ISL9110IRTNEVAL1Z [INTERSIL]

1.2A High Efficiency Buck-Boost Regulators; 1.2A高效率降压 - 升压型稳压器
ISL9110IRTNEVAL1Z
型号: ISL9110IRTNEVAL1Z
厂家: Intersil    Intersil
描述:

1.2A High Efficiency Buck-Boost Regulators
1.2A高效率降压 - 升压型稳压器

稳压器
文件: 总20页 (文件大小:1026K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1.2A High Efficiency Buck-Boost Regulators  
ISL9110, ISL9112  
Features  
• Accepts Input Voltages Above or Below Regulated Output  
Voltage  
The ISL9110 and ISL9112 are highly-integrated Buck-Boost  
switching regulators that accept input voltages either above or  
below the regulated output voltage. Unlike other Buck-Boost  
regulators, these regulators automatically transition between  
operating modes without significant output disturbance.  
• Automatic and Seamless Transitions Between Buck and Boost  
Modes  
• Input Voltage Range: 1.8V to 5.5V  
• Output Current: Up to 1.2A  
Both parts are capable of delivering up to 1.2A output current,  
and provide excellent efficiency due to their fully synchronous  
4-switch architecture. No-load quiescent current of only 35µA  
also optimizes efficiency under light-load conditions. Forced  
PWM and/or synchronization to an external clock may also be  
selected for noise sensitive applications.  
• High Efficiency: Up to 95%  
• 35µA Quiescent Current Maximizes Light-load Efficiency  
• 2.5MHz Switching Frequency Minimizes External Component  
Size  
The ISL9110 is designed for standalone applications and  
supports 3.3V and 5V fixed output voltages or variable output  
voltages with an external resistor divider. Output voltages as low  
as 1V, or as high as 5.2V are supported using an external resistor  
divider.  
• Selectable Forced-PWM Mode and External Synchronization  
2
• I C Interface (ISL9112)  
• Fully Protected for Overcurrent, Over-temperature and  
Undervoltage  
• Small 3mmx3mm TDFN Package  
The ISL9112 supports a broader set of programmable features  
that may be accessed via an I C bus interface. With a  
2
programmable output voltage range of 1.9V to 5V, the ISL9112  
is ideal for applications requiring dynamically changing supply  
voltages. A programmable slew rate can be selected to provide  
smooth transitions between output voltage settings.  
Applications  
• Regulated 3.3V from a Single Li-Ion Battery  
• Smart Phones and Tablet Computers  
• Handheld Devices  
The ISL9110 and ISL9112 require only a single inductor and very  
few external components. Power supply solution size is  
minimized by a tiny 3mmx3mm package and a 2.5MHz  
switching frequency, which further reduces the size of external  
components.  
• Point-of-Load Regulators  
Related Literature  
• See AN1648 “ISL9110IRTNEVAL1Z, ISL9110IRT7EVAL1Z,  
ISL9110IRTAEVAL1Z Evaluation Board User Guide”  
• See AN1647 “ISL9112IRTNEVAL1Z, ISL9112IRT7EVAL1Z  
EvaluationBoard User Guide”  
100  
95  
VIN  
=
ISL9110IRTNZ  
1.8V TO 5.5V  
5
4
PVIN  
LX1  
90  
C1  
L1  
10µF  
V
= 5V  
2.2µH  
IN  
2
1
6
10  
9
8
7
VIN  
LX2  
85  
80  
75  
70  
VOUT  
=
MODE VOUT  
EN  
3.3V/1A  
C2  
10µF  
BAT  
PG  
12  
V
= 3V  
STATUS  
OUTPUTS  
IN  
FB  
V
= 2.5V  
IN  
V
= 3.3V  
OUT  
0.01  
0.05  
0.25  
1.25  
I
(A)  
OUT  
FIGURE 1. TYPICAL APPLICATION  
FIGURE 2. EFFICIENCY  
July 13, 2012  
FN7649.2  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 |Copyright Intersil Americas Inc. 2011, 2012. All Rights Reserved  
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners.  
1
ISL9110, ISL9112  
Block Diagram  
LX1  
4
LX2  
2
PVIN  
VOUT  
PGND  
5
1
3
SOFT  
DISCHARGE  
EN  
VREF  
GATE  
DRIVERS  
& ANTI-  
EN  
9
6
EN  
SHOOT THRU  
VIN  
EN  
BAT  
8
PVIN  
MONITOR  
VOUT  
CLAMP  
THERMAL  
SHUTDOWN  
PWM  
CONTROL  
CURRENT  
DETECT  
MODE/SYNC  
SCL  
10  
7
EN  
EN  
PG  
FB  
7
I2C  
EN  
VOUT  
MONITOR  
SDA  
8
12  
OSC  
EN  
REF  
ERROR  
AMP  
VOLTAGE  
PROG.  
11  
GND  
Pin Configurations  
Pin Descriptions  
PIN # ISL9110 ISL9112  
ISL9110  
DESCRIPTION  
(12 LD TDFN)  
TOP VIEW  
1
VOUT  
VOUT  
Buck/boost output. Connect a 10µF  
capacitor to PGND.  
FB  
VOUT  
LX2  
12  
11  
1
2
3
4
5
6
2
3
4
5
LX2  
PGND  
LX1  
LX2  
Inductor connection, output side.  
GND  
PGND Power ground for high switching current.  
10 MODE/SYNC  
9 EN  
PGND  
LX1  
ISL9110  
PAD  
LX1  
Inductor connection, input side.  
PVIN  
VIN  
8 BAT  
PVIN  
PVIN  
Power input. Range: 1.8V to 5.5V. Connect a  
10µF capacitor to PGND.  
PG  
7
6
7
VIN  
PG  
VIN  
-
Supply input. Range: 1.8V to 5.5V.  
Open drain output.  
Provides output-power-good status.  
ISL9112  
(12 LD TDFN)  
TOP VIEW  
2
-
SCL  
-
Logic input, I C clock.  
8
BAT  
Open drain output.  
Provides input-power-good status.  
1
2
3
4
5
6
FB  
12  
11  
VOUT  
LX2  
GND  
2
-
SDA  
EN  
Logic I/O, open drain, I C data.  
PGND  
LX1  
10 MODE/SYNC  
ISL9112  
PAD  
9
EN  
Logic input, drive high to enable device.  
EN  
9
8
7
PVIN  
VIN  
SDA  
SCL  
10  
MODE / MODE / Logic input, high for auto PFM mode. Low for  
SYNC  
SYNC forced PWM operation.  
Ext. clock sync input. Range: 2.75MHz to  
3.25MHz.  
11  
12  
GND  
FB  
GND  
FB  
Analog ground pin.  
Voltage feedback pin.  
Exposed pad; connect to PGND.  
PAD  
PAD  
PAD  
FN7649.2  
July 13, 2012  
2
ISL9110, ISL9112  
Ordering Information  
PART NUMBER  
PART  
V
HICCUP  
MODE  
TEMP RANGE  
(°C)  
PKG.  
DWG. #  
OUT  
(Notes 3, 4)  
MARKING  
(V)  
3.3  
5.0  
ADJ.  
3.3  
5.0  
ADJ.  
PACKAGE  
ISL9110IRTNZ (Notes 1, 2)  
ISL9110IRT7Z (Notes 1, 2)  
ISL9110IRTAZ (Notes 1, 2)  
ISL9112IRTNZ (Notes 1, 2)  
ISL9112IRT7Z (Notes 1, 2)  
ISL9110BIRTAZ (Notes 1, 2)  
ISL9110IRTNEVAL1Z  
ISL9110IRT7EVAL1Z  
ISL9110IRTAEVAL1Z  
ISL9112IRTNEVAL1Z  
ISL9112IRT7EVAL1Z  
NOTES:  
GASA  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Disabled  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
12 Ld Exposed Pad 3x3 TDFN  
12 Ld Exposed Pad 3x3 TDFN  
12 Ld Exposed Pad 3x3 TDFN  
12 Ld Exposed Pad 3x3 TDFN  
12 Ld Exposed Pad 3x3 TDFN  
12 Ld Exposed Pad 3x3 TDFN  
L12.3x3C  
GATA  
L12.3x3C  
L12.3x3C  
L12.3x3C  
L12.3x3C  
L12.3x3C  
GAUA  
GAVA  
GAWA  
GBAF  
Evaluation Board  
Evaluation Board  
Evaluation Board  
Evaluation Board  
Evaluation Board  
1. Add “-T*” suffix for tape and reel. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-  
free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL9110 or ISL9112. For more information on MSL please see techbrief  
TB363.  
4. The ISL9110 and ISL9112 can be special ordered with any output voltage between 1.9V and 5.0V in 100mV steps.  
FN7649.2  
July 13, 2012  
3
ISL9110, ISL9112  
Table of Contents  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Thermal Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Recommended Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Analog Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2
I C Interface Timing Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Typical Performance Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Functional Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Internal Supply and References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Enable Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Soft Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
POR Sequence and Soft-start. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Overcurrent Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Short Circuit Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Undervoltage Lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
PG Status Output (ISL9110 only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
BAT Status Output (ISL9110 only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Ultrasonic Mode (ISL9112 only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Thermal Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
External Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Buck-Boost Conversion Topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
PWM Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
PFM Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Operation With VIN Close to VOUT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Output Voltage Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Digital Slew Rate Control (ISL9112 only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Register Description (ISL9112) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2
I C Serial Interface (ISL9112) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Protocol Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Component Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Output Voltage Programming, Adj. Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Feed-Forward Capacitor Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Non-Adjustable Version FB Pin Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Inductor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
PVIN and VOUT Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Application Example 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Application Example 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Application Example 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Recommended PCB Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
The TDFN Package Requires Additional PCB Layout Rules for the Thermal Pad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
General PowerPAD Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
FN7649.2  
July 13, 2012  
4
ISL9110, ISL9112  
Absolute Maximum Ratings  
Thermal Information  
PVIN, VIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6.5V  
LX1, LX2 (Note 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6.5V  
FB (adjustable version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 2.7V  
Thermal Resistance (Typical)  
12 Ld TDFN Package (Notes 5, 6) . . . . . . .  
Maximum Junction Temperature (Plastic Package) . . . . . . . . . . . .+125°C  
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
θ
JA (°C/W)  
42  
θ
JC (°C/W)  
5.5  
FB (fixed V  
versions). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6.5V  
OUT  
GND, PGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 0.3V  
All Other Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6.5V  
ESD Rating  
Human Body Model (Tested per JESD22-A114E). . . . . . . . . . . . . . . . 3kV  
Machine Model (Tested per JESD22-A115-A). . . . . . . . . . . . . . . . . 250V  
Latch Up (Tested per JESD-78B; Class 2, Level A) . . . . . . . . . . . . . . 100mA  
Recommended Operating Conditions  
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Supply Voltage Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.8V to 5.5V  
Load Current Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0A to 1.2A  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
5. θ is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech  
JA  
Brief TB379  
6. For θ , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
7. LX1 and LX2 pins can withstand switching transients of -1.5V for 100ns, and 7V for 20ms.  
Analog Specifications V = V  
= V = 3.6V, V = 3.3V, L1 = 2.2µH, C1 = C2 = 10µF, T = +25°C. Boldface limits apply over the  
EN OUT A  
VIN  
PVIN  
operating temperature range, -40°C to +85°C.  
MIN  
TYP  
MAX  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
(Note 8) (Note 9) (Note 8) UNITS  
POWER SUPPLY  
V
Input Voltage Range  
1.8  
5.5  
V
V
IN  
V
VIN Undervoltage Lockout Threshold  
Rising  
Falling  
1.725  
1.650  
35  
1.775  
UVLO  
1.550  
V
I
VIN Supply Current  
PFM mode, no external load on Vout (Note 10)  
EN = GND, V = 3.6V  
60  
µA  
µA  
VIN  
I
VIN Supply Current, Shutdown  
0.05  
1.0  
SD  
IN  
OUTPUT VOLTAGE REGULATION  
V
Output Voltage Range  
ISL9110IRTAZ, I  
= 100mA  
= 100mA  
1.00  
1.90  
-2  
5.20  
5.00  
+2  
V
OUT  
OUT  
ISL9112, I  
V
OUT  
Output Voltage Accuracy  
V
V
= 3.7V, V  
= 3.3V, I  
= 3.3V, I  
= 0mA, PWM mode  
= 1mA, PFM mode  
%
%
IN  
IN  
OUT  
OUT  
OUT  
= 3.7V, V  
-3  
+4  
OUT  
V
FB Pin Voltage Regulation  
FB Pin Bias Current  
For adjustable output version  
For adjustable output version  
0.79  
0.80  
0.81  
1
V
FB  
I
µA  
FB  
ΔV  
ΔV  
ΔV  
/
/
/
/
Line Regulation, PWM Mode  
I
= 500mA, V  
= 3.3V, MODE = GND, V step  
IN  
±0.005  
±0.005  
±12.5  
±0.4  
mV/mV  
OUT  
OUT OUT  
ΔV  
from 2.3V to 5.5V  
IN  
Load Regulation, PWM Mode  
Line Regulation, PFM Mode  
Load Regulation, PFM Mode  
V
= 3.7V, V = 3.3V, MODE = GND, I  
step  
mV/mA  
mV/V  
OUT  
IN  
OUT OUT  
ΔI  
from 0mA to 500mA  
OUT  
I
= 100mA, V  
= 3.3V, MODE = VIN, V step  
IN  
OUT  
OUT  
OUT  
ΔV  
from 2.3V to 5.5V  
I
ΔV  
OUT  
V
=3.7V, V  
= 3.3V, MODE = VIN, I  
step from  
mV/mA  
IN OUT OUT  
ΔI  
0mA to 100mA  
OUT  
V
Output Voltage Clamp  
Rising, V = 3.6V  
5.25  
5.95  
V
CLAMP  
IN  
Output Voltage Clamp Hysteresis  
V
= 3.6V  
400  
mV  
IN  
FN7649.2  
July 13, 2012  
5
ISL9110, ISL9112  
Analog Specifications V = V  
= V = 3.6V, V = 3.3V, L1 = 2.2µH, C1 = C2 = 10µF, T = +25°C. Boldface limits apply over the  
EN OUT A  
operating temperature range, -40°C to +85°C. (Continued)  
VIN  
PVIN  
MIN  
TYP  
MAX  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
(Note 8) (Note 9) (Note 8) UNITS  
DC/DC SWITCHING SPECIFICATIONS  
f
Oscillator Frequency  
Minimum On Time  
2.25  
2.50  
80  
2.75  
MHz  
ns  
SW  
t
ONMIN  
IPFETLEAK LX1 Pin Leakage Current  
INFETLEAK LX2 Pin Leakage Current  
SOFT-START and SOFT DISCHARGE  
-1  
-1  
1
1
µA  
µA  
t
Soft-start Time  
Time from when EN signal asserts to when output  
voltage ramp starts.  
1
1
ms  
ms  
SS  
Time from when output voltage ramp starts to  
when output voltage reaches 95% of its nominal  
value with device operating in buck mode.  
V
= 4V, V = 3.3V, I = 200mA  
IN  
OUT O  
Time from when output voltage ramp starts to  
when output voltage reaches 95% of its nominal  
value with device operating in boost mode.  
2
ms  
V
= 2V, V = 3.3V, I = 200mA  
IN  
OUT O  
R
VOUT Soft-Discharge ON-Resistance  
V
= 3.6V, EN < VIL  
120  
Ω
DISCHG  
IN  
POWER MOSFET  
R
P-Channel MOSFET ON-Resistance  
N-Channel MOSFET ON-Resistance  
P-Channel MOSFET Peak Current Limit  
V
V
V
V
V
= 3.6V, I = 200mA  
0.12  
0.15  
0.10  
0.13  
2.4  
0.17  
0.23  
0.15  
0.23  
2.8  
Ω
Ω
Ω
Ω
A
DSON_P  
DSON_N  
PK_LMT  
IN  
IN  
IN  
IN  
IN  
O
= 2.5V, I = 200mA  
O
R
= 3.6V, I = 200mA  
O
= 2.5V, I = 200mA  
O
I
= 3.6V  
2.0  
PFM/PWM TRANSITION  
Load Current Threshold, PFM to PWM  
V
V
= 3.6V, V  
= 3.6V, V  
= 3.3V  
= 3.3V  
200  
75  
mA  
mA  
MHz  
°C  
IN  
IN  
OUT  
Load Current Threshold, PWM to PFM  
External Synchronization Frequency Range  
Thermal Shutdown  
OUT  
2.75  
1.85  
3.25  
2.15  
155  
30  
Thermal Shutdown Hysteresis  
°C  
BATTERY MONITOR AND POWER GOOD COMPARATORS  
VT  
Battery Monitor Voltage Threshold  
Battery Monitor Voltage Hysteresis  
Battery Monitor Debounce Time  
PG Delay Time (Rising)  
2.0  
100  
25  
1
V
mV  
µs  
ms  
µs  
V
BMON  
BMON  
BMON  
VH  
t
PG Delay Time (Falling)  
20  
Minimum Supply Voltage for Valid PG Signal EN = VIN  
1.2  
PG  
PG  
PG Range - Lower (Rising)  
PG Range - Lower (Falling)  
PG Range - Upper (Rising)  
PG Range - Upper (Falling)  
Compliance Voltage - PG, BAT  
Percentage of programmed voltage  
Percentage of programmed voltage  
Percentage of programmed voltage  
Percentage of programmed voltage  
90  
87  
%
RNGLR  
RNGLF  
RNGUR  
RNGUF  
%
PG  
PG  
112  
110  
%
%
V
= 3.6V, I  
= 1mA  
SINK  
0.3  
V
IN  
FN7649.2  
July 13, 2012  
6
ISL9110, ISL9112  
Analog Specifications V = V  
= V = 3.6V, V = 3.3V, L1 = 2.2µH, C1 = C2 = 10µF, T = +25°C. Boldface limits apply over the  
EN OUT A  
operating temperature range, -40°C to +85°C. (Continued)  
VIN  
PVIN  
MIN  
TYP  
MAX  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
(Note 8) (Note 9) (Note 8) UNITS  
LOGIC INPUTS  
I
Input Leakage  
0.05  
1
µA  
V
LEAK  
V
Input HIGH Voltage  
Input LOW Voltage  
1.4  
IH  
V
0.4  
V
IL  
2
I C Interface Timing Specification For SCL, and SDA pins, unless otherwise noted.  
MIN  
TYP  
MAX  
SYMBOL  
PARAMETER  
Pin Capacitance  
TEST CONDITIONS  
(Note 8)  
(Note 9) (Note 8) UNITS  
C
(Note 11)  
(Note 11)  
15  
400  
50  
pF  
kHz  
ns  
pin  
f
SCL Frequency  
SCL  
t
Pulse Width Suppression Time at SDA  
and SCL Inputs  
Any pulse narrower than the max spec is  
suppressed (Note 11)  
sp  
t
SCL Falling Edge to SDA Output Data Valid SCL falling edge crossing V , until SDA exits the  
IL  
900  
ns  
ns  
AA  
V
to V window (Note 11)  
IL  
IH  
t
Time the Bus Must be Free Before the  
Start of a New Transmission  
SDA crossing V during a STOP condition, to SDA  
IH  
1300  
BUF  
crossing V during the following START  
IH  
condition (Note 11)  
t
Clock LOW Time  
Measured at the V crossings (Note 11)  
IL  
1300  
600  
ns  
ns  
ns  
LOW  
t
Clock HIGH Time  
Measured at the V crossings (Note 11)  
IH  
HIGH  
t
START Condition Set-up Time  
SCL rising edge to SDA falling edge; both  
600  
SU:STA  
crossing V (Note 11)  
IH  
t
START Condition Hold Time  
Input Data Set-up Time  
Input Data Hold Time  
From SDA falling edge crossing V to SCL falling  
IL  
600  
100  
0
ns  
ns  
ns  
ns  
ns  
ns  
HD:STA  
edge crossing V (Note 11)  
IH  
t
From SDA exiting the V to V window, to SCL  
IL IH  
SU:DAT  
rising edge crossing V (Note 11)  
IL  
t
From SCL rising edge crossing V to SDA  
IH  
HD:DAT  
entering the V to V window (Note 11)  
IL IH  
t
STOP Condition Set-up Time  
From SCL rising edge crossing V , to SDA rising  
IH  
600  
1300  
0
SU:STO  
edge crossing V (Note 11)  
IL  
t
STOP Condition Hold Time for Read, or From SDA rising edge to SCL falling edge; both  
Volatile Only Write  
HD:STO  
crossing V (Note 11)  
IH  
t
Output Data Hold Time  
From SCL falling edge crossing V , until SDA  
IL  
DH  
enters the V to V window (Note 11)  
IL IH  
t
SDA and SCL Rise Time  
From V to V (Note 11)  
IL IH  
20 + 0.1 x Cb  
250  
250  
400  
ns  
ns  
R
t
SDA and SCL Fall Time  
From V to V (Note 11)  
IH IL  
20 + 0.1 x Cb  
F
Cb  
Capacitive Loading of SDA or SCL  
Total on-chip and off-chip (Note 11)  
10  
1
pF  
kΩ  
Rpu  
SDA and SCL Bus Pull-up Resistor Off-chip Maximum is determined by t and t  
R F  
For Cb = 400pF, max is about 2kΩ~2.5kΩ  
For Cb = 40pF, max is about 15kΩ~20kΩ  
(Note 11)  
NOTES:  
8. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization  
and are not production tested.  
9. Typical values are for T = +25°C and V = 3.6V.  
IN  
A
10. Quiescent current measurements are taken when the output is not switching.  
11. ISL9112 only. Limits established by characterization and are not production tested.  
FN7649.2  
July 13, 2012  
7
ISL9110, ISL9112  
Typical Performance Curves  
100  
95  
90  
85  
80  
75  
70  
100  
95  
90  
85  
80  
75  
70  
V
= 4.5V  
IN  
V
= 4V  
IN  
V
= 3V  
IN  
V
= 4.5V  
IN  
V
= 5V  
IN  
V
= 4V  
IN  
V
= 2V  
V
= 2V  
IN  
IN  
V
= 3V  
IN  
V
= 2.5V  
IN  
V
= 5V  
IN  
V
= 2.5V  
IN  
V
= 3.3V  
V
= 2.0V  
OUT  
OUT  
0.01  
0.05  
0.25  
1.25  
0.01  
0.05  
0.25  
1.25  
I
(A)  
I
(A)  
OUT  
OUT  
FIGURE 3. EFFICIENCY vs OUTPUT CURRENT, V  
= 2V  
FIGURE 4. EFFICIENCY vs OUTPUT CURRENT, V  
= 3.3V  
OUT  
OUT  
100  
95  
90  
85  
80  
75  
70  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
V
= 4V  
IN  
V
= 2V  
OUT  
V
= 5V  
IN  
V
= 4.5V  
IN  
V
= 3.3V  
OUT  
V
= 2V  
IN  
V
= 5V  
OUT  
V
= 2.5V  
0.05  
IN  
V
= 3V  
IN  
V
= 4.0V  
OUT  
0.01  
0.25  
1.25  
1.5  
2.0  
2.5  
3.0  
3.5  
(V)  
4.0  
4.5  
5.0  
5.5  
V
IN  
I
(A)  
OUT  
FIGURE 5. EFFICIENCY vs OUTPUT CURRENT, V  
= 4V  
FIGURE 6. MAXIMUM OUTPUT CURRENT vs INPUT VOLTAGE  
OUT  
9
8
7
6
5
4
60  
55  
+85°C  
50  
+85°C  
+25°C  
+25°C  
45  
40  
0°C  
0°C  
-40°C  
35  
-40°C  
2.5  
V
= 3.3V  
OUT  
V
= 3.3V  
OUT  
30  
1.5  
2.0  
2.5  
3.0  
3.5  
(V)  
4.0  
4.5  
5.0  
5.5  
1.5  
3.5  
(V)  
4.5  
5.5  
V
V
IN  
IN  
FIGURE 7. PWM MODE QUIESCENT CURRENT, V  
NO LOAD  
= 3.3V,  
FIGURE 8. PFM MODE QUIESCENT CURRENT, V  
NO LOAD  
= 3.3V,  
OUT  
OUT  
FN7649.2  
July 13, 2012  
8
ISL9110, ISL9112  
Typical Performance Curves (Continued)  
V
= 4.5V 2.5V  
V
= 2.5V 4.5V  
IN  
IN  
V
= 3.3V  
V
= 3.3V  
OUT  
OUT  
I
= 500mA  
I
= 500mA  
OUT  
OUT  
LX1  
5V/DIV  
LX1  
5V/DIV  
LX2  
5V/DIV  
LX2  
5V/DIV  
VOUT  
50mV/DIV  
VOUT  
50mV/DIV  
INDUCTOR  
CURRENT  
0.5A/DIV  
INDUCTOR  
CURRENT  
0.5A/DIV  
400µs/DIV  
400µs/DIV  
FIGURE 9. STEADY STATE TRANSITION FROM BUCK TO BOOST  
FIGURE 10. STEADY STATE TRANSITION FROM BOOST TO BUCK  
LX1  
2V/DIV  
VOUT  
50mV/DIV  
LX2  
2V/DIV  
VIN  
2V/DIV  
VOUT  
50mV/DIV  
INDUCTOR  
CURRENT  
0.5A/DIV  
V
= 4.5V 2.5V 4.5V  
IN  
V
OUT  
OUT  
= 3.6V  
= 3.3V  
= 0.6A  
IN  
V
= 3.3V  
OUT  
V
I
I
= 400mA  
OUT  
50µs/DIV  
400ns/DIV  
FIGURE 11. STEADY STATE V NEAR V  
IN  
FIGURE 12. INPUT TRANSIENT  
OUT  
LX1  
5V/DIV  
LX1  
5V/DIV  
LX2  
5V/DIV  
LX2  
5V/DIV  
VOUT  
VOUT  
0.1V/DIV  
0.1V/DIV  
INDUCTOR  
CURRENT  
0.5A/DIV  
INDUCTOR  
CURRENT  
0.5A/DIV  
V
= 3.6V  
= 3.3V  
V
= 2V  
IN  
OUT  
IN  
= 3.3V  
V
V
OUT  
= 0A TO 0.4A  
I
= 0A TO 1A  
I
OUT  
OUT  
100µs/DIV  
100µs/DIV  
FIGURE 13. TRANSIENT LOAD RESPONSE  
FIGURE 14. TRANSIENT LOAD RESPONSE  
FN7649.2  
July 13, 2012  
9
ISL9110, ISL9112  
Typical Performance Curves (Continued)  
LX1  
2V/DIV  
LX1  
5V/DIV  
LX2  
2V/DIV  
LX2  
5V/DIV  
VOUT  
10mV/DIV  
VOUT  
10mV/DIV  
INDUCTOR  
CURRENT  
0.5A/DIV  
INDUCTOR  
CURRENT  
0.5A/DIV  
V
= 4.5V  
= 3.3V  
= 1A  
IN  
OUT  
V
= 2.5V  
= 3.3V  
IN  
OUT  
V
V
I
OUT  
I
= 500mA  
OUT  
400ns/DIV  
400ns/DIV  
FIGURE 15. SWITCHING WAVEFORMS, BOOST MODE  
FIGURE 16. SWITCHING WAVEFORMS, BUCK MODE  
0.25  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
0.20  
0.15  
0.10  
0.05  
0.00  
+40°C  
+40°C  
-40°C  
+85°C  
+85°C  
0°C  
-40°C  
0°C  
1.5  
2.0  
2.5  
3.0  
3.5  
(V)  
4.0  
4.5  
5.0  
5.5  
1.5  
2.0  
2.5  
3.0  
3.5  
(V)  
4.0  
4.5  
5.0  
5.5  
V
V
IN  
IN  
FIGURE 17. NFET R  
vs INPUT VOLTAGE  
FIGURE 18. PFET R  
vs INPUT VOLTAGE  
DS(ON)  
DS(ON)  
3.290  
3.285  
3.280  
3.275  
3.270  
0.810  
0.805  
0.800  
0.795  
0.790  
NO LOAD  
(PFM)  
I
= 0.1A  
(PFM)  
OUT  
I
= 0.8A (PWM)  
OUT  
I
= 1.2A  
(PWM)  
OUT  
I
= 0.4A (PWM)  
2.5  
OUT  
1.5  
3.5  
(V)  
4.5  
5.5  
-40  
-20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
V
IN  
FIGURE 19. V  
vs TEMPERATURE, T = -40°C TO +85°C  
A
FIGURE 20. OUTPUT VOLTAGE vs V VOLTAGE (V  
IN  
= 3.3V)  
REF  
OUT  
FN7649.2  
July 13, 2012  
10  
ISL9110, ISL9112  
Typical Performance Curves (Continued)  
V
V
I
= 4V  
= 3.3V  
V
= 2V  
= 3.3V  
IN  
OUT  
= 200mA  
IN  
V
I
OUT  
= 200mA  
LX1  
2V/DIV  
LX1  
2V/DIV  
OUT  
OUT  
LX2  
2V/DIV  
LX2  
2V/DIV  
VOUT  
2V/DIV  
VOUT  
2V/DIV  
EN  
2V/DIV  
EN  
2V/DIV  
400µs/DIV  
400µs/DIV  
FIGURE 21. SOFT-START, V = 4V, V  
IN  
= 3.3V  
FIGURE 22. SOFT-START, V = 2V, V  
IN  
= 3.3V  
OUT  
OUT  
3.315  
3.310  
3.305  
3.300  
3.295  
3.290  
3.285  
3.310  
3.305  
3.300  
3.295  
3.290  
3.285  
3.280  
LOAD CURRENT FALLING  
LOAD CURRENT RISING  
LOAD CURRENT RISING  
LOAD CURRENT FALLING  
3.280  
0.0  
0.0  
0.1  
0.2  
I
0.3  
0.4  
0.5  
0.1  
0.2  
0.3  
0.4  
0.5  
I
(mA)  
(mA)  
OUT  
OUT  
FIGURE 23. OUTPUT VOLTAGE vs LOAD CURRENT  
(V = 2.5V, V = 3.3V, AUTO PFM/PWM MODE)  
FIGURE 24. OUTPUT VOLTAGE vs LOAD CURRENT  
(V = 4.5V, V = 3.3V, AUTO PFM/PWM MODE)  
IN  
OUT  
IN OUT  
V
= 3.7V  
= 3.3V  
SCL  
2V/DIV  
IN  
OUT  
V
SDA  
2V/DIV  
EN  
1V/DIV  
VOUT  
1V/DIV  
V
= 5V  
VOUT  
IN  
V
= 3.0V 4.0V 3.0V  
200mV/DIV  
OUT  
SLEWRATE = 0b111  
4ms/DIV  
1ms/DIV  
FIGURE 25. OUTPUT SOFT-DISCHARGE  
FIGURE 26. DIGITAL SLEW OPERATION (ISL9112)  
FN7649.2  
July 13, 2012  
11  
ISL9110, ISL9112  
The V  
OUT  
ramp time is not constant for all operating conditions.  
Functional Description  
Functional Overview  
Refer to the “Block Diagram” on page 2. The ISL9110, ISL9112  
implements a complete buck boost switching regulator, with  
PWM controller, internal switches, references, protection  
circuitry, and control inputs.  
Soft-start into boost mode will take longer than soft-start into  
buck mode. The total soft-start time into buck operating mode is  
typically 2ms, whereas the typical soft-start time into boost  
mode operating mode is typically 3ms. Increasing the load  
current will increase these typical soft-start times.  
Overcurrent Protection  
The PWM controller automatically switches between buck and  
boost modes as necessary to maintain a steady output voltage,  
with changing input voltages and dynamic external loads.  
When the current in the P-Channel MOSFET is sensed to reach  
the current limit for 16 consecutive switching cycles, the internal  
protection circuit is triggered, and switching is stopped for  
approximately 20ms. The device then performs a soft-start cycle.  
If the external output overcurrent condition exists after the  
soft-start cycle, the device will again detect 16 consecutive  
switching cycles reaching the peak current threshold. The  
process will repeat as long as the external overcurrent condition  
is present. This behavior is called ‘hiccup mode’.  
The ISL9110 provides output-power-good and input-power-good  
open-drain status outputs on pins 7 and 8. In the ISL9112, these  
2
pins are used for an I C interface, allowing programmable output  
voltage and access to the ultrasonic mode and slew rate limit  
control bits.  
Internal Supply and References  
Referring to the “Block Diagram” on page 2, the ISL9110,  
ISL9112 provides two power input pins. The PVIN pin supplies  
input power to the DC/DC converter, while the VIN pin provides  
Short Circuit Protection  
The ISL9110, ISL9112 provides short-circuit protection by  
monitoring the feedback voltage. When feedback voltage is  
sensed to be lower than a certain threshold, the PWM oscillator  
frequency is reduced in order to protect the device from damage.  
The P-Channel MOSFET peak current limit remains active during  
this state.  
operating voltage source required for stable V  
generation.  
REF  
Separate ground pins (GND and PGND) are provided to avoid  
problems caused by ground shift due to the high switching  
currents.  
Undervoltage Lockout  
Enable Input  
The undervoltage lockout (UVLO) feature prevents abnormal  
operation in the event that the supply voltage is too low to  
guarantee proper operation. When the VIN voltage falls below the  
UVLO threshold, the regulator is disabled.  
A master enable pin EN allows the device to be enabled. Driving  
EN low invokes a power-down mode, where most internal device  
functions, including input and output power good detection, are  
disabled.  
PG Status Output (ISL9110 only)  
Soft Discharge  
When the device is disabled by driving EN low, an internal resistor  
between VOUT and GND is activated. This internal resistor has  
typical 120resistance.  
An open drain output-power-good signal is provided in the  
ISL9110. An internal window comparator is used to detect when  
VOUT is significantly higher or lower than the target output  
voltage. The PG output will be driven low when sensed VOUT  
voltage is outside of this ‘power good’ window. When VOUT  
voltage is inside the ‘power good’ window, the PG pin goes Hi-Z.  
POR Sequence and Soft-start  
Bringing the EN pin high allows the device to power-up. A number  
of events occur during the start-up sequence. The internal voltage  
reference powers up, and stabilizes. The device then starts  
operating. There is a typical 1ms delay between assertion of the  
EN pin and the start of switching regulator soft-start ramp.  
The PG detection circuit detects this condition by monitoring  
voltage on the FB pin. Hysteresis is provided for the upper and  
lower PG thresholds to avoid oscillation of the PG output.  
BAT Status Output (ISL9110 only)  
The ISL9110 provides an open drain input-power-good status  
output. The BAT status pin will be driven low when VIN rises  
The soft-start feature minimizes output voltage overshoot and  
input inrush currents. During soft-start, the reference voltage is  
ramped to provide a ramping V  
voltage. While output voltage  
OUT  
above the VT  
threshold. The BAT status output goes Hi-Z  
threshold. Hysteresis is  
threshold to avoid oscillation of the BAT  
BMON  
is lower than approximately 20% of the target output voltage,  
switching frequency is reduced to a fraction of the normal  
switching frequency to aid in producing low duty cycles necessary  
to avoid input inrush current spikes. Once the output voltage  
exceeds 20% of the target voltage, switching frequency is  
increased to its nominal value.  
when V  
falls below the VT  
BMON  
BAT  
provided for the VT  
output.  
BMON  
Ultrasonic Mode (ISL9112 only)  
The ISL9112 provides an ultrasonic mode that can be enabled  
2
When the target output voltage is higher than the input voltage,  
there will be a transition from buck mode to boost mode during  
the soft-start sequence. At the time of this transition, the ramp  
rate of the reference voltage is decreased, such that the output  
voltage slew rate is decreased. This provides a slower output  
voltage slew rate.  
through I C control by setting the ULTRA bit in the control register.  
In ultrasonic mode, the PFM switching frequency is forced to be  
above the audio frequency range.  
This ultrasonic mode applies only to PFM mode operation. With  
the ULTRA bit set to ‘1’, PFM mode switching frequency is forced  
FN7649.2  
July 13, 2012  
12  
ISL9110, ISL9112  
well above the audio frequency range (f  
SW  
60kHz). This mode of operation, however, reduces the efficiency  
at light load.  
becomes typically  
During PFM operation in boost mode, the ISL9110, ISL9112  
closes Switch A and Switch C to ramp up the current in the  
inductor. When inductor current reaches a certain threshold, the  
device turns off Switches A and C, then turns on Switches B and  
D. With Switches B and D closed, output voltage increases as the  
inductor current ramps down.  
Thermal Shutdown  
A built-in thermal protection feature protects the ISL9110,  
ISL9112 if the die temperature reaches +155°C (typical). At this  
die temperature, the regulator is completely shut down. The die  
temperature continues to be monitored in this thermal-shutdown  
mode. When the die temperature falls to +125°C (typical), the  
device will resume normal operation.  
In most operating conditions, there will be multiple PFM pulses  
to charge up the output capacitor. These pulses continue until  
V
has achieved the upper threshold of the PFM hysteretic  
OUT  
controller. Switching then stops, and remains stopped until V  
OUT  
decays to the lower threshold of the hysteretic PFM controller.  
When exiting thermal shutdown, the ISL9110, ISL9112 will  
execute its soft-start sequence.  
Operation With VIN Close to VOUT  
When the output voltage is close to the input voltage, the  
ISL9110, ISL9112 will rapidly and smoothly switch from boost to  
buck mode as needed to maintain the regulated output voltage.  
This behavior provides excellent efficiency and very low output  
voltage ripple.  
External Synchronization  
An external sync feature is provided. Applying a clock signal with  
a frequency between 2.75MHz and 3.25MHz at the MODE/SYNC  
input forces the ISL9110, ISL9112 to synchronize to this external  
clock. The MODE/SYNC input supports standard logic levels.  
Output Voltage Programming  
Buck-Boost Conversion Topology  
The ISL9110 is available in fixed and adjustable output voltage  
versions. To use the fixed output version, the VOUT pin must be  
connected directly to FB.  
The ISL9110, ISL9112 operates in either buck or boost mode.  
When operating in conditions where VIN is close to VOUT, the  
ISL9110 alternates between buck and boost mode as necessary  
to provide a regulated output voltage.  
In the adjustable output voltage version (ISL9110IRTAZ), an  
external resistor divider is required to program the output  
voltage. The FB pin has very low input leakage current, so it is  
possible to use large value resistors (e.g. R1 = 1Mand  
R2 = 324k) in the resistor divider connected to the FB input.  
L1  
LX1  
LX2  
4
2
SWITCH A  
SWITCH D  
The ISL9112 is available in a fixed output version only. The  
factory programmed output voltage can be changed via the I C  
PVIN  
5
1
VOUT  
2
interface. Details about the ISL9112 programmable VOUT  
voltage can be found in the section “Register Description  
(ISL9112)” on page 13.  
SWITCH B  
SWITCH C  
Digital Slew Rate Control (ISL9112 only)  
When changing voltages using the I C interface, the ISL9110 can  
FIGURE 27. BUCK BOOST TOPOLOGY  
2
be programmed to control the rate of voltage increase or  
decrease as it transitions from one voltage setting to the next.  
Figure 27 shows a simplified diagram of the internal switches  
and external inductor.  
The default configuration disables this digital slew rate feature.  
To enable the slew rate feature, an I C command is sent to the  
PWM Operation  
2
In buck PWM mode, Switch D is continuously closed, and Switch  
C is continuously open. Switches A and B operate as a  
synchronous buck converter when in this mode.  
ISL9112, changing the value of the SLEWRATE bit field to a value  
other than 0b000. Details about the digital slew rate settings can  
be found in Table 3.  
In boost PWM mode, Switch A remains closed and Switch B  
remains open. Switches C and D operate as a synchronous boost  
converter when in this mode.  
Register Description (ISL9112)  
The ISL9112 has a two I C accessible control registers that are  
2
used to set output voltage, operating mode, and digital slew rate.  
These registers can be read and written to at any time that the  
ISL9112 is enabled. Attempts to communicate with the ISL9112  
PFM Operation  
During PFM operation in buck mode, Switch D is continuously  
closed, and Switch C is continuously open. Switches A and B  
operate in discontinuous mode during PFM operation.  
2
via its I C interface when the ISL9112 is disabled (EN = Low) are  
not supported.  
FN7649.2  
July 13, 2012  
13  
ISL9110, ISL9112  
TABLE 2. DCDOUT[4:0] VALUE vs OUTPUT VOLTAGE (Continued)  
TABLE 1. REGISTER ADDRESS 0x00: VOLTAGE CONTROL  
OUTPUT VOLTAGE  
(V)  
BIT NAME TYPE RESET  
4:0 DCDOUT R/W 00000 V  
DESCRIPTION  
DCDOUT[4:0]  
0b10010  
0b10011  
0b10100  
0b10101  
0b10110  
0b10111  
0b11000  
0b11001  
0b11010  
0b11011  
0b11100  
0b11101  
0b11110  
0b11111  
programming. See Table 2.  
OUT  
3.7  
3.8  
3.9  
4.0  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
5.0  
5
ULTRA R/W  
0
Ultrasonic mode select. Not applicable in  
forced PWM mode:  
0: Ultrasonic feature disabled  
1: Ultrasonic feature enabled  
6
7
Reserved R/W  
I2CEN R/W  
0
0
2
I C programming enable bit:  
2
0: Device ignores I C command, and uses  
last programmed DCDOUT and ULTRA  
settings; or if no I C communication has  
occurred since POR, the factory  
programmed default DCDOUT and ULTRA  
settings are used.  
1: Device uses the I C programmed  
DCDOUT and ULTRA settings.  
2
2
Bits DCDOUT[4:0] set the output voltage, as shown in Equation 1  
and Table 2. The ISL9112 output voltage range is 1.9V to 5.0V.  
(EQ. 1)  
V
= 1.9V + (n 0.1V), where n = 0 to 31  
OUT  
A safety mechanism is provided to prevent unintentional changes to  
the output voltage by errant host software. The MSB of the control  
register (I2CEN bit, see Table 1) must be set to ‘1’ in order for the  
TABLE 3. REGISTER ADDRESS 0x01: SLEW RATE CONTROL  
BIT  
NAME  
TYPE  
R/W  
RESET  
000  
DESCRIPTION  
2
ISL9112 to recognize the I C command as valid. If a value of ‘0’ is  
2
written to this bit, the I C command is ignored, and output voltage  
2:0 SLEWRATE  
Slew rate control (typ),  
expressed as µs per LSB  
change in DCDOUT value:  
0b000 = 0µs/ΔLSB  
and operating mode will revert to the factory programmed default  
(3.3V for ISL9112IRTNZ; 5V for ISL9112IRT7Z).  
TABLE 2. DCDOUT[4:0] VALUE vs OUTPUT VOLTAGE  
0b001 = 1.5µs/ΔLSB  
0b010 = 3.1µs/ΔLSB  
0b011 = 6.3µs/ΔLSB  
0b100 = 12.5µs/ΔLSB  
0b101 = 25µs/ΔLSB  
0b110 = 50µs/ΔLSB  
0b111 = 100µ /ΔLSB  
OUTPUT VOLTAGE  
DCDOUT[4:0]  
0b00000  
0b00001  
0b00010  
0b00011  
0b00100  
0b00101  
0b00110  
0b00111  
0b01000  
0b01001  
0b01010  
0b01011  
0b01100  
0b01101  
0b01110  
0b01111  
0b10000  
0b10001  
(V)  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
7:3  
Reserved  
R/W  
00000  
2
I C Serial Interface (ISL9112)  
The ISL9112 supports a bi-directional bus oriented protocol. The  
protocol defines any device that sends data onto the bus as a  
transmitter and the receiving device as the receiver. The device  
controlling the transfer is the master and the device being  
controlled is the slave. The master always initiates data transfers  
and provides the clock for both transmit and receive operations.  
Therefore, the ISL9112 operates as a slave device in all  
applications.  
2
All communication over the I C interface is conducted by sending  
the MSB of each byte of data first.  
Protocol Conventions  
Data states on the SDA line can change only during SCL LOW  
periods. SDA state changes during SCL HIGH are reserved for  
indicating START and STOP conditions (see Figure 28). Upon  
power-up of the ISL9112, the SDA pin is in the input mode.  
FN7649.2  
July 13, 2012  
14  
ISL9110, ISL9112  
2
All I C interface operations must begin with a START condition,  
which is a HIGH to LOW transition of SDA while SCL is HIGH. The  
ISL9112 continuously monitors the SDA and SCL lines for the  
START condition and does not respond to any command until this  
condition is met (see Figure 28). A START condition is ignored  
during the power-up sequence and when EN input is low.  
Write Operation  
A Write operation requires a START condition, followed by a valid  
Identification Byte (containing the Slave Address with the R/W  
bit set to 0), a valid Register Address Byte, a Data Byte, and a  
STOP condition. After each of the three bytes, the ISL9112  
responds with an ACK. The master will then send a STOP to  
complete the command.  
2
All I C interface operations must be terminated by a STOP  
condition, which is a LOW to HIGH transition of SDA while SCL is  
HIGH (see Figure 28). A STOP condition at the end of a write  
operation initiates the reconfiguration of the ISL9112’s voltage  
feedback loop as necessary to provide the programmed output  
voltage.  
STOP conditions that terminate write operations must be sent by  
the master after sending at least 1 full data byte and its  
associated ACK signal. If a STOP condition is issued in the middle  
of a data byte, or before 1 full data byte + ACK is sent, then the  
ISL9112 will ignore the command, and not change output  
voltage or other settings.  
An ACK, Acknowledge, is a software convention used to indicate  
a successful data transfer. The transmitting device, either master  
or slave, releases the SDA bus after transmitting eight bits.  
During the ninth clock cycle, the receiver pulls the SDA line LOW  
to acknowledge the reception of the eight bits of data (see  
Figure 29).  
Read Operation  
A Read operation is shown in Figure 31. It consists of 4 bytes. The  
host generates a START condition, then transmits an Identification  
byte (containing the Slave Address with the R/W bit set to 0). The  
ISL9112 responds with an ACK. The host then transmits the  
Register Address byte, and the ISL9112 responds with another ACK.  
The ISL9112 responds with an ACK after recognition of a START  
condition followed by a valid Identification Byte, and once again  
after successful receipt of a Register Address Byte. The ISL9112  
also responds with an ACK after receiving a Data Byte of a write  
operation. The master must respond with an ACK after receiving  
a Data Byte of a read operation.  
The host then generates a Repeat START condition, or a STOP  
condition followed by a START condition. The host then transmits  
an Identification byte (containing the Slave Address with the R/W  
bit set to 1). The ISL9112 responds with an ACK, indicating it is  
ready to begin providing the requested data.  
A valid Identification Byte contains 0b0011100 as the seven  
2
MSBs, corresponding to the ISL9112 I C Slave Address. The LSB  
The ISL9112 then transmits the data byte by asserting control of  
the SDA pin while the host generates clock pulses on the SCL pin.  
When transmission of the data byte is complete, the host  
generates a NACK condition followed by a STOP condition. This  
of the Identification byte is the Read/Write bit. Its value is “1” for  
a Read operation, and “0” for a Write operations (see Table 4).  
TABLE 4. IDENTIFICATION BYTE FORMAT  
2
completes the I C Read operation.  
0
0
1
1
1
0
0
R/W  
The ISL9112 register map supports only one register, at register  
address 0x00. Attempts to read other register addresses are not  
supported, and should not be attempted. Similarly, I C block  
(MSB)  
(LSB)  
2
reads and writes are not supported by the ISL9112. The ISL9112  
has only one register to read or write, therefore block reads and  
writes are not necessary.  
SCL  
SDA  
START  
DATA  
DATA  
DATA  
STOP  
STABLE  
CHANGE  
STABLE  
FIGURE 28. VALID DATA CHANGES, START AND STOP CONDITIONS  
FN7649.2  
July 13, 2012  
15  
ISL9110, ISL9112  
SCL FROM  
MASTER  
1
8
9
SDA OUTPUT FROM  
TRANSMITTER  
HIGH IMPEDANCE  
HIGH IMPEDANCE  
SDA OUTPUT  
FROM RECEIVER  
START  
ACK  
FIGURE 29. ACKNOWLEDGE RESPONSE FROM RECEIVER  
ISL9112 I2C W RITE PRO TOCO L  
SYSTEM HO ST  
S
0
0
1
1
1
0
0
0
A
0
0
0
0
0
0
0
0
A
DATA BYTE  
A
P
ISL9112  
A – ACKNO W LEDGE  
N – NO T  
ACKNO W LEDG E  
S – START  
I2C SLAVE  
7-BIT ADDRESS  
REGISTER  
ADDRESS = 0x00  
DCDV1  
(5 BITS)  
R/W  
P – STOP  
2
FIGURE 30. I C REGISTER WRITE PROTOCOL  
ISL9112 I2C READ PROTOCOL #1  
SYSTEM  
HOST  
S
0
0
1
1
1
0
0
0
A
0
0
0
0
0
0
0
0
A
S
0
0
1
1
1
0
0
1
A
DATA BYTE  
N
P
ISL9112  
I2C SLAVE  
7-BIT ADDRESS  
REGISTER  
ADDRESS = 0x00  
I2C SLAVE  
7-BIT ADDRESS  
DCDV1  
(5 BITS)  
A – ACKNOWLEDGE  
N – NOT  
ACKNOWLEDGE  
S – START  
R/W  
R/W  
P – STOP  
ISL9112 I2C READ PROTOCOL #2  
S
0
0
1
1
1
0
0
0
A
0
0
0
0
0
0
0
0
A
P
S
0
0
1
1
1
0
0
1
A
DATA BYTE  
N
P
I2C SLAVE  
7-BIT ADDRESS  
REGISTER  
ADDRESS = 0x00  
I2C SLAVE  
7-BIT ADDRESS  
DCDV1  
(5 BITS)  
R/W  
R/W  
2
FIGURE 31. I C REGISTER READ PROTOCOL  
FN7649.2  
July 13, 2012  
16  
ISL9110, ISL9112  
Non-Adjustable Version FB Pin Connection  
The fixed output versions of the ISL9110 and the I C-adjustable  
ISL9112 do not require external resistors or a capacitor on the FB  
pin. Simply connect VOUT to FB, as shown in Figure 33.  
Applications Information  
Component Selection  
The ISL9112 and the fixed-output versions of the ISL9110  
require only three external power components to implement the  
buck boost converter: an inductor, an input capacitor, and an  
output capacitor.  
2
VIN  
=
ISL9112  
1.8V TO 5.5V  
5
4
PVIN  
LX1  
C1  
L1  
10µF  
2.2µH  
2
1
The adjustable ISL9110 versions require three additional  
components to program the output voltage. Two external  
resistors program the output voltage, and a small capacitor is  
added to improve stability and response.  
6
10  
9
8
7
LX2  
VIN  
C3  
0.1µF  
VOUT  
=
MODE VOUT  
EN  
3.3V/1A  
I2C  
BUS  
C2  
10µF  
SDA  
SCL  
12  
FB  
An optional input supply filtering capacitor (“C3” in Figure 32)  
can be used to reduce the supply noise on the VIN pin, which  
provides power to the internal reference. In most applications,  
this capacitor is not needed.  
FIGURE 33. TYPICAL ISL9110IRTNZ APPLICATION  
VIN  
=
ISL9110  
PVIN  
1.8V TO 5.5V  
5
4
LX1  
C1  
L1  
2.2µH  
Inductor Selection  
10µF  
2
1
6
10  
9
8
7
VIN  
LX2  
An inductor with high frequency core material (e.g. ferrite core)  
should be used to minimize core losses and provide good  
efficiency. The inductor must be able to handle the peak  
switching currents without saturating.  
C3  
0.1µF  
VOUT  
3.3V/1A  
=
MODE  
EN  
VOUT  
C4  
56pF  
R1  
1M  
C2  
10µF  
BAT  
PG  
12  
STATUS  
OUTPUTS  
FB  
R2  
324k  
A 2.2µH inductor with 2.4A saturation current rating is  
recommended. Select an inductor with low DCR to provide good  
efficiency. In applications where radiated noise must be  
minimized, a toroidal or shielded inductor can be used.  
FIGURE 32. TYPICAL ISL9110IRTAZ APPLICATION  
TABLE 5. INDUCTOR VENDOR INFORMATION  
MANUFACTURER  
Coilcraft  
SERIES  
LPS4018  
WEBSITE  
www.coilcraft.com  
www.murata.com  
www.t-yuden.com  
Output Voltage Programming, Adj. Version  
Setting and controlling the output voltage of the ISL9110IRTAZ  
(adjustable output version) can be accomplished by selecting the  
external resistor values.  
Murata  
LQH44P  
Taiyo Yuden  
NRS4018  
NRS5012  
Equation 2 can be used to derive the R1 and R2 resistor values:  
R1  
R2  
(EQ. 2)  
-------  
V
= 0.8V 1 +  
Sumida  
Toko  
CDRH3D23/HP www.sumida.com  
CDRH4D22/HP  
OUT  
When designing a PCB, include a GND guard band around the  
feedback resistor network to reduce noise and improve accuracy  
and stability. Resistors R1 and R2 should be positioned close to  
the FB pin.  
DEM3518C  
www.toko.co.jp  
PVIN and VOUT Capacitor Selection  
The input and output capacitors should be ceramic X5R type with  
low ESL and ESR. The recommended input capacitor value is  
10µF. The recommended VOUT capacitor value is 10µF to 22µF.  
Feed-Forward Capacitor Selection  
A small capacitor in parallel with resistor R1 is required to  
provide the specified load and line regulation. The suggested  
value of this capacitor is 56pF for R1 = 1MΩ. An NPO type  
capacitor is recommended.  
TABLE 6. CAPACITOR VENDOR INFORMATION  
MANUFACTURER  
AVX  
SERIES  
WEBSITE  
www.avx.com  
X5R  
X5R  
X5R  
X5R  
Murata  
Taiyo Yuden  
TDK  
www.murata.com  
www.t-yuden.com  
www.tdk.com  
FN7649.2  
July 13, 2012  
17  
ISL9110, ISL9112  
Application Example 1.  
An application using the fixed-output ISL9110IRTNZ is shown in  
Figure 34. This application requires only three external  
components.  
VIN  
=
ISL9110IRTNZ  
1.8V TO 5.5V  
5
4
PVIN  
LX1  
C1  
L1  
10µF  
2.2µH  
2
1
6
10  
9
8
7
VIN  
LX2  
VOUT  
=
MODE VOUT  
EN  
BAT  
3.3V/1A  
C2  
10µF  
12  
STATUS  
OUTPUTS  
FB  
PG  
FIGURE 34. TYPICAL ISL9110IRTNZ APPLICATION  
Application Example 2.  
An application requiring V  
= 3.0V, using the adjustable-output  
OUT  
ISL9110IRTAZ is shown in Figure 35. This application requires six  
external components.  
VIN  
=
ISL9110IRTAZ  
1.8V TO 5.5V  
5
4
PVIN  
LX1  
C1  
L1  
10µF  
2.2µH  
2
1
6
10  
9
8
7
VIN  
LX2  
VOUT  
=
MODE VOUT  
EN  
BAT  
3.0V/1A  
C4  
56pF  
R1  
1M  
FIGURE 37. RECOMMENDED PCB LAYOUT  
C2  
10µF  
12  
STATUS  
OUTPUTS  
FB  
PG  
R2  
365k  
The TDFN Package Requires Additional PCB  
Layout Rules for the Thermal Pad  
The thermal pad is electrically connected to the PGND supply. Its  
primary function is to provide heat sinking for the IC. However,  
because of the connection to PGND, the thermal pad must be  
tied to the GND supply to prevent unwanted current flow to the  
thermal pad. Maximum AC performance is achieved if the  
thermal pad is attached to a dedicated ground layer in a  
multi-layered PC board.  
FIGURE 35. TYPICAL ISL9110IRTAZ APPLICATION  
Application Example 3.  
2
An application requiring V  
= 3.3V, using the I C-controllable  
OUT  
ISL9112IRTNZ is shown in Figure 36. This application requires  
three external components. Output voltage can be changed via  
I C control.  
2
The thermal pad requirements are proportional to power  
dissipation and ambient temperature. A dedicated layer  
eliminates the need for individual thermal pad area. When a  
dedicated layer is not possible, an isolated thermal pad on  
another layer should be used. Pad area requirements should be  
evaluated on a case by case basis.  
VIN  
=
ISL9112IRTNZ  
1.8V TO 5.5V  
5
4
PVIN  
LX1  
C1  
L1  
10µF  
2.2µH  
2
1
6
10  
9
8
7
LX2  
VIN  
VOUT  
3.3V/1A  
=
MODE VOUT  
EN  
I2C  
BUS  
C2  
10µF  
SDA  
SCL  
12  
FB  
General PowerPAD Design Considerations  
The following is an example of how to use vias to remove heat  
from the IC.  
FIGURE 36. TYPICAL ISL9112IRTNZ APPLICATION  
Recommended PCB Layout  
Correct PCB layout is critical for proper operation of the ISL9110.  
The input and output capacitors should be positioned as closely  
to the IC as possible. The ground connections of the input and  
output capacitors should be kept as short as possible, and  
should be on the component layer to avoid problems that are  
caused by high switching currents flowing through PCB vias.  
FIGURE 38. PCB VIA PATTERN  
FN7649.2  
July 13, 2012  
18  
ISL9110, ISL9112  
We recommend that you fill the thermal pad area with vias. Fill  
the thermal pad area with vias that are spaced 3x their radius  
(typically), center-to-center, from each other. Keep the vias small  
but not so small that their inside diameter prevents solder  
wicking through the holes during reflow.  
It is important that the vias have a low thermal resistance for  
efficient heat transfer. Do not use “thermal relief” patterns to  
connect the vias to the ground plane. Instead use a solid  
connection with no gaps for improved thermal performance.  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make  
sure you have the latest revision.  
DATE  
REVISION  
FN7649.2  
CHANGE  
June 28, 2012  
May 17, 2012  
Corrected Application Note titles in “Related Literature” on page 1.  
On page 2, pin configuration diagrams, changed "MODE" to "MODE/SYNC".  
On page 3, added ISL9110BIRTAZ to ordering table.  
On page 3, added "Hiccup Mode" column in ordering table.  
On page 3, corrected Evaluation Board numbers.  
On page 13, corrected "EN/SYNC", to "MODE/SYNC" in “External Synchronization”  
August 30, 2011  
FN7649.1  
Page 3:  
Removed "ISL9110EVAL1Z" from “Ordering Information” table  
Added "ISL9110IRTAZ-EVAL1Z" to “Ordering Information” table  
Added "ISL9110IRTNZ-EVAL1Z" to “Ordering Information” table  
Added "ISL9110IRT7Z-EVAL1Z" to “Ordering Information” table  
Added "ISL9112IRT7Z-EVAL1Z" to “Ordering Information” table  
“Inductor Selection” on page 17:  
Corrected "A 10µH inductor.." to "A 2.2µH inductor.."  
Initial release.  
June 16, 2011  
FN7649.0  
Products  
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products  
address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks.  
Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a  
complete list of Intersil product families.  
For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on  
intersil.com: ISL9110, ISL9112  
To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff  
FITs are available from our website at http://rel.intersil.com/reports/search.php  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7649.2  
July 13, 2012  
19  
ISL9110, ISL9112  
Package Outline Drawing  
L12.3x3C  
12 LEAD THIN DUAL FLAT NO-LEAD PLASTIC PACKAGE (0.4mm PITCH)  
Rev 0, 11/09  
3.00  
6
A
PIN #1  
INDEX AREA  
B
6
PIN 1  
INDEX AREA  
0.40  
2.45±0.1  
0.15  
(4X)  
12x 0.20  
0.10M C A B  
1.70±0.1  
12x 0.40  
4
0.20 ±0.05  
TOP VIEW  
BOTTOM VIEW  
PACKAGE  
OUTLINE  
SEE DETAIL "X"  
0.10 C  
C
BASE PLANE  
SEATING PLANE  
0.08 C  
0 . 75  
(12 x0.20)  
SIDE VIEW  
2.45  
(10 x0.40)  
5
C
0 . 2 REF  
(12 x0.20)  
(12 x0.40)  
1.70  
0 . 00 MIN.  
0 . 05 MAX.  
TYPICAL RECOMMENDED LAND PATTERN  
DETAIL "X"  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to ASME Y14.5m-1994.  
3.  
Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension applies to the metallized terminal and is measured  
between 0.15mm and 0.25mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 indentifier may be  
either a mold or mark feature.  
FN7649.2  
July 13, 2012  
20  

相关型号:

ISL9110IRTNZ

1.2A High Efficiency Buck-Boost Regulators Output Current: Up to 1.2A
INTERSIL

ISL9110IRTNZ

1.2A High Efficiency Buck-Boost Regulators; DFN12; Temp Range: -40&deg; to 85&deg;C
RENESAS

ISL9110IRTNZ-T

1.2A High Efficiency Buck-Boost Regulators
INTERSIL

ISL9110IRTNZ-T

1.2A High Efficiency Buck-Boost Regulators; DFN12; Temp Range: -40&deg; to 85&deg;C
RENESAS

ISL9110IRTNZ-T13

SWITCHING REGULATOR
RENESAS

ISL9110IRTNZ-T7

SWITCHING REGULATOR
RENESAS

ISL9110IRTNZ-T7A

1.2A High Efficiency Buck-Boost Regulators; DFN12; Temp Range: -40&deg; to 85&deg;C
RENESAS

ISL9111

Low Input Voltage, High Efficiency Synchronous Boost Converter with 1A Switch
INTERSIL

ISL9111

Low Input Voltage, High Efficiency Synchronous Boost Converter with 1A Switch
RENESAS

ISL91110

Small 2.33mmx2.07mm WLCSP
INTERSIL

ISL91110

High Efficiency Buck-Boost Regulator with 4.5A Switches
RENESAS

ISL91110II2AZ-T

Small 2.33mmx2.07mm WLCSP
INTERSIL