RFD16N02L [INTERSIL]

16A, 20V, 0.022 Ohm, N-Channel, Logic Level, Power MOSFET; 16A , 20V , 0.022 Ohm的N通道,逻辑电平功率MOSFET
RFD16N02L
型号: RFD16N02L
厂家: Intersil    Intersil
描述:

16A, 20V, 0.022 Ohm, N-Channel, Logic Level, Power MOSFET
16A , 20V , 0.022 Ohm的N通道,逻辑电平功率MOSFET

晶体 晶体管 开关
文件: 总8页 (文件大小:78K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RFD16N02L,  
RFD16N02LSM  
16A, 20V, 0.022 Ohm, N-Channel,  
Logic Level, Power MOSFET  
May 1997  
Features  
Description  
• 16A, 20V  
• r = 0.022Ω  
The RFD16N02L and RFD16N02LSM are N-Channel power  
MOSFETs manufactured using the MegaFET process. This  
process, which uses feature sizes approaching those of  
LSI circuits, gives optimum utilization of silicon, resulting in  
outstanding performance. They were designed for use in  
applications such as switching regulators, switching convert-  
ers, motor drivers and relay drivers. This performance is  
accomplished through a special gate oxide design which  
provides full rated conductance at gate bias in the 3V to 5V  
range, thereby facilitating true on-off power control directly  
from logic level (5V) integrated circuits.  
DS(ON)  
Temperature Compensating PSPICE Model  
• Can be Driven Directly from CMOS, NMOS,  
and TTL Circuits  
• Peak Current vs Pulse Width Curve  
• UIS Rating Curve  
o
• 175 C Operating Temperature  
Ordering Information  
Symbol  
PART NUMBER  
RFD16N02L  
PACKAGE  
TO-251AA  
TO-252AA  
BRAND  
16N02L  
16N02L  
D
RFD16N02LSM  
NOTE: When ordering, use the entire part number. Add the suffix  
9A, to obtain the TO-252AA variant in tape and reel, e.g.  
RFD16N02LSM9A.  
G
S
Formerly developmental type TA49243.  
Packaging  
JEDEC TO-251AA  
JEDEC TO-252AA  
SOURCE  
DRAIN  
GATE  
DRAIN  
(FLANGE)  
DRAIN  
(FLANGE)  
GATE  
SOURCE  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.  
File Number 4341  
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999  
1
RFD16N02L, RFD16N02LSM  
o
Absolute Maximum Ratings T = 25 C  
C
RFD16N02L, RFD16N02LSM  
UNITS  
Drain to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
20  
20  
V
V
V
DSS  
Drain to Gate Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
DGR  
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
Drain Current  
±10  
GS  
RMS Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
16  
A
D
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
Refer to Peak Current Curve  
DM  
Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .E  
AS  
Refer to UIS Curve  
Power Dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .P  
Derate Above 25 C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
90  
0.606  
W
W/ C  
D
o
o
o
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T , T  
-55 to 175  
260  
C
J
STG  
o
Soldering Temperature of Leads for 10s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
C
L
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation  
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
o
Electrical Specifications T = 25 C, Unless Otherwise Specified  
C
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Drain to Source Breakdown Voltage  
Gate to Source Threshold Voltage  
Zero Gate Voltage Drain Current  
BV  
DSS  
I
= 250µA, V  
GS  
= 0V  
20  
1
-
-
-
-
D
V
V
= V , I = 250µA  
2
V
GS(TH)  
GS  
DS  
D
o
I
V
V
= 20V,  
= 0V  
T
T
= 25 C  
-
1
50  
±100  
0.022  
120  
-
µA  
µA  
nA  
DSS  
DS  
GS  
C
C
o
= 150 C  
-
-
Gate to Source Leakage Current  
Drain to Source On Resistance  
Turn-On Time  
I
V
= ±10V  
-
-
GSS  
GS  
r
I
= 16A, V  
= 5V  
-
-
DS(ON)  
D
GS  
t
V
R
R
= 15V, I  
D
16A,  
= 5V,  
-
-
ns  
ON  
DD  
= 0.93, V  
L
GS  
Turn-On Delay Time  
t
-
15  
95  
25  
27  
-
ns  
d(ON)  
= 5Ω  
GS  
Rise Time  
t
-
-
ns  
r
Turn-Off Delay Time  
t
-
-
ns  
d(OFF)  
Fall Time  
t
-
-
ns  
f
Turn-Off Time  
t
-
80  
60  
36  
1.8  
-
ns  
OFF  
Total Gate Charge  
Q
V
V
V
V
= 0V to 10V V  
16V,  
I 16A,  
-
50  
30  
1.5  
1300  
724  
250  
-
nC  
nC  
nC  
pF  
pF  
pF  
g(TOT)  
GS  
GS  
GS  
DS  
DD  
D
Gate Charge at 5V  
Q
= 0V to 5V  
= 0V to 1V  
-
g(5)  
R
= 1.0Ω  
L
Threshold Gate Charge  
Input Capacitance  
Q
-
g(TH)  
C
= 20V, V  
GS  
= 0V,  
-
ISS  
OSS  
RSS  
f = 1MHz  
Output Capacitance  
C
C
-
-
Reverse Transfer Capacitance  
Thermal Resistance Junction to Case  
Thermal Resistance Junction to Ambient  
-
-
o
R
-
1.65  
100  
C/W  
θJC  
θJA  
o
R
TO-251 and TO-252  
-
-
C/W  
Source to Drain Diode Specifications  
PARAMETER  
Source to Drain Diode Voltage  
Reverse Recovery Time  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1.5  
UNITS  
V
V
I
I
= 16A  
-
-
-
-
SD  
SD  
t
= 16A, dI /dt = 100A/µs  
80  
ns  
rr  
SD  
SD  
2
RFD16N02L, RFD16N02LSM  
Typical Performance Curves  
1.2  
1.0  
0.8  
0.6  
0.4  
20  
15  
10  
5
0
0.2  
0
0
25  
50  
75  
100  
125  
o
150  
175  
25  
50  
75  
100  
150  
125  
175  
o
T
, CASE TEMPERATURE ( C)  
T , CASE TEMPERATURE ( C)  
C
C
FIGURE 1. NORMALIZED POWER DISSIPATION vs  
TEMPERATURE DERATING  
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs  
CASE TEMPERATURE  
2
1
0.5  
0.2  
P
DM  
0.1  
0.1  
.05  
t
t
1
.02  
.01  
2
NOTES:  
DUTY FACTOR: D = t /t  
SINGLE PULSE  
1
2
x Z  
PEAK T = P  
x R  
+ T  
JC C  
J
DM  
JC  
θ
θ
0.01  
-5  
-4  
-3  
-2  
10  
-1  
10  
0
1
10  
10  
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE  
500  
100  
500  
o
= 25 C  
T
C
V
= 10V  
V
FOR TEMPERATURES  
ABOVE 25 C DERATE PEAK  
CURRENT AS FOLLOWS:  
GS  
o
T
= MAX RATED  
J
= 5V  
GS  
175 - T  
150  
C
I = I  
100µs  
25  
100  
1ms  
o
T
= 25 C  
C
10  
1
10ms  
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
100ms  
DC  
OPERATION IN THIS  
AREA MAY BE  
V
MAX = 20V  
10  
DSS  
LIMITED BY r  
DS(ON)  
10  
10  
1
50  
-5  
-4  
10  
-3  
10  
-2  
-1  
0
1
10  
10  
10  
10  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
t, PULSE WIDTH (s)  
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA  
FIGURE 5. PEAK CURRENT CAPABILITY  
3
RFD16N02L, RFD16N02LSM  
Typical Performance Curves (Continued)  
200  
100  
100  
75  
V
= 10V  
GS  
V
= 5V  
GS  
o
STARTING T = 25 C  
J
V
= 4.5V  
= 4V  
GS  
50  
V
GS  
o
STARTING T = 150 C  
J
10  
V
= 3.5V  
= 3V  
GS  
If R = 0  
25  
t
= (L)(I )/(1.3*RATED BV  
- V )  
DD  
AV  
If R 0  
= (L/R)ln[(I *R)/(1.3*RATED BV  
AS DSS  
V
GS  
o
t
-V ) +1]  
PULSE DURATION = 250µs, T = 25 C  
AV  
AS  
DSS DD  
C
1
0.001  
0
0
2
3
4
5
1
0.01  
0.1  
1
10  
100  
t
, TIME IN AVALANCHE (ms)  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
AV  
NOTE: Refer to Intersil Application Notes AN9321 and AN9322.  
FIGURE 7. SATURATION CHARACTERISTICS  
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING  
100  
75  
50  
25  
0
100  
o
V
= 15V  
DD  
175 C  
I
I
= 32A  
D
o
-55 C  
75  
50  
25  
0
I
= 16A  
= 8A  
D
o
25 C  
D
I
= 2A  
D
PULSE TEST  
o
PULSE DURATION = 250µs  
DUTY CYCLE = 0.5% MAX  
T
= 25 C, PULSE DURATION = 250µs  
J
5.0  
2.5  
3.0  
V
3.5  
4.0  
4.5  
0
1.5  
3.0  
4.5  
6.0  
7.5  
, GATE TO SOURCE VOLTAGE (V)  
V
, GATE TO SOURCE VOLTAGE (V)  
GS  
GS  
FIGURE 8. TRANSFER CHARACTERISTICS  
FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs  
GATE VOLTAGE AND DRAIN CURRENT  
250  
200  
150  
100  
50  
2.0  
PULSE DURATION = 250µs,  
V
= 5V,  
I
GS  
D
= 16A  
t
r
V
= 15V, I = 16A, R = 0.93Ω  
D L  
DD  
1.5  
1.0  
t
f
t
d(ON)  
t
0.5  
0
d(OFF)  
0
-80  
-40  
0
40  
80  
120  
160  
200  
0
10  
20  
30  
40  
50  
o
R
, GATE TO SOURCE RESISTANCE ()  
T , JUNCTION TEMPERATURE ( C)  
GS  
J
FIGURE 10. SWITCHING TIME AS A FUNCTION OF GATE  
RESISTANCE  
FIGURE 11. NORMALIZED DRAIN TO SOURCE ON  
RESISTANCE vs JUNCTION TEMPERATURE  
4
RFD16N02L, RFD16N02LSM  
Typical Performance Curves (Continued)  
2.0  
2.0  
1.5  
1.0  
0.5  
0
V
= V , I = 250µA  
DS D  
I
= 250µA  
GS  
D
1.5  
1.0  
0.5  
0
-80  
-40  
0
40  
80  
120  
160  
200  
-80  
-40  
0
40  
80  
120  
160  
200  
o
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
FIGURE 12. NORMALIZED GATE THRESHOLD VOLTAGE vs  
JUNCTION TEMPERATURE  
FIGURE 13. NORMALIZED DRAIN TO SOURCE BREAKDOWN  
VOLTAGE vs JUNCTION TEMPERATURE  
20  
15  
10  
5
5
2500  
V
= BV  
DSS  
V
= BV  
DD DSS  
DD  
V
= 0V, f = 1MHz  
GS  
2000  
1500  
1000  
500  
0
3.75  
2.5  
1.25  
0
R
= 1.25Ω  
L
I
V
= 0.55mA  
G(REF)  
= 5V  
GS  
PLATEAU VOLTAGES IN  
DESCENDING ORDER:  
C
ISS  
V
V
V
V
= BV  
DD  
DD  
DD  
DD  
DSS  
C
OSS  
= 0.75 BV  
= 0.50 BV  
= 0.25 BV  
DSS  
DSS  
DSS  
C
RSS  
0
I
I
G(REF)  
G(REF)  
0
5
10  
15  
20  
t, TIME (µs)  
---------------------  
---------------------  
20  
80  
I
I
V
, DRAIN TO SOURCE VOLTAGE (V)  
G(ACT)  
G(ACT)  
DS  
FIGURE 14. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE  
NOTE: Refer to Application Notes AN7254 and AN7260.  
FIGURE 15. NORMALIZED SWITCHING WAVEFORMS FOR  
CONSTANT GATE CURRENT  
5
RFD16N02L, RFD16N02LSM  
Test Circuits and Waveforms  
V
DS  
BV  
DSS  
t
P
L
V
DS  
I
AS  
V
VARY t TO OBTAIN  
P
DD  
+
-
R
REQUIRED PEAK I  
G
AS  
V
DD  
V
GS  
DUT  
t
P
0
I
0V  
AS  
0.01Ω  
t
AV  
FIGURE 16. UNCLAMPED ENERGY TEST CIRCUIT  
FIGURE 17. UNCLAMPED ENERGY WAVEFORMS  
t
t
ON  
OFF  
t
d(OFF)  
t
d(ON)  
R
L
t
t
f
r
V
DS  
90%  
90%  
+
V
DD  
R
G
-
10%  
10%  
0
0
DUT  
90%  
50%  
V
GS  
50%  
V
GS  
PULSE WIDTH  
10%  
FIGURE 18. SWITCHING TIME TEST CIRCUIT  
FIGURE 19. RESISTIVE SWITCHING WAVEFORMS  
V
DS  
V
Q
DD  
g(TOT)  
R
L
V
DS  
V
= 10V  
GS  
Q
V
g(5)  
GS  
+
-
V
V
= 5V  
DD  
V
GS  
GS  
V
GS  
= 1V  
DUT  
0
I
G(REF)  
Q
g(TH)  
I
G(REF)  
0
FIGURE 20. GATE CHARGE TEST CIRCUIT  
FIGURE 21. GATE CHARGE WAVEFORMS  
6
RFD16N02L, RFD16N02LSM  
Temperature Compensated PSPICE Model for the RFD16N02L, RFD16N02LSM  
.SUBCKT RFD16N02L 2 1 3;  
CA 12 8 2.55e-9  
rev 12/12/94  
CB 15 14 2.64e-9  
CIN 6 8 1.05e-9  
DPLCAP  
RSCL2  
DRAIN  
2
LDRAIN  
5
DBODY 7 5 DBDMOD  
DBREAK 5 11 DBKMOD  
DPLCAP 10 5 DPLCAPMOD  
10  
RSCL1  
51  
DBREAK  
11  
+
EBREAK 11 7 17 18 33.3  
5
51  
ESCL  
EDS 14 8 5 8 1  
EGS 13 8 6 8 1  
ESG 6 10 6 8 1  
EVTO 20 6 18 8 1  
-
50  
+
17  
18  
6
8
EBREAK  
ESG  
DBODY  
RDRAIN  
+
16  
-
VTO  
+
-
IT 8 17 1  
MOS2  
EVTO  
21  
GATE  
1
20  
+
6
9
-
18  
8
LDRAIN 2 5 1e-9  
LGATE 1 9 3.4e-9  
LSOURCE 3 7 3.4e-9  
MOS1  
8
LGATE RGATE  
RIN  
CIN  
LSOURCE  
RSOURCE  
7
MOS1 16 6 8 8 MOSMOD M = 0.99  
3
MOS2 16 21 8 8 MOSMOD M = 0.01  
SOURCE  
S1A  
S2A  
RBREAK 17 18 RBKMOD 1  
RDRAIN 50 16 RDSMOD 0.14e-3  
RGATE 9 20 0.89  
RIN 6 8 1e9  
RSCL1 5 51 RSCLMOD 1e-6  
RSCL2 5 50 1e3  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
S1B  
CA  
S2B  
13  
RVTO  
19  
CB  
IT  
14  
+
+
VBAT  
+
RSOURCE 8 7 RDSMOD 10.31e-3  
RVTO 18 19 RVTOMOD 1  
6
8
5
8
EDS  
EGS  
-
-
S1A 6 12 13 8 S1AMOD  
S1B 13 12 13 8 S1BMOD  
S2A 6 15 14 13 S2AMOD  
S2B 13 15 14 13 S2BMOD  
VBAT 8 19 DC 1  
VTO 21 6 0.583  
ESCL 51 50 VALUE = {(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)*1e6/176,6))}  
.MODEL DBDMOD D (IS = 3.61e-13 RS = 5.06e-3 TRS1 = 3.05e-3 TRS2 = 7.57e-6 CJO = 2.0e-9 TT = 2.18e-8)  
.MODEL DBKMOD D (RS = 1.66e-1 TRS1 = -2.97e-3 TRS2 = 7.57e-6)  
.MODEL DPLCAPMOD D (CJO = 1.25e-9 IS = 1e-30 N = 10)  
.MODEL MOSMOD NMOS (VTO = 2.313 KP = 53.82 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)  
.MODEL RBKMOD RES (TC1 = 8.95e-4 TC2 = -1e-7)  
.MODEL RDSMOD RES (TC1 = 3.92e-3 TC2 = 1.29e-5)  
.MODEL RSCLMOD RES (TC1 = 2.03e-3 TC2 = 0.45e-5)  
.MODEL RVTOMOD RES (TC1 = -2.27e-3 TC2 = -5.75e-7)  
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4.82 VOFF= -2.82)  
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.82 VOFF= -4.82)  
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.67 VOFF= 2.33)  
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 2.33 VOFF= -2.67)  
.ENDS  
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; written by William J. Hepp and C. Frank Wheatley.  
7
RFD16N02L, RFD16N02LSM  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate  
and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which  
may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
Sales Office Headquarters  
NORTH AMERICA  
EUROPE  
ASIA  
Intersil Corporation  
Intersil SA  
Mercure Center  
100, Rue de la Fusee  
1130 Brussels, Belgium  
TEL: (32) 2.724.2111  
FAX: (32) 2.724.22.05  
Intersil (Taiwan) Ltd.  
Taiwan Limited  
7F-6, No. 101 Fu Hsing North Road  
Taipei, Taiwan  
Republic of China  
TEL: (886) 2 2716 9310  
FAX: (886) 2 2715 3029  
P. O. Box 883, Mail Stop 53-204  
Melbourne, FL 32902  
TEL: (407) 724-7000  
FAX: (407) 724-7240  
8

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY