KAD5510P-21Q48 [INTERSIL]

Low Power 10-Bit, 250/210/170/125MSPS ADC; 低功耗, 10位,二百一十分之二百五十零/ 170 / 125MSPS ADC
KAD5510P-21Q48
型号: KAD5510P-21Q48
厂家: Intersil    Intersil
描述:

Low Power 10-Bit, 250/210/170/125MSPS ADC
低功耗, 10位,二百一十分之二百五十零/ 170 / 125MSPS ADC

转换器
文件: 总31页 (文件大小:1155K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Power 10-Bit, 250/210/170/125MSPS ADC  
KAD5510P  
Features  
The KAD5510P is a family of low power, high performance 10-bit  
analog-to-digital converters. Designed with Intersil’s proprietary  
FemtoCharge™ technology on a standard CMOS process, the  
family supports sampling rates of up to 250MSPS. The  
KAD5510P is part of a pin-compatible portfolio of 10, 12 and  
14-bit A/Ds with sample rates ranging from 125MSPS to  
500MSPS.  
• 1.5GHz Analog Input Bandwidth  
• 60fs Clock Jitter  
• Programmable Gain, Offset and Skew Control  
• Over-Range Indicator  
• Selectable Clock Divider: ÷1, ÷2 or ÷4  
• Clock Phase Selection  
A serial peripheral interface (SPI) port allows for extensive  
configurability, as well as fine control of various parameters such  
as gain and offset.  
• Nap and Sleep Modes  
Two’s Complement, Gray Code or Binary Data Format  
• DDR LVDS-Compatible or LVCMOS Outputs  
• Programmable Built-in Test Patterns  
• Single-Supply 1.8V Operation  
• Pb-Free (RoHS Compliant)  
Digital output data is presented in selectable LVDS or CMOS formats.  
The KAD5510P is available in a 48-contact QFN package with an  
exposed paddle. Operating from a 1.8V supply, performance is  
specified over the full industrial temperature range (-40°C to +85°C).  
Key Specifications  
Applications  
• Power Amplifier Linearization  
• Radar and Satellite Antenna Array Processing  
• Broadband Communications  
• SNR = 60.7dBFS for f = 105MHz (-1dBFS)  
IN  
• SFDR = 86.1dBc for f = 105MHz (-1dBFS)  
IN  
• Total Power Consumption  
- 234/189mW @ 250/125MSPS (DDR Mode)  
• High-Performance Data Acquisition  
• Communications Test Equipment  
• WiMAX and Microwave Receivers  
Related Literature  
• See FN6811, KAD5510P-50, “10-Bit, 500MSPS A/D  
Converter”  
0
Ain = -1.0dBFS  
SNR = 60.7dBFS  
CLKP  
CLKOUTP  
CLKOUTN  
CLOCK  
-20  
-40  
SFDR = 85.9dBc  
GENERATION  
CLKN  
SINAD = 60.7dBFS  
(DDR)  
D[4:0]P  
D[4:0]N  
-60  
VINP  
VINN  
10-BIT  
250 MSPS  
ADC  
DIGITAL  
ERROR  
CORRECTION  
SHA  
-80  
ORP  
ORN  
-100  
-120  
VCM  
LVDS/CMOS  
DRIVERS  
+
OUTFMT  
1.25V  
SPI  
CONTROL  
OUTMODE  
0M  
20M  
40M  
60M  
80M  
100M  
120M  
FREQUENCY (Hz)  
SINGLE-TONE SPECTRUM @ 105MHz (250MSPS)  
January 3, 2011  
FN7693.1  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 |Copyright Intersil Americas Inc. 2011. All Rights Reserved  
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners.  
1
KAD5510P  
Pin-Compatible Family  
PACKAGE  
SPEED  
(MSPS)  
MODEL  
KAD5514P-25/21/17/12  
KAD5512P-50  
RESOLUTION  
Q48EP  
X
Q72EP  
14  
12  
12  
12  
10  
10  
250/210/170/125  
500  
X
X
X
X
X
KAD5512P-25/21/17/12  
KAD5512HP-25/21/17/12  
KAD5510P-50  
250/210/170/125  
250/210/170/125  
500  
X
X
KAD5510P-25/21/17/12  
250/210/170/125  
X
Pin Configuration  
KAD5510P  
(48 LD QFN)  
TOP VIEW  
48 47 46 45 44 43 42 41 40 39 38 37  
1
2
36  
35  
34  
33  
AVDD  
DNC  
DNC  
DNC  
AVSS  
VINN  
D3P  
D3N  
D2P  
D2N  
3
4
5
32 CLKOUTP  
6
31  
30  
29  
CLKOUTN  
RLVDS  
PAD  
7
VINP  
AVSS  
AVDD  
8
OVSS  
9
28 D1P  
D1N  
VCM  
10  
27  
26 D0P  
D0N  
DNC 11  
CONNECT THERMAL PAD TO AVSS  
AVSS  
12  
25  
13 14 15 16 17 18 19 20 21 22 23 24  
FIGURE 1. PIN CONFIGURATION  
FN7693.1  
January 3, 2011  
2
KAD5510P  
Pin Descriptions - 48 Ld QFN  
PIN NUMBER  
LVDS [LVCMOS] NAME  
LVDS [LVCMOS] FUNCTION  
1, 9, 13, 17, 47  
AVDD  
DNC  
1.8V Analog Supply  
Do Not Connect  
2, 3, 4, 11, 21, 22,  
23, 24  
5, 8, 12, 48  
6, 7  
AVSS  
VINN, VINP  
VCM  
Analog Ground  
Analog Input Negative, Positive  
Common Mode Output  
10  
14, 15  
16  
CLKP, CLKN  
NAPSLP  
RESETN  
OVSS  
Clock Input True, Complement  
Tri-Level Power Control (Nap, Sleep modes)  
Power On Reset (Active Low, see page 16)  
Output Ground  
18  
19, 29, 42  
20, 37  
25  
OVDD  
1.8V Output Supply  
D0N  
[NC]  
LVDS DDR Logical Bits 1, 0 Output Complement  
[NC in LVCMOS]  
26  
27  
28  
D0P  
[D0]  
LVDS DDR Logical Bits 1, 0 Output True  
[CMOS DDR Logical Bits 1, 0 in LVCMOS]  
D1N  
[NC]  
LVDS DDR Logical Bits 3, 2 Output Complement  
[NC in LVCMOS]  
D1P  
[D1]  
LVDS DDR Logical Bits 3, 2 Output True  
[CMOS DDR Logical Bits 3, 2 in LVCMOS]  
30  
31  
RLVDS  
LVDS Bias Resistor (Connect to OVSS with a 10kΩ, 1% resistor)  
CLKOUTN  
[NC]  
LVDS Clock Output Complement  
[NC in LVCMOS]  
32  
33  
34  
35  
36  
38  
39  
40  
41  
CLKOUTP  
[CLKOUT]  
LVDS Clock Output True  
[LVCMOS CLKOUT]  
D2N  
[NC]  
LVDS DDR Logical Bits 5, 4 Output Complement  
[NC in LVCMOS]  
D2P  
[D2]  
LVDS DDR Logical Bits 5, 4 Output True  
[CMOS DDR Logical Bits 5, 4 in LVCMOS]  
D3N  
[NC]  
LVDS DDR Logical Bits 7, 6 Output Complement  
[NC in LVCMOS]  
D3P  
[D3]  
LVDS DDR Logical Bits 7, 6 Output True  
[CMOS DDR Logical Bits 7, 6 in LVCMOS]  
D4N  
[NC]  
LVDS DDR Logical Bits 9, 8 Output Complement  
[NC in LVCMOS]  
D4P  
[D4]  
LVDS DDR Logical Bits 9, 8 Output True  
[CMOS DDR Logical Bits 9, 8 in LVCMOS]  
ORN  
[NC]  
LVDS Over Range Complement  
[NC in LVCMOS]  
ORP  
[OR]  
LVDS Over Range True  
[LVCMOS Over Range]  
43  
44  
45  
46  
SDO  
CSB  
SPI Serial Data Output (4.7kpull-up to OVDD is required)  
SPI Chip Select (active low)  
SCLK  
SDIO  
AVSS  
SPI Clock  
SPI Serial Data Input/Output  
PAD  
Analog Ground (Connect to a low thermal impedance analog ground plane with  
multiple vias)  
(Exposed Paddle)  
NOTE: LVCMOS Output Mode Functionality is shown in brackets (NC = No Connection).  
FN7693.1  
January 3, 2011  
3
KAD5510P  
Ordering Information  
PART NUMBER  
(Notes 1, 2)  
PART  
MARKING  
SPEED  
(MSPS)  
TEMP. RANGE  
(°C)  
PACKAGE  
(Pb-Free)  
PKG.  
DWG. #  
KAD5510P-25Q48  
KAD5510P-21Q48  
KAD5510P-17Q48  
KAD5510P-12Q48  
NOTES:  
KAD5510P-25 Q48EP-I  
KAD5510P-21 Q48EP-I  
KAD5510P-17 Q48EP-I  
KAD5510P-12 Q48EP-I  
250  
210  
170  
125  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
48 Ld QFN  
48 Ld QFN  
48 Ld QFN  
48 Ld QFN  
L48.7x7E  
L48.7x7E  
L48.7x7E  
L48.7x7E  
1. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-  
free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
2. For Moisture Sensitivity Level (MSL), please see device information page for KAD5510P. For more information on MSL please see techbrief TB363.  
FN7693.1  
January 3, 2011  
4
KAD5510P  
Table of Contents  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Recommended Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Digital Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Switching Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Typical Performance Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Theory of Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Power-On Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
User-Initiated Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Analog Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
VCM Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Clock Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Voltage Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Digital Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Over Range Indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Power Dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Nap/Sleep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
SPI Physical Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
SPI Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Device Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Indexed Device Configuration/Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Global Device Configuration/Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Device Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
48 Pin Package Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
SPI Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Equivalent Circuits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
ADC Evaluation Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Layout Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
PCB Layout Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Split Ground and Power Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Clock Input Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Exposed Paddle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Bypass and Filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
LVDS Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
LVCMOS Outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Unused Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
General PowerPAD Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
FN7693.1  
January 3, 2011  
5
KAD5510P  
Absolute Maximum Ratings  
Thermal Information  
AVDD to AVSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.4V to 2.1V  
OVDD to OVSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.4V to 2.1V  
AVSS to OVSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 0.3V  
Analog Inputs to AVSS . . . . . . . . . . . . . . . . . . . . . . . . . -0.4V to AVDD + 0.3V  
Clock Inputs to AVSS . . . . . . . . . . . . . . . . . . . . . . . . . . -0.4V to AVDD + 0.3V  
Logic Input to AVSS . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.4V to OVDD + 0.3V  
Logic Inputs to OVSS . . . . . . . . . . . . . . . . . . . . . . . . . . -0.4V to OVDD + 0.3V  
Thermal Resistance (Typical)  
48 Ld QFN (Notes 3, 4) . . . . . . . . . . . . . . . .  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -65°C to +150°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
θ
JA (°C/W)  
25  
θ
JC (°C/W)  
0.5  
Recommended Operating Conditions  
AVDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.8V  
OVDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.8V  
Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
3. θ is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech  
JA  
Brief TB379.  
4. For θ , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
Electrical Specifications All specifications apply under the following conditions unless otherwise noted: AVDD = 1.8V,  
OVDD = 1.8V, T = -40°C to +85°C (typical specifications at +25°C), A = -1dBFS, f  
Boldface limits apply over the operating temperature range, -40°C to +85°C.  
= Maximum Conversion Rate (per speed grade).  
A
IN  
SAMPLE  
KAD5510P-25  
KAD5510P-21  
KAD5510P-17  
KAD5510P-12  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX UNITS  
DC SPECIFICATIONS  
Analog Input  
Full-Scale Analog  
Input Range  
V
Differential  
1.40 1.47 1.54 1.40 1.47 1.54 1.40 1.47 1.54 1.40 1.47 1.54  
V
P-P  
FS  
Input Resistance  
Input Capacitance  
R
C
Differential  
Differential  
Full Temp  
1000  
1.8  
1000  
1.8  
1000  
1.8  
1000  
1.8  
Ω
pF  
IN  
IN  
Full Scale Range  
Temp. Drift  
A
90  
90  
90  
90  
ppm/°C  
VTC  
Input Offset Voltage  
Gain Error  
V
-10  
±2  
10  
-10  
±2  
10  
-10  
±2  
10  
-10  
±2  
10  
mV  
%
OS  
E
±0.6  
±0.6  
±0.6  
±0.6  
G
Common-Mode  
Output Voltage  
V
435 535 635 435 535 635 435 535 635 435 535 635  
mV  
CM  
Common-Mode  
Input Current (per  
pin)  
I
2.5  
2.5  
2.5  
2.5  
µA/  
MSPS  
CM  
Clock Inputs  
Input Common  
Mode Voltage  
0.9  
1.8  
0.9  
0.9  
1.8  
0.9  
1.8  
V
V
CLKP,CLKN Input  
Swing  
1.8  
Power Requirements  
1.8V Analog Supply  
Voltage  
AVDD  
OVDD  
1.7  
1.7  
1.8  
1.8  
1.9 1.7  
1.9 1.7  
1.8  
1.8  
1.9 1.7  
1.9 1.7  
1.8  
1.8  
1.9 1.7  
1.9 1.7  
1.8  
1.8  
1.9  
1.9  
V
V
1.8V Digital Supply  
Voltage  
FN7693.1  
January 3, 2011  
6
KAD5510P  
Electrical Specifications All specifications apply under the following conditions unless otherwise noted: AVDD = 1.8V,  
OVDD = 1.8V, T = -40°C to +85°C (typical specifications at +25°C), A = -1dBFS, f = Maximum Conversion Rate (per speed grade).  
SAMPLE  
A
IN  
Boldface limits apply over the operating temperature range, -40°C to +85°C. (Continued)  
KAD5510P-25 KAD5510P-21  
MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX UNITS  
KAD5510P-17  
KAD5510P-12  
PARAMETER  
SYMBOL  
CONDITIONS  
1.8V Analog Supply  
Current  
I
90  
96  
83  
89  
77  
82  
69  
74  
mA  
AVDD  
I
1.8V Digital Supply  
Current (DDR)  
(Note 5)  
3mA LVDS  
39  
45  
38  
45  
36  
40  
35  
40  
mA  
OVDD  
Power Supply  
Rejection Ratio  
PSRR  
30MHz, 200mV  
signal on AVDD  
-36  
-36  
-36  
-36  
dB  
P-P  
Total Power Dissipation  
Normal Mode  
(DDR)  
P
3mA LVDS  
234 254  
219 242  
204 220  
189 205  
mW  
D
Nap Mode  
P
P
84  
2
95  
6
80  
2
91  
6
78  
2
88  
6
74  
2
84  
6
mW  
mW  
µs  
D
D
Sleep Mode  
CSB at logic high  
Nap Mode Wakeup  
Time (Note 6)  
Sample Clock  
Running  
1
1
1
1
Sleep Mode  
Wakeup Time  
(Note 6)  
Sample Clock  
Running  
1
1
1
1
ms  
AC SPECIFICATIONS  
Differential  
Nonlinearity  
DNL  
INL  
-0.5 ±0.12 0.5 -0.5 ±0.17 0.5 -0.5 ±0.17 0.5 -0.5 ±0.17 0.5  
-0.75 ±0.2 0.75 -0.75 ±0.3 0.75 -0.75 ±0.3 0.75 -0.75 ±0.3 0.75  
LSB  
LSB  
Integral  
Nonlinearity  
Minimum  
f
MIN  
40  
40  
40  
40  
MSPS  
S
Conversion Rate  
(Note 7)  
Maximum  
f
MAX  
250  
210  
170  
125  
MSPS  
S
Conversion Rate  
Signal-to-Noise  
Ratio  
SNR  
f
f
f
f
f
f
f
f
f
f
f
f
= 10MHz  
60.8  
60.8  
61.0  
61.0  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
= 105MHz  
= 190MHz  
= 364MHz  
= 695MHz  
= 995MHz  
= 10MHz  
59.5 60.7  
60.6  
60.0 60.9  
60.8  
60.2 61.0  
60.9  
60.2 61.0  
60.9  
60.5  
60.6  
60.7  
60.7  
59.9  
60.0  
60.1  
60.0  
59.1  
59.2  
59.3  
59.2  
Signal-to-Noiseand  
Distortion  
SINAD  
60.7  
60.8  
60.9  
61.0  
= 105MHz  
= 190MHz  
= 364MHz  
= 695MHz  
= 995MHz  
59.3 60.7  
60.5  
59.9 60.9  
60.8  
60.0 60.9  
60.8  
60.0 61.0  
60.9  
60.4  
60.5  
60.6  
60.4  
56.5  
57.3  
56.9  
56.6  
49.8  
46.9  
47.7  
49.1  
FN7693.1  
January 3, 2011  
7
KAD5510P  
Electrical Specifications All specifications apply under the following conditions unless otherwise noted: AVDD = 1.8V,  
OVDD = 1.8V, T = -40°C to +85°C (typical specifications at +25°C), A = -1dBFS, f = Maximum Conversion Rate (per speed grade).  
SAMPLE  
A
IN  
Boldface limits apply over the operating temperature range, -40°C to +85°C. (Continued)  
KAD5510P-25 KAD5510P-21  
MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX UNITS  
KAD5510P-17  
KAD5510P-12  
PARAMETER  
SYMBOL  
CONDITIONS  
= 10MHz  
Effective Number of  
Bits  
ENOB  
f
f
f
f
f
f
f
f
f
f
f
f
f
f
9.8  
9.8  
9.8  
9.7  
9.1  
8.0  
83.0  
9.8  
9.8  
9.8  
9.8  
9.2  
7.5  
82.0  
9.8  
9.8  
9.8  
9.8  
9.2  
7.6  
78.0  
9.8  
9.8  
9.8  
9.7  
9.1  
7.9  
79.0  
Bits  
Bits  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
= 105MHz  
= 190MHz  
= 364MHz  
= 695MHz  
= 995MHz  
= 10MHz  
9.5  
9.6  
9.6  
9.6  
Bits  
Bits  
Bits  
Bits  
Spurious-Free  
Dynamic Range  
SFDR  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBFS  
dBFS  
= 105MHz  
= 190MHz  
= 364MHz  
= 695MHz  
= 995MHz  
= 70MHz  
73.0 86.1  
78.0  
73.0 86.6  
80.1  
73.0 84.6  
81.0  
73.0 85.8  
81.2  
76.2  
77.1  
77.9  
72.1  
60.8  
61.9  
61.0  
61.1  
50.2  
47.2  
47.9  
49.4  
Intermodulation  
Distortion  
IMD  
-86.1  
-96.9  
-92.1  
-87.1  
-94.5  
-91.6  
-95.1  
-85.7  
= 170MHz  
-12  
10  
-12  
10  
-12  
10  
-12  
10  
Word Error Rate  
WER  
Full Power  
Bandwidth  
FPBW  
1.5  
1.5  
1.5  
1.5  
GHz  
NOTES:  
5. Digital Supply Current is dependent upon the capacitive loading of the digital outputs. I  
specifications apply for 10pF load on each digital  
OVDD  
output.  
6. See “Nap/Sleep” on page 18 for more details.  
7. The DLL Range setting must be changed for low speed operation. See “Serial Peripheral Interface” on page 21 for more detail.  
FN7693.1  
January 3, 2011  
8
KAD5510P  
Digital Specifications Boldface limits apply over the operating temperature range, -40°C to +85°C.  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
INPUTS  
Input Current High (SDIO, RESETN, CSB, SCLK)  
Input Current Low (SDIO, RESETN, CSB, SCLK)  
Input Voltage High (SDIO, RESETN, CSB, SCLK)  
Input Voltage Low (SDIO, RESETN, CSB, SCLK)  
Input Current High (NAPSLP) (Note 9)  
Input Current Low (NAPSLP)  
Input Capacitance  
I
V
V
= 1.8V  
= 0V  
0
1
10  
-5  
µA  
µA  
V
IH  
IN  
IN  
I
-25  
1.17  
-12  
IL  
V
IH  
V
0.63  
40  
V
IL  
I
15  
25  
25  
3
µA  
µA  
pF  
IH  
I
-40  
-15  
IL  
C
DI  
LVDS OUTPUTS  
Differential Output Voltage  
Output Offset Voltage  
V
3mA Mode  
3mA Mode  
620  
965  
500  
500  
mV  
T
P-P  
V
950  
980  
mV  
OS  
Output Rise Time  
t
ps  
ps  
R
Output Fall Time  
t
F
CMOS OUTPUTS  
Voltage Output High  
V
I
I
= -500µA  
= 1mA  
OVDD - 0.3  
OVDD - 0.1  
0.1  
V
V
OH  
OH  
OL  
Voltage Output Low  
V
0.3  
OL  
Output Rise Time  
t
1.8  
ns  
ns  
R
Output Fall Time  
t
1.4  
F
FN7693.1  
January 3, 2011  
9
KAD5510P  
Timing Diagrams  
SAMPLE N  
INP  
INN  
t
A
CLKN  
CLKP  
t
CPD  
LATENCY = L CYCLES  
CLKOUTN  
CLKOUTP  
t
DC  
t
D[8/6/4/2/0]P  
D[8/6/4/2/0]N  
PD  
ODD BITS  
ODD BITS EVEN BITS  
ODD BITS  
EVEN BITS  
EVEN BITS  
N-L + 2  
EVEN BITS  
N-L + 1  
N-L  
N-L + 1  
N
N-L + 2  
N-L  
FIGURE 1. DDR LVDS TIMING DIAGRAM (See “Digital Outputs” on page 18)  
SAMPLE N  
INP  
INN  
t
A
CLKN  
CLKP  
t
CPD  
LATENCY = L CYCLES  
CLKOUT  
t
DC  
t
PD  
ODD BITS EVEN BITS ODD BITS EVEN BITS ODD BITS EVEN BITS  
EVEN BITS  
D[8/6/4/2/0]  
N-L N-L N-L + 1 N-L + 1 N-L + 2 N-L + 2  
N
FIGURE 1. DDR CMOS TIMING DIAGRAM (See “Digital Outputs” on page 18)  
FN7693.1  
January 3, 2011  
10  
KAD5510P  
Switching Specifications Boldface limits apply over the operating temperature range, -40°C to +85°C.  
MIN  
MAX  
PARAMETER  
CONDITION  
SYMBOL  
(Note 8)  
TYP  
(Note 8)  
UNITS  
ADC OUTPUT  
Aperture Delay  
t
375  
60  
ps  
fs  
A
RMS Aperture Jitter  
j
A
Output Clock to Data Propagation Delay,  
LVDS Mode (Note 10)  
DDR Rising Edge  
t
t
t
t
t
t
-260  
-160  
-260  
-220  
-310  
-310  
-50  
10  
120  
230  
230  
200  
110  
200  
ps  
DC  
DC  
DC  
DC  
DC  
DDR Falling Edge  
SDR Falling Edge  
DDR Rising Edge  
DDR Falling Edge  
SDR Falling Edge  
ps  
-40  
-10  
-90  
-50  
7.5  
1
ps  
Output Clock to Data Propagation Delay,  
CMOS Mode (Note 10)  
ps  
ps  
ps  
DC  
L
Latency (Pipeline Delay)  
Overvoltage Recovery  
SPI INTERFACE (Notes 11, 12)  
SCLK Period  
cycles  
cycles  
t
OVR  
t
Write Operation  
16  
cycles  
CLK  
(Note 11)  
Read Operation  
Read or Write  
Read or Write  
Read or Write  
Write  
t
66  
25  
1
cycles  
%
CLK  
SCLK Duty Cycle (t /t  
HI CLK  
or t /t  
LO CLK)  
50  
75  
CSBto SCLKSetup Time  
t
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
µs  
S
CSBafter SCLKHold Time  
Data Valid to SCLKSetup Time  
Data Valid after SCLKHold Time  
Data Valid after SCLKTime  
Data Invalid after SCLKTime  
t
3
H
t
1
DSW  
Write  
t
3
DHW  
Read  
t
16.5  
DVR  
Read  
t
3
DHR  
Sleep Mode CSBto SCLKSetup Time  
Read or Write in Sleep Mode  
t
150  
S
(Note 13)  
NOTES:  
8. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
9. The Tri-Level Inputs internal switching thresholds are approximately 0.43V and 1.34V. It is advised to float the inputs, tie to ground or AVDD depending  
on desired function.  
10. The input clock to output clock delay is a function of sample rate, using the output clock to latch the data simplifies data capture for most  
applications. Contact factory for more info if needed.  
11. SPI Interface timing is directly proportional to the ADC sample period (4ns at 250Msps).  
12. The SPI may operate asynchronously with respect to the ADC sample clock but the ADC sample clock must be active to access SPI registers.  
13. The CSB setup time increases in sleep mode due to the reduced power state, CSB setup time in Nap mode is equal to normal mode CSB setup time  
(4ns min).  
FN7693.1  
January 3, 2011  
11  
KAD5510P  
Typical Performance Curves All Typical Performance Characteristics apply under the following conditions  
unless otherwise noted: AVDD = OVDD = 1.8V, T = +25°C, A = -1dBFS, f = 105MHz, f = Maximum Conversion Rate  
SAMPLE  
A
IN  
IN  
(per speed grade).  
90  
85  
80  
75  
70  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
SFDR @ 125MSPS  
SFDR @ 250MSPS  
HD2 @ 125MSPS  
HD2 @ 250MSPS  
HD3 @ 125MSPS  
SNR @ 125MSPS  
65  
60  
55  
50  
HD3 @ 250MSPS  
SNR @ 250MSPS  
0M 200M  
400M  
600M  
800M  
1G  
0M  
200M  
400M  
600M  
800M  
1G  
INPUT FREQUENCY (Hz)  
INPUT FREQUENCY (Hz)  
FIGURE 3. HD2 AND HD3 vs f  
FIGURE 2. SNR AND SFDR vs f  
IN  
IN  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
-10  
-20  
SFDRFS (dBFS)  
SNRFS (dBFS)  
-30  
-40  
HD3 (dBc)  
HD2 (dBc)  
-50  
-60  
-70  
HD2 (dBFS)  
SFDR (dBc)  
-80  
SNR (dBc)  
-90  
-100  
-110  
HD3 (dBFS)  
-40  
INPUT AMPLITUDE (dBFS)  
-60  
-50  
-30  
-20  
-10  
0
-60  
-50  
-40  
-30  
-20  
-10  
0
INPUT AMPLITUDE (dBFS)  
FIGURE 4. SNR AND SFDR vs A  
FIGURE 5. HD2 AND HD3 vs A  
IN  
IN  
90  
85  
80  
75  
70  
65  
60  
55  
-60  
-70  
SFDR  
HD3  
-80  
-90  
HD2  
-100  
-110  
-120  
SNR  
40  
70  
100  
130  
160  
190  
220  
250  
40  
70  
100  
130  
160  
190  
220  
250  
SAMPLE RATE (MSPS)  
SAMPLE RATE (MSPS)  
FIGURE 6. SNR AND SFDR vs f  
FIGURE 7. HD2 AND HD3 vs f  
SAMPLE  
SAMPLE  
FN7693.1  
January 3, 2011  
12  
KAD5510P  
Typical Performance Curves All Typical Performance Characteristics apply under the following conditions  
unless otherwise noted: AVDD = OVDD = 1.8V, T = +25°C, A = -1dBFS, f = 105MHz, f = Maximum Conversion Rate  
SAMPLE  
A
IN  
IN  
(per speed grade). (Continued)  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
0
40  
70  
100  
130  
160  
190  
220  
250  
0
128  
256  
384  
512  
640  
768  
896  
1024  
CODE  
SAMPLE RATE (MSPS)  
FIGURE 8. POWER vs f  
IN 3mA LVDS MODE  
FIGURE 9. DIFFERENTIAL NONLINEARITY  
SAMPLE  
90  
85  
80  
75  
70  
65  
60  
55  
50  
0.25  
0.20  
0.15  
SFDR  
0.10  
0.05  
0.00  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
SNR  
300  
400  
500  
600  
700  
800  
0
128  
256  
384  
512  
640  
768  
896  
1024  
INPUT COMMON MODE (mV)  
CODE  
FIGURE 11. SNR AND SFDR vs VCM  
FIGURE 10. INTEGRAL NONLINEARITY  
70000  
40000  
10000  
80000  
50000  
20000  
90000  
60000  
30000  
0
0
-20  
Ain = -1.0dBFS  
SNR = 60.7dBFS  
SFDR = 82.5dBc  
SINAD = 60.7dBFS  
-40  
-60  
-80  
-100  
-120  
2050 2051 2052 2053 2054 2055 2056 2057 2058  
CODE  
0M  
20M  
40M  
60M  
80M  
100M  
120M  
FREQUENCY (Hz)  
FIGURE 12. NOISE HISTOGRAM  
FIGURE 13. SINGLE-TONE SPECTRUM @ 10MHz  
FN7693.1  
January 3, 2011  
13  
KAD5510P  
Typical Performance Curves All Typical Performance Characteristics apply under the following conditions  
unless otherwise noted: AVDD = OVDD = 1.8V, T = +25°C, A = -1dBFS, f = 105MHz, f  
(per speed grade). (Continued)  
= Maximum Conversion Rate  
A
IN  
IN  
SAMPLE  
0
0
Ain = -1.0dBFS  
SNR = 60.7dBFS  
Ain = -1.0dBFS  
SNR = 60.6dBFS  
-20  
-20 SFDR = 78.5dBc  
SINAD = 60.5dBFS  
SFDR = 85.9dBc  
SINAD = 60.7dBFS  
-40  
-40  
-60  
-80  
-60  
-80  
-100  
-120  
-100  
-120  
0M  
20M  
40M  
60M  
80M  
100M  
120M  
0M  
20M  
40M  
60M  
80M  
100M  
120M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 14. SINGLE-TONE SPECTRUM @ 105MHz  
FIGURE 15. SINGLE-TONE SPECTRUM @ 190MHz  
0
-20  
0
Ain = -1.0dBFS  
Ain = -1.0dBFS  
SNR = 60.2dBFS  
SFDR = 68.9dBc  
SINAD = 59.4dBFS  
SNR = 58.9dBFS  
SFDR = 49.8dBc  
SINAD = 49.5dBFS  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0M  
20M  
40M  
60M  
80M  
100M  
120M  
0M  
20M  
40M  
60M  
80M  
100M  
120M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 17. SINGLE-TONE SPECTRUM @ 995MHz  
FIGURE 16. SINGLE-TONE SPECTRUM @ 495MHz  
0
0
-20  
IMD = -86.1dBFS  
IMD = -96.9dBFS  
-20  
-40  
-60  
-40  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0M  
20M  
40M  
60M  
80M  
100M  
120M  
0M  
20M  
40M  
60M  
80M  
100M  
120M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 18. TWO-TONE SPECTRUM @ 70MHz  
FIGURE 19. TWO-TONE SPECTRUM @ 170MHz  
FN7693.1  
January 3, 2011  
14  
KAD5510P  
A user-initiated reset can subsequently be invoked in the event  
that the previously mentioned conditions cannot be met at  
power-up.  
Theory of Operation  
Functional Description  
The KAD5510P is based upon a 10-bit, 250MSPS A/D converter core  
that utilizes a pipelined successive approximation architecture (Figure  
20). The input voltage is captured by a Sample-Hold Amplifier (SHA) and  
converted to a unit of charge. Proprietary charge-domain techniques  
are used to successively compare the input to a series of reference  
charges. Decisions made during the successive approximation  
operations determine the digital code for each input value. The  
converter pipeline requires six samples to produce a result. Digital error  
correction is also applied, resulting in a total latency of seven and one  
half clock cycles. This is evident to the user as a time lag between the  
start of a conversion and the data being available on the digital outputs.  
The SDO pin requires an external 4.7kΩ pull-up to OVDD. If the  
SDO pin is pulled low externally during power-up, calibration will  
not be executed properly.  
After the power supply has stabilized, the internal POR releases  
RESETN and an internal pull-up pulls it high starting the calibration  
sequence. When the RESETN pin is driven by external logic, it  
should be connected to an open-drain output with open-state  
leakage of less than 0.5mA to assure exit from the reset state. A  
driver that can be switched from logic low to high impedance can  
also be used to drive RESETN provided the high impedance state  
leakage is less than 0.5mA and the logic voltages are the same.  
Power-On Calibration  
The calibration sequence is initiated on the rising edge of RESETN, as  
shown in Figure 21. The over-range output (OR) is set high once RESETN  
is pulled low, and remains in that state until calibration is complete. The  
OR output returns to normal operation at that time, so it is important  
that the analog input be within the converter’s full-scale range to  
observe the transition. If the input is in an over-range condition, the OR  
pin will stay high, and it will not be possible to detect the end of the  
calibration cycle.  
The ADC performs a self-calibration at start-up. An internal  
power-on-reset (POR) circuit detects the supply voltage ramps  
and initiates the calibration when the analog and digital supply  
voltages are above a threshold. The following conditions must be  
adhered to for the power-on calibration to execute successfully:  
• A frequency-stable conversion clock must be applied to the  
CLKP/CLKN pins  
While RESETN is low, the output clock (CLKOUTP/CLKOUTN) is  
set low. Normal operation of the output clock resumes at the  
next input clock edge (CLKP/CLKN) after RESETN is deasserted.  
At 250MSPS the nominal calibration time is 200ms, while the  
maximum calibration time is 550ms.  
• DNC pins must not be pulled up or down  
• SDO must be high  
• RESETN will be pulled low by the ADC during POR then  
released  
• SPI communications must not be attempted  
CLOCK  
GENERATION  
INP  
2.5-BIT  
FLASH  
6-STAGE  
1.5-BIT/STAGE  
3-STAGE  
1-BIT/STAGE  
3-BIT  
FLASH  
SHA  
INN  
+
1.25V  
DIGITAL  
ERROR  
CORRECTION  
LVDS/LVCMOS  
OUTPUTS  
FIGURE 20. ADC CORE BLOCK DIAGRAM  
FN7693.1  
January 3, 2011  
15  
KAD5510P  
CLKN  
CLKP  
3
CALIBRATION  
TIME  
CAL DONE AT  
+85°C  
2
1
RESETN  
ORP  
0
CALIBRATION  
BEGINS  
-1  
-2  
-3  
-4  
CAL DONE AT  
+25°C  
CAL DONE AT  
-40°C  
CALIBRATION  
COMPLETE  
CLKOUTP  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
FIGURE 22. SNR PERFORMANCE vs TEMPERATURE  
FIGURE 21. CALIBRATION TIMING  
15  
10  
5
User-Initiated Reset  
CAL DONE AT  
-40°C  
Recalibration of the ADC can be initiated at any time by driving the  
RESETN pin low for a minimum of one clock cycle. An open-drain driver  
with less than 0.5mA open-state leakage is recommended so the  
internal high impedance pull-up to OVDD can assure exit from the reset  
state. As is the case during power-on reset, the SDO, RESETN and DNC  
pins must be in the proper state for the calibration to successfully  
execute.  
0
-5  
CAL DONE AT  
+25°C  
CAL DONE AT  
-10  
-15  
+85°C  
The performance of the KAD5510P changes with variations in  
temperature, supply voltage or sample rate. The extent of these  
changes may necessitate recalibration, depending on system  
performance requirements. Best performance will be achieved  
by recalibrating the ADC under the environmental conditions at  
which it will operate.  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
FIGURE 23. SFDR PERFORMANCE vs TEMPERATURE  
Analog Input  
The ADC core contains a fully differential input (VINP/VINN) to  
the sample and hold amplifier (SHA). The ideal full-scale input  
voltage is 1.45V, centered at the VCM voltage of 0.535V as  
shown in Figure 24.  
A supply voltage variation of less than 100mV will generally  
result in an SNR change of less than 0.5dBFS and SFDR change  
of less than 3dBc.  
In situations where the sample rate is not constant, best results will be  
obtained if the device is calibrated at the highest sample rate. Reducing  
the sample rate by less than 75MSPS will typically result in an SNR  
change of less than 0.5dBFS and an SFDR change of less than 3dBc.  
Best performance is obtained when the analog inputs are driven  
differentially. The common-mode output voltage, VCM, should be  
used to properly bias the inputs as shown in Figures 25 through  
27. An RF transformer will give the best noise and distortion  
performance for wideband and/or high intermediate frequency  
(IF) inputs. Two different transformer input schemes are shown in  
Figures 25 and 26.  
Figures 22 and 23 show the effect of temperature on SNR and  
SFDR performance with calibration performed at -40°C, +25°C,  
and +85°C. Each plot shows the variation of SNR/SFDR across  
temperature after a single calibration at -40°C, +25°C and  
+85°C. Best performance is typically achieved by a user-initiated  
calibration at the operating conditions, as stated earlier.  
1.8  
However, it can be seen that performance drift with temperature  
is not a very strong function of the temperature at which the  
calibration is performed. Full rated performance will be achieved  
after power-up calibration regardless of the operating conditions.  
1.4  
INN  
INP  
1.0  
0.6  
0.2  
0.725V  
VCM  
0.535V  
FIGURE 24. ANALOG INPUT RANGE  
FN7693.1  
January 3, 2011  
16  
KAD5510P  
This dual transformer scheme is used to improve common-mode  
250MSPS) may be used to calculate the expected voltage drop  
across any series resistance.  
rejection, which keeps the common-mode level of the input matched to  
VCM. The value of the shunt resistor should be determined based on the  
desired load impedance. The differential input resistance of the  
KAD5510P is 1000Ω.  
VCM Output  
The VCM output is buffered with a series output impedance of  
20. It can easily drive a typical ADC driver’s 10kcommon  
mode control pin. If an external buffer is not used the voltage  
drop across the internal 20impedance must be considered  
when calculating the expected DC bias voltage at the analog  
input pins.  
ADT1-1WT  
ADT1-1WT  
1000pF  
KAD5512P  
VCM  
Clock Input  
0.1µF  
The clock input circuit is a differential pair (see Figure 41).  
Driving these inputs with a high level (up to 1.8V  
on each  
P-P  
input) sine or square wave will provide the lowest jitter  
performance. A transformer with 4:1 impedance ratio will  
provide increased drive levels.  
FIGURE 25. TRANSFORMER INPUT FOR GENERAL PURPOSE  
APPLICATIONS  
The recommended drive circuit is shown in Figure 28. A duty  
cycle range of 40% to 60% is acceptable. The clock can be driven  
single-ended, but this will reduce the edge rate and may impact  
SNR performance. The clock inputs are internally self-biased to  
AVDD/2 to facilitate AC coupling.  
ADTL1-12 ADTL1-12  
0.1µF  
1000pF  
KAD5512P  
VCM  
1000pF  
200pF  
TC4-1W  
CLKP  
1000pF  
200pF  
FIGURE 26. TRANSMISSION-LINE TRANSFORMER INPUT FOR  
HIGH IF APPLICATIONS  
Ω
200
The SHA design uses a switched capacitor input stage  
(see Figure 40 on page 27), which creates current spikes when  
the sampling capacitance is reconnected to the input voltage.  
This causes a disturbance at the input which must settle before  
the next sampling point. Lower source impedance will result in  
faster settling and improved performance. Therefore a 1:1  
transformer and low shunt resistance are recommended for  
optimal performance.  
CLKN  
200pF  
FIGURE 28. RECOMMENDED CLOCK DRIVE  
A selectable 2x frequency divider is provided in series with the  
clock input. The divider can be used in the 2x mode with a  
sample clock equal to twice the desired sample rate. This allows  
the use of the Phase Slip feature, which enables synchronization  
of multiple ADCs.  
Ω
348  
Ω
69.8  
The clock divider can be controlled through the SPI port. Details on this  
are contained in “Serial Peripheral Interface” on page 21.  
Ω
25  
100Ω  
Ω
KAD5512P  
VCM  
A delay-locked loop (DLL) generates internal clock signals for  
various stages within the charge pipeline. If the frequency of the  
input clock changes, the DLL may take up to 52µs to regain lock  
at 250MSPS. The lock time is inversely proportional to the  
sample rate.  
217  
CM  
Ω
100  
0.22µF  
Ω
25  
Ω
49.9  
Ω
69.8  
0.1µF  
Ω
348  
Jitter  
FIGURE 27. DIFFERENTIAL AMPLIFIER INPUT  
In a sampled data system, clock jitter directly impacts the  
achievable SNR performance. The theoretical relationship  
A differential amplifier, as shown in Figure 27, can be used in  
applications that require DC-coupling. In this configuration, the  
amplifier will typically dominate the achievable SNR and  
distortion performance.  
between clock jitter (t ) and SNR is shown in Equation 1 and is  
J
illustrated in Figure 29.  
1
-------------------  
SNR = 20 log  
(EQ. 1)  
10  
2πf  
t
IN J  
The current spikes from the SHA will try to force the analog input  
pins toward ground. In cases where the input pins are biased with  
more than 50 ohms in series from VCM care must be taken to  
make sure the input common mode range is not violated. The  
provided ICM value (250µA/MHz * 250MHz = 625µA at  
FN7693.1  
January 3, 2011  
17  
KAD5510P  
Over Range Indicator  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
The over range (OR) bit is asserted when the output code reaches  
positive full-scale (e.g. 0xFFF in offset binary mode). The output  
code does not wrap around during an over-range condition. The OR  
bit is updated at the sample rate.  
tj = 0.1ps  
14 BITS  
12 BITS  
tj = 1ps  
Power Dissipation  
tj = 10ps  
The power dissipated by the KAD5510P is primarily dependent  
on the sample rate and the output modes: LVDS vs. CMOS and  
DDR vs SDR. There is a static bias in the analog supply, while the  
remaining power dissipation is linearly related to the sample  
rate. The output supply dissipation is approximately constant in  
LVDS mode, but linearly related to the clock frequency in CMOS  
mode. Figures 33 and 34 illustrate these relationships.  
10 BITS  
tj = 100ps  
1
10  
100  
1000  
INPUT FREQUENCY (MHz)  
FIGURE 29. SNR vs CLOCK JITTER  
This relationship shows the SNR that would be achieved if clock  
jitter were the only non-ideal factor. In reality, achievable SNR is  
limited by internal factors such as linearity, aperture jitter and  
thermal noise. Internal aperture jitter is the uncertainty in the  
sampling instant shown in Figure 1. The internal aperture jitter  
combines with the input clock jitter in a root-sum-square fashion,  
since they are not statistically correlated, and this determines  
the total jitter in the system. The total jitter, combined with other  
noise sources, then determines the achievable SNR.  
Nap/Sleep  
Portions of the device may be shut down to save power during  
times when operation of the ADC is not required. Two power saving  
modes are available: Nap, and Sleep. Nap mode reduces power  
dissipation to less than 95mW and recovers to normal operation in  
approximately 1µs. Sleep mode reduces power dissipation to less  
than 6mW but requires approximately 1ms to recover from a sleep  
command.  
Wake-up time from sleep mode is dependent on the state of  
CSB; in a typical application CSB would be held high during sleep,  
requiring a user to wait 150µs max after CSB is asserted  
(brought low) prior to writing ‘001x’ to SPI Register 25. The  
device would be fully powered up, in normal mode 1ms after this  
command is written.  
Voltage Reference  
A temperature compensated voltage reference provides the reference  
charges used in the successive approximation operations. The full-scale  
range of each A/D is proportional to the reference voltage. The voltage  
reference is internally bypassed and is not accessible to the user.  
Wake-up from Sleep Mode Sequence (CSB high)  
• Pull CSB Low  
Digital Outputs  
Output data is available as a parallel bus in LVDS-compatible or  
CMOS double data rate (DDR) modes. When CLKOUT is low the  
MSB and all odd logical bits are output, while on the high phase  
the LSB and all even logical bits are presented. Figures 1 and 1  
show the timing relationships for LVDS/CMOS DDR modes.  
• Wait 150µs  
• Write ‘001x’ to Register 25  
• Wait 1ms until ADC fully powered on  
The KAD5510P is only offered in the 48-QFN package with five  
LVDS data output pin pairs. It only supports outputs in DDR  
mode.  
In an application where CSB was kept low in sleep mode, the  
150µs CSB setup time is not required as the SPI registers are  
powered on when CSB is low, the chip power dissipation increases  
by ~ 15mW in this case. The 1ms wake-up time after the write of a  
‘001x’ to register 25 still applies. It is generally recommended to  
keep CSB high in sleep mode to avoid any unintentional SPI  
activity on the ADC.  
LVDS output drive current can be set to a nominal 3mA or a  
power-saving 2mA. The lower current setting can be used in  
designs where the receiver is in close physical proximity to the  
ADC. The applicability of this setting is dependent upon the PCB  
layout, therefore the user should experiment to determine if  
performance degradation is observed.  
All digital outputs (Data, CLKOUT and OR) are placed in a high  
impedance state during Nap or Sleep. The input clock should  
remain running and at a fixed frequency during Nap or Sleep, and  
CSB should be high. Recovery time from Nap mode will increase  
if the clock is stopped, since the internal DLL can take up to 52µs  
to regain lock at 250MSPS.  
The output mode and LVDS drive current are selected via SPI  
registers. Details are contained in “Serial Peripheral Interface” on  
page 21.  
Care should be taken when using the DDR CMOS outputs at clock  
rates greater than 200MHz. Series termination resistors close to  
the ADC should drive short traces with minimum parasitic  
loading to assure adequate signal integrity.  
By default after the device is powered on, the operational state is  
controlled by the NAPSLP pin as shown in Table 1.  
An external resistor creates the bias for the LVDS drivers. A 10k,  
1% resistor must be connected from the RLVDS pin to OVSS.  
FN7693.1  
January 3, 2011  
18  
KAD5510P  
TABLE 1. NAPSLP PIN SETTINGS  
NAPSLP PIN  
BINARY  
9
8
7
1
0
• • • •  
MODE  
Normal  
Sleep  
Nap  
AVSS  
Float  
AVDD  
• • • •  
• • • •  
The power-down mode can also be controlled through the SPI  
port, which overrides the NAPSLP pin setting. Details on this are  
contained in “Serial Peripheral Interface” on page 21. This is an  
indexed function when controlled from the SPI, but a global  
function when driven from the pin.  
GRAY CODE  
9
8
7
1
0
FIGURE 30. BINARY TO GRAY CODE CONVERSION  
Data Format  
Output data can be presented in three formats: two’s complement,  
Gray code and offset binary. The data format can be controlled  
through the SPI port. Details on this are contained in “Serial  
Peripheral Interface” on page 21.  
GRAY CODE  
9
8
7
1
0
• • • •  
Offset binary coding maps the most negative input voltage to code  
0x000 (all zeros) and the most positive input to 0xFFF (all ones). Two’s  
complement coding simply complements the MSB of the offset binary  
representation.  
• • • •  
• • • •  
• • • •  
When calculating Gray code the MSB is unchanged. The  
remaining bits are computed as the XOR of the current bit  
position and the next most significant bit. Figure 30 shows this  
operation.  
Converting back to offset binary from Gray code must be done  
recursively, using the result of each bit for the next lower bit as  
shown in Figure 31.  
Mapping of the input voltage to the various data formats is  
shown in Table 2.  
BINARY  
9
8
7
1
0
FIGURE 31. GRAY CODE TO BINARY CONVERSION  
TABLE 2. INPUT VOLTAGE TO OUTPUT CODE MAPPING  
INPUT VOLTAGE  
–Full Scale  
OFFSET BINARY  
000 00 000 00  
000 00 000 01  
100 00 000 00  
111 11 111 10  
111 11 111 11  
TWO’S COMPLEMENT  
100 00 000 00  
100 00 000 01  
000 00 000 00  
011 11 111 10  
011 11 111 11  
GRAY CODE  
000 00 000 00  
000 00 000 01  
110 00 000 00  
100 00 000 01  
100 00 000 00  
–Full Scale + 1LSB  
Mid–Scale  
+Full Scale – 1LSB  
+Full Scale  
FN7693.1  
January 3, 2011  
19  
KAD5510P  
CSB  
SCLK  
SDIO  
R/W  
W1  
W0  
A12  
A11  
A10  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1D  
0
FIGURE 32. MSB-FIRST ADDRESSING  
CSB  
SCLK  
SDIO  
A0  
A1  
A2  
A11  
A12  
W0  
W1  
R/W  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
FIGURE 33. LSB-FIRST ADDRESSING  
t
DSW  
t
t
t
CLK  
HI  
H
t
DHW  
CSB  
t
t
S
LO  
SCLK  
SDIO  
R/W W1 W0 A12 A11 A10 A9  
A8  
A7  
D0  
D5  
D4  
D3  
D2  
D1  
SPI WRITE  
FIGURE 34. SPI WRITE  
t
DSW  
t
t
t
CLK  
HI  
H
t
DHW  
t
t
CSB  
t
S
DVR  
DHR  
t
LO  
SCLK  
WRITING A READ COMMAND  
R/W W1 W0 A12 A11 A10 A9 A2 A1 A0  
READING DATA  
(3 WIRE MODE)  
SDIO  
SDO  
D3  
D7 D6  
D7  
D2  
D1 D0  
(4 WIRE MODE)  
D3 D2 D1 D0  
SPI READ  
FIGURE 35. SPI READ  
CSB STALLING  
CSB  
SCLK  
SDIO  
INSTRUCTION/ADDRESS  
DATA WORD 1  
DATA WORD 2  
FIGURE 36. 2-BYTE TRANSFER  
FN7693.1  
January 3, 2011  
20  
KAD5510P  
LAST LEGAL  
CSB STALLING  
CSB  
SCLK  
SDIO  
INSTRUCTION/ADDRESS  
DATA WORD 1  
DATA WORD N  
FIGURE 37. N-BYTE TRANSFER  
the CSB transition. Data can be presented in MSB-first order or  
LSB-first order. The default is MSB-first, but this can be changed  
by setting 0x00[6] high. Figures 32 and 33 show the appropriate  
bit ordering for the MSB-first and LSB-first modes, respectively. In  
MSB-first mode the address is incremented for multi-byte  
transfers, while in LSB-first mode it’s decremented.  
Serial Peripheral Interface  
A serial peripheral interface (SPI) bus is used to facilitate  
configuration of the device and to optimize performance. The SPI  
bus consists of chip select (CSB), serial clock (SCLK) serial data  
output (SDO), and serial data input/output (SDIO). The maximum  
SCLK rate is equal to the ADC sample rate (f  
for write operations and f  
SAMPLE  
) divided by 16  
divided by 66 for reads. At  
SAMPLE  
In the default mode, the MSB is R/W, which determines if the  
data is to be read (active high) or written. The next two bits, W1  
and W0, determine the number of data bytes to be read or  
written (see Table 3). The lower 13 bits contain the first address  
for the data transfer. This relationship is illustrated in Figure 34,  
and timing values are given in “Switching  
f
= 250MHz, maximum SCLK is 15.63MHz for writing and  
SAMPLE  
3.79MHz for read operations. There is no minimum SCLK rate but  
the ADC clock (CLKP/CLKN) must be active to access the SPI  
registers.  
The following sections describe various registers that are used to  
configure the SPI or adjust performance or functional parameters.  
Many registers in the available address space (0x00 to 0xFF) are  
not defined in this document. Additionally, within a defined  
register there may be certain bits or bit combinations that are  
reserved. Undefined registers and undefined values within defined  
registers are reserved and should not be selected. Setting any  
reserved register or value may produce indeterminate results.  
Specifications Boldface limits apply over the operating  
temperature range, -40°C to +85°C.” on page 11.  
After the instruction/address bytes have been read, the  
appropriate number of data bytes are written to or read from the  
ADC (based on the R/W bit status). The data transfer will  
continue as long as CSB remains low and SCLK is active. Stalling  
of the CSB pin is allowed at any byte boundary  
(instruction/address or data) if the number of bytes being  
transferred is three or less. For transfers of four bytes or more,  
CSB is allowed stall in the middle of the instruction/address  
bytes or before the first data byte. If CSB transitions to a high  
state after that point the state machine will reset and terminate  
the data transfer.  
SPI Physical Interface  
The serial clock pin (SCLK) provides synchronization for the data  
transfer. By default, all data is presented on the serial data  
input/output (SDIO) pin in three-wire mode. The state of the SDIO  
pin is set automatically in the communication protocol  
(described below). A dedicated serial data output pin (SDO) can  
be activated by setting 0x00[7] high to allow operation in four-  
wire mode.  
TABLE 3. BYTE TRANSFER SELECTION  
[W1:W0]  
00  
BYTES TRANSFERRED  
1
SDO should always be connected to OVDD with a 4.7kresistor  
even if not used. If the 4.7kresistor is not present the ADC will  
not exit the reset state.  
01  
2
3
10  
11  
4 or more  
The SPI port operates in a half duplex master/slave  
configuration, with the KAD5510P functioning as a slave.  
Multiple slave devices can interface to a single master in three-  
wire mode only, since the SDO output of an unaddressed device  
is asserted in four-wire mode.  
Figures 36 and 37 illustrate the timing relationships for  
2-byte and N-byte transfers, respectively. The operation for a 3-byte  
transfer can be inferred from these diagrams.  
The chip-select bar (CSB) pin determines when a slave device is  
being addressed. Multiple slave devices can be written to  
concurrently, but only one slave device can be read from at a  
given time (again, only in three-wire mode). If multiple slave  
devices are selected for reading at the same time, the results will  
be indeterminate.  
SPI Configuration  
ADDRESS 0X00: CHIP_PORT_CONFIG  
Bit ordering and SPI reset are controlled by this register. Bit order can be  
selected as MSB to LSB (MSB first) or LSB to MSB (LSB first) to  
accommodate various microcontrollers.  
The communication protocol begins with an instruction/address  
phase. The first rising SCLK edge following a high to low  
transition on CSB determines the beginning of the two-byte  
instruction/address command; SCLK must be static low before  
Bit 7 SDO Active  
FN7693.1  
January 3, 2011  
21  
KAD5510P  
Bit 6 LSB First  
ADDRESS 0X20: OFFSET_COARSE AND  
Setting this bit high configures the SPI to interpret  
serial data as arriving in LSB to MSB order.  
ADDRESS 0X21: OFFSET_FINE  
The input offset of the ADC core can be adjusted in fine and  
coarse steps. Both adjustments are made via an 8-bit word as  
detailed in Table 4.  
Bit 5 Soft Reset  
Setting this bit high resets all SPI registers to default  
values.  
The default value of each register will be the result of the self-  
calibration after initial power-up. If a register is to be  
incremented or decremented, the user should first read the  
register value then write the incremented or decremented value  
back to the same register.  
Bit 4 Reserved  
This bit should always be set high.  
Bits 3:0 These bits should always mirror bits 4:7 to avoid  
ambiguity in bit ordering.  
TABLE 4. OFFSET ADJUSTMENTS  
0x20[7:0]  
COARSE OFFSET  
0x21[7:0]  
FINE OFFSET  
ADDRESS 0X02: BURST_END  
PARAMETER  
Steps  
If a series of sequential registers are to be set, burst mode can  
improve throughput by eliminating redundant addressing. In  
3-wire SPI mode the burst is ended by pulling the CSB pin high. If  
the device is operated in  
2-wire mode the CSB pin is not available. In that case, setting the  
burst_end address determines the end of the transfer. During a  
write operation, the user must be cautious to transmit the correct  
number of bytes based on the starting and ending addresses.  
255  
255  
–Full Scale (0x00)  
Mid–Scale (0x80)  
+Full Scale (0xFF)  
Nominal Step Size  
-133LSB (-47mV)  
0.0LSB (0.0mV)  
+133LSB (+47mV)  
1.04LSB (0.37mV)  
-5LSB (-1.75mV)  
0.0LSB  
+5LSB (+1.75mV)  
0.04LSB (0.014mV)  
ADDRESS 0X22: GAIN_COARSE  
ADDRESS 0X23: GAIN_MEDIUM  
ADDRESS 0X24: GAIN_FINE  
Bits 7:0 Burst End Address  
This register value determines the ending address of  
the burst data.  
Device Information  
Gain of the ADC core can be adjusted in coarse, medium and fine  
steps. Coarse gain is a 4-bit adjustment while medium and fine  
are 8-bit. Multiple Coarse Gain Bits can be set for a total  
adjustment range of ±4.2% (‘0011’ =~ -4.2% and  
‘1100’ =~ +4.2%). It is recommended to use one of the coarse  
gain settings (-4.2%, -2.8%, -1.4%, 0, 1.4%, 2.8%, 4.2%) and fine-  
tune the gain using the registers at 23h and 24h.  
ADDRESS 0X08: CHIP_ID  
ADDRESS 0X09: CHIP_VERSION  
The generic die identifier and a revision number, respectively, can  
be read from these two registers.  
Indexed Device Configuration/Control  
The default value of each register will be the result of the self-  
calibration after initial power-up. If a register is to be  
incremented or decremented, the user should first read the  
register value then write the incremented or decremented value  
back to the same register.  
ADDRESS 0X10: DEVICE_INDEX_A  
A common SPI map, which can accommodate single-channel or  
multi-channel devices, is used for all Intersil ADC products.  
Certain configuration commands (identified as Indexed in the SPI  
map) can be executed on a per-converter basis. This register  
determines which converter is being addressed for an Indexed  
command. It is important to note that only a single converter can  
be addressed at a time.  
TABLE 5. COARSE GAIN ADJUSTMENT  
NOMINAL COARSE GAIN ADJUST  
0x22[3:0]  
Bit3  
(%)  
+2.8  
+1.4  
-2.8  
-1.4  
This register defaults to 00h, indicating that no ADC is  
addressed. Therefore Bit 0 must be set high in order to execute  
any Indexed commands. Error code ‘AD’ is returned if any  
indexed register is read from without properly setting  
device_index_A.  
Bit2  
Bit1  
Bit0  
FN7693.1  
January 3, 2011  
22  
KAD5510P  
71h followed by writing a ‘1’ to bit 0 at address 71h (32 sclk  
cycles).  
TABLE 6. MEDIUM AND FINE GAIN ADJUSTMENTS  
0x23[7:0]  
0x24[7:0]  
FINE GAIN  
PARAMETER  
MEDIUM GAIN  
CLK = CLKP – CLKN  
Steps  
256  
256  
-0.20%  
0.00%  
CLK  
–Full Scale (0x00)  
Mid–Scale (0x80)  
+Full Scale (0xFF)  
Nominal Step Size  
-2%  
1.00ns  
0.00%  
+2%  
+0.2%  
CLK÷4  
0.016%  
0.0016%  
4.00ns  
ADDRESS 0X25: MODES  
CLK÷4  
SLIP ONCE  
Two distinct reduced power modes can be selected. By default,  
the tri-level NAPSLP pin can select normal operation or sleep  
modes (refer to “Nap/Sleep” on page 18). This functionality can  
be overridden and controlled through the SPI. This is an indexed  
function when controlled from the SPI, but a global function  
when driven from the pin. This register is not changed by a Soft  
Reset.  
CLK÷4  
SLIP TWICE  
FIGURE 38. PHASE SLIP: CLK÷4 MODE, f  
= 1000MHz  
CLOCK  
TABLE 7. POWER-DOWN CONTROL  
ADDRESS 0X72: CLOCK_DIVIDE  
0x25[2:0]  
The KAD5510P has a selectable clock divider that can be set to  
divide by four, two or one (no division, refer to “Clock Input” on  
page 17). This functionality can be controlled through the SPI, as  
shown in Table 8. This register is not changed by a Soft Reset.  
VALUE  
000  
POWER-DOWN MODE  
Pin Control  
001  
Normal Operation  
Nap Mode  
TABLE 8. CLOCK DIVIDER SELECTION  
0x72[2:0]  
010  
100  
Sleep Mode  
VALUE  
CLOCK DIVIDER  
Pin Control  
Divide by 1  
Divide by 2  
Divide by 4  
000  
Nap mode must be entered by executing the following sequence:  
001  
010  
SEQUENCE  
REGISTER  
0x10  
VALUE  
0x01  
0x02  
0x02  
0x02  
100  
1
2
3
4
0x25  
ADDRESS 0X73: OUTPUT_MODE_A  
The output_mode_A register controls the physical output format  
of the data, as well as the logical coding. The KAD5510P can  
present output data in two physical formats: LVDS or LVCMOS.  
Additionally, the drive strength in LVDS mode can be set high  
(3mA) or low (2mA). This functionality can be controlled through  
the SPI, as shown in Table 9.  
0x10  
0x25  
Return to Normal operation as follows:  
SEQUENCE  
REGISTER  
0x10  
VALUE  
0x01  
0x01  
0x02  
0x01  
TABLE 9. OUTPUT MODE CONTROL  
1
2
3
4
VALUE  
000  
0x93[7:5]  
Pin Control  
LVDS 2mA  
LVDS 3mA  
LVCMOS  
0x25  
0x10  
001  
0x25  
010  
100  
Global Device Configuration/Control  
Data can be coded in three possible formats: two’s complement, Gray  
code or offset binary. This functionality can be controlled through the  
SPI, as shown in Table 10.  
ADDRESS 0X71: PHASE_SLIP  
When using the clock divider, it’s not possible to determine the  
synchronization of the incoming and divided clock phases. This is  
particularly important when multiple ADCs are used in a time-  
interleaved system. The phase slip feature allows the rising edge  
of the divided clock to be advanced by one input clock cycle when  
in CLK/4 mode, as shown in Figure 38. Execution of a phase_slip  
command is accomplished by first writing a ‘0’ to bit 0 at address  
This register is not changed by a Soft Reset.  
FN7693.1  
January 3, 2011  
23  
KAD5510P  
ADDRESS 0XC0: TEST_IO  
TABLE 10. OUTPUT FORMAT CONTROL  
0x93[2:0]  
Bits 7:6 User Test Mode  
VALUE  
OUTPUT FORMAT  
These bits set the test mode to static (0x00) or  
alternate (0x01) mode. Other values are reserved.  
000  
Pin Control  
001  
Two’s Complement  
Gray Code  
The four LSBs in this register (Output Test Mode) determine the  
test pattern in combination with registers 0xC2 through 0xC5.  
Refer to Table 12.  
010  
100  
Offset Binary  
TABLE 12. OUTPUT TEST MODES  
ADDRESS 0X74: OUTPUT_MODE_B  
0xC0[3:0]  
VALUE  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
OUTPUT TEST MODE  
Off  
WORD 1  
WORD 2  
ADDRESS 0X75: CONFIG_STATUS  
Bit 6 DLL Range  
Midscale  
0x8000  
0xFFFF  
0x0000  
0xAAAA  
N/A  
N/A  
N/A  
This bit sets the DLL operating range to fast (default)  
or slow.  
Positive Full-Scale  
Negative Full-Scale  
Checkerboard  
Reserved  
N/A  
Internal clock signals are generated by a delay-locked loop (DLL),  
which has a finite operating range. Table 11 shows the allowable  
sample rate ranges for the slow and fast settings.  
0x5555  
N/A  
TABLE 11. DLL RANGES  
Reserved  
N/A  
N/A  
DLL RANGE  
Slow  
MIN  
40  
MAX  
100  
UNIT  
MSPS  
MSPS  
One/Zero  
0xFFFF  
user_patt1  
0x0000  
user_patt2  
User Pattern  
Fast  
80  
f MAX  
S
ADDRESS 0XC2: USER_PATT1_LSB AND  
ADDRESS 0XC3: USER_PATT1_MSB  
The output_mode_B and config_status registers are used in  
conjunction to enable DDR mode and select the frequency range  
of the DLL clock generator. The method of setting these options  
is different from the other registers.  
These registers define the lower and upper eight bits,  
respectively, of the first user-defined test word.  
READ  
OUTPUT_MODE_B  
0x74  
ADDRESS 0XC4: USER_PATT2_LSB AND  
ADDRESS 0XC5: USER_PATT2_MSB  
READ  
CONFIG_STATUS  
These registers define the lower and upper eight bits,  
respectively, of the second user-defined test word.  
WRITE TO  
0x74  
0x75  
DESIRED  
VALUE  
48 Pin Package Notes  
FIGURE 39. SETTING OUTPUT_MODE_B REGISTER  
The KAD5510 is only available in a 48-pin package. While fully  
compatible with other family members in the 48-pin package  
there are some key differences from the 72-pin package. The 48  
pin package option supports LVDS DDR only. A reduced set of pin  
selectable functions are available in the 48 pin package due to  
the reduced pinout; (OUTMODE, OUTFMT, and CLKDIV pins are  
not available). Table 13 shows the default state for these  
functions for the 48-pin package. Note that these functions are  
available through the SPI, allowing a user to set these modes as  
they desire, offering the same flexibility as the 72-pin family  
members.  
The procedure for setting output_mode_B is shown in Figure 39.  
Read the contents of output_mode_B and config_status and XOR  
them. Then XOR this result with the desired value for  
output_mode_B and write that XOR result to the register.  
Bit 4 DDR Enable  
This bit sets the output mode to DDR or SDR.  
This bit is set high by default enabling DDR outputs. Do not set  
this bit low or invalid output data will result.  
TABLE 13. 48 PIN SPI - ADDRESSABLE FUNCTIONS  
Device Test  
FUNCTION  
CLKDIV  
DESCRIPTION  
Clock Divider  
DEFAULT STATE  
Divide by 1  
The KAD5510 can produce preset or user defined patterns on the  
digital outputs to facilitate in-site testing. A static word can be  
placed on the output bus, or two different words can alternate. In  
the alternate mode, the values defined as Word 1 and Word 2 (as  
shown in Table 12) are set on the output bus on alternating clock  
phases. The test mode is enabled asynchronously to the sample  
clock, therefore several sample clock cycles may elapse before  
the data is present on the output bus.  
OUTMODE  
OUTFMT  
Output Driver Mode  
Data Coding  
LVDS, 3mA (DDR)  
Two’s Complement  
FN7693.1  
January 3, 2011  
24  
KAD5510P  
SPI Memory Map  
TABLE 14. SPI MEMORY MAP  
Addr  
(Hex)  
Parameter  
Name  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Def. Value  
(Hex)  
Indexed/  
Global  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
00  
port_config  
SDO  
Active  
LSB First  
Soft  
Reset  
Mirror Mirror  
(bit5) (bit6)  
Mirror  
(bit7)  
00h  
G
01  
02  
reserved  
burst_end  
reserved  
Reserved  
Burst end address [7:0]  
Reserved  
00h  
G
03-07  
08  
chip_id  
Chip ID #  
Read only  
Read only  
00h  
G
G
I
09  
chip_version  
device_index_A  
reserved  
Chip Version #  
Reserved  
10  
ADC00  
11-1F  
20  
Reserved  
offset_coarse  
offset_fine  
gain_coarse  
gain_medium  
gain_fine  
Coarse Offset  
Fine Offset  
cal. value  
cal. value  
cal. value  
cal. value  
cal. value  
I
I
I
I
I
I
21  
22  
Reserved  
Coarse Gain  
23  
Medium Gain  
Fine Gain  
24  
25  
modes  
Reserved  
Power-Down Mode [2:0]  
000 = Pin Control  
001 = Normal Operation  
010 = Nap  
00h  
NOT  
affected by  
Soft Reset  
100 = Sleep  
other codes = reserved  
26-5F  
60-6F  
70  
reserved  
reserved  
reserved  
phase_slip  
Reserved  
Reserved  
Reserved  
71  
Reserved  
Next  
Clock  
Edge  
00h  
G
G
72  
73  
74  
clock_divide  
Clock Divide [2:0]  
000 = Pin Control  
001 = divide by 1  
010 = divide by 2  
100 = divide by 4  
other codes = reserved  
00h  
NOT  
affected by  
Soft Reset  
output_mode_A  
output_mode_B  
Output Mode [2:0]  
000 = Pin Control  
001 = LVDS 2mA  
010 = LVDS 3mA  
100 = LVCMOS  
Output Format [2:0]  
000 = Pin Control  
001 = Twos Complement  
010 = Gray Code  
100 = Offset Binary  
other codes = reserved  
00h  
NOT  
affected by  
Soft Reset  
G
other codes = reserved  
DLL Range  
0 = fast  
1 = slow  
DDR  
Enable  
(Note 14)  
00h  
NOT  
affected by  
Soft Reset  
G
G
75  
config_status  
reserved  
XOR  
Result  
XOR  
Result  
Read Only  
76-BF  
Reserved  
FN7693.1  
January 3, 2011  
25  
KAD5510P  
TABLE 14. SPI MEMORY MAP (Continued)  
Addr  
(Hex)  
Parameter  
Name  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Def. Value  
(Hex)  
Indexed/  
Global  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
C0  
test_io  
User Test Mode [1:0]  
00 = Single  
01 = Alternate  
10 = Reserved  
11 = Reserved  
Output Test Mode [3:0]  
00h  
G
0 = Off  
7 = One/Zero Word  
Toggle  
1 = Midscale Short  
2 = +FS Short  
3 = -FS Short  
8 = User Input  
9-15 = Reserved  
4 = Checker Board  
5 = Reserved  
6 = Reserved  
C1  
C2  
Reserved  
user_patt1_lsb  
user_patt1_msb  
user_patt2_lsb  
user_patt2_msb  
Reserved  
Reserved  
00h  
00h  
00h  
00h  
00h  
G
G
G
G
G
B7  
B15  
B7  
B6  
B14  
B6  
B5  
B13  
B5  
B4  
B12  
B4  
B3  
B11  
B3  
B2  
B10  
B2  
B1  
B9  
B1  
B9  
B0  
B8  
B0  
B8  
C3  
C4  
C5  
B15  
B14  
B13  
B12  
B11  
B10  
C6-FF  
Reserved  
NOTE:  
14. At power-up, the DDR Enable bit is set to a logic ‘1’ internally for the 48 pin package by an internal pull-up. Do not set this bit low or invalid output data will  
result.  
FN7693.1  
January 3, 2011  
26  
KAD5510P  
Equivalent Circuits  
AVDD  
TO  
CLOCK-  
AVDD  
PHASE  
GENERATION  
CLKP  
AVDD  
AVDD  
CSAMP  
1.6pF  
TO  
CHARGE  
PIPELINE  
11k  
11k  
INP  
INN  
18k  
Φ
Φ
3  
2  
Φ
F 1  
Ω
1000O  
CSAMP  
1.6pF  
18k  
AVDD  
AVDD  
TO  
CHARGE  
PIPELINE  
CLKN  
FΦ2  
FΦ3  
Φ1  
FIGURE 40. ANALOG INPUTS  
FIGURE 41. CLOCK INPUTS  
AVDD  
AVDD  
(20k PULL-UP  
ON RESETN  
ONLY)  
OVDD  
AVDD  
Ω
75kO  
OVDD  
OVDD  
INPUT  
AVDD  
20k  
Ω
TO  
SENSE  
LOGIC  
75kOΩ  
280OΩ  
TO  
INPUT  
LOGIC  
280  
Ω
Ω
75kO  
75kOΩ  
FIGURE 42. TRI-LEVEL DIGITAL INPUTS  
FIGURE 43. DIGITAL INPUTS  
OVDD  
2mA OR  
3mA  
OVDD  
DATA  
DATA  
D[11:0]P  
OVDD  
OVDD  
OVDD  
D[11:0]N  
DATA  
DATA  
DATA  
D[11:0]  
2mA OR  
3mA  
FIGURE 45. CMOS OUTPUTS  
FIGURE 44. LVDS OUTPUTS  
FN7693.1  
January 3, 2011  
27  
KAD5510P  
Equivalent Circuits (Continued)  
AVDD  
VCM  
+
0.535V  
FIGURE 46. VCM_OUT OUTPUT  
performance and accuracy. Make sure that connections to  
ground are direct and low impedance. Avoid forming ground  
loops.  
ADC Evaluation Platform  
Intersil offers an ADC Evaluation platform which can be used to  
evaluate any of the KADxxxxx ADC family. The platform consists  
of a FPGA based data capture motherboard and a family of ADC  
daughtercards. This USB based platform allows a user to quickly  
evaluate the ADC’s performance at a user’s specific application  
frequency requirements. More information is available at:  
LVDS Outputs  
Output traces and connections must be designed for 50Ω (100Ω  
differential) characteristic impedance. Keep traces direct and  
minimize bends where possible. Avoid crossing ground and  
power-plane breaks with signal traces.  
http://www.intersil.com/converters/adc_eval_platform/  
LVCMOS Outputs  
Layout Considerations  
Output traces and connections must be designed for 50Ω  
characteristic impedance. Care should be taken when using the  
DDR CMOS outputs at clock rates greater than 200MHz. Series  
termination resistors close to the ADC should drive short traces  
with minimum parasitic loading to assure adequate signal  
integrity  
PCB Layout Example  
For an example application circuit and PCB layout, please refer to  
the evaluation board documentation provided in the web product  
folder at:  
http://www.intersil.com/products/partsearch.asp?txtprodnr=ka  
d5510p  
Unused Inputs  
Standard logic inputs (RESETN, CSB, SCLK, SDIO) which will not  
be operated do not require connection to ensure optimal ADC  
performance. These inputs can be left floating if they are not  
used. The SDO output must be connected to OVDD with a 4.7kΩ  
resistor or the ADC will not exit the reset state. Tri-level inputs  
(NAPSLP) accept a floating input as a valid state, and therefore  
should be biased according to the desired functionality.  
Split Ground and Power Planes  
Data converters operating at high sampling frequencies require  
extra care in PC board layout. Many complex board designs  
benefit from isolating the analog and digital sections. Analog  
supply and ground planes should be laid out under signal and  
clock inputs. Locate the digital planes under outputs and logic  
pins. Grounds should be joined under the chip.  
General PowerPAD Design  
Considerations  
Figure 47 is a generic illustration of how to use vias to remove  
heat from a QFN package with an exposed thermal pad. A  
specific example can be found in the evaluation board PCB  
layout previously referenced.  
Clock Input Considerations  
Use matched transmission lines to the transformer inputs for the  
analog input and clock signals. Locate transformers and terminations  
as close to the chip as possible.  
Exposed Paddle  
The exposed paddle must be electrically connected to analog  
ground (AVSS) and should be connected to a large copper plane  
using numerous vias for optimal thermal performance.  
Bypass and Filtering  
Bulk capacitors should have low equivalent series resistance.  
Tantalum is a good choice. For best performance, keep ceramic  
bypass capacitors very close to device pins. Longer traces will  
increase inductance, resulting in diminished dynamic  
FIGURE 47. PCB VIA PATTERN  
FN7693.1  
January 3, 2011  
28  
KAD5510P  
Filling the exposed thermal pad area with vias provides optimum heat  
Integral Non-Linearity (INL) is the maximum deviation of the  
ADC’s transfer function from a best fit line determined by a least  
squares curve fit of that transfer function, measured in units of  
LSBs.  
transfer to the PCB’s internal plane(s). Vias should be evenly distributed  
from edge-to-edge on the exposed pad to maintain a constant  
temperature across the entire pad. Setting the center-to-center spacing  
of the vias at three times the via pad radius will provide good heat  
transfer for high power devices. The vias below the KAD5510P may be  
spaced further apart as shown on the evaluation board since it is a low-  
power device. The via diameter should be small but not too small to  
allow solder wicking during reflow. PCB fabrication and assembly  
companies can provide specific guidelines based on the layer stack and  
assembly process.  
Least Significant Bit (LSB) is the bit that has the smallest value or  
weight in a digital word. Its value in terms of input voltage is  
N
V
/(2 -1) where N is the resolution in bits.  
FS  
Missing Codes are output codes that are skipped and will never  
appear at the ADC output. These codes cannot be reached with  
any input value.  
Most Significant Bit (MSB) is the bit that has the largest value or  
weight.  
Connect all vias under the KAD5510P to AVSS. It is important to  
maximize the heat transfer by avoiding the use of “thermal relief”  
patterns when connecting the vias to the internal AVSS plane(s).  
Pipeline Delay is the number of clock cycles between the  
initiation of a conversion and the appearance at the output pins  
of the data.  
Definitions  
Power Supply Rejection Ratio (PSRR) is the ratio of the observed  
magnitude of a spur in the ADC FFT, caused by an AC signal  
superimposed on the power supply voltage.  
Analog Input Bandwidth is the analog input frequency at which  
the spectral output power at the fundamental frequency (as  
determined by FFT analysis) is reduced by 3dB from its full-scale  
low-frequency value. This is also referred to as Full Power  
Bandwidth.  
Signal to Noise-and-Distortion (SINAD) is the ratio of the RMS  
signal amplitude to the RMS sum of all other spectral  
components below one half the clock frequency, including  
harmonics but excluding DC.  
Aperture Delay or Sampling Delay is the time required after the  
rise of the clock input for the sampling switch to open, at which  
time the signal is held for conversion.  
Signal-to-Noise Ratio (without Harmonics) is the ratio of the RMS  
signal amplitude to the RMS sum of all other spectral  
components below one-half the sampling frequency, excluding  
harmonics and DC.  
Aperture Jitter is the RMS variation in aperture delay for a set of  
samples.  
Clock Duty Cycle is the ratio of the time the clock wave is at logic  
high to the total time of one clock period.  
SNR and SINAD are either given in units of dB when the power of  
the fundamental is used as the reference, or dBFS (dB to full  
scale) when the converter’s full-scale input power is used as the  
reference.  
Differential Non-Linearity (DNL) is the deviation of any code width  
from an ideal 1 LSB step.  
Effective Number of Bits (ENOB) is an alternate method of specifying  
Signal to Noise-and-Distortion Ratio (SINAD). In dB, it is calculated as:  
ENOB = (SINAD - 1.76)/6.02  
Spurious-Free-Dynamic Range (SFDR) is the ratio of the RMS  
signal amplitude to the RMS value of the largest spurious  
spectral component. The largest spurious spectral component  
may or may not be a harmonic.  
Gain Error is the ratio of the difference between the voltages that  
cause the lowest and highest code transitions to the full-scale  
voltage less 2 LSB. It is typically expressed in percent.  
FN7693.1  
January 3, 2011  
29  
KAD5510P  
Revision History  
DATE  
REVISION  
CHANGE  
1/3/11  
FN7693.1 Initial release to web.  
Products  
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products  
address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks.  
Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a  
complete list of Intersil product families.  
*For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page  
on intersil.com: KAD5510P  
To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff  
FITs are available from our website at http://rel.intersil.com/reports/search.php  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7693.1  
January 3, 2011  
30  
KAD5510P  
Package Outline Drawing  
L48.7x7E  
48 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE  
Rev 1, 2/09  
PIN 1  
INDEX AREA  
4X 5.50  
A
7.00  
PIN 1  
6
INDEX AREA  
B
37  
48  
6
1
36  
44X 0.50  
Exp. DAP  
5.60 Sq.  
7.00  
12  
25  
(4X)  
0.15  
24  
13  
48X 0.25  
0.10 M C A B  
4
48X 0.40  
TOP VIEW  
BOTTOM VIEW  
SEE DETAIL "X"  
0.90 Max  
C
C
0.10  
0.08 C  
SEATING PLANE  
SIDE VIEW  
44X 0.50  
6.80 Sq  
5
0. 2 REF  
C
48X 0.25  
48X 0.60  
5.60 Sq  
0. 00 MIN.  
0. 05 MAX.  
DETAIL "X"  
NOTES:  
1.  
TYPICAL RECOMMENDED LAND PATTERN  
Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSEY14.5m-1994.  
3. Unless otherwise specified, tolerance: Decimal ± 0.05  
4. Dimension b applies to the metallized terminal and is measured  
between 0.15mm and 0.30mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
7.  
Connect Exp. DAP (PAD) to AVSS with multiple vias to a low  
thermal impedance plane  
FN7693.1  
January 3, 2011  
31  

相关型号:

KAD5510P-25

Providing high-performance solutions for every link in the signal chain
INTERSIL

KAD5510P-25Q48

Low Power 10-Bit, 250/210/170/125MSPS ADC
INTERSIL

KAD5510P-50

10-Bit, 500MSPS A/D Converter
INTERSIL

KAD5510P-50Q72

10-Bit, 500MSPS A/D Converter
INTERSIL

KAD5510P-50_09

10-Bit, 500MSPS A/D Converter
INTERSIL

KAD5510P-50_0910

10-Bit, 500MSPS A/D Converter
INTERSIL

KAD5510P_11

Low Power 10-Bit, 250/210/170/125MSPS ADC
INTERSIL

KAD5510P_1105

Low Power 10-Bit, 250/210/170/125MSPS ADC
INTERSIL

KAD5512HP

High Performance 12-Bit, 250/210/170/125MSPS ADC
INTERSIL

KAD5512HP-12

Providing high-performance solutions for every link in the signal chain
INTERSIL

KAD5512HP-12Q48

High Performance 12-Bit, 250/210/170/125MSPS ADC
INTERSIL

KAD5512HP-12Q48

12-Bit, 125MSPS Single-Channel ADC with LVDS/LVCMOS Outputs; QFN48, QFN72; Temp Range: -40° to 85°C
RENESAS