ns  
µs  
Fall Time  
90% to 10% of VOUT  
AV = 1, VOUT = 100mVP-P, Rf = 0Ω,  
RL = 2kΩ to VCM  
ts  
Settling Time to 0.01%  
10V Step; 10% to VOUT  
AV = 1, VOUT = 10VP-P, Rf = 0Ω  
L = 2kΩ to VCM  
8.5  
5
R
OS+  
Positive Overshoot  
AV = 1, VOUT = 10VP-P, Rf = 0Ω  
L = 2kΩ to VCM  
%
%
%
%
R
35  
35  
OS-  
Negative Overshoot  
AV = 1, VOUT = 10VP-P, Rf = 0Ω  
L = 2kΩ to VCM  
5
R
Electrical Specifications VS ±15V, VCM = 0, VO = 0V, RL = Open, TA= +25°C, unless otherwise noted. Boldface limits apply over a total  
ionizing dose of 100krad(Si) with exposure at a high dose rate of 50 - 300krad(Si)/s; and over a total ionizing dose of 50krad(Si) with exposure at a low  
dose rate of <10mrad(Si)/s.  
MIN  
MAX  
PARAMETER  
VOS  
DESCRIPTION  
Offset Voltage  
CONDITIONS  
(Note 5)  
TYP  
40  
(Note 5)  
UNIT  
µV  
230  
290  
1.4  
280  
365  
50  
µV  
TCVOS  
Offset Voltage Drift  
0.3  
44  
µV/°C  
µV  
ΔVOS  
Input Offset Voltage Match Channel to  
Channel  
µV  
IOS  
Input Offset Current  
-50  
-75  
4
nA  
75  
nA  
IB  
Input Bias Current  
-575  
-1500  
(V-) - 0.5  
V-  
-230  
nA  
nA  
VCMIR  
CMRR  
Common Mode Input Voltage Range  
Common-Mode Rejection Ratio  
Guaranteed by CMRR Test  
(V+) -1.8  
(V+) - 1.8  
V
V
VCM = V- to V+ -1.8V  
100  
118  
dB  
VCM = V- to V+ -1.8V  
97  
dB  
FN7957.1  
August 24, 2012  
4
ISL70218SEH  
Electrical Specifications VS ±15V, VCM = 0, VO = 0V, RL = Open, TA= +25°C, unless otherwise noted. Boldface limits apply over a total  
ionizing dose of 100krad(Si) with exposure at a high dose rate of 50 - 300krad(Si)/s; and over a total ionizing dose of 50krad(Si) with exposure at a low  
dose rate of <10mrad(Si)/s. (Continued)  
MIN  
MAX  
PARAMETER  
PSRR  
DESCRIPTION  
CONDITIONS  
VS = 3V to 40V,  
CMIR = Valid Input Voltage  
(Note 5)  
TYP  
124  
(Note 5)  
UNIT  
dB  
Power Supply Rejection Ratio  
105  
100  
120  
115  
V
dB  
AVOL  
VOH  
VOL  
IS  
Open-Loop Gain  
RL = 10kΩ to ground  
O = -13V to +13V  
130  
0.85  
4
dB  
V
dB  
Output Voltage High,  
V+ to VOUT  
RL = 10kΩ  
RL = 10kΩ  
110  
120  
70  
mV  
mV  
mV  
mV  
mA  
mA  
mA  
mA  
V
Output Voltage Low,  
VOUT to V-  
80  
Supply Current/Amplifier  
1.1  
1.4  
IS+  
IS-  
Source Current Capability  
Sink Current Capability  
Supply Voltage Range  
10  
10  
3
VSUPPLY  
Guaranteed by PSRR  
40  
AC SPECIFICATIONS  
GBW  
Gain Bandwidth Product  
ACL = 101, VOUT = 100mVP-P  
RL = 2k  
;
MHz  
enp-p  
Voltage Noise  
0.1Hz to 10Hz, VS = ±18V  
f = 10Hz, VS = ±18V  
f = 100Hz, VS = ±18V  
f = 1kHz, VS = ±18V  
f = 10kHz, VS = ±18V  
f = 1kHz, VS = ±18V  
300  
8.5  
nVP-P  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
fA/Hz  
%
en  
en  
Voltage Noise Density  
Voltage Noise Density  
Voltage Noise Density  
Voltage Noise Density  
Current Noise Density  
Total Harmonic Distortion + Noise  
5.8  
en  
5.6  
en  
5.6  
in  
355  
0.0003  
THD + N  
1kHz, G = 1, VO = 3.5VRMS,  
RL = 10kΩ  
TRANSIENT RESPONSE  
SR  
Slew Rate  
AV = 1, RL = 2kΩ, VO = 10VP-P  
±1.0  
±0.4  
±1.2  
V/µs  
V/µs  
ns  
tr, tf, Small  
Signal  
Rise Time  
10% to 90% of VOUT  
AV = 1, VOUT = 100mVP-P, Rf = 0Ω,  
RL = 2kΩ to VCM  
100  
100  
230  
400  
200  
400  
ns  
Fall Time  
90% to 10% of VOUT  
AV = 1, VOUT = 100mVP-P, Rf = 0Ω,  
RL = 2kΩ to VCM  
ns  
ns  
ts  
Settling Time to 0.01%  
10V Step; 10% to VOUT  
AV = 1, VOUT = 10VP-P, Rf = 0Ω  
L = 2kΩ to VCM  
8.5  
5
µs  
R
OS+  
Positive Overshoot  
AV = 1, VOUT = 10VP-P, Rf = 0Ω  
L = 2kΩ to VCM  
%
%
%
%
R
35  
35  
OS-  
Negative Overshoot  
AV = 1, VOUT = 10VP-P, Rf = 0Ω  
L = 2kΩ to VCM  
5
R
FN7957.1  
August 24, 2012  
5
ISL70218SEH  
Electrical Specifications VS ±5V, VCM = 0, VO = 0V, TA = +25°C, unless otherwise noted. Boldface limits apply over the operating  
temperature range, -55°C to +125°C.  
MIN  
MAX  
PARAMETER  
VOS  
DESCRIPTION  
Offset Voltage  
CONDITIONS  
(Note 5)  
TYP  
40  
(Note 5)  
UNIT  
µV  
ΔVOS  
Input Offset Voltage Match Channel to  
Channel  
44  
µV  
IOS  
IB  
Input Offset Current  
4
nA  
nA  
V
Input Bias Current  
-230  
VCMIR  
Common Mode Input Voltage Range  
Guaranteed by CMRR Test  
(V-) - 0.5  
V-  
(V+) - 1.8  
(V+) - 1.8  
V
CMRR  
PSRR  
AVOL  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Open-Loop Gain  
V
V
CM = V- - 0.5V to V+ - 1.8  
CM = V- to V+ -1.8V  
117  
124  
130  
dB  
VS = 3V to 40V,  
CMIR = Valid Input Voltage  
dB  
dB  
V
RL = 10kΩ to ground  
O = -3V to +3V  
V
VOH  
Output Voltage High,  
V+ to VOUT  
RL = 10kΩ  
65  
70  
38  
45  
0.85  
8
mV  
mV  
mV  
mV  
mA  
mA  
mA  
VOL  
Output Voltage Low,  
RL = 10kΩ  
VOUT to V-  
IS  
IS+  
IS-  
Supply Current/Amplifier  
Source Current Capability  
Sink Current Capability  
8
AC SPECIFICATIONS  
GBW  
enp-p  
en  
Gain Bandwidth Product  
3.2  
320  
9
MHz  
nVP-P  
Voltage Noise  
0.1Hz to 10Hz  
f = 10Hz  
Voltage Noise Density  
Voltage Noise Density  
Voltage Noise Density  
Voltage Noise Density  
Current Noise Density  
Total Harmonic Distortion + Noise  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
fA/Hz  
%
en  
f = 100Hz  
f = 1kHz  
5.7  
en  
5.5  
en  
f = 10kHz  
f = 1kHz  
5.5  
in  
380  
0.0003  
THD + N  
1kHz, G = 1, VO = 1.25VRMS,  
RL = 10kΩ  
TRANSIENT RESPONSE  
SR  
Slew Rate  
AV = 1, RL = 2kΩ, VO = 4VP-P  
±1  
V/µs  
ns  
tr, tf, Small  
Signal  
Rise Time  
10% to 90% of VOUT  
AV = 1, VOUT = 100mVP-P, Rf = 0Ω,  
100  
R
L = 2kΩ to VCM  
AV = 1, VOUT = 100mVP-P, Rf = 0Ω,  
L = 2kΩ to VCM  
AV = 1, VOUT = 4VP-P, Rf = 0Ω  
L = 2kΩ to VCM  
AV = 1, VOUT = 10VP-P, Rf = 0Ω  
L = 2kΩ to VCM  
AV = 1, VOUT = 10VP-P, Rf = 0Ω  
L = 2kΩ to VCM  
Fall Time  
90% to 10% of VOUT  
100  
4
ns  
µs  
%
R
ts  
Settling Time to 0.01%  
4V Step; 10% to VOUT  
R
OS+  
OS-  
Positive Overshoot  
5
R
Negative Overshoot  
5
%
R
NOTE:  
5. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
FN7957.1  
August 24, 2012  
6
ISL70218SEH  
High Dose Rate Post Radiation Characteristics VS ±15V, VCM = 0V, VO = 0V, RL = Open, TA= +25°C, unless otherwise  
noted. This data is typical test data post radiation exposure at a rate of 50 to 300rad(Si)/s. This data is intended to show typical parameter shifts due to  
high dose rate radiation. These are not limits nor are they guaranteed.  
PARAMETER  
VOS  
DESCRIPTION  
Offset Voltage  
CONDITIONS  
50k RAD  
35  
75k RAD  
35  
100k RAD  
35  
UNIT  
µV  
IOS  
Input Offset Current  
2
3
5
nA  
IB  
Input Bias Current  
200  
129  
130  
131.6  
400  
128  
130  
131.1  
575  
nA  
CMRR  
PSRR  
AVOL  
Common-Mode Rejection Ration  
Power Supply Rejection Ratio  
Open-Loop Gain  
V
CM = -13V to +13V  
S = ±2.25V to ±15V  
127  
dB  
V
130  
dB  
VO = -13V to +13V  
131.1  
dB  
RL = 10kΩ to ground  
VOH  
VOL  
IS  
Output Voltage High  
V+ to VOUT  
RL = 10kΩ to ground  
71  
54  
74  
57  
76  
59  
mV  
mV  
µA  
Output Voltage Low  
RL = 10kΩ to ground  
VOUT to V-  
Supply Current/Amplifier  
830  
830  
830  
TRANSIENT RESPONSE  
SR Slew Rate  
AV = 10, RL = 2kΩ, VO = 4VP-P  
1.24  
1.23  
1.22  
V/µs  
Low Dose Rate Post Radiation Characteristics VS ±15V, VCM = 0V, VO = 0V, RL = Open, TA= +25°C, unless otherwise  
noted. This data is typical test data post radiation exposure at a rate of 10mrad(Si)/s. This data is intended to show typical parameter shifts due to low  
dose rate radiation. These are not limits nor are they guaranteed.  
PARAMETER  
DESCRIPTION  
Offset Voltage  
CONDITIONS  
10k RAD  
20  
20k RAD  
20  
50k RAD  
20  
UNIT  
µV  
VOS  
IOS  
IB  
Input Offset Current  
Input Bias Current  
6
8
10  
nA  
300  
650  
500  
625  
1200  
615  
nA  
IS  
Supply Current/Amplifier  
µA  
FN7957.1  
August 24, 2012  
7
ISL70218SEH  
Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, TA= +25°C, unless otherwise specified.  
400  
300  
200  
100  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
+25°C  
+125°C  
V
= ±15V  
S
-100  
-200  
-300  
-400  
-40°C  
-55°C  
V
= ±5V  
S
-16  
-15  
-14  
-13 13  
14  
15  
16  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
TEMPERATURE (°C)  
INPUT COMMON MODE VOLTAGE (V)  
FIGURE 4. INPUT OFFSET VOLTAGE vs INPUT COMMON MODE  
VOLTAGE, VS = ±15V  
FIGURE 3. VOS vs TEMPERATURE  
0
-50  
-150  
V
= +40V  
S
-200  
-250  
-300  
-100  
-150  
-200  
-250  
-300  
-350  
-400  
-450  
-500  
V
= +30V  
S
V
= +3.0V  
S
-350  
-400  
V
= +4.5V  
S
V
= +10V  
S
2
4
6
8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
V
(V)  
S
TEMPERATURE (°C)  
FIGURE 5. IBIAS vs VS  
FIGURE 6. IBIAS vs TEMPERATURE vs SUPPLY  
132  
130  
128  
126  
124  
122  
120  
118  
116  
114  
112  
110  
132  
130  
128  
126  
124  
122  
120  
118  
116  
114  
112  
110  
CHANNEL-A  
CHANNEL-A  
CHANNEL-B  
CHANNEL-B  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
TEMPERATURE (°C)  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
TEMPERATURE (°C)  
FIGURE 7. CMRR vs TEMPERATURE, VS = ±15V  
FIGURE 8. CMRR vs TEMPERATURE, VS = ±5V  
FN7957.1  
August 24, 2012  
8
ISL70218SEH  
Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, TA= +25°C, unless otherwise specified. (Continued)  
140  
130  
120  
110  
100  
90  
80  
70  
60  
50  
140  
135  
130  
125  
120  
115  
110  
105  
100  
40  
30  
20  
10  
V
= ±15V  
S
SIMULATION  
0
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
TEMPERATURE (°C)  
1m 0.01 0.1  
1
10 100 1k 10k 100k 1M 10M 100M 1G  
FREQUENCY (Hz)  
FIGURE 9. CMRR vs FREQUENCY, VS = ±15V  
FIGURE 10. PSRR vs TEMPERATURE, VS = ±15V  
140  
130  
120  
110  
100  
90  
140  
130  
120  
110  
100  
90  
PSRR+  
PSRR+  
80  
80  
70  
70  
60  
60  
50  
50  
40  
30  
20  
10  
V
= ±15V  
= 1  
= 4pF  
= 10k  
40  
30  
20  
10  
V
= ±5V  
A = 1  
V
S
S
A
V
C
R
C
R
= 4pF  
= 10k  
L
L
PSRR-  
PSRR-  
1k  
L
L
0
0
V
= 1V  
V
= 1V  
CM  
P-P  
CM P-P  
-10  
10  
-10  
10  
100  
1k  
10k  
100k  
1M  
10M  
100  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 11. PSRR vs FREQUENCY, VS = ±15V  
FIGURE 12. PSRR vs FREQUENCY, VS = ±5V  
200  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
-20  
-40  
-60  
-80  
-100  
70  
60  
50  
40  
30  
20  
10  
0
R
= 10k, R = 10Ω  
G
F
A
= 1000  
CL  
PHASE  
R
= 10k, R = 100Ω  
G
F
V
= ±5V & ±15V  
= 4pF  
= 2k  
S
A
= 100  
= 10  
CL  
C
R
V
L
L
= 100mV  
OUT  
P-P  
A
CL  
GAIN  
R
= 10k, R = 1kΩ  
F
G
A
= 1  
CL  
V
R
= ±15V  
= 1MΩ  
S
R
= 0, R = ∞  
F
G
L
-10  
100  
1k  
10k  
100k  
1M  
10M  
1m 0.01 0.1  
1
10 100 1k 10k 100k 1M 10M100M 1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 13. OPEN-LOOP GAIN, PHASE vs FREQUENCY, VS = ±15V  
FIGURE 14. FREQUENCY RESPONSE vs CLOSED LOOP GAIN  
FN7957.1  
August 24, 2012  
9
ISL70218SEH  
Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, TA= +25°C, unless otherwise specified. (Continued)  
1
1
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
R
= OPEN, 100k, 10k  
R = OPEN, 100k, 10k  
L
L
R
= 1k  
R
= 1k  
L
L
V
= ±15V  
= 4pF  
= +1  
V
= ±5V  
= 4pF  
= +1  
R
= 499  
R
= 499  
L
S
S
L
C
C
R
= 100  
R = 100  
L
L
L
L
A
A
V
V
R
= 49.9  
R = 49.9  
L
L
V
= 100mV  
V
= 100mV  
OUT  
p-p  
OUT  
p-p  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
10M  
1M  
10M  
FIGURE 15. GAIN vs FREQUENCY vs RL, VS = ±15V  
FIGURE 16. GAIN vs FREQUENCY vs RL, VS = ±5V  
1
0
1
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
V
V
= ±1.5V  
S
V
S
V
= 10mV  
V = 50mV  
OUT  
= ±5V  
S
OUT  
P-P  
= ±15V  
V
= ±5V  
= 4pF  
= +1  
P-P  
S
C
R
A
= 4pF  
= 10k  
= +1  
L
L
C
V
= 100mV  
L
OUT  
P-P  
P-P  
A
V
V
= 500mV  
V
OUT  
R
= INF  
V
= 100mV  
L
OUT  
P-P  
V
= 1V  
P-P  
OUT  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 18. GAIN vs FREQUENCY vs SUPPLY VOLTAGE  
FIGURE 17. GAIN vs FREQUENCY vs OUTPUT VOLTAGE  
42  
100  
V
R
= ±5V  
= 10k  
V
R
= ±15V  
= 10k  
S
S
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
L
L
90  
V
V
OH  
OH  
80  
70  
60  
50  
40  
V
V
OL  
OL  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
TEMPERATURE (°C)  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
TEMPERATURE (°C)  
FIGURE 19. OUTPUT OVERHEAD VOLTAGE vs TEMPERATURE,  
FIGURE 20. OUTPUT OVERHEAD VOLTAGE vs TEMPERATURE,  
VS = ±5V, RL = 10k  
V
S = ±15V, RL = 10k  
FN7957.1  
August 24, 2012  
10  
ISL70218SEH  
Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, TA= +25°C, unless otherwise specified. (Continued)  
1.0  
1.0  
V
= ±5V AND ±15V  
V
= ±5V AND ±15V  
S
S
+125°C  
+25°C  
+125°C  
+25°C  
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
-55°C  
1.0  
-55°C  
1.0  
0.001  
0.01  
0.1  
LOAD CURRENT (mA)  
10  
0.001  
0.01  
0.1  
LOAD CURRENT (mA)  
10  
FIGURE 21. OUTPUT OVERHEAD VOLTAGE HIGH vs LOAD CURRENT,  
S = ±5V AND ±15V  
FIGURE 22. OUTPUT OVERHEAD VOLTAGE LOW vs LOAD CURRENT,  
VS = ±5V AND ±15V  
V
15  
14  
13  
12  
11  
5
V
A
R
V
= ±15V  
= 2  
4
3
2
V
A
R
V
= ±5V  
= 2  
S
S
V
V
+125°C  
+75°C  
+125°C  
+75°C  
= R = 100k  
= R = 100k  
F
G
F
G
= ±7.5V-DC  
= ±2.5V-DC  
IN  
IN  
-55°C  
10  
-10  
1
-1  
-55°C  
-40°C  
0°C  
-11  
-12  
-13  
-14  
-15  
-40°C  
0°C  
-2  
-3  
-4  
-5  
+25°C  
+25°C  
0
2
4
6
8
10 12 14 16 18 20 22 24  
I-FORCE (mA)  
0
2
4
6
8
10 12 14 16 18 20 22 24  
I-FORCE (mA)  
FIGURE 23. OUTPUT VOLTAGE SWING vs LOAD CURRENT, VS = ±15V  
FIGURE 24. OUTPUT VOLTAGE SWING vs LOAD CURRENT, VS = ±5V  
1600  
1400  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
V
= ±21V  
S
1200  
1000  
800  
V
= ±15V  
S
V
= ±2.25V  
S
600  
400  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
TEMPERATURE (°C)  
0
2
4
6
8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42  
(V)  
V
SUPPLY  
FIGURE 25. SUPPLY CURRENT vs TEMPERATURE vs SUPPLY  
VOLTAGE  
FIGURE 26. SUPPLY CURRENT vs SUPPLY VOLTAGE  
FN7957.1  
August 24, 2012  
11  
ISL70218SEH  
Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, TA= +25°C, unless otherwise specified. (Continued)  
100  
10  
1
100  
10  
1
100  
10  
1
100  
V
= ±18V  
V
= ±5V  
S
S
INPUT NOISE VOLTAGE  
INPUT NOISE VOLTAGE  
10  
INPUT NOISE CURRENT  
INPUT NOISE CURRENT  
1
0.1  
0.1  
0.1  
100k  
0.1  
100k  
0.1  
0.1  
1
10  
100  
1k  
10k  
1
10  
100  
1k  
10k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 28. INPUT NOISE VOLTAGE (en) AND CURRENT (in) vs  
FREQUENCY, VS = ±5V  
FIGURE 27. INPUT NOISE VOLTAGE (en) AND CURRENT (in) vs  
FREQUENCY, VS = ±18V  
500  
500  
V
= ±5V  
= 10k  
V
= ±18V  
= 10k  
S
S
400  
300  
200  
100  
0
400  
300  
200  
100  
0
A
A
V
V
-100  
-200  
-300  
-400  
-500  
-100  
-200  
-300  
-400  
-500  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
TIME (s)  
TIME (s)  
FIGURE 29. INPUT NOISE VOLTAGE 0.1Hz TO 10Hz, VS = ±18V  
FIGURE 30. INPUT NOISE VOLTAGE 0.1Hz TO 10Hz, VS = ±5V  
0.1  
0.1  
-55°C  
V
= ±15V  
= 4pF  
= 2k  
V
= ±15V  
= 4pF  
= 10k  
= 10V  
-55°C  
+25°C  
S
S
C
R
V
C
R
V
L
L
L
L
A
= 10  
A = 10  
V
V
= 10V  
+25°C  
OUT  
P-P  
OUT  
P-P  
+125°C  
0.01  
0.001  
0.01  
0.001  
C-WEIGHTED  
22Hz TO 500kHz  
C-WEIGHTED  
22Hz TO 500kHz  
+125°C  
-55°C  
= 1  
-55°C  
= 1  
+25°C  
+125°C  
+25°C  
+125°C  
A
A
V
V
0.0001  
0.0001  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
FIGURE 31. THD+N vs FREQUENCY vs TEMPERATURE, AV = 1, 10,  
RL = 2k  
FIGURE 32. THD+N vs FREQUENCY vs TEMPERATURE, AV = 1, 10,  
RL = 10k  
FN7957.1  
August 24, 2012  
12  
ISL70218SEH  
Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, TA= +25°C, unless otherwise specified. (Continued)  
1.0  
1.0  
V
C
R
= ±15V  
= 4pF  
= 10k  
V
C
R
= ±15V  
= 4pF  
= 2k  
C-WEIGHTED  
22Hz TO 22kHz  
C-WEIGHTED  
22Hz TO 22kHz  
S
S
L
L
L
L
f = 1kHz  
f = 1kHz  
0.1  
0.1  
A
= 10  
A
= 10  
V
V
+125°C  
+125°C  
-55°C  
-55°C  
+25°C  
+25°C  
0.01  
0.01  
0.001  
0.0001  
0.001  
0.0001  
A
= 1  
25  
A
= 1  
V
-55°C  
30  
V
-55°C  
30  
+125°C  
20  
+25°C  
10  
+125°C  
20  
)
P-P  
+25°C  
10  
0
5
15  
(V  
0
5
15  
(V  
25  
V
V
)
P-P  
OUT  
OUT  
FIGURE 33. THD+N vs OUTPUT VOLTAGE (VOUT) vs TEMPERATURE,  
AV = 1, 10, RL = 2k  
FIGURE 34. THD+N vs OUTPUT VOLTAGE (VOUT) vs TEMPERATURE,  
AV = 1, 10, RL = 10k  
6
2.4  
V
= ±15V  
= 1  
= 2k  
V
= ±5V  
= 1  
S
S
2.0  
1.6  
1.2  
0.8  
A
A
V
V
4
2
R
C
R
C
= 2k  
= 4pF  
L
L
L
L
= 4pF  
0.4  
0
0
-0.4  
-0.8  
-1.2  
-1.6  
-2.0  
-2.4  
-2  
-4  
-6  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
TIME (µs)  
TIME (µs)  
FIGURE 35. LARGE SIGNAL 10V STEP RESPONSE, VS = ±15V  
FIGURE 36. LARGE SIGNAL 4V STEP RESPONSE, VS = ±5V  
100  
6
V
V
= ±15V  
AND  
= ±5V  
= 1  
= 2k  
= 4pF  
S
V
V
= ±5V  
= ±5.9V  
S
80  
60  
5
4
IN  
S
INPUT  
A
V
3
40  
R
C
L
L
2
20  
1
OUTPUT  
0
0
-20  
-40  
-60  
-80  
-100  
-1  
-2  
-3  
-4  
-5  
-6  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8  
TIME (µs)  
2
0
1
2
3
4
TIME (ms)  
FIGURE 37. SMALL SIGNAL TRANSIENT RESPONSE,  
VS = ±5V, ±15V  
FIGURE 38. NO PHASE REVERSAL  
FN7957.1  
August 24, 2012  
13  
ISL70218SEH  
Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, TA= +25°C, unless otherwise specified. (Continued)  
0
0
-40  
-80  
200  
160  
120  
80  
20  
16  
12  
8
INPUT  
V
A
R
V
= ±15V  
= 100  
= 10k  
S
V
INPUT  
L
-4  
-8  
-12  
= 100mV  
IN  
P-P  
OVERDRIVE = 1V  
OUTPUT  
-120  
-160  
-200  
OUTPUT  
V
= ±15V  
= 100  
= 10k  
S
A
V
-16  
-20  
40  
4
R
V
L
= 100mV  
IN  
P-P  
OVERDRIVE = 1V  
0
0
40  
0
4
8
12  
16  
20  
24  
28 32 36  
40  
0
4
8
12  
16  
20  
24  
28  
32  
36  
TIME (µs)  
TIME (µs)  
FIGURE 39. POSITIVE OUTPUT OVERLOAD RESPONSE TIME,  
S = ±15V  
FIGURE 40. NEGATIVE OUTPUT OVERLOAD RESPONSE TIME,  
VS = ±15V  
V
6
5
4
3
2
60  
50  
40  
30  
20  
0
-10  
-20  
-30  
-40  
-50  
-60  
0
V
= ±5V  
= 100  
= 10k  
S
A
V
-1  
-2  
-3  
-4  
-5  
-6  
INPUT  
R
V
L
= 50mV  
IN  
P-P  
OVERDRIVE = 1V  
OUTPUT  
OUTPUT  
INPUT  
V
A
R
V
= ±5V  
= 100  
= 10k  
S
V
1
0
L
10  
0
= 50mV  
IN  
P-P  
OVERDRIVE = 1V  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
0
4
8
12  
16  
20  
24  
28 32 36 40  
TIME (µs)  
TIME (µs)  
FIGURE 41. POSITIVE OUTPUT OVERLOAD RESPONSE TIME,  
S = ±5V  
FIGURE 42. NEGATIVE OUTPUT OVERLOAD RESPONSE TIME,  
VS = ±5V  
V
100  
10  
100  
V
= ±15V  
V
= ±5V  
S
S
A
= 10  
A
= 10  
V
V
10  
1
A
= 100  
A
= 100  
V
V
1
0.10  
0.01  
0.10  
0.01  
A = 1  
V
A
= 1  
V
1
10  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 43. OUTPUT IMPEDANCE vs FREQUENCY, VS = ±15V  
FIGURE 44. OUTPUT IMPEDANCE vs FREQUENCY, VS = ±5V  
FN7957.1  
August 24, 2012  
14  
ISL70218SEH  
Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, TA= +25°C, unless otherwise specified. (Continued)  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
V
V
= ±15V  
V
V
= ±5V  
S
S
= 100mV  
= 100mV  
OUT  
P-P  
OUT  
P-P  
A
= 1  
A
= 1  
V
V
A
= 10  
A
= 10  
V
V
A
= -1  
V
A
= -1  
V
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.010  
0.100  
1
10  
100  
LOAD CAPACITANCE (nF)  
LOAD CAPACITANCE (nF)  
FIGURE 45. OVERSHOOT vs CAPACITIVE LOAD, VS = ±15V  
FIGURE 46. OVERSHOOT vs CAPACITIVE LOAD, VS = ±5V  
30  
30  
V
R
= ±15V  
= 10k  
V
= ±15V  
= 1  
S
S
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
A
L
V
I
-SINK  
SC  
6
4
2
I
-SOURCE  
SC  
0
1k  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
TEMPERATURE (°C)  
10k  
100k  
1M  
FREQUENCY (Hz)  
FIGURE 47. IMAX OUTPUT VOLTAGE vs FREQUENCY  
FIGURE 48. SHORT CIRCUIT CURRENT vs TEMPERATURE,  
S = ±15V  
V
FN7957.1  
August 24, 2012  
15  
ISL70218SEH  
Applications Information  
Functional Description  
R
F
V+  
The ISL70218SEH is a dual, 3.2MHz, single or dual supply,  
rail-to-rail output amplifier with a common mode input voltage  
range extending to a range of 0.5V below the V- rail. The input  
stage is optimized for precision sensing of ground-referenced  
signals in single-supply applications. The input stage is able to  
handle large input differential voltages without phase inversion,  
making this amplifier suitable for high-voltage comparator  
applications. The bipolar design features high open loop gain and  
excellent DC input and output temperature stability. This op amp  
features very low quiescent current of 850µA, and low  
temperature drift. The device is fabricated in a new precision 40V  
complementary bipolar DI process and is immune from latch-up  
for up to a 36V supply range.  
R
-
IN  
-
V
-
IN  
R
+
IN  
+
V
+
R
IN  
L
R
G
V-  
FIGURE 49. INPUT ESD DIODE CURRENT LIMITING  
Output Drive Capability  
The bipolar rail-to-rail output stage features low saturation levels  
that enable an output voltage swing to less than 15mV when the  
total output load (including feedback resistance) is held below  
50µA (Figures 21 and 22). With ±15V supplies, this can be  
achieved by using feedback resistor values >300k.  
Operating Voltage Range  
The op amp is designed to operate over a single supply range of 3V  
to 36V or a split supply voltage range of +1.8V/-1.2V to ±18V. The  
device is fully characterized at 30V (±15V). Both DC and AC  
performance remain virtually unchanged over the complete  
operating voltage range. Parameter variation with operating  
voltage is shown in the “Typical Performance Curves” beginning on  
page 8.  
The output stage is internally current limited. Output current limit  
over temperature is shown in Figures 23 and 24. The amplifiers  
can withstand a short circuit to either rail as long as the power  
dissipation limits are not exceeded. This applies to only one  
amplifier at a time for the dual op amp. Continuous operation  
under these conditions may degrade long-term reliability.  
The input common mode voltage to the V+ rail (V+ - 1.8V over the  
full temperature range) may limit amplifier operation when  
operating from split V+ and V- supplies. Figure 4 shows the  
common mode input voltage range variation over temperature.  
The amplifiers perform well when driving capacitive loads  
(Figures 45 and 46). The unity gain, voltage follower (buffer)  
configuration provides the highest bandwidth but is also the  
most sensitive to ringing produced by load capacitance found in  
BNC cables. Unity gain overshoot is limited to 35% at  
capacitance values to 0.33nF. At gains of 10 and higher, the  
device is capable of driving more than 10nF without significant  
overshoot.  
Input Stage Performance  
The ISL70218SEH PNP input stage has a common mode input  
range extending up to 0.5V below ground at +25°C. Full amplifier  
performance is guaranteed for input voltage down to ground (V-)  
over the -55°C to +125°C temperature range. For common mode  
voltages down to -0.5V below ground (V-), the amplifiers are fully  
functional, but performance degrades slightly over the full  
temperature range. This feature provides excellent CMRR, AC  
performance, and DC accuracy when amplifying low-level,  
ground-referenced signals.  
Output Phase Reversal  
Output phase reversal is a change of polarity in the amplifier  
transfer function when the input voltage exceeds the supply  
voltage. The ISL70218SEH is immune to output phase reversal  
out to 0.5V beyond the rail (VABS MAX) limit (Figure 38).  
The input stage has a maximum input differential voltage equal  
to a diode drop greater than the supply voltage and does not  
contain the back-to-back input protection diodes found on many  
similar amplifiers. This feature enables the device to function as  
a precision comparator by maintaining very high input  
impedance for high-voltage differential input comparator  
voltages. The high differential input impedance also enables the  
device to operate reliably in large signal pulse applications,  
without the need for anti-parallel clamp diodes required on  
MOSFET and most bipolar input stage op amps. Thus, input  
signal distortion caused by nonlinear clamps under high slew  
rate conditions is avoided.  
Single Channel Usage  
The ISL70218SEH is a dual op amp. If the application requires  
only one channel, the user must configure the unused channel to  
prevent it from oscillating. The unused channel oscillates if the  
input and output pins are floating. This results in  
higher-than-expected supply currents and possible noise  
injection into the channel being used. The proper way to prevent  
oscillation is to short the output to the inverting input, and  
ground the positive input (Figure 50).  
-
In applications in which one or both amplifier input terminals is  
at risk of exposure to voltages beyond the supply rails,  
current-limiting resistors may be needed at each input terminal  
(see Figure 49, RIN+, RIN-) to limit current through the  
power-supply ESD diodes to 20mA.  
+
FIGURE 50. PREVENTING OSCILLATIONS IN UNUSED CHANNELS  
FN7957.1  
August 24, 2012  
16  
ISL70218SEH  
Power Dissipation  
It is possible to exceed the +150°C maximum junction  
temperatures under certain load and power supply conditions. It  
is therefore important to calculate the maximum junction  
temperature (TJMAX) for all applications to determine if power  
supply voltages, load conditions, or package type need to be  
modified to remain in the safe operating area. These parameters  
are related using Equation 1:  
(EQ. 1)  
T
= T  
+ θ xPD  
MAX JA MAXTOTAL  
JMAX  
where  
• PDMAXTOTAL is the sum of the maximum power dissipation of  
each amplifier in the package (PDMAX  
)
• TMAX = Maximum ambient temperature  
ΘJA = Thermal resistance of the package  
PDMAX for each amplifier can be calculated using Equation 2:  
V
OUTMAX  
R
L
(EQ. 2)  
------------------------  
PD  
= V × I  
+ (V - V ) ×  
OUTMAX  
MAX  
S
qMAX  
S
where  
• PDMAX = Maximum power dissipation of one amplifier  
• VS = Total supply voltage  
• IqMAX = Maximum quiescent supply current of one amplifier  
• VOUTMAX = Maximum output voltage swing of the application  
• RL = Load resistance  
FN7957.1  
August 24, 2012  
17  
ISL70218SEH  
TOP METALLIZATION  
Package Characteristics  
Weight of Packaged Device  
Type: AlCu (99.5%/0.5%)  
Thickness: 30kÅ  
0. 4029 grams (Typical)  
BACKSIDE FINISH  
Lid Characteristics  
Silicon  
Finish: Gold  
Case Isolation to Any Lead: 20 x 109 (min)  
PROCESS  
Dielectrically Isolated Complementary Bipolar - PR40  
Die Characteristics  
ASSEMBLY RELATED INFORMATION  
Die Dimensions  
SUBSTRATE POTENTIAL  
1565µm x 2125µm (62mils x 84mils)  
Thickness: 355µm ± 25µm (14 mils ± 1 mil)  
Floating  
ADDITIONAL INFORMATION  
Interface Materials  
WORST CASE CURRENT DENSITY  
< 2 x 105 A/cm2  
GLASSIVATION  
Type: Nitrox  
Thickness: 15kÅ  
Metallization Mask Layout  
V+  
OUT_A  
OUT_B  
-IN_A  
+IN_A  
-IN_B  
+IN_B  
V-  
FN7957.1  
August 24, 2012  
18  
ISL70218SEH  
TABLE 1. DIE LAYOUT X-Y COORDINATES  
X
(µm)  
Y
(µm)  
dX  
(µm)  
dY  
(µm)  
BOND WIRES  
PER PAD  
PAD NAME  
OUT_A  
-IN_A  
+IN_A  
V-  
PAD NUMBER  
1
6
16.5  
-3  
1670  
1015  
771  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
70  
1
1
1
1
1
1
1
1
7
-3  
8
0
0
+IN_B  
-IN_B  
OUT_B  
V+  
12  
11  
10  
9
1287  
1287  
1267.5  
1284  
719.5  
963.5  
1115.5  
1746.5  
NOTE:  
6. Origin of coordinates is the centroid of pad 8.  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make  
sure you have the latest revision.  
DATE  
REVISION  
FN7957.1  
CHANGE  
August 24, 2012  
1. Electrical Specification tables (pages 3-6) , added specs on overshoot and rise/fall times.  
2. Page 3 - Added Abs Max in a non radiation environment  
Changed ESD HBM from 3kV to 2kV  
Changed ESD CDM from 2kV to 750V  
February 16, 2012  
FN7957.0  
Initial Release  
Products  
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products  
address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks.  
Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a  
complete list of Intersil product families.  
For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on  
intersil.com: ISL70218SEH  
To report errors or suggestions for this datasheet, please go to: www.intersil.com/askourstaff  
FITs are available from our website at: http://rel.intersil.com/reports/search.php  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7957.1  
August 24, 2012  
19  
ISL70218SEH  
Ceramic Metal Seal Flatpack Packages (Flatpack)  
K10.A MIL-STD-1835 CDFP3-F10 (F-4A, CONFIGURATION B)  
10 LEAD CERAMIC METAL SEAL FLATPACK PACKAGE  
e
A
INCHES MILLIMETERS  
MIN  
A
D
SYMBOL  
MAX  
0.115  
0.022  
0.019  
0.009  
0.006  
0.290  
0.260  
0.280  
-
MIN  
1.14  
0.38  
0.38  
0.10  
0.10  
-
MAX  
2.92  
0.56  
0.48  
0.23  
0.15  
7.37  
6.60  
7.11  
-
NOTES  
-A-  
-B-  
PIN NO. 1  
ID AREA  
A
b
0.045  
0.015  
0.015  
0.004  
0.004  
-
-
b
-
E1  
b1  
c
-
S1  
0.004  
H
A - B  
D
0.036  
H
A - B  
D
M
S
S
M
S
S
-
c1  
D
E
-
3
0.240  
-
6.10  
-
-
C
Q
E
E1  
E2  
E3  
e
3
-D-  
A
0.125  
0.030  
3.18  
0.76  
-
-H-  
-C-  
-
-
7
L
E2  
L
E3  
E3  
0.050 BSC  
1.27 BSC  
-
SEATING AND  
BASE PLANE  
c1  
LEAD FINISH  
k
0.008  
0.250  
0.026  
0.005  
-
0.015  
0.370  
0.045  
-
0.20  
6.35  
0.66  
0.13  
-
0.38  
9.40  
1.14  
-
2
L
-
BASE  
METAL  
Q
S1  
M
N
8
(c)  
6
b1  
0.0015  
0.04  
-
M
M
(b)  
10  
10  
-
SECTION A-A  
Rev. 0 3/07  
NOTES:  
1. Index area: A notch or a pin one identification mark shall be located ad-  
jacent to pin one and shall be located within the shaded area shown.  
The manufacturer’s identification shall not be used as a pin one identi-  
fication mark. Alternately, a tab (dimension k) may be used to identify  
pin one.  
2. If a pin one identification mark is used in addition to a tab, the limits of  
dimension k do not apply.  
3. This dimension allows for off-center lid, meniscus, and glass overrun.  
4. Dimensions b1 and c1 apply to lead base metal only. Dimension M ap-  
plies to lead plating and finish thickness. The maximum limits of lead  
dimensions b and c or M shall be measured at the centroid of the fin-  
ished lead surfaces, when solder dip or tin plate lead finish is applied.  
5. N is the maximum number of terminal positions.  
6. Measure dimension S1 at all four corners.  
7. For bottom-brazed lead packages, no organic or polymeric materials  
shall be molded to the bottom of the package to cover the leads.  
8. Dimension Q shall be measured at the point of exit (beyond the menis-  
cus) of the lead from the body. Dimension Q minimum shall be reduced  
by 0.0015 inch (0.038mm) maximum when solder dip lead finish is  
applied.  
9. Dimensioning and tolerancing per ANSI Y14.5M - 1982.  
10. Controlling dimension: INCH.  
FN7957.1  
August 24, 2012  
20  

相关型号:

ISL70218SRH

Rad Hard Dual 36V Precision Single-Supply, Rail-to-Rail Output, Low-Power Operational Amplifiers
INTERSIL

ISL70218SRHF

Rad Hard Dual 36V Precision Single-Supply, Rail-to-Rail Output, Low-Power Operational Amplifiers
INTERSIL

ISL70218SRHMEVAL1Z

Rad Hard Dual 36V Precision Single-Supply, Rail-to-Rail Output, Low-Power Operational Amplifiers
INTERSIL

ISL70218SRHMF

Rad Hard Dual 36V Precision Single-Supply, Rail-to-Rail Output, Low-Power Operational Amplifiers
INTERSIL

ISL70218SRHMF

DUAL OP-AMP, 3.2MHz BAND WIDTH, CDFP10, ROHS COMPLIANT, HERMETIC SEALED, CERAMIC, FLAT PACK-10
RENESAS

ISL70218SRHMX

Rad Hard Dual 36V Precision Single-Supply, Rail-to-Rail Output, Low-Power Operational Amplifiers
INTERSIL

ISL70218SRHMX

DUAL OP-AMP, 3.2MHz BAND WIDTH, CUUC8, DIE-8
RENESAS

ISL70218SRHX

Rad Hard Dual 36V Precision Single-Supply, Rail-to-Rail Output, Low-Power Operational Amplifiers
INTERSIL

ISL70218SRHX/SAMPLE

DUAL OP-AMP, 3.2MHz BAND WIDTH, CUUC8, DIE-8
RENESAS

ISL70219ASEHEV1Z

Operational Amplifier
RENESAS

ISL70227MHEVAL1Z

36V Rad Hard Dual Precision Operational Amplifier
INTERSIL

ISL70227SEH

36V Rad Hard Dual Precision Operational Amplifier
INTERSIL