ISL94208_14 [INTERSIL]

4- to 6-Cell Li-ion Battery Management Analog Front-End;
ISL94208_14
型号: ISL94208_14
厂家: Intersil    Intersil
描述:

4- to 6-Cell Li-ion Battery Management Analog Front-End

电池
文件: 总36页 (文件大小:916K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
4- to 6-Cell Li-ion Battery Management Analog  
Front-End  
ISL94208  
Features  
The ISL94208 battery management IC is designed for use with  
a microcontroller and features an analog front-end with  
overcurrent protection for multi-cell Li-ion battery packs. The  
ISL94208 supports battery packs consisting of 4 to 6 cells in  
series and one or more cells in parallel.  
• Software selectable overcurrent protection levels and  
variable protect detection times  
- 4 discharge overcurrent thresholds  
- 4 short circuit thresholds  
- 4 charge overcurrent thresholds  
- 8 overcurrent delay times (charge)  
- 8 overcurrent delay times (discharge)  
- 2 short circuit delay times (discharge)  
Using an internal analog multiplexer, the ISL94208 allows a  
separate microcontroller with an A/D converter to monitor  
each cell voltage plus internal and external temperature.  
The ISL94208 provides integral overcurrent and short circuit  
protection circuitry, an internal 3.3V voltage regulator, internal  
cell balancing switches, and drive circuitry for external FET  
devices for control of pack charge and discharge.  
• Automatic FET turn-off and cell balance disable on reaching  
external (battery) or internal (IC) temperature limit  
• Automatic cell balance turn off on IC over-temperature  
• Integrated charge/discharge FET drive circuitry  
Related Literature  
• ISL94208EVZ Evaluation Kit User Guide  
• Internal cell balancing FETs handle up to 200mA of  
balancing current for each cell  
• Sleep operation with negative or positive edge wake-up  
• <10µA Sleep mode  
Applications  
• Power tools  
• Portable equipment  
• Battery backup systems  
• Military electronics  
P+  
ISL94208  
VCC  
VBACK  
WKUP  
VCELL6  
CB6  
VCELL5  
RGC  
CB5  
RGO  
VCELL4  
µC  
CB4  
SCL  
SCL  
VCC  
VFET2  
SDA  
SDA  
VCELL3  
TEMPI  
CB3  
RESET  
TEMP3V  
VFET1  
INT  
CHRG  
VCELL2  
AO  
A/D INPUT  
I/O  
CB2  
VMON  
VBACK  
CFET  
DFET  
VCELL1  
CB1  
VCELL0  
B-  
VSS  
P-  
FIGURE 1. TYPICAL APPLICATION  
June 21, 2013  
FN8306.1  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Copyright Intersil Americas LLC 2012, 2013. All Rights Reserved  
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners.  
1
ISL94208  
Ordering Information  
PART NUMBER  
(Notes 1, 2, 3)  
PART  
MARKING  
TEMP RANGE  
(°C)  
PACKAGE  
(Pb-free)  
PKG.  
DWG. #  
ISL94208IRZ  
ISL94208EVZ  
1. Add “-T*” suffix for tape and reel. Please refer to TB347 for details on reel specifications.  
94208 IRZ  
-40 to +85  
32 Ld 5x5 QFN  
L32.5x5B  
Evaluation Board  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL94208. For more information on MSL, please see tech brief TB363  
Pin Configuration  
ISL94208  
(32 LD QFN)  
TOP VIEW  
32 31 30 29 28 27 26 25  
TEMPI  
24  
23  
22  
21  
20  
19  
18  
17  
1
2
3
4
VCC  
AO  
VCELL6  
VMON  
CFET  
CB6  
VCELL5  
CB5  
PAD  
DFET  
5
6
7
8
CSENSE  
DSENSE  
VCELL4  
CB4  
VCELL3  
ISREF  
9
10 11 12 13 14 15 16  
Pin Descriptions  
PIN NUMBER  
PIN NAME  
DESCRIPTION  
1
VCC  
VCC supply. This pin provides the operating voltage for the IC circuitry. Connect to the positive terminal of the  
battery pack through a filter.  
14, 12,  
10, 8,  
6, 4,  
2
VCELL0, VCELL1, Battery terminal N voltage input. For N = 1 to 6, VCELLN connects to the positive terminal of CELLN and the  
VCELL2, VCELL3, negative terminal of CELLN + 1.  
VCELL4, VCELL5,  
VCELL6  
13  
VBACK  
Sleep mode backup supply. This pin is used to power the logic when the device is asleep and the RGO output  
turns off.  
31, 32  
VFET1, VFET2  
FET Drivers power Supply. These pins are used to provide the reference voltages for the power FET gate drivers.  
Typically VFET2 connects to VCELL3 (or equivalent voltage) and VFET1 connects to VCELL2 (or equivalent  
voltage).  
15,11, 9  
7, 5, 3  
CB1, CB2, CB3, Cell balancing FET driver output N (N = 1 to 6). An internal FET between the CBN and the VCELL(N - 1) can be  
CB4, CB5, CB6 turned on to discharge CELLN more than other cells, or to shunt some of the charging current away from CELLN.  
This function is used to reduce the voltage on an individual cell relative to other cells in the pack. The cell  
balancing FETs are turned on or off by an external controller, using the I2C interface.  
16  
VSS  
Ground. This pin connects to the most negative terminal in the battery string.  
FN8306.1  
June 21, 2013  
2
ISL94208  
Pin Descriptions(Continued)  
PIN NUMBER  
PIN NAME  
DESCRIPTION  
17  
ISREF  
Current sense reference. This input provides a separate reference point for the charge and discharge current  
monitoring circuits. WIth a separate reference connection, it is possible to minimize errors that result from  
voltage drops on the ground lead when the load is drawing large currents. If a separate reference is not  
necessary, connect this pin to VSS.  
18  
19  
20  
DSENSE  
CSENSE  
DFET  
Discharge current sense monitor. This input monitors the discharge current by monitoring a voltage across a  
sense resistor, or across the discharge path FET, or by using a FET with a current sense pin. The voltage on this  
pin is measured with reference to ISREF.  
Charge current sense monitor. This input monitors the charge current by monitoring a voltage across a sense  
resistor, or the voltage across the charge path FET, or by using a FET with a current sense pin. The voltage on  
this pin is measured with reference to ISREF.  
Discharge FET control. The ISL94208 controls the gate of a discharge path FET through this pin. The power FET  
is an N-Channel device. The FET is turned on only by the microcontroller. The FET can be turned off by the  
microcontroller, but the ISL94208 also turns off the FET in the event of an overcurrent or short circuit condition.  
If the microcontroller detects an undervoltage condition on any of the battery cells, it can turn off the discharge  
FET by controlling this output with a control bit.  
21  
22  
CFET  
Charge FET control. The ISL94208 controls the gate of a charge path FET through this pin. The power FET is an  
N-Channel device. The FET is turned on only by the microcontroller. The FET can be turned off by the  
microcontroller, but the ISL94208 also turns off the FET in the event of an overcurrent condition. If the  
microcontroller detects an overvoltage condition on any of the battery cells, it can turn off the FET by controlling  
this output with a control bit.  
VMON  
Discharge load monitoring. In the event of an overcurrent or short circuit condition, the microcontroller can  
enable an internal resistor that connects between the VMON pin and VSS. When the FETs open because of an  
overcurrent or short circuit condition and the load remains, the voltage at VMON will be near the VCC voltage.  
When the load is released, the voltage at VMON drops below a threshold indicating that the overcurrent or short  
circuit condition is resolved. At this point, the LDFAIL flag is cleared and operation can resume.  
23  
24  
AO  
Analog multiplexer output. The analog output pin is used to monitor the cell voltages and temperature sensor  
voltages. An external microcontroller selects the specific voltage being applied to the output by writing to a  
control register.  
TEMPI  
Temperature monitor input. The voltage across a thermistor is monitored at this pin to determine the  
temperature of the battery cells. When this input drops below TEMP3V/13, an external over-temperature  
condition is reported. The TEMPI voltage can be fed to the AO output pin through an analog multiplexer to be  
monitored by the microcontroller.  
25  
26  
TEMP3V  
Temperature monitor output control. This pin outputs a voltage to be used in a divider that consists of a fixed  
resistor and a thermistor. The thermistor is located in close proximity to the battery cells. The TEMP3V output is  
connected internally to the RGO voltage through a PMOS switch only during a measurement of the temperature,  
otherwise the TEMP3V output is off. The TEMP3V output can be turned on continuously with a special control bit.  
Microcontroller wake up control. The TEMP3V pin is also turned on when any of the DSC, DOC, or COC bits are  
set. This can be used to wake up a sleeping microcontroller to respond to overcurrent conditions with its own  
control mechanism.  
RGO  
Regulated output voltage. This pin connects to the emitter of an external NPN transistor and works in  
conjunction with the RGC pin to provide a regulated 3.3V. The voltage at this pin provides feedback for the  
regulator and power for many of the ISL94208 internal circuits as well as providing the 3.3V output voltage for  
the microcontroller and other external circuits.  
27  
28  
RGC  
Regulated output control. This pin connects to the base of an external NPN transistor and works in conjunction  
with the RGO pin to provide a regulated 3.3V. The RGC output provides the control signal for the external  
transistor to provide the 3.3V regulated voltage on the RGO pin.  
WKUP  
Wake up voltage. This input wakes up the part when the voltage crosses a turn-on threshold (wake up is edge  
triggered). The condition of the pin is reflected in the WKUP bit (the WKUP bit is level sensitive).  
WKPOL bit = “1”: the device wakes up on the rising edge of the WKUP pin. The WKUP bit is HIGH only when the  
WKUP pin voltage > threshold.  
WKPOL bit = “0”, the device wakes up on the falling edge of the WKUP pin. The WKUP bit is HIGH only when the  
WKUP pin voltage < threshold.  
FN8306.1  
June 21, 2013  
3
ISL94208  
Pin Descriptions(Continued)  
PIN NUMBER  
PIN NAME  
DESCRIPTION  
29  
SDA  
Serial Data. This is the bidirectional data line for an I2C interface. This pin should be pulled up to 3.3V using a  
resistor.  
30  
-
SCL  
Serial Clock. This is the clock input for an I2C communication link. This pin should be pulled up to 3.3V using a  
resistor.  
PAD  
Thermal Pad. Connect to VSS.  
Block Diagram  
TEMPI TEMP3V  
VCC  
VCELL6  
VCELL5  
VCELL4  
VCELL3  
VCELL2  
VCELL1  
VCELL0  
TEMPERATURE  
3.3VDC  
RGC  
RGO  
VSS  
SENSOR  
REGULATOR  
CIRCUITS  
CELL  
VOLTAGES  
2
AO  
6
CB6  
CB5  
CB4  
CB3  
CB2  
CB1  
I2C, CONTROL  
LOGIC, REGISTERS,  
OSCILLATOR  
SCL  
SDA  
CELL  
BALANCE  
CIRCUITS  
OVERCURRENT  
CIRCUITS  
FET CONTROL  
CIRCUITRY  
POWER  
BACKUP  
SUPPLY  
WKUP  
CONTROL  
FN8306.1  
June 21, 2013  
4
ISL94208  
Table of Contents  
Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Wake Up Timing (WKPOL = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Wake Up Timing (WKPOL = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Change in Voltage Source, FET Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Automatic Temperature Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Discharge Overcurrent/Short Circuit Monitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Charge Overcurrent Monitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Serial Interface Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Symbol Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Device Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Battery Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
System Power-Up/Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
WKUP Pin Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
WKPOL = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
WKPOL = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Protection Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Overcurrent Safety Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Load Monitoring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Over-Temperature Safety Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Analog Multiplexer Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Voltage Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Temperature Monitoring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Cell Balancing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Definition of Cell Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Cell Balance Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
External VMON/CFET Protection Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
User Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Interface Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Clock and Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Start Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Stop Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Acknowledge (ACK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Write Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Random Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Current Address Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Register Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Operation State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Application Circuits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Integrated Charge/Discharge Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Separate Charge/Discharge Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
FN8306.1  
June 21, 2013  
5
ISL94208  
PC Board Layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
QFN Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Alternate VFET Power Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
About Intersil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
FN8306.1  
June 21, 2013  
6
ISL94208  
Absolute Maximum Ratings (Note 4)  
Thermal Information  
Power Supply Voltage, V  
Cell voltage, VCELL  
-0.5V to 36.0V  
Thermal Resistance (Typical)  
32 Ld QFN (Notes 5, 6) . . . . . . . . . . . . . . . .  
θ
JA (°C/W)  
30  
θ
JC (°C/W)  
CC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1.7  
VCELLn (n = 5, 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.5V to 27.0V  
VCELLn (n = 3, 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to 18.0V  
VCELLn (n = 1, 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to 9.0V  
VCELLn - VCELLn-1 (n = 1, 2, 3, 4, 5, 6) . . . . . . . . . . . . . . . . . . -0.5V to 5V  
VCELL1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to 5V  
VCELL0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to 0.5V  
Cell Balance, CB  
CB6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to 36V  
CB6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to VCC + 0.5V  
CB4, CB5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to 27V  
CB4, CB5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to VCC + 0.5V  
CB2, CB3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to 18.0V  
CB1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.5V to 7.0V  
CBn -VCn-1 (n = 1, 2, 3, 4, 5, 6) . . . . . . . . . . . . . . . . . . . . . . .-0.5V to 7.0V  
FET Control  
Continuous Package Power Dissipation. . . . . . . . . . . . . . . . . . . . . . . .400mW  
Storage temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55 to +125°C  
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
Recommended Operating Conditions (Note 4)  
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Operating Voltage:  
VCC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8V to 26.4V  
SCL, SDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0V to 3.6V  
VBACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VCELL1 or 2.0V to 4.6V  
VCELL1 - VSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.0V to 4.3V  
VCELLn - VCELLn-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.0V to 4.3V  
VFET1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 to 8.6  
VFET2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.4 to 12.9  
VFET2 - VFET1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.8V to 4.5V  
ISREF - VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.1V to 0.1V  
(CSENSE - ISREF), (DSENSE - ISREF) . . . . . . . . . . . . . . . . . . . . -0.5V to 1.5V  
DFET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to VFET2  
CFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to VFET2  
WKUP (WKPOL=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.5V to VBACK  
WKUP (WKPOL=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to 27V  
VMON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.5V to VCC  
VFET2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.5 to 18V  
VFET1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.5 to 13V  
VFET2-VFET1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to 5V  
CFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-18.0V to 18V  
CFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-18.0V to VVFET2 + 0.5V  
DFET  
-0.5V to 18V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
DFET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to VVFET2 + 0.5V  
Terminal Voltage,  
SCL, SDA, CSENSE, DSENSE, TEMPI, RGO, AO, TEMP3V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 0.5 to V  
+ 0.5V  
RGO  
ISREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .- 0.5V to V + 0.5  
SS  
- 0.5 to 5V  
VBACK, RGC  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
VMON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 0.5V to 36V  
VMON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 0.5V to VCC + 0.5V  
WKUP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .- 0.5V to 27V  
WKUP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 0.5V to VCC + 0.5V  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
4. All Absolute Maximum Ratings and Recommended Operating Conditions referenced to VSS, unless otherwise noted.  
5. θJA is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech  
Brief TB379.  
6. θJC, “case temperature” location is at the center of the exposed metal pad on the package underside. See Tech Brief TB379.  
Electrical Specifications  
V
= 6V to 26.4V and -40°C to +85°C, unless otherwise specified. Boldface limits apply over the  
CC  
operating temperature range, -40°C to +85°C.  
MIN  
MAX  
PARAMETER  
Power-Up Condition 1  
SYMBOL  
TEST CONDITION  
(Note 7)  
TYP  
4
(Note 7)  
UNIT  
VPORVCC VCC voltage (Note 8)  
6.5  
V
V
V
Power-Up Condition 2 Threshold  
(Rising)  
VPOR  
VBACK - VSS (rising) (Note 8)  
1.6  
1.55  
2.05  
1.95  
0°C to +60°C  
Power-Up Condition 2 Threshold  
Hysteresis  
VHYS  
VBACK - VSS (falling) (Note 8)  
0µA < IRGC < 350µA  
0.02  
0.1  
0.30  
3.6  
V
3.3V Regulated Voltage  
VRGO  
3.0  
3.3  
V
3.3VDC Voltage Regulator Control  
Current Limit  
I
(Control current at output of RGC.  
Recommend NPN with gain of 70+)  
0.35  
0.50  
mA  
RGC  
FN8306.1  
June 21, 2013  
7
ISL94208  
Electrical Specifications  
V
= 6V to 26.4V and -40°C to +85°C, unless otherwise specified. Boldface limits apply over the  
CC  
operating temperature range, -40°C to +85°C. (Continued)  
MIN  
MAX  
PARAMETER  
Supply Current  
SYMBOL  
IVCC1  
TEST CONDITION  
(Note 7)  
TYP  
300  
400  
(Note 7)  
UNIT  
µA  
V
Power-up defaults, WKUP pin = 0V  
510  
700  
CC  
IVCC2  
LDMONEN bit = 1, VMON floating,  
CFET = 1, DFET=1, WKPOL bit = 1,  
VWKUP = 10V, [AO3:AO0] bits = 03H  
µA  
IVCC3  
IVFET1  
IVFET3  
Default register settings, except  
SLEEP bit = 1. WKUP pin = VCELL1  
1
10  
1.5  
1
µA  
µA  
µA  
VFET1 Supply Current  
(Normal or Sleep Mode)  
0.1  
0.1  
VFET2 Supply Current  
(Normal or Sleep Mode)  
DFET, CFET outputs floating  
RGO Supply Current  
IRGO1  
IRGO2  
Power-up defaults, WKUP pin = 0V  
300  
450  
410  
650  
µA  
µA  
LDMONEN bit = 1, VMON floating,  
CFET = 1, DFET=1, WKPOL bit = 1,  
VWKUP = 10V, [AO3:AO0] bits = 03H  
IRGO3  
Default register settings, except  
SLEEP bit = 1. WKUP pin = VCELL1  
0.4  
1
µA  
VBACK Input Current  
(Falling edge wake up; WKPOL = 0)  
(Normal or Sleep Mode)  
IVBACK01 WKUP V  
(max)  
WKUP2  
7
12  
3
µA  
µA  
IVBACK02  
V
(max) < WKUP < 5V  
WKUP2  
0.5  
VBACK Input Current  
(Rising edge wake up; WKPOL = 1)  
(Normal Mode)  
IVBACK11 WKUP < V  
WKUP > V  
(min) or;  
(max)  
0.5  
3
µA  
WKUP1  
WKUP1  
IVBACK12  
V
(min) WKUP V  
WKUP1  
(max)  
WKUP1  
120  
180  
0.5  
40  
300  
500  
3
µA  
µA  
µA  
µA  
IVBACK13 WKUP V  
(min)  
WKUP1  
WKUP1  
(Sleep Mode)  
IVBACK14 WKUP < V  
(min)  
VCELL Input Current (Monitoring)  
IVCELLA Sinking current at:  
65  
VCELL6 (measure VCELL6 or VCELL5) and  
VCELL5 (measure VCELL6 or VCELL5) and  
VCELL4 (measure VCELL5)  
IVCELLB Sinking current at:  
30  
50  
µA  
VCELL4 (measure VCELL4) and  
VCELL3 (measure VCELL4 or VCELL3) and  
VCELL2 (measure VCELL3)  
IVCELLC  
Sourcing current at:  
VCELL2 (measure VCELL2) and  
VCELL1 (measure VCELL2)  
-40  
-38  
-20  
-18  
µA  
µA  
IVCELLD Sourcing current at:  
VCELL1 (measure VCELL1) and  
VCELL0 (measure VCELL1)  
VCELL Input Current Differential  
(Monitoring)  
IVCELLDIFF Difference in monitoring current between  
VCELLn and VCELL(n-1); n = 1, 2, 3, 4  
-2  
-4  
-1  
2
4
1
µA  
µA  
µA  
Difference in monitoring current between  
VCELLn and VCELL(n-1); n = 5, 6  
VCELL Input Current (Non-Monitoring)  
IVCELLN VCELLn and VCELL(n-1)  
(n = 1, 2, 3, 4, 5, or 6)  
±0.1  
n is a non-selected cell  
FN8306.1  
June 21, 2013  
8
ISL94208  
Electrical Specifications  
V
= 6V to 26.4V and -40°C to +85°C, unless otherwise specified. Boldface limits apply over the  
CC  
operating temperature range, -40°C to +85°C. (Continued)  
MIN  
MAX  
PARAMETER  
SYMBOL  
TEST CONDITION  
(Note 7)  
TYP  
(Note 7)  
UNIT  
OVERCURRENT/SHORT CIRCUIT PROTECTION SPECIFICATIONS  
Discharge Overcurrent Detection  
Threshold  
Sense Voltage Relative To ISREF  
(Default Highlighted)  
V
VOCD = 0.10V (OCDV1, OCDV0 = 0, 0)  
VOCD = 0.12V (OCDV1, OCDV0 = 0, 1)  
0.08  
0.10  
0.12  
0.14  
-0.12  
-0.14  
-0.16  
-0.18  
0.15  
0.30  
0.60  
1.10  
1.1  
0.10  
0.12  
0.14  
0.16  
-0.10  
-0.12  
-0.14  
-0.16  
0.20  
0.35  
0.65  
1.20  
1.45  
0.12  
0.14  
0.16  
0.18  
-0.07  
-0.09  
-0.11  
-0.13  
0.25  
0.40  
0.70  
1.30  
1.8  
V
V
V
V
V
V
V
V
V
V
V
V
V
OCD  
V
OCD = 0.14V (OCDV1, OCDV0 = 1, 0)  
OCD = 0.16V (OCDV1, OCDV0 = 1, 1)  
V
Charge Overcurrent Detection  
Threshold  
Sense Voltage Relative to ISREF  
(Default Highlighted)  
V
VOCC = 0.10V (OCCV1, OCCV0 = 0, 0)  
VOCC = 0.12V (OCCV1, OCCV0 = 0, 1)  
OCC  
V
OCC = 0.14V (OCCV1, OCCV0 = 1, 0)  
OCC = 0.16V (OCCV1, OCCV0 = 1, 1)  
V
Short Current Detection Threshold  
Voltage Relative to ISREF  
(Default Highlighted)  
V
VSC = 0.20V (SCDV1, SCDV0 = 0, 0)  
SC  
V
V
V
SC = 0.35V (SCDV1, SCDV0 = 0, 1)  
SC = 0.65V (SCDV1, SCDV0 = 1, 0)  
SC = 1.20V (SCDV1, SCDV0 = 1, 1)  
Load Monitor Input Threshold  
(Falling Edge)  
V
LDMONEN bit = “1”  
VMON  
Load Monitor Input Threshold  
(Hysteresis)  
V
LDMONEN bit = “1”  
0.25  
mV  
VMONH  
Load Monitor Current  
I
V(VMON) between VVMON and V(VCC  
)
20  
90  
40  
60  
µA  
µs  
VMON  
Short Circuit Time-out  
(Default Highlighted)  
Short circuit detection delay (SCLONG  
bit = ‘0’)  
190  
290  
tSCD  
Short circuit detection delay (SCLONG  
bit = ‘1’)  
5
80  
10  
160  
320  
640  
1280  
2.50  
5
15  
240  
480  
960  
1920  
3.75  
7.5  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
Over Discharge Current Time-out  
(Default Highlighted)  
t
= 160ms (OCDT1, OCDT0 = 0, 0 and  
tOCD  
OCD  
DTDIV = 0)  
t
= 320ms (OCDT1, OCDT0 = 0, 1 and  
160  
320  
640  
1.25  
2.5  
5
OCD  
DTDIV = 0)  
t
= 640ms (OCDT1, OCDT0 = 1, 0 and  
OCD  
DTDIV = 0)  
t
= 1280ms (OCDT1, OCDT0 = 1, 1 and  
OCD  
DTDIV = 0)  
t
= 2.5ms (OCDT1, OCDT0 = 0, 0 and  
OCD  
DTDIV = 1)  
t
= 5ms (OCDT1, OCDT0 = 0, 1 and  
OCD  
DTDIV = 1)  
t
= 10ms (OCDT1, OCDT0 = 1, 0 and  
10  
15  
OCD  
DTDIV = 1)  
t
= 20ms (OCDT1, OCDT0 = 1, 1 and  
10  
20  
30  
OCD  
DTDIV = 1)  
FN8306.1  
June 21, 2013  
9
ISL94208  
Electrical Specifications  
V
= 6V to 26.4V and -40°C to +85°C, unless otherwise specified. Boldface limits apply over the  
CC  
operating temperature range, -40°C to +85°C. (Continued)  
MIN  
MAX  
PARAMETER  
SYMBOL  
TEST CONDITION  
(Note 7)  
TYP  
80  
(Note 7)  
UNIT  
ms  
Over Charge Current Time-out  
(Default Highlighted)  
t
t
= 80ms (OCCT1,OCCT0 = 0, 0 and  
OCC  
40  
120  
240  
480  
960  
3.75  
7.5  
OCC  
CTDIV = 0)  
t
= 160ms (OCCT1, OCCT0 = 0, 1 and  
80  
160  
320  
640  
2.50  
5
ms  
ms  
ms  
ms  
ms  
ms  
ms  
OCC  
CTDIV = 0)  
t
= 320ms (OCCT1, OCCT0 = 1, 0 and  
160  
320  
1.25  
2.5  
5
OCC  
CTDIV = 0)  
t
= 640ms (OCCT1, OCCT0 = 1, 1 and  
OCC  
CTDIV = 0)  
t
= 2.5ms (OCCT1, OCCT0 = 0, 0 and  
OCC  
CTDIV = 1)  
t
= 5ms (OCCT1, OCCT0 = 0, 1 and  
OCC  
CTDIV = 1)  
t
= 10ms (OCCT1, OCCT0 = 1, 0 and  
10  
15  
OCC  
CTDIV = 1)  
t
= 20ms (OCCT1, OCCT0 = 1, 1 and  
10  
20  
30  
OCC  
CTDIV = 1)  
OVER-TEMPERATURE PROTECTION SPECIFICATIONS  
Internal Temperature Shutdown  
Threshold  
TI  
NTSD  
125  
20  
°C  
°C  
ms  
Internal Temperature Hysteresis  
THYS  
Temperature drop needed to restore  
operation after over-temperature shutdown  
Internal Over-temperature Turn-On  
Delay Time  
tITD  
128  
External Temperature Output Current  
External Temperature Limit Threshold  
IX  
Current output capability at TEMP3V pin  
Voltage at VTEMPI; Relative to  
1.2  
-20  
mA  
mV  
T
TX  
0
110  
1
+20  
160  
TF  
V
TEMP3V falling edge  
-----------------------------  
13  
External Temperature Limit Hysteresis  
External Temperature Monitor Delay  
TX  
60  
mV  
ms  
TH  
TD  
V
TEMP3V  
13  
-----------------------------  
Voltage at VTEMPI relative to  
tX  
Delay between activating the external  
sensor and the internal over-temperature  
detection  
External Temperature Autoscan On  
Time  
tXTAON  
TEMP3V is ON (3.3V)  
5
ms  
ms  
External Temperature Autoscan Off  
Time  
tXTAOFF TEMP3V output is off.  
635  
ANALOG OUTPUT SPECIFICATIONS  
Cell Monitor Analog Output Voltage  
Accuracy  
VAOC  
[VCELLN - VCELLN-1]/2 - AO  
-15  
-10  
4
30  
10  
mV  
mV  
Cell Monitor Analog Output External  
Temperature Accuracy  
VAOXT  
External temperature monitoring accuracy.  
Voltage error at AO when monitoring TEMPI  
voltage (measured with TEMPI = 1V)  
Internal Temperature Monitor Output  
Voltage Slope  
VI  
Internal temperature monitor voltage  
change  
-3.5  
mV/°C  
V
NTMON  
Internal Temperature Monitor Output  
TI  
Output at +25°C  
1.31  
NT25  
FN8306.1  
June 21, 2013  
10  
ISL94208  
Electrical Specifications  
V
= 6V to 26.4V and -40°C to +85°C, unless otherwise specified. Boldface limits apply over the  
CC  
operating temperature range, -40°C to +85°C. (Continued)  
MIN  
MAX  
PARAMETER  
SYMBOL  
tVSC  
TEST CONDITION  
(Note 7)  
TYP  
(Note 7)  
UNIT  
ms  
AO Output Stabilization Time  
From SCL falling edge at data bit 0 of  
command to AO output stable within 0.5%  
of final value. AO voltage steps from 0V to  
2V. (CAO = 10pF). (Note 10)  
0.1  
CELL BALANCE SPECIFICATIONS  
Cell Balance Transistor rDS(ON)  
Cell Balance Transistor Current  
WAKE UP/SLEEP SPECIFICATIONS  
RCB  
ICB  
5
10  
200  
mA  
Device WKUP Pin Voltage Threshold  
(WKUP Pin Active High - Rising Edge)  
V
V
WKUP pin rising edge (WKPOL = 1)  
Device wakes up and sets WKUP flag HIGH  
3.5  
5.0  
7.0  
V
WKUP1  
Device Wkup Pin Hysteresis  
(WKUP Pin Active High)  
WKUP pin falling edge hysteresis  
(WKPOL = 1) sets WKUP flag LOW (does not  
automatically enter sleep mode)  
100  
mV  
WKUP1  
HYS  
Input Resistance On WKUP  
RWKUP  
Resistance from WKUP pin to VSS  
(WKPOL = 1)  
250  
360  
450  
kΩ  
Device WKUP Pin Active Voltage  
Threshold (WKUP Pin Active  
Low-Falling Edge)  
V
WKUP pin falling edge (WKPOL = 0)  
Device wakes up and sets WKUP flag HIGH  
VBACK - 2.2  
VBACK - 1.8  
VBACK - 1.4  
V
WKUP2  
Device Wkup Pin Hysteresis  
(WKUP Pin Active Low)  
V
WKUP pin rising edge hysteresis  
(WKPOL = 0) sets WKUP flag LOW (does not  
automatically enter sleep mode)  
200  
40  
mV  
ms  
WKUP2  
HYS  
Device Wake-up Delay  
t
Delay after voltage on WKUP pin crosses  
the threshold (rising or falling) before  
activating the WKUP bit  
20  
60  
WKUP  
FET CONTROL SPECIFICATIONS  
VFET1 Voltage  
VVFET1A  
VVFET1B  
VVFET2A  
VVFET2B  
tCO  
5.6  
4.4  
8.4  
6.6  
10.8  
10.8  
14.4  
14.4  
V
V
0°C to +85°C  
0°C to +85°C  
VFET2 Voltage  
V
V
Control Outputs Response Time  
(CFET, DFET)  
Bit 0 to start of control signal (DFET)  
Bit 1 to start of control signal (CFET)  
1.0  
µs  
CFET Gate Voltage  
VCFET  
VDFET  
No load on CFET  
No load on DFET  
VFET2- 0.5  
VFET2- 0.5  
80  
VFET2  
VFET2  
450  
V
V
DFET Gate Voltage  
FET Turn On Current (DFET)  
IDF(ON) DFET voltage = 0 to VFET2 -1.5V  
200  
200  
180  
µA  
-20°C to +85°C  
FET Turn On Current (CFET)  
I
CF(ON) CFET voltage = 0 to VFET2 - 1.5V  
-20°C to +85°C  
80  
450  
µA  
FET Turn Off Current (DFET)  
DFET Resistance to VSS  
IDF(OFF) DFET voltage = FET2 to 1V  
100  
mA  
RDF(OFF) VDFET < 1V (When turning off the FET)  
11  
SERIAL INTERFACE CHARACTERISTICS  
SCL Clock Frequency  
fSCL  
400  
50  
kHz  
ns  
Pulse Width Suppression Time at SDA  
and SCL Inputs  
tIN  
Any pulse narrower than the max spec is  
suppressed  
SCL Falling Edge to SDA Output Data  
Valid  
tAA  
From SCL falling crossing VIH(min), until  
SDA exits the VIL(max) to VIH(min) window  
0.9  
µs  
FN8306.1  
June 21, 2013  
11  
ISL94208  
Electrical Specifications  
V
= 6V to 26.4V and -40°C to +85°C, unless otherwise specified. Boldface limits apply over the  
CC  
operating temperature range, -40°C to +85°C. (Continued)  
MIN  
MAX  
PARAMETER  
SYMBOL  
tBUF  
TEST CONDITION  
(Note 7)  
TYP  
(Note 7)  
UNIT  
µs  
Time the Bus Must Be Free Before  
Start of New Transmission  
SDA crossing VIH(min) during a STOP  
condition to SDA crossing VIH(min) during  
the following START condition  
1.3  
Clock Low Time  
tLOW  
tHIGH  
Measured at the VIL(max) crossing  
Measured at the VIH(min) crossing  
1.3  
0.6  
0.6  
µs  
µs  
µs  
Clock High Time  
Start Condition Setup Time  
tSU:STA  
SCL rising edge to SDA falling edge. Both  
crossing the VIH(min) level  
Start Condition Hold Time  
Input Data Setup Time  
Input Data Hold Time  
tHD:STA  
From SDA falling edge crossing VIL(max) to  
SCL falling edge crossing VIH(min)  
0.6  
100  
0
µs  
ns  
µs  
tSU:DAT  
From SDA exiting the VIL(max) to VIH(min)  
window to SCL rising edge crossing VIL(min)  
tHD:DAT From SCL falling edge crossing VIH(min) to  
SDA entering the VIL(max) to VIH(min)  
window  
0.9  
Stop Condition Setup Time  
Stop Condition Hold Time  
Data Output Hold Time  
tSU:STO  
From SCL rising edge crossing VIH(min) to  
SDA rising edge crossing VIL(max)  
0.6  
0.6  
0
µs  
µs  
ns  
tHD:STO From SDA rising edge to SCL falling edge.  
Both crossing VIH(min)  
tDH  
From SCL falling edge crossing VIL(max)  
until SDA enters the VIL(max) to VIH(min)  
window. (Note 9)  
SDA and SCL Rise Time  
tR  
From VIL(max) to VIH(min) (Notes 11, 12)  
From VIH(min) to VIL(max) (Notes 11, 12)  
Total on-chip and off-chip (Notes 11, 12)  
20 + 0.1 x  
Cb  
300  
300  
400  
ns  
ns  
SDA and SCL Fall Time  
tF  
20 + 0.1 x  
Cb  
Capacitive Loading Of SDA Or SCL  
Cb  
10  
1
pF  
SDA and SCL Bus Pull-up Resistor  
Off Chip  
ROUT  
Maximum is determined by tR and tF.  
For CB = 400pF, max is about 2k~ 2.5kΩ  
For CB = 40pF, max is about 15kto 20kΩ  
(Notes 11, 12)  
kΩ  
Input Leakage Current (SCL, SDA)  
Input Buffer Low Voltage (SCL, SDA)  
Input Buffer High Voltage (SCL, SDA)  
Output Buffer Low Voltage (SDA)  
SDA and SCL Input Buffer Hysteresis  
NOTES:  
I
-10  
10  
µA  
V
LI  
V
Voltage relative to VSS of the device.  
Voltage relative to VSS of the device.  
-0.3  
V
x 0.3  
IL  
RGO  
V
V
x 0.7  
V
+ 0.1V  
V
IH  
RGO  
RGO  
0.4  
VOL  
I
= 1mA  
V
OL  
I2CHYST Sleep bit = 0  
0.05 * VRGO  
V
7. Compliance to data sheet limits is assured by one or more methods: production test, characterization and/or design.  
8. Power-up of the device requires VBACK and VCC to be above the limits specified.  
9. The device provides an internal hold time of at least 300ns for the SDA signal to bridge the unidentified region of the falling edge of SCL.  
10. Maximum output capacitance = 15pF.  
11. These are I2C specific parameters and are not production tested. However, they are used to set conditions for testing to validate specification.  
12. Limits should be considered typical and are not production tested.  
FN8306.1  
June 21, 2013  
12  
ISL94208  
Timing Diagrams  
Wake Up Timing (WKPOL = 0)  
<t  
WKUP  
V
V
WKUP2H  
WKUP2  
WKUP PIN  
<t  
WKUP  
t
t
WKUP  
WKUP  
WKUP BIT  
Wake Up Timing (WKPOL = 1)  
<t  
WKUP  
V
WKUP1  
V
WKUP1H  
WKUP PIN  
<t  
WKUP  
t
t
WKUP  
WKUP  
WKUP BIT  
Change in Voltage Source, FET Control  
SCL  
BIT  
3
BIT  
2
BIT  
1
BIT  
0
BIT  
1
BIT  
0
SDA  
AO  
DATA  
t
t
VSC  
VSC  
t
t
t
CO  
CO  
CO  
DFET  
CFET  
FN8306.1  
June 21, 2013  
13  
ISL94208  
Automatic Temperature Scan  
AUTO TEMP CONTROL  
(INTERNAL ACTIVATION)  
(t  
)
XTAOFF  
635ms  
MONITOR TIME = 5ms  
(t  
)
3.3V  
XTAON  
HIGH IMPEDANCE  
TEMP3V PIN  
EXTERNAL  
TEMPERATURE  
OVER-TEMPERATURE  
THRESHOLD  
TMP3V/13  
DELAY TIME = 1ms  
MONITOR TEMP DURING THIS  
DELAY TIME = 1ms  
XTD  
(t  
)
TIME PERIOD  
XOT BIT  
FET SHUTDOWN AND CELL BALANCE TURN OFF  
(IF ENABLED)  
Discharge Overcurrent/Short Circuit Monitor  
(Assumes DENOCD and DENSCD bits are ‘0’)  
V
SC  
V
OCD  
V
DSENSE  
t
t
t
SCD  
SCD  
OCD  
‘1’  
‘0’  
‘0’  
DOC BIT  
DSC BIT  
‘1’  
3.3V  
TEMP3V  
OUTPUT  
REGISTER 1 READ  
REGISTER 1 READ  
VFET2  
DFET  
OUTPUT  
µC TURNS ON DFET  
FN8306.1  
June 21, 2013  
14  
ISL94208  
Charge Overcurrent Monitor  
(Assumes DENOCC bit is ‘0’)  
V
CSENSE  
V
OCC  
t
OCC  
‘1’  
‘0’  
COC BIT  
3.3V  
TEMP3V  
OUTPUT  
REGISTER 1 READ  
12V  
CFET  
OUTPUT  
µC TURNS ON CFET  
Serial Interface Bus Timing  
t
t
t
R
HIGH  
LOW  
t
F
t
SCL  
t
SU:STA  
t
t
SU:DAT  
HD:DAT  
SU:STO  
t
HD:STA  
SDA  
(INPUT TIMING)  
t
BUF  
t
t
AA  
DH  
SDA  
(OUTPUT TIMING)  
Symbol Table  
WAVEFORM  
INPUTS  
OUTPUTS  
WAVEFORM  
INPUTS  
OUTPUTS  
DON’T CARE:  
CHANGES  
ALLOWED  
CHANGING:  
STATE NOT  
KNOWN  
MUST BE  
STEADY  
WILL BE  
STEADY  
N/A  
CENTER LINE  
IS HIGH  
IMPEDANCE  
MAY CHANGE  
FROM LOW  
TO HIGH  
WILL CHANGE  
FROM LOW  
TO HIGH  
MAY CHANGE  
FROM HIGH  
TO LOW  
WILL CHANGE  
FROM HIGH  
TO LOW  
FN8306.1  
June 21, 2013  
15  
ISL94208  
Registers  
TABLE 1. REGISTERS  
READ/  
WRITE  
ADDR  
00H  
REGISTER  
7
6
5
4
3
2
1
0
Config/Op  
Status  
Read only  
Reserved  
Reserved  
1
WKUP  
WKUP pin  
Status  
Reserved  
Reserved  
Reserved  
Reserved  
01H  
Operating  
Status  
(Note 15)  
Read only  
Reserved  
Reserved  
XOT  
Ext over  
temp  
IOT  
Int  
Over-Temp  
LDFAIL  
DSC  
DOC  
COC  
Load Fail Short Circuit Discharge Charge OC  
(VMON)  
OC  
02H  
03H  
04H  
Cell Balance Read/Write Reserved  
CB6ON  
UFLG0  
CB5ON  
Reserved  
Reserved  
CB4ON  
CB3ON  
CB2ON  
CB1ON  
Reserved  
AO0  
Cell Balance Fet Control Bits  
Analog Out Read/Write  
FET Control Read/Write  
UFLG1  
User Flag 1 User Flag 0  
Reserved  
Reserved  
AO3  
AO2  
AO1  
Analog Output Select Bits  
SLEEP  
LDMONEN  
Turn on  
VMON  
Reserved  
Reserved  
CFET  
Turn On  
Charge FET Discharge  
DFET  
Turn On  
Force Sleep  
(Note 16)  
Connection  
(Note 17)  
FET  
(Note 17)  
05H  
06H  
07H  
Discharge Read/Write  
DENOCD  
OCDV1  
OCDV0  
DENSCD  
SCDV1  
SCDV0  
OCDT1  
OCDT0  
Set  
(Write only if  
DISSETEN  
bit set)  
Turn Off  
Automatic  
OCD control  
Overcurrent Discharge  
Threshold Voltage  
Turn-off  
automatic  
SCD control  
Short Circuit Discharge  
Threshold Voltage  
Overcurrent Discharge  
Time-out  
Charge Set Read/Write  
(Write only if  
CHSETEN  
DENOCC  
OCCV1  
OCCV0  
SCLONG  
Long  
CTDIV  
Divide  
DTDIV  
Divide  
OCCT1  
OCCT0  
Turn Off  
Automatic  
OCC control  
Overcurrent Charge  
Threshold Voltage  
Overcurrent Charge  
Time-out  
Short-circuit ChargeTime Discharge  
bit set)  
Delay  
by 32  
Time by 64  
Feature Set Read/Write ATMPOFF  
DIS3  
TMP3ON  
Turn-on  
Temp3V  
DISXTSD  
Disable  
External  
Thermal  
Shutdown  
DISITSD  
Disable  
Internal  
Thermal  
Shutdown  
POR  
Force POR  
DISWKUP  
Disable  
WKUP pin  
WKPOL  
Wake Up  
Polarity  
(Write Only  
if FSETEN  
Bit Set)  
Turn Off Disable3.3V  
Automatic Reg. (Device  
External  
Requires  
External  
3.3V)  
Temp Scan  
08H  
Write  
Enable  
Read/Write  
NA  
FSETEN  
Enable  
CHSETEN  
Enable  
DISSETEN  
Enable  
UFLG3  
User Flag 3 User Flag 2  
UFLG2  
Reserved  
Reserved  
Reserved  
Feature Set Charge Set Discharge  
Writes Writes Set Writes  
09H:FFH  
Reserved  
Reserved  
NOTES:  
13. A “1” written to a control or configuration bit causes the action to be taken. A “1” read from a status bit indicates that the condition exists.  
14. “Reserved” indicates that the bit or register is reserved for future expansion. When writing to addresses 2, 3, 4, and 8: write a reserved bit with the  
value “0”. Do not write to reserved registers at addresses 09H through FFH. Ignore reserved bits that are returned in a read operation.  
15. These status bits are automatically cleared when the register is read. All other status bits are cleared when the condition is cleared.  
16. This SLEEP bit is cleared on initial power up, by the WKUP pin going high (when WKPOL = ”1”), by the WKUP pin going low (when WKPOL = ”0”), or  
by writing a “0” to the location with an I2C command.  
17. When the automatic responses are enabled, these bits are automatically reset by hardware when an overcurrent or short circuit condition turns off  
the FETs. At all other times, an I2C write operation controls the output to the respective FET and a read returns the current state of the FET drive output  
circuit (though not the actual voltage at the output pin).  
FN8306.1  
June 21, 2013  
16  
ISL94208  
Status Registers  
TABLE 2. CONFIG/OP STATUS REGISTER (ADDR: 00H)  
DESCRIPTION  
BIT  
FUNCTION  
7, 6, 3, 2, RESERVED  
1, 0  
Reserved for future expansion.  
5
4
1
This bit is always a “1”.  
WKUP  
This bit is set and reset by hardware.  
Wakeup pin status When ‘WKPOLis HIGH:  
• ’WKUP’ bit HIGH = WKUP pin > Threshold voltage  
• ‘WKUP’ bit LOW = WKUP pin < Threshold voltage  
When ‘WKPOLis LOW:  
• ’WKUP’ bit HIGH = WKUP pin < Threshold voltage  
• ‘WKUP’ bit LOW = WKUP pin > Threshold voltage  
TABLE 3. OPERATING STATUS REGISTER (ADDR: 01H)  
DESCRIPTION  
BIT  
7, 6  
5
FUNCTION  
RESERVED  
Reserved for future expansion.  
XOT  
Ext Over-temp  
This bit is set to “1” when the external temperature sensor input indicates an over-temperature condition. If the  
over-temperature condition has cleared, this bit is reset when the register is read.  
4
3
IOT  
This bit is set to “1” when the internal temperature sensor input indicates an over-temperature condition. If the  
over-temperature condition has cleared, this bit is reset when the register is read.  
Int Over-temp  
LDFAIL  
When the VMON function is enabled (LDMONEN = 1), this bit is set to “1” by hardware when a discharge overcurrent or  
Load Fail (VMON) short circuit condition occurs. If the load fail condition is cleared or under a light load, the bit is reset when the register  
is read.  
2
1
0
DSC  
Short Circuit  
This bit is set by hardware when a short circuit condition occurs during discharge. If the discharge short circuit condition  
is removed, the bit is reset when the register is read.  
DOC  
Discharge OC  
This bit is set by hardware when an overcurrent condition occurs during discharge. If the discharge overcurrent condition  
is removed, the bit is reset when the register is read.  
COC  
Charge OC  
This bit is set by hardware when an overcurrent condition occurs during charge. If the charge overcurrent condition is  
removed, the bit is reset when the register is read.  
FN8306.1  
June 21, 2013  
17  
ISL94208  
Control Registers  
TABLE 4. CELL BALANCE CONTROL REGISTER (ADDR: 02H)  
CONTROL REGISTER BITS  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
CB5ON  
CB4ON  
CB4ON  
CB3ON  
CB2ON  
CB1ON  
BALANCE  
x
x
x
x
x
x
x
x
x
x
1
0
x
x
x
x
x
x
x
x
1
0
x
x
x
x
x
x
x
x
1
0
x
x
x
x
x
x
x
x
1
0
x
x
x
x
x
x
x
x
1
0
x
x
x
x
x
x
x
x
1
0
x
x
x
x
x
x
x
x
x
x
Cell1 ON  
Cell1 OFF  
Cell2 ON  
Cell2 OFF  
Cell3 ON  
Cell3 OFF  
Cell4 ON  
Cell4 OFF  
Cell5 ON  
Cell5 OFF  
Cell6 ON  
Cell6 OFF  
Bit 7 and Bit 0 RESERVED  
TABLE 5. ANALOG OUT CONTROL REGISTER (ADDR: 03H)  
DESCRIPTION  
BITS  
7
FUNCTION  
UFLG1  
User Flag 1  
General purpose flag usable by microcontroller software. This bit is battery backed up, even  
when RGO turns off.  
6
UFLG0  
User Flag 0  
General purpose flag usable by microcontroller software. This bit is battery backed up, even  
when RGO turns off.  
5:4  
RESERVED  
Reserved for future expansion  
BIT 3  
AO3  
BIT 2  
AO2  
BIT 1  
AO1  
BIT 0  
AO0  
0
OUTPUT VOLTAGE  
0
0
0
High Impedance Output (Low Power State)  
Remember to reset the AO3:AO0 bits to ‘0000’ after measurements to  
minimize unnecessary current draw from the cells.  
0
0
0
0
0
0
1
1
0
0
0
1
1
1
0
0
0
1
1
0
0
1
0
0
1
0
1
0
1
0
0
1
V(VCELL1) - V(VCELL0)  
V(VCELL2) - V(VCELL1  
V(VCELL3) - V(VCELL2  
V(VCELL4) - V(VCELL3  
V(VCELL5) - V(VCELL4  
V(VCELL6) - V(VCELL5  
)
)
)
)
)
External Temperature.  
Internal Temperature Sensor Voltage V(TEMPI).  
RESERVED  
Other cases  
FN8306.1  
June 21, 2013  
18  
ISL94208  
Configuration Registers  
The device is configured for specific application requirements  
using the Configuration Registers. The configuration registers  
consist of SRAM memory. In the wake up state, this memory is  
powered by the RGO output. In a sleep state, this memory is  
powered by VBACK.  
TABLE 6. FET CONTROL REGISTER (ADDR: 04H)  
BIT  
7
FUNCTION  
DESCRIPTION  
SLEEP  
Force Sleep  
Setting this bit to “1” forces the device to go into a sleep condition. This turns off both FET outputs,  
the cell balance outputs and the voltage regulator. This also resets the CFET, DFET, and  
CB6ON:CB1ON bits. The SLEEP bit is automatically reset to “0” when the device wakes up. This bit  
does not reset the AO3:AO0 bits (if the WKUP pin is Active, when attempting to put the device into  
the Sleep mode, then the SLEEP bit needs to be reset from “1” to “0” prior to setting it to “1” to  
initiate sleep).  
6
LDMONEN  
Turn on VMON connection  
Writing a “1” to this bit turns on the VMON circuit. Writing a “0” to this bit turns off the VMON circuit.  
As such, the microcontroller has full control of the operation of this circuit.  
5:2  
1
RESERVED  
CFET  
Reserved for future expansion.  
Setting this bit to “1” turns on the charge FET.  
Setting this bit to “0” turns off the charge FET.  
This bit is automatically reset in the event of a charge overcurrent condition, unless the automatic  
response is disabled by the DENOCC bit.  
This bit is automatically reset in the event of an external over temperature condition, unless the  
response is disabled by the DISXTSD bit.  
This bit is automatically reset in the event of an internal over temperature condition, unless the  
response is disabled by the DISITSD bit.  
0
DFET  
Setting this bit to “1” turns on the discharge FET.  
Setting this bit to “0” turns off the discharge FET.  
This bit is automatically reset in the event of a discharge overcurrent or discharge short circuit  
condition, unless the automatic response is disabled by the DENOCD or DENSCD bits.  
This bit is automatically reset in the event of an external over temperature condition, unless the  
response is disabled by the DISXTSD bit.  
This bit is automatically reset in the event of an internal over temperature condition, unless the  
response is disabled by the DISITSD bit.  
TABLE 7. DISCHARGE SET CONFIG REGISTER (ADDR: 05H)  
DESCRIPTION  
SETTING  
Bit 7  
FUNCTION  
DENOCD  
Turn off automatic OC  
discharge control  
When set to ‘0’, a discharge overcurrent condition automatically turns off the FETs.  
When set to ‘1’, a discharge overcurrent condition will not automatically turn off the FETs.  
In either case, this condition sets the DOC bit, which also turns on the TEMP3V output.  
BIT 6  
BIT 5  
OCDV1  
OCDV0  
OVERCURRENT DISCHARGE VOLTAGE THRESHOLD  
0
0
0
1
0
1
VOCD = 0.10V  
VOCD = 0.12V  
VOCD = 0.14V  
VOCD = 0.16V  
1
1
Bit 4  
DENSCD  
When set to ‘0’, a discharge short circuit condition turns off the FETs.  
Turn off automatic SC  
discharge control  
When set to ‘1’, a discharge short circuit condition does not automatically turn off the FETs.  
In either case, the condition sets the SCD bit, which also turns on the TEMP3V output.  
BIT 3  
BIT 2  
SCDV1  
SCDV0  
SHORT CIRCUIT DISCHARGE VOLTAGE THRESHOLD  
0
0
1
1
0
1
0
1
VSCD = 0.20V  
VSCD = 0.35V  
VSCD = 0.65V  
VSCD = 1.20V  
BIT 1  
BIT 0  
OCDT1  
OCDT0  
OVERCURRENT DISCHARGE TIME-OUT  
0
0
1
1
0
1
0
1
tOCD = 160ms (2.5ms if DTDIV = 1)  
tOCD = 320ms (5ms if DTDIV = 1)  
tOCD = 640ms (10ms if DTDIV = 1)  
tOCD = 1280ms (20ms if DTDIV = 1)  
FN8306.1  
June 21, 2013  
19  
ISL94208  
TABLE 8. CHARGE/TIME SCALE CONFIG REGISTER (ADDR: 06H)  
DESCRIPTION  
SETTING  
Bit 7  
FUNCTION  
DENOCC  
When set to ‘0’, a charge overcurrent condition automatically turns off the FETs.  
Turn off automatic OC charge control When set to ‘1’, a charge overcurrent condition does not automatically turn off the FETs.  
In either case, this condition sets the COC bit, which also turns on the TEMP3V output.  
BIT 6  
BIT 5  
OCCV1  
OCCV0  
OVERCURRENT CHARGE VOLTAGE THRESHOLD  
0
0
0
1
0
1
V
OCD = 0.10V  
VOCD = 0.12V  
1
V
OCD = 0.14V  
OCD = 0.16V  
1
V
Bit 4  
SCLONG  
Short circuit long delay  
When this bit is set to ‘0’, a short circuit needs to be in effect for 190µs before a shutdown  
begins. When this bit is set to ‘1’, a short circuit needs to be in effect for 10ms before a  
shutdown begins.  
Bit 3  
Bit 2  
CTDIV  
When set to “1”, the charge overcurrent delay time is divided by 32.  
When set to “0”, the charge overcurrent delay time is divided by 1.  
Divide charge time by 32  
DTDIV  
When set to “1”, the discharge overcurrent delay time is divided by 64.  
When set to “0”, the discharge overcurrent delay time is divided by 1.  
Divide discharge time by 64  
BIT 1  
BIT 0  
OCCT1  
OCCT0  
OVERCURRENT CHARGE TIME-OUT  
0
0
1
1
0
1
0
1
tOCC = 80ms (2.5ms if CTDIV=1)  
tOCC = 160ms (5ms if CTDIV=1)  
tOCC = 320ms (10ms if CTDIV=1)  
tOCC = 640ms (20ms if CTDIV=1)  
TABLE 9. FEATURE SET CONFIGURATION REGISTER (ADDR: 07H)  
DESCRIPTION  
BIT  
FUNCTION  
7
6
5
4
ATMPOFF  
When set to ‘1’ this bit disables the automatic temperature scan. When set to ‘0’, the temperature  
Turn off automatic external temp scan is turned on for 5ms in every 640ms.  
DIS3  
Disable 3.3V reg  
Setting this bit to “1” disables the internal 3.3V regulator. Setting this bit to “1” requires that there  
be an external 3.3V regulator connected to the RGO pin.  
TMP3ON  
Turn on Temp 3.3V  
Setting this bit to “1” turns ON the TEMP3V output to the external temperature sensor. The output  
will remain on as long as this bit remains “1”.  
DISXTSD  
Disable external thermal shutdown  
Setting this bit to “1” disables the automatic shutdown of the cell balance and power FETs in  
response to an external over-temperature condition. While the automatic response is disabled, the  
XOT flag is set so the microcontroller can initiate a shutdown based on the XOT flag.  
3
DISITSD  
Setting this bit to “1” disables the automatic shutdown of the cell balance and power FETs in  
response to an internal over-temperature condition. While the automatic response is disabled, the  
IOT flag is set so the microcontroller can initiate a shutdown based on the IOT flag.  
Disable internal thermal shutdown  
2
1
POR  
Force POR  
Setting this bit to “1” forces a Power On Reset (POR) condition. This resets all internal registers to  
zero.  
DISWKUP  
Setting this bit to “1” disables the WKUP pin function.  
Disable WKUP pin  
CAUTION: Setting this pin to ‘1’ disables hardware wake up functionality. If the device then goes to  
sleep, it cannot be awakened without an I2C command that resets this bit, or by power cycling the  
device.  
0
WKPOL  
Wake up polarity  
Setting this bit to “1” sets the device to wake up on a rising edge at the WKUP pin.  
Setting this bit to “0” sets the device to wake up on a falling edge at the WKUP pin. When  
WKPOL= 0, limit the maximum voltage on the WKUP pin to no more than the voltage on VBACK.  
.
FN8306.1  
June 21, 2013  
20  
ISL94208  
TABLE 10. WRITE ENABLE REGISTER (ADDR: 08H)  
DESCRIPTION  
BIT  
7
FUNCTION  
FSETEN  
When set to “1”, allows writes to the Feature Set register. When set to “0”, prevents writes to the Feature Set  
Enable discharge set writes register (Addr: 07H). Default on initial power-up is “0”.  
6
5
4
3
CHSETEN  
Enable charge set writes  
When set to “1”, allows writes to the Charge Set register. When set to “0”, prevents writes to the Feature Set  
register (Addr: 06H). Default on initial power-up is “0”.  
DISSETEN  
When set to “1”, allows writes to the Discharge Set register (Addr: 05H). When set to “0”, prevents writes to  
Enable discharge set writes the Feature Set register. Default on initial power-up is “0”.  
UFLG3  
User Flag 3  
General purpose flag usable by microcontroller software. This bit is powered by the voltage on VBACK when  
RGO turns off.  
UFLG2  
User Flag 3  
General purpose flag usable by microcontroller software. This bit is powered by the voltage on VBACK when  
RGO turns off.  
2, 1, 0 RESERVED  
Reserved for future expansion.  
FN8306.1  
June 21, 2013  
21  
ISL94208  
Connection guidelines for systems using 4, 5, or 6 cells are  
shown in Figure 3 (minus the input filters and diodes).  
Device Description  
Instructed by the microcontroller, the ISL94208 performs cell  
voltage monitoring and cell balancing operations, overcurrent  
and short circuit monitoring with automatic pack shutdown using  
built-in selectable time delays, and automatic turn off of the  
power FETs and cell balancing FETs in an over-temperature  
condition. All automatic functions of the ISL94208 can be turned  
off and the microcontroller can manage the operations through  
software.  
6 CELLS  
5 CELLS  
VCC  
VCC  
VCELL6  
VCELL6  
CB6  
VCELL5  
CB6  
VCELL5  
CB5  
VCELL4  
CB5  
VCELL4  
VFET2  
Battery Connection  
CB4  
CB4  
VFET2  
VFET1  
VFET1  
VCELL3  
VCELL3  
The ISL94208 supports packs of 4 to 6 series connected Li-ion  
cells. One connection, with input filtering components, for six  
cells is shown in Figure 2. Input capacitors are not normally  
needed and are not recommended. These capacitors rapidly  
charge when the batteries connect. This surge current is limited  
only by the input resistors and may be high enough to damage  
elements in the IC. If capacitors are needed, use the largest  
possible series input resistor.  
CB3  
VCELL2  
CB3  
VCELL2  
CB2  
VCELL1  
CB2  
VCELL1  
VBACK  
VBACK  
CB1  
VCELL0  
VSS  
CB1  
VCELL0  
VSS  
When using input filters, the time constants on all inputs should  
be the same.  
4 CELLS  
VCC  
VCELL6  
27V  
VCC  
CB6  
VCELL5  
2.2µF/35V  
68nF/35V  
22nF/35V  
68nF/35V  
22nF/35V  
20Ω  
VCELL6  
500Ω  
CB5  
VCELL4  
VFET2  
VFET1  
CB6  
1.5kΩ  
500Ω  
1.5kΩ  
CB4  
VCELL3  
VCELL5  
CB5  
CB3  
VCELL2  
VCELL4  
CB4  
CB2  
VCELL1  
VBACK  
500Ω  
1.5kΩ  
1kΩ  
68nF/35V  
22nF/35V  
33nF/16V  
CB1  
VCELL0  
VSS  
VFET2  
VCELL3  
CB3  
Note: Multiple cells can be connected in parallel.  
500Ω  
68nF/16V  
22nF/16V  
33nF/16V  
FIGURE 3. BATTERY CONNECTION OPTIONS  
1.5kΩ  
VFET1  
System Power-Up/Power-Down  
The ISL94208 powers up when the voltage on VBACK and VCC  
both exceed their POR threshold. At this time, the ISL94208  
wakes up and turns on the RGO output.  
1kΩ  
500Ω  
1.5kΩ  
VCELL2  
CB2  
68nF/16V  
22nF/16V  
RGO provides a regulated 3.3VDC ±10% voltage at pin RGO. It  
does this by using a control voltage on the RGC pin to drive an  
external NPN transistor (see Figure 4). The transistor should have  
a beta of at least 70 to provide ample current to the device and  
external circuits and should have a breakdown voltage greater  
than 30V (preferably 50V). The voltage at the emitter of the NPN  
transistor is monitored and regulated to 3.3V by the control  
signal RGC. RGO also powers most of the ISL94208 internal  
circuits. A 500Ω resistor is recommended in the collector of the  
NPN transistor to minimize initial current surge when the  
regulator turns on.  
VBACK  
VCELL1  
1kΩ  
500Ω  
1.5kΩ  
33nF/16V  
68nF/16V  
22nF/16V  
CB1  
VCELL0  
500Ω  
68nF/16V  
VSS  
@ 4V BALANCE  
CURRENT = 2mA  
FIGURE 2. ISL94208 INPUT FILTERS  
FN8306.1  
June 21, 2013  
22  
ISL94208  
Once powered up, the device remains in a wake up state until put  
WKPOL = 1  
to sleep by the microcontroller (typically when the cells drop too  
low in voltage) or until the VBACK or VCC voltages drop below their  
POR threshold.  
In an active High connection (WKPOL = ‘1’) the device wakes up  
when the WKUP pin is pulled high, normally by a connection  
through an external switch.  
To put the part to sleep, when configured as an active High  
WKUP, if the WKUP pin is Low, then a single rising edge on the  
SLEEP bit puts the part to sleep. However, if the WKUP pin is  
High, the device needs to see a falling edge of the SLEEP bit, (or  
the WKUP pin needs to be pulled Low), before the rising edge of  
the SLEEP bit can force the device into the Sleep mode. A WKUP/  
Sleep Timing timing diagram for WKPOL = 1 is shown in Figure 6.  
See an example wake up circuit, using the microcontroller to  
control wake up, in Figure 6. This microcontroller would need to  
be powered by a separate supply.  
VCC  
500Ω  
RGC  
3.3V  
RGO  
VSS  
10µF  
In either active Low or active High wake up, there is a filter that  
ignores WKUP pulses that are shorter than a tWKUP period. If the  
device is in SLEEP mode when the WKUP signal goes active, then  
the regulator turns on to power the wake up circuits. However, the  
part is not fully awake, it is in a pseudo sleep mode, until the Wake  
up condition is latched, after which the device is fully active.  
GND  
FIGURE 4. VOLTAGE REGULATOR CIRCUITS  
WKUP Pin Operation  
There are two ways to design a wake up of the ISL94208.  
When using the active high wake up option, it is not  
recommended that the WKUP voltage remain high while the  
device is in sleep mode. Doing so results in excessive current on  
the VBACK pin.  
WKPOL = 0  
In an active Low connection (WKPOL = “0” - default), the device  
wakes up when the WKUP pin goes Low when compared to a  
reference based on the VBACK voltage. This normally happens in a  
pack when a charger connects to the battery terminals.  
To put the part to sleep, when configured as an active Low WKUP,  
if the WKUP pin is High, then a single rising edge on the SLEEP  
bit puts the part to sleep. However, if the WKUP pin is Low, the  
device needs to see a falling edge of the SLEEP bit (or the WKUP  
pin needs to be pulled High), before the rising edge of the SLEEP  
bit can force the device into the Sleep mode. A WKUP/Sleep  
Timing timing diagram for WKPOL = 0 is shown in Figure 7.  
ISL94208  
WKUP  
WKUP  
(STATUS)  
5V  
When using the falling edge option, the voltage on the WKUP pin  
should not exceed the voltage on VBACK for extended periods of  
time. Also, if WKUP is pulled up to the VBACK pin (or CELL1) then  
the connection of the charger or load should only maintain the  
WKUP connection for a short time to minimize the drain of CELL  
1. Also, for the falling edge option, maintaining the WKUP  
voltage low results in higher VBACK current. See the electrical  
table. For an example wake up circuit, see Figure 6.  
360kΩ*  
WAKE UP  
CIRCUITS  
WKPOL  
(CONTROL)  
V
BACK  
VSS  
* INTERNAL RESISTOR  
ONLY CONNECTED WHEN  
WKPOL = 1.  
FIGURE 5. SIMPLIFIED WAKE UP CONTROL CIRCUITS  
FN8306.1  
June 21, 2013  
23  
ISL94208  
CHRG+  
DSC+  
CHRG+  
DSC+  
PACK+  
VBACK  
PACK+  
49.9kΩ  
200kΩ  
VBACK  
WKUP  
V
49.9kΩ  
V
100kΩ  
49.9kΩ  
WKUP  
ISL94208  
ISL94208  
200kΩ  
µC  
CFET DFET VSS  
CFET DFET VSS  
0.47µF/35V  
TURN ON TO WAKE, THEN TURN OFF  
(>60ms HIGH TIME)  
DSC-  
DSC-  
CHRG-  
CHRG-  
WKPOL = 0  
WKPOL = 1  
NOTES:  
18. WKPOL = 0 - The DSC- connection wakes the ISL94208 when the load connects.  
19. WKPOL = 0 - The charger connection has three terminals. One terminal indicates that the charger is connected.  
20. WKPOL = 1 - This connection wakes the pack under control of a microcontroller. This microcontroller needs to be powered by a separate regulator.  
FIGURE 6. EXAMPLE EXTERNAL WAKE UP CIRCUITS  
Maintaining this condition causes high  
Maintaining this condition causes high  
current on VBACK (~7µA)  
current on VBACK (~7µA)  
t
WKUP  
Note 21  
#
>100µs  
Falling  
Edge  
Threshold  
Falling  
Edge  
Threshold  
WKUP PIN  
WKUP PIN  
WKUP BIT  
#
Note 21  
WKUP  
t
t
WKUP  
t
WKUP  
<t  
t
t
WKUP  
WKUP  
WKUP  
<t  
WKUP  
WKUP BIT  
SLEEP BIT  
>50µs  
>50µs  
Note 23  
**  
**  
Note 23  
§
§
SLEEP BIT  
Note 24  
2
2
I C WRITE  
I C WRITE  
(SLEEP BIT)  
(SLEEP BIT)  
1
1 0 1  
0
1
4V  
RGC PIN  
1V  
ON  
RGC PIN  
OFF  
*
*
Note 22  
SLEEP  
Note 22  
SLEEP  
AWAKE  
AWAKE  
SLEEP  
AWAKE  
AWAKE  
AWAKE  
WKUP PIN NORMALLY ABOVE FALLING EDGE THRESHOLD  
WKUP PIN NORMALLY BELOW FALLING EDGE THRESHOLD  
FIGURE 7. SLEEP/WAKEUP TIMING (WKPOL BIT = 0)  
FN8306.1  
June 21, 2013  
24  
ISL94208  
Maintaining this condition causes high  
current on VBACK (~200uA)  
t
WKUP  
Note 21  
#
>100µs  
Note 21  
Rising  
Edge  
Threshold  
#
Rising  
Edge  
Threshold  
WKUP PIN  
WKUP PIN  
WKUP BIT  
t
t
WKUP  
WKUP  
<t  
t
t
WKUP  
<t  
WKUP  
WKUP  
WKUP  
t
WKUP  
WKUP BIT  
SLEEP BIT  
>50µs  
>50µs  
Note 24  
Note 23  
**  
**  
Note 23  
Note 24  
§
§
SLEEP BIT  
2
2
I C WRITE  
I C WRITE  
(SLEEP BIT)  
(SLEEP BIT)  
1
1 0 1  
0
1
ON  
RGC PIN  
OFF  
ON  
RGC PIN  
OFF  
*
*
Note 22  
SLEEP  
AWAKE  
AWAKE  
SLEEP  
SLEEP  
AWAKE  
AWAKE  
AWAKE  
WKUP PIN NORMALLY BELOW RISING EDGE THRESHOLD  
NOTES:  
WKUP PIN NORMALLY ABOVE RISING EDGE THRESHOLD  
21. # These are Glitches on the WKUP pin that are not long enough to exceed the internal filter and are not detected as valid signals.  
22. * These periods are pseudo-sleep. The regulator turns on to power the wake-up circuits, but Wake up is not complete until the WKUP bit is latched.  
23. ** The rising edge of the WKUP bit resets the SLEEP bit, if not already reset.  
24. § When the WKUP pin is Active during Awake periods, the device needs a falling edge on the SLEEP bit (while the WKUP pin is above the threshold)  
before the SLEEP bit can force sleep. The diagram shows two methods of doing this.  
FIGURE 8. SLEEP/WAKEUP TIMING (WKPOL BIT = 1)  
discharge FET gate low, turning off the FET quickly. The CFET output  
Protection Functions  
turns off and allows the gate of the charge FET to be pulled low  
through a resistor.  
In the default recommended condition, the ISL94208  
automatically responds to discharge overcurrent, discharge short  
circuit, charge overcurrent, internal over-temperature, and  
external over-temperature conditions. The designer can set  
optional over-ride conditions that allow the response to be  
dictated by the microcontroller. These are discussed in the  
following.  
By turning off the FETs the ISL94208 prevents damage to the  
battery pack caused by excessive current into or out of to the cells  
(as in the case of a faulty charger or short circuit condition).  
When the ISL94208 detects a discharge overcurrent condition, both  
power FETs are turned off and the DOC bit is set. When the FETs are  
turned off, the DFET and CFET bits are also reset. The automatic  
response to overcurrent during discharge is prevented by setting the  
DENOCD bit to “1”. The external microcontroller can turn on the FETs  
at any time to recover from this condition, but it would usually turn  
on the load monitor function first (by setting the LDMONEN bit) and  
monitor the LDFAIL bit to detect that the overcurrent condition has  
been removed.  
Overcurrent Safety Functions  
The ISL94208 continually monitors the discharge current by  
monitoring the voltage at the CSENSE and DSENSE pins. If that  
voltage exceeds a selected value for a time exceeding a selected  
delay, then the device enters an overcurrent or short circuit  
protection mode. In these modes, the ISL94208 automatically  
turns off both power FETs and hence prevents current from  
flowing through the terminals P+ and P-. See Figure 20 on  
Page 32.  
When the ISL94208 detects a discharge short circuit condition, both  
power FETs are turned off and DSC bit is set. When the FETs are  
turned off, the DFET and CFET bits are also reset. The automatic  
response to short circuit during discharge is prevented by setting the  
DENSCD bit to “1”. The external microcontroller can turn on the FETs  
at any time to recover from this condition, but it would usually turn  
on the load monitor function first (by setting the LDMONEN bit) and  
monitor the LDFAIL bit to detect that the overcurrent condition has  
been removed.  
The voltage thresholds and the response times of the overcurrent  
protection circuits are selectable for discharge overcurrent,  
charge overcurrent, and discharge short circuit conditions. The  
specific settings are determined by bits in the Discharge Set  
Configuration Register (ADDR:05H) on Page 19, and the Charge/  
Time Scale Configuration Scale Register (ADDR:06H) on  
Page 20. In addition, refer to “Registers” on page 16.  
When the ISL94208 detects a charge overcurrent condition, both  
power FETs are turned off and COC bit is set. When the FETs are  
turned off, the DFET and CFET bits are also reset. The automatic  
In an overcurrent condition, the ISL94208 automatically turns off  
the voltage on CFET and DFET pins. The DFET output drives the  
FN8306.1  
June 21, 2013  
25  
ISL94208  
response to overcurrent during discharge is prevented by setting the  
i.e. some action must be taken before the pack is again turned  
DENOCC bit to “1”. The external microcontroller can turn on the FETs  
at any time to recover from this condition, but it would usually wait  
to do this until the cell voltages are not overcharged and that the  
overcurrent condition has been removed (or the microcontroller  
could wait until the pack is removed from the charger and then  
re-attached).  
on.  
The load monitor circuit can be turned on or off by the  
microcontroller. It is normally turned off to minimize current  
consumption. It must be activated by the external microcontroller  
for it to operate. The circuit works by internally connecting the  
VMON pin to VSS through a resistor. The circuit operates as  
shown in Figure 9.  
An alternative method of providing the protection function, if desired  
by the designer, is to turn off the automatic safety response. In this  
case, the ISL94208 devices still monitor the conditions and set the  
status bits, but takes no action in overcurrent or short circuit  
conditions. Safety of the pack depends, instead, on the  
microcontroller sending commands to the ISL94208 to turn off the  
FETs.  
In a typical pack operation, when an overcurrent or short circuit  
event happens, the DFET turns off, opening the battery circuit to  
the load. At this time, the RL is small and the load monitor is  
initially off. In this condition, the voltage at VMON rises to nearly  
the pack voltage.  
Once the power FETs turn off, the microcontroller activates the  
load monitor by setting the LDMONEN bit. This turns on an  
internal FET that adds a pull down resistor to the load monitor  
circuit. While still in the overload condition the combination of  
the load resistor, an external adjustment resistor (R1), and the  
internal load monitor resistor form a voltage divider. R1 is chosen  
so that when the load is released to a sufficient level, the LDFAIL  
condition is reset.  
To facilitate a microcontroller response to an overcurrent condition,  
especially if the microcontroller is in a low power state, a charge  
overcurrent flag (COC), a discharge overcurrent flag (DOC), or the  
short circuit flag (DSC) being set causes the ISL94208 TEMP3V  
output to turn on and pull high (see Figure 10). This output can be  
used as an external interrupt by the microcontroller to wake-up  
quickly to handle the overcurrent condition.  
P+  
The diode in the VMON circuit is necessary to prevent the VMON  
voltage from going negative with respect to VSS when a charger  
connects between P+ and P- and the charger voltage is  
significantly larger than the battery stack voltage.  
VSS  
R
L
OPEN  
Over-Temperature Safety Functions  
P-  
POWER FETs  
EXTERNAL TEMPERATURE MONITORING  
R
1
The external temperature is monitored by using a voltage divider  
consisting of a fixed resistor and a thermistor. This divider is  
powered by the ISL94208 TEMP3V output. This output is  
normally controlled so it is on for only short periods to minimize  
current consumption.  
ISL94208  
VMON  
V
REF  
LDFAIL  
= 1 if VMON >V  
= 0 if VMON £ V  
Without microcontroller intervention, and in the default state, the  
ISL94208 provides an automatic temperature scan. This scan  
circuit repeatedly turns on TEMP3V output (and the external  
temperature monitor) for 5ms out of every 640ms. In this way,  
the external temperature is monitored even if the microcontroller  
is asleep.  
VMONH  
VMONL  
LDMONEN  
VSS  
When the TEMP3V output turns on, the ISL94208 waits 1ms for  
the temperature reading to stabilize, then compares the external  
temperature voltage with an internal voltage divider that is set to  
TEMP3V/13. If the thermistor voltage is below the reference  
threshold after the delay, an external temperature fail condition  
exists. To set the external over-temperature limit, set the value of  
RX resistor to the 12 times the resistance of the thermistor at the  
desired over-temp threshold.  
FIGURE 9. LOAD MONITOR CIRCUIT  
Load Monitoring  
The load monitor function in the ISL94208 (see Figure 9) is used  
primarily to detect that the load has been removed following an  
overcurrent or short circuit condition during discharge. This can  
be used in a control algorithm to prevent the FETs from turning  
on while the overload or short circuit condition remains.  
The TEMP3V output pin also turns on when the microcontroller  
sets the AO3:AO0 bits to select that the external temperature  
voltage. This causes the TEMPI voltage to be placed on AO and  
activates (after 1ms) the over-temperature detection. As long as  
the AO3:AO0 bits point to the external temperature, the TEMP3V  
output remains on. Because of the manual scan of the  
temperature, it may be desired to turn off the automatic scan,  
although they can be used at the same time without  
interference. To turn off the automatic scan, set the ATMPOFF bit.  
The load monitor can also be used by the microcontroller  
algorithms after an undervoltage condition on any cells causes  
the FETs to turn off. Use of the load monitor prevents the FETs  
from turning on while the load is still present. This minimizes the  
possible “on-off-on cycles” that can occur when a load is applied  
in a low capacity pack. It can also be part of a system protection  
mechanism to prevent the load from turning on automatically -  
FN8306.1  
June 21, 2013  
26  
ISL94208  
The microcontroller can over-ride both the automatic temperature  
external temperature voltage is not divided by 2 as are the cell  
voltages. Instead it is a direct reflection of the voltage at the  
TEMPI pin.  
scan and the microcontroller controlled temperature scan by  
setting the TEMP3ON configuration bit. This turns on the TEMP3V  
output to keep the temperature control voltage on all the time, for  
a continuous monitoring of an over-temperature condition. This  
likely will consume a significant amount of current, so this feature  
is usually used for special or test purposes.  
A similar operation occurs when monitoring the internal  
temperature through the AO output, except there is no external  
“calibration” of the voltage associated with the internal  
temperature. For the internal temperature monitoring, the  
voltage at the output is linear with respect to temperature. See  
“Electrical Specifications” on Page 10 for information about the  
output voltage at +25°C and the output slope relative to  
temperature.  
PROTECTION  
By default, when the ISL94208 detects an internal or external  
over-temperature condition, the FETs are turned off, the cell  
balancing function is disabled, and the IOT bit or XOT bit  
(respectively) is set.  
4ms  
508ms  
Turning off the FETs in the event of an over-temperature  
condition prevents continued discharge or charge of the cells  
when they are over heated. Turning off the cell balancing in the  
event of an over-temperature condition prevents damage to the  
IC in the event too many cells are being balanced, causing too  
much power dissipation in the ISL94208.  
2
2
I C  
I C  
OSC  
ATMPOFF  
TMP3ON  
In the event of an automatic over-temperature condition, cell  
balancing is prevented and FETs are held off until the  
temperature drops back below the temperature recovery  
threshold. During this temperature shutdown period, the  
microcontroller can monitor the internal temperature through the  
analog output pin (AO), but any writes to the CFET bit, DFET bit, or  
cell balancing bits are ignored  
RGO  
AO3:AO0  
DECODE  
EXT TEMP  
TO  
µC  
TEMP3V  
The automatic response to an internal over-temperature is  
prevented by setting the DISITSD bit to “1”. The automatic  
response to an external over-temperature is prevented by setting  
the DISXTSD bit to “1”. In either case, it is important for the  
microcontroller to monitor the internal and external temperature  
to protect the pack and the electronics in an over-temperature  
condition.  
R
X
TEMPI  
MUX  
AO  
1ms  
DELAY  
R
th  
EXTERNAL  
TEMP  
MONITOR  
VSS  
XOT  
Analog Multiplexer Selection  
TEMP FAIL  
INDICATOR  
The ISL94208 devices can be used to externally monitor  
individual battery cell voltages and temperatures. Each quantity  
can be monitored at the analog output pin (AO). The desired  
voltage is selected using the I2C interface and the AO3:AO0 bits.  
See Figure 11 and Table 5 on page 18. Remember to reset the  
AO3:AO0 bits to ‘0000’ after measurements to minimize  
unnecessary current draw from the cells.  
FIGURE 10. EXTERNAL TEMPERATURE MONITORING AND  
CONTROL  
Cell Balancing  
Overview  
Voltage Monitoring  
A typical ISL94208 Li-ion battery pack consists of four to six cells  
in series, with one or more cells in parallel. This combination  
gives both the voltage and power necessary for many battery  
powered applications. While the series/parallel combination of  
Li-ion cells is common, the configuration is not as efficient as it  
could be, because any capacity mismatch between  
series-connected cells reduces the overall pack capacity. This  
mismatch is greater as the number of series cells and the load  
current increase. Cell balancing techniques increase the  
capacity, and the operating time, of Li-ion battery packs.  
Since the voltage on each of the Li-ion Cells are normally higher  
than the regulated supply voltage, and since the voltages on the  
upper cells is much higher than is tolerated by a microcontroller,  
it is necessary to both level shift and divide the voltage before it  
can be monitored by the microcontroller or an external A/D  
converter. To get into the voltage range required by the external  
circuits, the voltage level shifter divides the cell voltage by 2 and  
references it to VSS. Therefore, a Li-ion cell with a voltage of 4.2V  
becomes a voltage of 2.1V on the AO pin.  
Temperature Monitoring  
The voltage representing the external temperature applied at the  
TEMPI terminal is directed to the AO terminal through a MUX, as  
selected by the AO control bits (see Figures 10 and 11). The  
Definition of Cell Balancing  
Cell balancing is defined as the application of differential  
currents to individual cells (or combinations of cells) in a series  
FN8306.1  
June 21, 2013  
27  
ISL94208  
string. Without cell balancing, cells in a series string receive  
needed when there is a separate charge and discharge path,  
because the voltages on Pack- (discharge) are always positive.  
nominally identical currents. A battery pack requires additional  
components and circuitry to achieve cell balancing. For the  
ISL94208 devices, the only external components required are  
balancing resistors.  
When the pack is designed with a single set of charge/discharge  
FETs, the ISL94208 CFET pin should be protected in the event of  
an overcurrent or short circuit shutdown. When this happens, the  
FET opens suddenly. The flyback voltage from the motor windings  
could exceed the maximum input voltage on the CFET pin.  
Therefore, it is recommended that an additional external series  
diode be placed between the CFET pin of the ISL94208 and the  
gate of the Charge FET. See Diode D3 in Figure 13. This reduces  
the CFET gate voltage, but not significantly.  
VCELL7  
VCELL6  
LEVEL  
SHIFT  
SCL  
SDA  
2
I C  
LEVEL  
SHIFT  
REGS  
Finally, to protect the Charge FET itself in the event of a large  
negative voltage on the Pack- pin, zener diode D4 is added. A  
large negative voltage can occur when the Pack- pin goes  
significantly negative, while the CFET pin is being internally  
clamped. The zener voltage of D4 should be less than the  
VGS(max) specification of the FET.  
AO3:AO0  
VCELL2  
VCELL1  
LEVEL  
SHIFT  
DECODE  
MUX  
LEVEL  
SHIFT  
2
AO  
VCELL7  
VSS  
ISL94208  
21Ω  
1W  
EXT TEMP.  
CB7  
TEMPI  
INT  
TEMP  
MUX  
200mA  
CELL  
BALANCE  
CONTROL  
(REG 02H)  
7 6 5 4 3 2 1  
FIGURE 11. ANALOG OUTPUT MONITORING DIAGRAM  
VCELL1  
CB1  
21Ω  
1W  
Cell Balance Operation  
Cell balancing is accomplished through a microcontroller  
algorithm. This algorithm compares the cell voltages (a  
representation of the pack capacity) and turns on balancing for  
the cells that have the higher voltages. There are many  
parameters that should be considered when writing this  
algorithm. An example cell balancing algorithm is available in  
the ISL94208EVAL1Z evaluation kit.  
VSS  
FIGURE 12. CELL BALANCING CONTROL EXAMPLE WITH 200mA  
BALANCING CURRENT  
The microcontroller turns on a specific cell balancing switch by  
setting a bit in the Cell Balance Register. Each bit in the register  
corresponds to one cell’s balancing control. When the bit is set,  
an internal cell balancing FET turns on. This connects an external  
resistor across the specified cell. The maximum current that can  
be drawn from (or bypassed around) the cell is 200mA. This  
current is set by selecting the value of the external resistor.  
Figure 12 shows an example with a 200mA (maximum)  
balancing current.  
PACK+  
PACK-  
D
1
VMON  
D
4
10MΩ  
ISL94208  
1MΩ  
D
3
With lower balancing current, more balancing FETs can be turned  
on at once, without exceeding the device power dissipation limits  
or generating excessive balancing current that will heat the  
external resistor.  
CFET  
DFET  
External VMON/CFET Protection  
Mechanisms  
When there is a single charge/discharge path, a blocking diode  
is recommended in the VMON to Pack- path in ISL94208  
solution. See D1 in Figure 13. This diode is to protect against a  
negative voltage on the VMON pin that can occur when the FETs  
are off and the charger connects to the pack. This diode is not  
FIGURE 13. USE OF A DIODES FOR PROTECTING THE CFET AND  
VMON PINS  
FN8306.1  
June 21, 2013  
28  
ISL94208  
The device responds with an Acknowledge after recognition of a  
User Flags  
START condition and the correct Slave byte. If a Write operation is  
selected, the device responds with an Acknowledge after the  
receipt of each subsequent eight bits. The device acknowledges  
all incoming data and Address bytes, except for the Slave byte  
when the contents do not match the device’s address.  
The ISL94208 contains four flags in the register area that the  
microcontroller can use for general purpose indicators. These  
bits are designated UFLG3, UFLG2, UFLG1, and UFLG0. The  
microcontroller can set or reset these bits by writing into the  
appropriate register.  
In the Read mode, the device transmits eight bits of data,  
releases the SDA line, then monitor the line for an Acknowledge.  
If an acknowledge is detected and no STOP condition is  
generated by the Master, the device continues transmitting data.  
The device terminates further data transmissions if an  
acknowledge is not detected. The Master must then issue a STOP  
condition to return the device to Standby mode and place the  
device into a known state.  
The user flag bits are battery backed up (by the VBACK pin  
voltage), so the contents remain even after exiting Sleep mode.  
However, if the microcontroller sets the POR bit to force a power  
on reset, all of the user flags are also reset. In addition, if the  
voltage on VBACK ever drops below the POR voltage, the  
contents of the user flags (as well as all other register values)  
would be lost.  
2
I C Interface  
Interface Conventions  
SCL  
SDA  
The device provides an I2C communications interface. The  
protocol defines any device that sends data onto the bus as a  
transmitter, and the receiving device as the receiver. The device  
controlling the transfer is called the Master and the device being  
controlled is called the Slave. The Master always initiates data  
transfers, and provides the clock for both transmit and receive  
operations. Therefore, the ISL94208 devices operate as slaves in  
all applications.  
DATA  
DATA  
DATA  
STABLE  
CHANGE  
STABLE  
FIGURE 14. VALID DATA CHANGES ON I2C BUS  
.
When sending or receiving data, the convention is that the most  
significant bit (MSB) is sent first. Therefore, the first address bit  
sent is bit 7.  
SCL  
SDA  
Clock and Data  
Data states on the SDA line can change only while SCL is LOW.  
SDA state changes while SCL HIGH are reserved for indicating  
START and STOP conditions. See Figure 14.  
START  
STOP  
Start Condition  
All commands are preceded by the START condition, which is a  
HIGH-to-LOW transition of SDA when SCL is HIGH. The device  
continuously monitors the SDA and SCL lines for the START  
condition and does not respond to any command until this  
condition has been met. See Figure 15.  
FIGURE 15. I2C START AND STOP BITS  
SCL FROM  
1
8
9
MASTER  
Stop Condition  
DATA OUTPUT  
FROM  
TRANSMITTER  
All communications must be terminated by a STOP condition,  
which is a LOW-to-HIGH transition of SDA when SCL is HIGH. The  
STOP condition is also used to place the device into the Standby  
power mode after a Read sequence. A STOP condition is only  
issued after the transmitting device has released the bus. See  
Figure 15.  
DATA OUTPUT  
FROM RECEIVER  
START  
ACKNOWLEDGE  
Acknowledge (ACK)  
FIGURE 16. ACKNOWLEDGE RESPONSE FROM RECEIVER  
Acknowledge is a software convention used to indicate  
successful data transfer. The transmitting device, either Master  
or Slave, releases the bus after transmitting eight bits. During the  
ninth clock cycle, the receiver pulls the SDA line LOW to  
acknowledge that it received the eight bits of data. See  
Figure 16.  
FN8306.1  
June 21, 2013  
29  
ISL94208  
STOP bit, the Master may send additional data to the device  
Write Operations  
without re-sending the Slave and Register Address bytes. After  
writing to address 0AH, the address “wraps around” to address 0.  
Do not continue to write to addresses higher than address 08H,  
since these addresses access registers that are reserved. Writing  
to these locations can result in unexpected device operation.  
For a Write operation, the device requires a Slave byte and a  
Register Address byte. The Slave byte specifies the particular device  
on the I2C bus that the Master is writing to. The Register Address  
specifies one of the registers in that device. After receipt of each  
byte, the device responds with an Acknowledge, and awaits the next  
eight bits from the Master. After the Acknowledge, following the  
transfer of data, the Master terminates the transfer by generating a  
STOP condition (see Figure 17).  
When receiving data from the Master, the value in the Data byte  
is transferred into the register specified by the Register address  
byte on the falling edge of the clock following the 8th data bit.  
After receiving the Acknowledge after the Data byte, the device  
automatically increments the address. So, before sending the  
S
T
A
S
T
O
P
SLAVE  
R
REGISTER  
ADDRESS  
BYTE  
T
DATA  
SDA BUS  
0 1 0 1 0 0 0 0  
A
C
K
A
C
K
A
C
K
ISL94208: SLAVE BYTE = 50H  
FIGURE 17. WRITE SEQUENCE  
Random Read  
S
T
A
R
T
S
T
A
R
T
S
T
O
P
A
C
K
SLAVE  
BYTE  
SLAVE  
BYTE  
REGISTER  
ADDRESS  
SDA BUS  
0 1 0 1 0 0 0 1  
0 1 0 1 0 0 0 0  
A
C
K
A
C
K
A
C
K
DATA  
ISL94208: SLAVE BYTE = 010100xH  
Current Address Read  
S
T
A
R
T
S
SLAVE  
BYTE  
A
C
K
T
O
P
0 1 0 1 0 0 0 1  
A
C
K
DATA  
FIGURE 18. READ SEQUENCE  
FN8306.1  
June 21, 2013  
30  
ISL94208  
3. Write the DISSETEN bit (Addr 8:bit 5) to “1” to enable changes  
Register Protection  
to the data in the Feature Set register (Address 5).  
The Discharge Set, Charge Set, and Feature Set configuration  
registers are write protected on initial power up. In order to write  
to these registers it is necessary to set a bit to enable each one.  
These write enable bits are in the Write Enable register (Address  
08H).  
The microcontroller can reset these bits back to zero to prevent  
inadvertent writes that change the operation of the pack.  
Operation State Machine  
Figure 19 shows a device state machine, which illustrates how  
the ISL94208 responds to various conditions.  
1. Write the FSETEN bit (Addr 8:bit 7) to “1” to enable changes to  
the data in the Feature Set register (Address 7).  
2. Write the CHSETEN bit (Addr 8:bit 6) to “1” to enable changes  
to the data in the Feature Set register (Address 6).  
POWER FAILS AND VCC OR VBACK OR BOTH SUPPLIES DO NOT MEET MINIMUM  
VOLTAGE REQUIREMENTS  
POWER DOWN STATE  
I2C interface is disabled.  
Biasing is disabled.  
All registers set to default values  
(All = “0”)  
Power is applied and both VCC and VBACK meet minimum  
voltage requirements  
POWER UP STATE  
I2C interface is enabled.  
Biasing is enabled.  
Voltage Regulator is enabled.  
SLEEP bit  
MAIN OPERATING STATE (AWAKE)  
SLEEP STATE  
(WKUP not active)  
• Voltage Regulator is ON  
• Voltage regulator is OFF  
• Biasing is OFF  
SLEEP bit  
• Logic and registers are powered by RGO  
• CFET, DFET, and Cell Balancing outputs  
are ON or OFF. (Require an external  
command to turn on).  
• Logic and Registers are powered by  
VBACK  
• CFET, DFET, and Cell Balancing outputs  
are OFF.  
• The Over Temperature protection circuit  
is active.  
WKUP goes above or below  
threshold (edge triggered).  
• Charge and Discharge current  
protection circuits are OFF.  
• Overcurrent protection (OCP) circuits are  
active when the either of the CFET and  
DFET outputs are enabled. The OCP  
circuits are off when both the CFET and  
DFET outputs are off.  
Or, SLEEP bit is set to ‘0’  
• Voltage and Temperature monitoring  
circuits are OFF.  
• I2C communication is active (If VBACK  
voltage is high enough to operate with  
the external device).  
• Overcurrent conditions force the power  
FETs to turn OFF. Over temperature  
conditions force the power FETs and Cell  
Balance output OFF.  
• Voltage and Temperature monitoring  
circuits are awaiting external control.  
FIGURE 19. DEVICE OPERATION STATE MACHINE  
FN8306.1  
June 21, 2013  
31  
ISL94208  
Application Circuits  
The following application circuits are ideas to consider when developing a battery pack implementation. There are many more ways  
that the pack can be designed.  
Integrated Charge/Discharge Path  
P+  
VBACK  
27Ω  
500Ω  
VFET2  
VFET1  
200kΩ  
VCC  
CHGR Present  
WKUP  
VCELL6  
100kΩ  
2N7002  
20Ω  
200Ω  
20Ω  
ISL94208  
CB6  
VCELL5  
RGC  
RGO  
15V  
200Ω  
20Ω  
CB5  
1µF  
VCELL4  
200Ω  
20Ω  
CB4  
V
CC  
µC  
200Ω  
200Ω  
RESET  
OPTIONAL  
LEDS/  
RESISTORS  
TEMP3V  
VCELL3  
GP  
I/O  
TEMPI  
SCL  
SDA  
200Ω  
20Ω  
CB3  
SCL  
SDA  
INT  
CHRG  
VCELL2  
200Ω  
20Ω  
100Ω  
3.6V  
A/D IN  
AO  
CB2  
I/O  
VCELL1  
VMON  
CFET  
VBACK  
200Ω  
20Ω  
CB1  
DFET  
PACK INTERFACE  
NOT NEEDED DURING  
DISCHARGE  
VCELL0  
V
10µF 10µF10µF  
SS  
B-  
P-/CH-  
16V (<CFET VGS  
)
MAX  
MINIMIZE LENGTH  
MAXIMIZE COPPER  
FIGURE 20. 6-CELL APPLICATION CIRCUIT INTEGRATED CHARGE/DISCHARGE PATH  
FN8306.1  
June 21, 2013  
32  
ISL94208  
Separate Charge/Discharge Path  
P+  
VBACK  
200kΩ  
500  
20Ω  
VFET2  
VFET1  
VCC  
CHGR Present  
WKUP  
VCELL6  
100kΩ  
2N7002  
20  
200Ω  
20Ω  
Ω
ISL94208  
CB6  
VCELL5  
RGC  
RGO  
15V  
200Ω  
20Ω  
CB5  
1µF  
VCELL4  
200Ω  
CB4  
V
CC  
µC  
200Ω  
200Ω  
20Ω  
RESET  
OPTIONAL  
LEDS/  
RESISTORS  
TEMP3V  
VCELL3  
GP  
I/O  
TEMPI  
SCL  
SDA  
200Ω  
20Ω  
CB3  
SCL  
SDA  
INT  
CHRG  
VCELL2  
100Ω  
200Ω  
20Ω  
A/D IN  
AO  
CB2  
I/O  
VCELL1  
3.6V  
VMON  
CFET  
DFET  
VBACK  
200Ω  
20Ω  
CB1  
PACK INTERFACE  
NOT NEEDED DURING  
DISCHARGE  
VCELL0  
V
SS  
10µF  
B-  
16V (<CFET VGS  
)
MAX  
0.47µF  
35V  
CHG-  
P-  
OPTIONAL  
MINIMIZE LENGTH  
MAXIMIZE COPPER  
FIGURE 21. 6-CELL APPLICATION CIRCUIT SEPARATE CHARGE/DISCHARGE PATH  
FN8306.1  
June 21, 2013  
33  
ISL94208  
Alternate VFET Power Supply  
PC Board Layout  
The circuit in Figure 22 shows an alternate connection for  
powering the Charge and Discharge FETs. If the designer is  
concerned that the cells become unbalanced by supplying the  
FET reference from only one or two cells, then a regulator can be  
used that is powered by the full stack. In this case, the VFET 1 pin  
needs a supply that is less than VFET2, but not zero. In the circuit  
below, a 4.3V zener provides the desired reference.  
The AC performance of this circuit depends greatly on the care  
taken in designing the PC board. The following are  
recommendations to achieve optimum high performance from  
your PC board.  
• The use of low inductance components such as chip resistors  
and chip capacitors is strongly recommended.  
• Minimize signal trace lengths. This is especially true for the  
CSENSE, DSENSE, and VCELL0-VCELL6 inputs. Trace  
inductance and capacitance can easily affect circuit  
performance.  
This circuit provides another benefit. In the normal connection,  
as the cells discharge, the voltages on VFET2 and VFET3 also  
drop. When the difference between VFET2 nd VFET1 goes below  
about 2.8V, the FET driver has a difficult time providing the  
current to control the FETs. This limits the cell voltage to 2.8V.  
However, by using the external regulator, the pack voltage can  
drop to 8.6V (or a little below) and still provide adequate FET  
drive. For a 6-cell pack, the minimum cell voltage is 1.4V per cell.  
For a 4-cell pack, it is 2.15V per cell.  
• Match channel-channel analog I/O trace lengths and layout  
symmetry. This is especially true for the DSENSE, CSENSE, and  
ISREF lines, since their inputs are normally very low voltage.  
• Maximize use of AC de-coupled PCB layers. All signal I/O lines  
should be routed over continuous ground planes (i.e. no split  
planes or PCB gaps under these lines). Avoid vias in the signal  
I/O lines. Placing signal lines on internal layers with ground  
planes on top and bottom of the board provides best immunity  
to electromagnetic interference.  
ISL94208  
8.6V  
ISL80136  
VBAT  
VFET2  
RGO  
VFET1  
ADJ  
EN  
300kΩ  
50kΩ  
4.3V  
• When testing use good quality connectors and cables,  
matching cable types and keeping cable lengths to a  
minimum.  
10µF  
16V  
0.47µF  
16V  
RGO  
100kΩ  
QFN Package  
VSS  
The QFN package requires additional PCB layout rules or the  
Thermal Pad. The thermal pad is electrically connected to VSS  
supply through the high resistance IC substrate. The thermal pad  
provide heat sinking for the IC. If the design uses the RGO pin to  
supply power to external components or if the device is balancing  
significant current through the internal balance FETs, then the IC  
can experience significant internal power dissipation. To deal with  
this, careful layout of the thermal pad and the use of thermal vias  
to direct the heat away from the IC is an important consideration.  
Besides heat dissipation, the thermal pad also provides noise  
reduction by providing a ground plane under the IC.  
FIGURE 22. ISL94208 EXAMPLE ALTERNATIVE VFET POWER  
SUPPLY  
FN8306.1  
June 21, 2013  
34  
ISL94208  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you  
have the latest revision.  
DATE  
REVISION  
FN8306.1  
CHANGE  
June 11, 2013  
Figure 1: Updated application diagram.  
Page 7: Changed Recommended Operating Conditions for WKUP voltage.  
Page 8: Reduced Max Limit for VFET1 and VFET2 current.  
Page 8: Added several operating conditions for VBACK current Specifications adjusted Max Limit to  
comply with the new conditions.  
Page 8: Reduced the Limits for VCELL Input Current (Non-Monitoring).  
Page 21: On the description of the WKPOL bit, added the comment, “When WKPOL=0, limit the  
maximum voltage on the WKUP pin to no more than the voltage on VBACK.”  
Page 23: Changed the circuit in Figure 2 on the use of input filters and changed the related text.  
Page 23: Changed the circuits in Figure 3 regarding the recommended connection of fewer than 6 cells.  
Page 24: Added text describing the WKPOL=0 and WKPOL=1 operation and changed the example Wake  
up circuit in Figure 6.  
Page 25: Changed the comments in Figure 7 to clarify operation of external microcontroller control of  
wake up.  
Page 25 and 26: Added comments to Figure 8 and Figure 9.  
Pages 34 and 35: Updated the example applications circuits in Figure 20 and 21.  
November 26, 2012  
FN8306.0  
Initial Release  
About Intersil  
Intersil Corporation is a leader in the design and manufacture of high-performance analog, mixed-signal and power management  
semiconductors. The company's products address some of the largest markets within the industrial and infrastructure, personal  
computing and high-end consumer markets. For more information about Intersil, visit our website at www.intersil.com.  
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product  
information page found at www.intersil.com. You may report errors or suggestions for improving this datasheet by visiting  
www.intersil.com/en/support/ask-an-expert.html. Reliability reports are also available from our website at http://www.intersil.com/  
en/support/qualandreliability.html#reliability  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN8306.1  
June 21, 2013  
35  
ISL94208  
Package Outline Drawing  
L32.5x5B  
32 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE  
Rev 3, 5/10  
4X  
3.5  
0.50  
5.00  
28X  
A
6
B
PIN #1 INDEX AREA  
32  
25  
6
1
24  
PIN 1  
INDEX AREA  
3 .30 ± 0 . 15  
17  
8
(4X)  
0.15  
9
16  
0.10 M  
C A B  
+
0.07  
32X 0.40 ± 0.10  
4
32X 0.23  
- 0.05  
TOP VIEW  
BOTTOM VIEW  
SEE DETAIL "X"  
C
0.10  
C
0 . 90 ± 0.1  
BASE PLANE  
SEATING PLANE  
0.08  
C
( 4. 80 TYP )  
(
( 28X 0 . 5 )  
SIDE VIEW  
3. 30 )  
(32X 0 . 23 )  
( 32X 0 . 60)  
5
C
0 . 2 REF  
0 . 00 MIN.  
0 . 05 MAX.  
DETAIL "X"  
TYPICAL RECOMMENDED LAND PATTERN  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3.  
Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension applies to the metallized terminal and is measured  
between 0.15mm and 0.30mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
FN8306.1  
June 21, 2013  
36  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY