ISL8841AABZ [INTERSIL]

High Performance Industry Standard Single-Ended Current Mode PWM Controller; 高性能工业标准的单端电流模式PWM控制器
ISL8841AABZ
型号: ISL8841AABZ
厂家: Intersil    Intersil
描述:

High Performance Industry Standard Single-Ended Current Mode PWM Controller
高性能工业标准的单端电流模式PWM控制器

控制器
文件: 总15页 (文件大小:302K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISL8840A, ISL8841A, ISL8842A,  
ISL8843A, ISL8844A, ISL8845A  
®
Data Sheet  
April 18, 2007  
FN6320.3  
High Performance Industry Standard  
Single-Ended Current Mode PWM  
Controller  
Features  
• 1A MOSFET gate driver  
• 90μA start-up current, 125μA maximum  
The ISL884xA is a high performance drop-in replacement for  
the popular 28C4x and 18C4x PWM controllers suitable for a  
wide range of power conversion applications including  
boost, flyback, and isolated output configurations. Its fast  
signal propagation and output switching characteristics  
make this an ideal product for existing and new designs.  
• 35ns propagation delay current sense to output  
• Fast transient response with peak current mode control  
• 30V operation  
• Adjustable switching frequency to 2MHz  
• 20ns rise and fall times with 1nF output load  
Features include 30V operation, low operating current, 90μA  
start-up current, adjustable operating frequency to 2MHz,  
and high peak current drive capability with 20ns rise and fall  
times.  
• Trimmed timing capacitor discharge current for accurate  
deadtime/maximum duty cycle control  
• 1.5MHz bandwidth error amplifier  
PART NUMBER  
ISL8840A  
ISL8841A  
ISL8842A  
ISL8843A  
ISL8844A  
ISL8845A  
RISING UVLO  
7.0  
MAX. DUTY CYCLE  
• Tight tolerance voltage reference over line, load and  
temperature  
100%  
50%  
7.0  
• ±3% current limit threshold  
14.4V  
8.4V  
100%  
100%  
50%  
• Pb-free plus anneal available and ELV, WEEE, RoHS  
Compliant  
14.4V  
8.4V  
Applications  
50%  
Telecom and datacom power  
• Wireless base station power  
• File server power  
Pinout  
ISL8840A, ISL8841A, ISL8842A, ISL8843A, ISL8844A, ISL8845A  
(8 LD SOIC, MSOP)  
• Industrial power systems  
• PC power supplies  
TOP VIEW  
COMP  
FB  
1
2
3
4
8
7
VREF  
VDD  
OUT  
GND  
• Isolated buck and flyback regulators  
• Boost regulators  
CS  
6
5
RTCT  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2005, 2006, 2007. All Rights Reserved.  
1
All other trademarks mentioned are the property of their respective owners.  
ISL8840A, ISL8841A, ISL8842A, ISL8843A, ISL8844A, ISL8845A  
Ordering Information (Continued)  
Ordering Information  
PART  
NUMBER*  
PART  
TEMP.  
PACKAGE PKG.  
PART  
NUMBER*  
PART  
TEMP.  
PACKAGE PKG.  
MARKING RANGE (°C) (Pb-free) DWG. #  
MARKING RANGE (°C) (Pb-free) DWG. #  
ISL8843AMBZ 8843 AMBZ  
(See Note)  
-55 to +125 8 Ld SOIC M8.15  
-55 to +125 8 Ld MSOP M8.118  
-40 to +105 8 Ld SOIC M8.15  
-40 to +105 8 Ld MSOP M8.118  
-55 to +125 8 Ld SOIC M8.15  
-55 to +125 8 Ld MSOP M8.118  
-40 to +105 8 Ld SOIC M8.15  
-40 to +105 8 Ld MSOP M8.118  
-55 to +125 8 Ld SOIC M8.15  
-55 to +125 8 Ld MSOP M8.118  
ISL8840AABZ 8840 AABZ  
(See Note)  
-40 to +105 8 Ld SOIC M8.15  
-40 to +105 8 Ld MSOP M8.118  
-55 to +125 8 Ld SOIC M8.15  
-55 to +125 8 Ld MSOP M8.118  
-40 to +105 8 Ld SOIC M8.15  
-40 to +105 8 Ld MSOP M8.118  
-55 to +125 8 Ld SOIC M8.15  
-55 to +125 8 Ld MSOP M8.118  
-40 to +105 8 Ld SOIC M8.15  
-40 to +105 8 Ld MSOP M8.118  
-55 to +125 8 Ld SOIC M8.15  
-55 to +125 8 Ld MSOP M8.118  
-40 to +105 8 Ld SOIC M8.15  
-40 to +105 8 Ld MSOP M8.118  
ISL8843AMUZ 43AMZ  
(See Note)  
ISL8840AAUZ 40AAZ  
(See Note)  
ISL8844AABZ 8844 AABZ  
(See Note)  
ISL8840AMBZ 8840 AMBZ  
(See Note)  
ISL8844AAUZ 44AAZ  
(See Note)  
ISL8840AMUZ 40AMZ  
(See Note)  
ISL8844AMBZ 8844 AMBZ  
(See Note)  
ISL8841AABZ 8841 AABZ  
(See Note)  
ISL8844AMUZ 44AMZ  
(See Note)  
ISL8841AAUZ 41AAZ  
(See Note)  
ISL8845AABZ 8845 AABZ  
(See Note)  
ISL8841AMBZ 8841 AMBZ  
(See Note)  
ISL8845AAUZ 45AAZ  
(See Note)  
ISL8841AMUZ 41AMZ  
(See Note)  
ISL8845AMBZ 8845 AMBZ  
(See Note)  
ISL8842AABZ 8842 AABZ  
(See Note)  
ISL8845AMUZ 45AMZ  
(See Note)  
ISL8842AAUZ 42AAZ  
(See Note)  
*Add “-T” suffix for tape and reel.  
ISL8842AMBZ 8842 AMBZ  
(See Note)  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free  
material sets; molding compounds/die attach materials and 100%  
matte tin plate termination finish, which are RoHS compliant and  
compatible with both SnPb and Pb-free soldering operations. Intersil  
Pb-free products are MSL classified at Pb-free peak reflow  
temperatures that meet or exceed the Pb-free requirements of  
IPC/JEDEC J STD-020.  
ISL8842AMUZ 42AMZ  
(See Note)  
ISL8843AABZ 8843 AABZ  
(See Note)  
ISL8843AAUZ 43AAZ  
(See Note)  
FN6320.3  
April 18, 2007  
2
Functional Block Diagram  
V
VREF  
V
DD  
REF  
5.00V  
START/STOP  
UV COMPARATOR  
ENABLE  
V
OK  
DD  
+
-
VREF FAULT  
VREF  
-
+
+
-
UV COMPARATOR  
GND  
A
4.65V 4.80V  
2.5V  
A = 0.5  
PWM  
COMPARATOR  
CS  
+
-
100mV  
ONLY  
ISL8841A/  
ISL8844A/  
ISL8845A  
2R  
1.1V  
CLAMP  
+
-
FB  
VF TOTAL = 1.15V  
ERROR  
R
Q
T
AMPLIFIER  
COMP  
Q
OUT  
S
R
Q
Q
36k  
RESET  
DOMINANT  
VREF  
100k  
2.9V  
1.0V  
ON  
150k  
OSCILLATOR  
COMPARATOR  
<10ns  
-
RTCT  
+
CLOCK  
8.4mA  
ON  
Typical Application - 48V Input Dual Output Flyback  
CR5  
+3.3V  
+1.8V  
C21  
+ C15  
+ C16  
T1  
R21  
V
+
IN  
C4  
R3  
CR4  
+
C22  
+
C17  
C6  
C20  
C2  
C19  
CR2  
C5  
RETURN  
CR6  
Q1  
R1  
36V TO 75V  
R16  
U2  
R17  
R18  
C1  
C3  
R19  
C14  
R4  
R22  
R15  
C13  
U3  
V
-
IN  
R27  
R20  
U4  
COMP  
R26  
VREF  
V
CS  
FB  
DD  
OUT  
RTCT  
GND  
ISL884xA  
R6  
R10  
CR1  
Q3  
C12  
C8  
VR1  
C11  
R13  
Typical Application - Boost Converter  
R8  
C10  
CR1  
L1  
VIN+  
+VOUT  
+
C2  
C3  
RETURN  
R4  
Q1  
R5  
C9  
C1  
R1  
R2  
U1  
R7  
VIN+  
VREF  
VDD  
OUT  
COMP  
FB  
C8  
R6  
CS  
C4  
RTCT  
GND  
R3  
C5  
C6  
C7  
VIN-  
ISL8840A, ISL8841A, ISL8842A, ISL8843A, ISL8844A, ISL8845A  
Absolute Maximum Ratings  
Thermal Information  
Supply Voltage, V  
. . . . . . . . . . . . . . . . . . . . . GND -0.3V to +30V  
Thermal Resistance (Typical, Note 1)  
θ
(°C/W)  
JA  
DD  
OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GND -0.3V to V  
+ 0.3V  
DD  
SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
MSOP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Maximum Junction Temperature . . . . . . . . . . . . . . .-55°C to +150°C  
Maximum Storage Temperature Range. . . . . . . . . .-65°C to +150°C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . +300°C  
(SOIC, MSOP - Lead Tips Only)  
100  
130  
Signal Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GND -0.3V to 6.0V  
Peak GATE Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1A  
ESD Classification  
Human Body Model (Per JESD22-A114C.01) . . . . . . . . . . .2000V  
Machine Model (Per EIA/JESD22-A115-A) . . . . . . . . . . . . . .200V  
Charged Device Model (Per JESD22-C191-A) . . . . . . . . . .1000V  
Operating Conditions  
Temperature Range  
ISL884xAAxZ . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +105°C  
ISL884xAMxZ. . . . . . . . . . . . . . . . . . . . . . . . . . . .-55°C to +125°C  
Supply Voltage Range (Typical, Note 2)  
ISL884xA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9V to 30V  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
+150°C max junction temperature is intended for short periods of time to prevent shortening the lifetime. Constantly operated at +150°C may shorten the life of the part.  
NOTES:  
1. θ is measured with the component mounted on a high effective thermal conductivity test board in free air. See Technical Brief TB379 for details.  
JA  
2. All voltages are with respect to GND.  
Electrical Specifications ISL884xAA - Recommended operating conditions unless otherwise noted. Refer to Block Diagram and  
Typical Application schematic onpage 3 and page 4. V  
= 15V, R = 10kΩ, C = 3.3nF, T = -40 to +105°C  
DD  
T
T
A
(Note 3). Typical values are at T = +25°C  
A
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
UNDERVOLTAGE LOCKOUT  
START Threshold (ISL8840A, ISL8841A)  
START Threshold (ISL8843A, ISL8845A)  
START Threshold (ISL8842A, ISL8844A)  
STOP Threshold (ISL8840A, ISL8841A)  
STOP Threshold (ISL8843A, ISL8845A)  
STOP Threshold (ISL8842A, ISL8844A)  
Hysteresis (ISL8840A, ISL8841A)  
6.5  
7.0  
8.4  
7.5  
9.0  
15.3  
6.9  
8.0  
9.6  
-
V
V
8.0  
(Note 6)  
13.3  
14.3  
6.6  
7.6  
8.8  
0.4  
0.8  
5.4  
90  
V
6.1  
V
7.3  
V
8.0  
V
-
-
-
-
-
-
V
Hysteresis (ISL8843A, ISL8845A)  
-
V
Hysteresis (ISL8842A, ISL8844A)  
-
V
Startup Current, I  
DD  
V
< START Threshold  
125  
4.0  
5.5  
μA  
mA  
mA  
DD  
Operating Current, I  
(Note 4)  
2.9  
4.75  
DD  
Operating Supply Current, I  
REFERENCE VOLTAGE  
Overall Accuracy  
Includes 1nF GATE loading  
D
Over line (V  
= 12V to 30V), load,  
4.925  
5.000  
5.050  
V
DD  
temperature  
Long Term Stability  
Current Limit, Sourcing  
Current Limit, Sinking  
CURRENT SENSE  
Input Bias Current  
CS Offset Voltage  
T
= +125°C, 1000 hours (Note 5)  
-
-20  
5
5
-
-
-
-
mV  
mA  
mA  
A
-
V
V
V
= 1V  
-1.0  
95  
-
1.0  
105  
1.30  
μA  
mV  
V
CS  
CS  
CS  
= 0V (Note 5)  
= 0V (Note 5)  
100  
1.15  
COMP to PWM Comparator Offset Voltage  
0.80  
FN6320.3  
April 18, 2007  
6
ISL8840A, ISL8841A, ISL8842A, ISL8843A, ISL8844A, ISL8845A  
Electrical Specifications ISL884xAA - Recommended operating conditions unless otherwise noted. Refer to Block Diagram and  
Typical Application schematic onpage 3 and page 4. V  
= 15V, R = 10kΩ, C = 3.3nF, T = -40 to +105°C  
DD  
T
T
A
(Note 3). Typical values are at T = +25°C (Continued)  
A
PARAMETER  
Input Signal, Maximum  
Gain, A = ΔV /ΔV  
TEST CONDITIONS  
MIN  
0.97  
2.5  
-
TYP  
MAX  
1.03  
3.5  
UNITS  
V
1.00  
3.0  
35  
0 < V < 910mV, V = 0V  
CS FB  
V/V  
ns  
CS  
COMP  
CS  
CS to OUT Delay  
55  
ERROR AMPLIFIER  
Open Loop Voltage Gain  
Unity Gain Bandwidth  
Reference Voltage  
FB Input Bias Current  
COMP Sink Current  
COMP Source Current  
COMP VOH  
(Note 5)  
(Note 5)  
60  
1.0  
90  
-
dB  
MHz  
V
1.5  
-
V
V
V
V
V
V
= V  
2.475  
-1.0  
1.0  
2.500  
2.530  
FB  
FB  
COMP  
= 0V  
-0.2  
1.0  
μA  
mA  
mA  
V
= 1.5V, V = 2.7V  
FB  
-
-
-
COMP  
COMP  
= 1.5V, V = 2.3V  
FB  
-0.4  
4.80  
0.4  
-
VREF  
1.0  
-
= 2.3V  
-
FB  
FB  
COMP VOL  
= 2.7V  
-
V
PSRR  
Frequency = 120Hz, V  
30V (Note 5)  
= 12V to  
60  
80  
dB  
DD  
OSCILLATOR  
Frequency Accuracy  
Initial, T = +25°C  
48  
51  
0.2  
-
53  
1.0  
5
kHz  
%
A
Frequency Variation with V  
Temperature Stability  
T = +25°C, (f  
A
- f  
)/f  
-
DD  
30V 10V 30V  
(Note 5)  
-
-
%
Amplitude, Peak to Peak  
Static Test  
Static Test  
RTCT = 2.0V  
1.75  
1.0  
7.8  
-
V
RTCT Discharge Voltage (Valley Voltage)  
-
-
V
Discharge Current  
OUTPUT  
6.5  
8.5  
mA  
Gate VOH  
V
to OUT, I  
OUT  
= -200mA  
= 200mA  
-
-
-
-
-
-
1.0  
1.0  
1.0  
20  
20  
-
2.0  
2.0  
-
V
V
DD  
Gate VOL  
OUT to GND, I  
OUT  
Peak Output Current  
Rise Time  
C
C
C
= 1nF (Note 5)  
= 1nF (Note 5)  
= 1nF (Note 5)  
A
OUT  
OUT  
OUT  
40  
40  
1.2  
ns  
ns  
V
Fall Time  
GATE VOL UVLO Clamp Voltage  
PWM  
VDD = 5V, I = 1mA  
LOAD  
Maximum Duty Cycle  
(ISL8840A, ISL8842A, ISL8843A)  
COMP = VREF  
COMP = VREF  
COMP = GND  
94.0  
47.0  
-
96.0  
48.0  
-
-
-
%
%
%
Maximum Duty Cycle  
(ISL8841A, ISL8844A, ISL8845A)  
Minimum Duty Cycle  
NOTES:  
0
3. Specifications at -40°C and +105°C are guaranteed by +25°C test with margin limits.  
4. This is the V current consumed when the device is active but not switching. Does not include gate drive current.  
DD  
5. These parameters, although guaranteed, are not 100% tested in production.  
6. Adjust V  
above the start threshold and then lower to 15V.  
DD  
FN6320.3  
April 18, 2007  
7
ISL8840A, ISL8841A, ISL8842A, ISL8843A, ISL8844A, ISL8845A  
Electrical Specifications ISL884xAM - Recommended operating conditions unless otherwise noted. Refer to Block Diagram and  
Typical Application schematic. V  
= 15V, RT = 10kΩ, CT = 3.3nF, T = -55 to +125°C (Note 7), Typical values  
A
DD  
are at T = +25°C  
A
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
UNDERVOLTAGE LOCKOUT  
START Threshold (ISL8840A, ISL8841A)  
START Threshold (ISL8843A, ISL8845A)  
START Threshold (ISL8842A, ISL8844A)  
STOP Threshold (ISL8840A, ISL8841A)  
STOP Threshold (ISL8843A, ISL8845A)  
STOP Threshold (ISL8842A, ISL8844A)  
Hysteresis (ISL8840A, ISL8841A)  
6.5  
7.0  
8.4  
14.3  
6.6  
7.6  
8.8  
0.4  
0.8  
5.4  
90  
7.5  
9.0  
15.3  
6.9  
8.0  
9.6  
-
V
V
8.0  
(Note 10)  
13.3  
V
6.1  
V
7.3  
V
8.0  
V
-
-
-
-
-
-
V
Hysteresis (ISL8843A, ISL8845A)  
-
V
Hysteresis (ISL8842A, ISL8844A)  
-
V
Startup Current, I  
DD  
V
< START Threshold  
125  
4.0  
5.5  
μA  
mA  
mA  
DD  
Operating Current, I  
(Note 8)  
2.9  
4.75  
DD  
Operating Supply Current, I  
REFERENCE VOLTAGE  
Overall Accuracy  
Includes 1nF GATE loading  
D
Over line (V  
= 12V to 30V), load,  
4.900  
5.000  
5.050  
V
DD  
temperature  
Long Term Stability  
Current Limit, Sourcing  
Current Limit, Sinking  
CURRENT SENSE  
Input Bias Current  
CS Offset Voltage  
T
= +125°C, 1000 hours (Note 9)  
-
-20  
5
5
-
-
-
-
mV  
mA  
mA  
A
-
V
V
V
= 1V  
-1.0  
95  
-
1.0  
105  
1.30  
1.03  
3.5  
μA  
mV  
V
CS  
CS  
CS  
= 0V (Note 9)  
= 0V (Note 9)  
100  
1.15  
1.00  
3.0  
COMP to PWM Comparator Offset Voltage  
Input Signal, Maximum  
0.80  
0.97  
2.5  
-
V
Gain, A  
= ΔV  
/ΔV  
0 < V < 910mV, V = 0V  
CS FB  
V/V  
ns  
CS  
COMP  
CS  
CS to OUT Delay  
35  
60  
ERROR AMPLIFIER  
Open Loop Voltage Gain  
Unity Gain Bandwidth  
Reference Voltage  
FB Input Bias Current  
COMP Sink Current  
COMP Source Current  
COMP VOH  
(Note 9)  
(Note 9)  
60  
1.0  
90  
-
dB  
MHz  
V
1.5  
-
V
V
V
V
V
V
= V  
2.460  
-1.0  
1.0  
2.500  
2.535  
FB  
FB  
COMP  
= 0V  
-0.2  
1.0  
μA  
mA  
mA  
V
= 1.5V, V = 2.7V  
FB  
-
-
-
COMP  
COMP  
= 1.5V, V = 2.3V  
FB  
-0.4  
4.80  
0.4  
-
VREF  
1.0  
-
= 2.3V  
-
FB  
FB  
COMP VOL  
= 2.7V  
-
V
PSRR  
Frequency = 120Hz, V  
30V (Note 9)  
= 12V to  
60  
80  
dB  
DD  
OSCILLATOR  
Frequency Accuracy  
Initial, T = +25°C  
48  
-
51  
0.2  
-
53  
1.0  
5
kHz  
%
A
Frequency Variation with V  
Temperature Stability  
T
= +25°C, (f  
- f  
)/f  
DD  
A
30V 10V 30V  
(Note 9)  
-
%
FN6320.3  
April 18, 2007  
8
ISL8840A, ISL8841A, ISL8842A, ISL8843A, ISL8844A, ISL8845A  
Electrical Specifications ISL884xAM - Recommended operating conditions unless otherwise noted. Refer to Block Diagram and  
Typical Application schematic. V  
= 15V, RT = 10kΩ, CT = 3.3nF, T = -55 to +125°C (Note 7), Typical values  
A
DD  
are at T = +25°C (Continued)  
A
PARAMETER  
Amplitude, Peak to Peak  
TEST CONDITIONS  
Static Test  
MIN  
TYP  
1.75  
1.0  
MAX  
UNITS  
-
-
-
-
V
V
RTCT Discharge Voltage (Valley Voltage)  
Static Test  
Discharge Current  
OUTPUT  
RTCT = 2.0V  
6.2  
8.0  
8.5  
mA  
Gate VOH  
V
- OUT, I  
OUT  
= -200mA  
= 200mA  
-
-
-
-
-
-
1.0  
1.0  
1.0  
20  
20  
-
2.0  
2.0  
-
V
V
DD  
Gate VOL  
OUT - GND, I  
OUT  
Peak Output Current  
Rise Time  
C
C
C
= 1nF (Note 9)  
= 1nF (Note 9)  
= 1nF (Note 9)  
A
OUT  
OUT  
OUT  
40  
40  
1.2  
ns  
ns  
V
Fall Time  
GATE VOL UVLO Clamp Voltage  
PWM  
V
= 5V, I = 1mA  
LOAD  
DD  
Maximum Duty Cycle  
(ISL8840A, ISL8842A, ISL8843A)  
COMP = VREF  
COMP = VREF  
COMP = GND  
94.0  
47.0  
-
96.0  
48.0  
-
-
-
%
%
%
Maximum Duty Cycle  
(ISL8841A, ISL8844A, ISL8845A)  
Minimum Duty Cycle  
NOTES:  
0
7. Specifications at -55°C and +125°C are guaranteed by +25°C test with margin limits.  
8. This is the V current consumed when the device is active but not switching. Does not include gate drive current.  
DD  
9. These parameters, although guaranteed, are not 100% tested in production.  
10. Adjust V above the start threshold and then lower to 15V.  
DD  
Typical Performance Curves  
1.01  
1.001  
1.000  
0.999  
1.00  
0.99  
0.98  
0.998  
0.997  
0.996  
0.995  
-60 -40 -20  
0
20 40 60 80 100 120 140  
-60 -40 -20  
0
20 40 60 80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 1. FREQUENCY vs TEMPERATURE  
FIGURE 2. REFERENCE VOLTAGE vs TEMPERATURE  
FN6320.3  
April 18, 2007  
9
ISL8840A, ISL8841A, ISL8842A, ISL8843A, ISL8844A, ISL8845A  
Typical Performance Curves (Continued)  
3
1.001  
1.000  
0.998  
0.997  
0.996  
10  
100pF  
100  
10  
1
220pF  
330pF  
470pF  
1.0nF  
2.2nF  
3.3nF  
4.7nF  
6.8nF  
-60 -40 -20  
0
20 40 60 80 100 120 140  
1
10  
RT (kΩ)  
100  
TEMPERATURE (°C)  
FIGURE 3. EA REFERENCE vs TEMPERATURE  
FIGURE 4. RESISTANCE FOR CT CAPACITOR VALUES GIVEN  
OUT - This is the drive output to the power switching device.  
It is a high current output capable of driving the gate of a  
power MOSFET with peak currents of 1.0A. This GATE  
Pin Descriptions  
RTCT - This is the oscillator timing control pin. The  
operational frequency and maximum duty cycle are set by  
connecting a resistor, RT, between VREF and this pin and a  
timing capacitor, CT, from this pin to GND. The oscillator  
produces a sawtooth waveform with a programmable  
output is actively held low when V  
threshold.  
is below the UVLO  
DD  
V
- V is the power connection for the device. The total  
DD  
DD  
frequency range up to 2.0MHz. The charge time, t , the  
discharge time, t , the switching frequency, f, and the  
D
supply current will depend on the load applied to OUT. Total  
current is the sum of the operating current and the  
C
I
DD  
maximum duty cycle, Dmax, can be approximated from the  
following equations:  
average output current. Knowing the operating frequency, f,  
and the MOSFET gate charge, Qg, the average output  
current can be calculated from:  
(EQ. 1)  
(EQ. 2)  
t
t
0.533 RT CT  
C
D
(EQ. 5)  
I
= Qg × f  
OUT  
0.008 RT 3.83  
---------------------------------------------  
RT CT In  
To optimize noise immunity, bypass V  
to GND with a  
and GND pins as  
0.008 RT 1.71  
DD  
ceramic capacitor as close to the V  
possible.  
DD  
f = 1 ⁄ (t + t  
)
(EQ. 3)  
(EQ. 4)  
C
D
VREF - The 5.00V reference voltage output. +1.0/-1.5%  
tolerance over line, load and operating temperature. Bypass  
to GND with a 0.1μF to 3.3μF capacitor to filter this output as  
needed.  
D = t f  
C
The formulae have increased error at higher frequencies due  
to propagation delays. Figure 4 may be used as a guideline  
in selecting the capacitor and resistor values required for a  
given frequency.  
Functional Description  
Features  
COMP - COMP is the output of the error amplifier and the  
input of the PWM comparator. The control loop frequency  
compensation network is connected between the COMP and  
FB pins.  
The ISL884xA current mode PWM makes an ideal choice for  
low-cost flyback and forward topology applications. With its  
greatly improved performance over industry standard parts,  
it is the obvious choice for new designs or existing designs  
which require updating.  
FB - The output voltage feedback is connected to the  
inverting input of the error amplifier through this pin. The  
non-inverting input of the error amplifier is internally tied to a  
reference voltage.  
Oscillator  
The ISL884xA has a sawtooth oscillator with a  
programmable frequency range to 2MHz, which can be  
programmed with a resistor from VREF and a capacitor to  
GND on the RTCT pin. (Please refer to Figure 4 for the  
resistor and capacitance required for a given frequency.)  
CS - This is the current sense input to the PWM comparator.  
The range of the input signal is nominally 0V to 1.0V and has  
an internal offset of 100mV.  
GND - GND is the power and small signal reference ground  
for all functions.  
FN6320.3  
April 18, 2007  
10  
ISL8840A, ISL8841A, ISL8842A, ISL8843A, ISL8844A, ISL8845A  
From the small signal current-mode model [1] it can be  
Soft-Start Operation  
shown that the naturally-sampled modulator gain, Fm,  
without slope compensation, is in Equation 6.  
Soft-start must be implemented externally. One method,  
illustrated below, clamps the voltage on COMP.  
1
-------------------  
Fm =  
(EQ. 6)  
SnTsw  
where Sn is the slope of the sawtooth signal and Tsw is the  
duration of the half-cycle. When an external ramp is added,  
the modulator gain becomes:  
VREF  
D1  
C1  
R1  
COMP  
GND  
1
1
(EQ. 7)  
--------------------------------------  
---------------------------  
Fm =  
=
Q1  
(Sn + Se)Tsw  
m SnTsw  
c
where Se is slope of the external ramp and  
Se  
-------  
= 1 +  
m
(EQ. 8)  
c
Sn  
FIGURE 5. SOFT-START  
The criteria for determining the correct amount of external  
ramp can be determined by appropriately setting the  
damping factor of the double-pole located at the switching  
frequency. The double-pole will be critically damped if the  
Q-factor is set to 1, over-damped for Q < 1, and  
under-damped for Q > 1. An under-damped condition may  
result in current loop instability.  
The COMP pin is clamped to the voltage on capacitor C1  
plus a base-emitter junction by transistor Q1. C1 is charged  
from VREF through resistor R1 and the base current of Q1.  
At power-up C1 is fully discharged, COMP is at ~0.7V, and  
the duty cycle is zero. As C1 charges, the voltage on COMP  
increases, and the duty cycle increases in proportion to the  
voltage on C1. When COMP reaches the steady state  
operating point, the control loop takes over and soft start is  
complete. C1 continues to charge up to VREF and no longer  
affects COMP. During power down, diode D1 quickly  
discharges C1 so that the soft start circuit is properly  
initialized prior to the next power on sequence.  
1
(EQ. 9)  
-------------------------------------------------  
Q =  
π(m (1 D) 0.5)  
c
where D is the percent of on time during a switching cycle.  
Setting Q = 1 and solving for Se yields  
1
π
1
⎛⎛  
⎝⎝  
1  
(EQ. 10)  
--  
-------------  
S
= S  
+ 0.5  
e
n
1 D  
Gate Drive  
The ISL884xA is capable of sourcing and sinking 1A peak  
current. To limit the peak current through the IC, an optional  
external resistor may be placed between the totem-pole  
output of the IC (OUT pin) and the gate of the MOSFET. This  
small series resistor also damps any oscillations caused by  
the resonant tank of the parasitic inductances in the traces of  
the board and the FET’s input capacitance.  
Since Sn and Se are the on time slopes of the current ramp  
and the external ramp, respectively, they can be multiplied  
by t  
ON  
to obtain the voltage change that occurs during t  
.
ON  
1
π
1
⎛⎛  
⎝⎝  
1  
--  
-------------  
V
= V  
+ 0.5  
(EQ. 11)  
e
n
1 D  
where Vn is the change in the current feedback signal (ΔI)  
during the on time and Ve is the voltage that must be added  
by the external ramp.  
Slope Compensation  
For applications where the maximum duty cycle is less than  
50%, slope compensation may be used to improve noise  
immunity, particularly at lighter loads. The amount of slope  
compensation required for noise immunity is determined  
empirically, but is generally about 10% of the full scale  
current feedback signal. For applications where the duty  
cycle is greater than 50%, slope compensation is required to  
prevent instability.  
For a flyback converter, Vn can be solved for in terms of  
input voltage, current transducer components, and primary  
inductance, yielding  
D T  
V R  
IN CS  
1
π
1
SW  
⎛⎛  
1  
---------------------------------------------------- --  
-------------  
V
=
+ 0.5  
V
e
⎝⎝  
L
1 D  
p
(EQ. 12)  
Slope compensation may be accomplished by summing an  
external ramp with the current feedback signal or by  
subtracting the external ramp from the voltage feedback  
error signal. Adding the external ramp to the current  
feedback signal is the more popular method.  
where R  
CS  
is the current sense resistor, f is the switching  
sw  
frequency, L is the primary inductance, V is the minimum  
input voltage, and D is the maximum duty cycle.  
p
IN  
FN6320.3  
April 18, 2007  
11  
ISL8840A, ISL8841A, ISL8842A, ISL8843A, ISL8844A, ISL8845A  
The current sense signal at the end of the ON time for CCM  
operation is:  
(1 D) ⋅ V f  
sw  
N
R  
CS  
N
P
O
S
------------------------  
-------------------------------------------  
V
=
I
+
O
V
(EQ. 13)  
CS  
2L  
s
VREF  
R9  
R6  
where V  
is the voltage across the current sense resistor,  
L is the secondary winding inductance, and I is the output  
CS  
CS  
s
O
current at current limit. Equation 13 assumes the voltage  
drop across the output rectifier is negligible.  
RTCT  
C4  
Since the peak current limit threshold is 1.00V, the total  
current feedback signal plus the external ramp voltage must  
sum to this value when the output load is at the current limit  
threshold.  
FIGURE 6. SLOPE COMPENSATION  
V
+ V  
= 1  
CS  
(EQ. 14)  
Assuming the designer has selected values for the RC filter  
e
(R and C ) placed on the CS pin, the value of R required  
6
4
9
to add the appropriate external ramp can be found by  
superposition.  
Substituting Equations 12 and 13 into Equation 14 and  
solving for R yields  
CS  
2.05D R  
6
---------------------------  
(EQ. 16)  
1
V
=
V
e
----------------------------------------------------------------------------------------------------------------------------------------------------  
=
R
R
+ R  
9
CS  
6
1
--  
+ 0.5  
D f V  
N
(1 D) ⋅ V f  
O sw  
π
sw  
IN  
s
------------------------------- -----------------  
------  
-------------------------------------------  
1  
+
I  
+
O
L
1 D  
N
p
2L  
s
p
The factor of 2.05 in Equation 16 arises from the peak  
amplitude of the sawtooth waveform on RTCT minus a  
base-emitter junction drop. That voltage multiplied by the  
maximum duty cycle is the voltage source for the slope  
(EQ. 15)  
Adding slope compensation is accomplished in the  
compensation. Rearranging to solve for R yields:  
9
ISL884xA using an external buffer transistor and the RTCT  
signal. A typical application sums the buffered RTCT signal  
with the current sense feedback and applies the result to the  
CS pin as shown in Figure 6.  
(2.05D V ) ⋅ R  
e
6
---------------------------------------------  
R
=
Ω
(EQ. 17)  
9
V
e
The value of R  
CS  
determined in Equation 15 must be  
rescaled so that the current sense signal presented at the  
CS pin is that predicted by Equation 13. The divider created  
by R and R makes this necessary.  
6
9
R
+ R  
6
9
--------------------  
R′  
=
R  
(EQ. 18)  
CS  
CS  
R
9
FN6320.3  
April 18, 2007  
12  
ISL8840A, ISL8841A, ISL8842A, ISL8843A, ISL8844A, ISL8845A  
Example:  
Fault Conditions  
A Fault condition occurs if VREF falls below 4.65V. When a  
Fault is detected OUT is disabled. When VREF exceeds  
4.80V, the Fault condition clears, and OUT is enabled.  
V
V
= 12V  
= 48V  
IN  
O
L = 800μH  
s
Ground Plane Requirements  
Ns/Np = 10  
Careful layout is essential for satisfactory operation of the  
device. A good ground plane must be employed. A unique  
section of the ground plane must be designated for high di/dt  
Lp = 8.0μH  
I
= 200mA  
currents associated with the output stage. V  
should be  
O
DD  
bypassed directly to GND with good high frequency  
capacitors.  
Switching Frequency, f = 200kHz  
sw  
Duty Cycle, D = 28.6%  
References  
R = 499Ω  
6
[1] Ridley, R., “A New Continuous-Time Model for Current  
Mode Control”, IEEE Transactions on Power  
Electronics, Vol. 6, No. 2, April 1991.  
Solve for the current sense resistor, R , using Equation 15.  
CS  
R
= 295mΩ  
CS  
Determine the amount of voltage, Ve, that must be added to  
the current feedback signal using Equation 12.  
Ve = 92.4mV  
Using Equation 17, solve for the summing resistor, R , from  
9
CT to CS.  
R = 2.67kΩ  
9
Determine the new value of R  
(R’ ) using Equation 18.  
CS  
CS  
R’  
CS  
= 350mΩ  
Additional slope compensation may be considered for  
design margin. The above discussion determines the  
minimum external ramp that is required. The buffer transistor  
used to create the external ramp from RTCT should have a  
sufficiently high gain (>200) so as to minimize the required  
base current. Whatever base current is required reduces the  
charging current into RTCT and will reduce the oscillator  
frequency.  
FN6320.3  
April 18, 2007  
13  
ISL8840A, ISL8841A, ISL8842A, ISL8843A, ISL8844A, ISL8845A  
Small Outline Plastic Packages (SOIC)  
M8.15 (JEDEC MS-012-AA ISSUE C)  
N
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE  
INDEX  
AREA  
0.25(0.010)  
M
B M  
H
INCHES  
MILLIMETERS  
E
SYMBOL  
MIN  
MAX  
MIN  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
MAX  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
NOTES  
-B-  
A
A1  
B
C
D
E
e
0.0532  
0.0040  
0.013  
0.0688  
0.0098  
0.020  
-
-
1
2
3
L
9
SEATING PLANE  
A
0.0075  
0.1890  
0.1497  
0.0098  
0.1968  
0.1574  
-
-A-  
3
h x 45°  
D
4
-C-  
0.050 BSC  
1.27 BSC  
-
α
H
h
0.2284  
0.0099  
0.016  
0.2440  
0.0196  
0.050  
5.80  
0.25  
0.40  
6.20  
0.50  
1.27  
-
e
A1  
C
5
B
0.10(0.004)  
L
6
0.25(0.010) M  
C
A M B S  
N
α
8
8
7
NOTES:  
0°  
8°  
0°  
8°  
-
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of  
Publication Number 95.  
Rev. 1 6/05  
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
3. Dimension “D” does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006  
inch) per side.  
4. Dimension “E” does not include interlead flash or protrusions. Inter-  
lead flash and protrusions shall not exceed 0.25mm (0.010 inch) per  
side.  
5. The chamfer on the body is optional. If it is not present, a visual index  
feature must be located within the crosshatched area.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater  
above the seating plane, shall not exceed a maximum value of  
0.61mm (0.024 inch).  
10. Controlling dimension: MILLIMETER. Converted inch dimensions  
are not necessarily exact.  
FN6320.3  
April 18, 2007  
14  
ISL8840A, ISL8841A, ISL8842A, ISL8843A, ISL8844A, ISL8845A  
Mini Small Outline Plastic Packages (MSOP)  
N
M8.118 (JEDEC MO-187AA)  
8 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE  
INCHES  
MILLIMETERS  
E1  
E
SYMBOL  
MIN  
MAX  
MIN  
0.94  
0.05  
0.75  
0.25  
0.09  
2.95  
2.95  
MAX  
1.10  
0.15  
0.95  
0.36  
0.20  
3.05  
3.05  
NOTES  
A
A1  
A2  
b
0.037  
0.002  
0.030  
0.010  
0.004  
0.116  
0.116  
0.043  
0.006  
0.037  
0.014  
0.008  
0.120  
0.120  
-
-B-  
0.20 (0.008)  
INDEX  
AREA  
1 2  
A
B
C
-
-
TOP VIEW  
4X θ  
9
0.25  
(0.010)  
R1  
c
-
R
GAUGE  
PLANE  
D
3
E1  
e
4
SEATING  
PLANE  
L
0.026 BSC  
0.65 BSC  
-
-C-  
4X θ  
L1  
A
A2  
E
0.187  
0.016  
0.199  
0.028  
4.75  
0.40  
5.05  
0.70  
-
L
6
SEATING  
PLANE  
L1  
N
0.037 REF  
0.95 REF  
-
0.10 (0.004)  
-A-  
C
C
b
8
8
7
-H-  
A1  
e
R
0.003  
0.003  
-
-
0.07  
0.07  
-
-
-
D
0.20 (0.008)  
C
R1  
0
-
o
o
o
o
5
15  
5
15  
-
a
SIDE VIEW  
C
L
o
o
o
o
0
6
0
6
-
α
E
1
-B-  
Rev. 2 01/03  
0.20 (0.008)  
C
D
END VIEW  
NOTES:  
1. These package dimensions are within allowable dimensions of  
JEDEC MO-187BA.  
2. Dimensioning and tolerancing per ANSI Y14.5M-1994.  
3. Dimension “D” does not include mold flash, protrusions or gate  
burrs and are measured at Datum Plane. Mold flash, protrusion  
and gate burrs shall not exceed 0.15mm (0.006 inch) per side.  
4. Dimension “E1” does not include interlead flash or protrusions  
- H -  
and are measured at Datum Plane.  
Interlead flash and  
protrusions shall not exceed 0.15mm (0.006 inch) per side.  
5. Formed leads shall be planar with respect to one another within  
0.10mm (0.004) at seating Plane.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. Dimension “b” does not include dambar protrusion. Allowable  
dambar protrusion shall be 0.08mm (0.003 inch) total in excess  
of “b” dimension at maximum material condition. Minimum space  
between protrusion and adjacent lead is 0.07mm (0.0027 inch).  
- B -  
to be determined at Datum plane  
-A -  
10. Datums  
and  
.
- H -  
11. Controlling dimension: MILLIMETER. Converted inch dimen-  
sions are for reference only.  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6320.3  
April 18, 2007  
15  

相关型号:

ISL8841AABZ-T

1A SWITCHING REGULATOR, 2000kHz SWITCHING FREQ-MAX, PDSO8, ROHS COMPLIANT, PLASTIC, MO-012AA, SOIC-8
RENESAS

ISL8841AAUZ

High Performance Industry Standard Single-Ended Current Mode PWM Controller
INTERSIL

ISL8841AMBEP

Enhanced Plastic (EP) High Performance Industry Standard Single-Ended Current Mode PWM Controllers
INTERSIL

ISL8841AMBEP-TK

1A SWITCHING CONTROLLER, 2000kHz SWITCHING FREQ-MAX, PDSO8, PLASTIC, MS-012AA, SOIC-8
RENESAS

ISL8841AMBEPZ

High Performance Industry Standard Single-Ended Current Mode PWM Controller
INTERSIL

ISL8841AMBEPZ

SWITCHING CONTROLLER, 2000kHz SWITCHING FREQ-MAX, PDSO8, ROHS COMPLIANT, PLASTIC, MS-012AA, SOIC-8
RENESAS

ISL8841AMBEPZ-TK

SWITCHING CONTROLLER, 2000kHz SWITCHING FREQ-MAX, PDSO8, ROHS COMPLIANT, PLASTIC, MS-012AA, SOIC-8
RENESAS

ISL8841AMBZ

High Performance Industry Standard Single-Ended Current Mode PWM Controller
INTERSIL

ISL8841AMUZ

High Performance Industry Standard Single-Ended Current Mode PWM Controller
INTERSIL

ISL8841AMUZ

1 A SWITCHING REGULATOR, 2000 kHz SWITCHING FREQ-MAX, PDSO8, ROHS COMPLIANT, PLASTIC, MO-187AA, MSOP-8
ROCHESTER

ISL8841AMUZ-T

1A SWITCHING REGULATOR, 2000kHz SWITCHING FREQ-MAX, PDSO8, ROHS COMPLIANT, PLASTIC, MO-187AA, MSOP-8
RENESAS

ISL8842A

High Performance Industry Standard Single-Ended Current Mode PWM Controller
INTERSIL