AS7C25512PFS32A-225TQC [ISSI]

Standard SRAM, 512KX32, 6.9ns, CMOS, PQFP100, 14 X 20 MM, TQFP-100;
AS7C25512PFS32A-225TQC
型号: AS7C25512PFS32A-225TQC
厂家: INTEGRATED SILICON SOLUTION, INC    INTEGRATED SILICON SOLUTION, INC
描述:

Standard SRAM, 512KX32, 6.9ns, CMOS, PQFP100, 14 X 20 MM, TQFP-100

静态存储器
文件: 总21页 (文件大小:458K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
December 2002  
Advance Information  
AS7C25512PFS32A  
AS7C25512PFS36A  
®
2.5V 512K × 32/ 36 pipelined burst synchronous SRAM  
Features  
Linear or interleaved burst control  
Snooze mode for reduced power-standby  
Common data inputs and data outputs  
Boundary scan using IEEE 1149.1 JTAG function  
• NTD™1 pipelined architecture available  
(AS7C251MNTD18A, AS7C25512NTD32A/  
AS7C25512NTD36A)  
• Organization: 524,288 words × 32 or 36 bits  
Fast clock speeds to 250MHz in LVTTL/ LVCMOS  
Fast clock to data access: 2.6/ 2.8/ 3/ 3.4 ns  
Fast OEaccess time: 2.6/ 2.8/ 3/ 3.4 ns  
Fully synchronous register-to-register operation  
Single register flow-through mode  
Single-cycle deselect  
Asynchronous output enable control  
Available in 100-pin TQFP package and 165-ball BGA  
• Individual byte write and global write  
• Multiple chip enables for easy expansion  
• 2.5V core power supply  
1 NTD™ is a trademark of Alliance Semiconductor Corporation. All trademarks  
mentioned in this document are the property of their respective owners.  
Logic block diagram  
LBO  
CLK  
ADV  
CLK  
CE  
CLR  
Burst logic  
ADSC  
ADSP  
512K × 32/ 36  
Memory  
19  
17  
19  
19  
array  
D
CE  
CLK  
Q
A[18:0]  
Address  
register  
36/ 32  
36/ 32  
GWE  
BWE  
D
Q
Q
Q
Q
DQd  
Byte write  
registers  
BW  
d
CLK  
D
DQc  
BW  
c
Byte write  
registers  
CLK  
D
DQb  
BW  
b
Byte write  
registers  
CLK  
D
DQa  
4
BW  
a
Byte write  
registers  
CLK  
CE0  
CE1  
CE2  
OE  
Output  
registers  
CLK  
D
Q
Input  
registers  
CLK  
Enable  
register  
CE  
CLK  
D
Q
Enable  
delay  
Power  
down  
ZZ  
register  
CLK  
36/ 32  
DQ[a:d]  
OE  
FT  
Selection guide  
-250  
4
-225  
4.4  
-200  
5
-166  
6
Units  
ns  
Minimum cycle time  
Maximum clock frequency  
250  
2.6  
450  
160  
70  
225  
2.8  
200  
3.0  
400  
130  
70  
166  
3.4  
350  
120  
70  
MHz  
ns  
Maximum pipelined clock access time  
Maximum operating current  
425  
150  
70  
mA  
mA  
mA  
Maximum standby current  
Maximum CMOS standby current (DC)  
12/ 2/ 02, v. 0.9.1  
Alliance Semiconductor  
1 of 21  
Copyright © Alliance Semiconductor. All rights reserved.  
AS7C25512PFS32A  
AS7C25512PFS36A  
®
Pin and ball assignment  
100-pin TQFP - top view  
ꢊꢋꢌꢍꢎꢏꢐ  
ꢍꢎꢐ  
ꢇꢉ  
ꢆꢈ  
ꢆꢇ  
ꢆꢆ  
ꢆꢅ  
ꢆꢄ  
ꢆꢃ  
ꢆꢂ  
ꢆꢁ  
ꢆꢀ  
ꢆꢉ  
ꢅꢈ  
ꢍꢎꢏꢕꢌꢊꢋ  
ꢍꢎꢕ  
ꢍꢎꢐ  
ꢍꢎꢕ  
ꢀꢀꢁ  
ꢀꢀꢁ  
ꢂꢂꢁ  
ꢂꢂꢁ  
ꢍꢎꢐ  
ꢍꢎꢐ  
ꢍꢎꢐ  
ꢍꢎꢐ  
ꢍꢎꢕ  
ꢍꢎꢕ  
ꢍꢎꢕ  
ꢍꢎꢕ  
ꢀꢉ  
ꢀꢀ  
ꢀꢁ  
ꢂꢂꢁ  
ꢂꢂꢁ  
ꢀꢀꢁ  
ꢀꢀꢁ  
ꢍꢎꢐ  
ꢍꢎꢐ  
ꢒꢓ  
ꢍꢎꢕ  
ꢍꢎꢕ  
ꢀꢁꢂꢃꢄꢅꢆꢄꢇꢄꢈꢉꢊꢊ  
ꢀꢂ  
ꢀꢃ  
ꢀꢄ  
ꢀꢅ  
ꢀꢆ  
ꢀꢇ  
ꢀꢈ  
ꢁꢉ  
ꢁꢀ  
ꢁꢁ  
ꢁꢂ  
ꢁꢃ  
ꢁꢄ  
ꢁꢅ  
ꢅꢇ  
ꢅꢆ  
ꢅꢅ  
ꢅꢄ  
ꢅꢃ  
ꢂꢂ  
ꢊꢋ  
ꢀꢀ  
ꢊꢋ  
ꢀꢀ  
ꢖꢖ  
ꢂꢂ  
ꢍꢎꢔ  
ꢍꢎꢔ  
ꢅꢂ  
ꢅꢁ  
ꢅꢀ  
ꢅꢉ  
ꢄꢈ  
ꢄꢇ  
ꢄꢆ  
ꢄꢅ  
ꢍꢎꢗ  
ꢍꢎꢗ  
ꢀꢀꢁ  
ꢀꢀꢁ  
ꢂꢂꢁ  
ꢂꢂꢁ  
ꢍꢎꢔ  
ꢍꢎꢔ  
ꢍꢎꢔ  
ꢍꢎꢔ  
ꢍꢎꢗ  
ꢍꢎꢗ  
ꢍꢎꢗ  
ꢍꢎꢗ  
ꢄꢄ  
ꢄꢃ  
ꢄꢂ  
ꢄꢁ  
ꢄꢀ  
ꢂꢂꢁ  
ꢂꢂꢁ  
ꢁꢆ  
ꢁꢇ  
ꢁꢈ  
ꢂꢉ  
ꢀꢀꢁ  
ꢀꢀꢁ  
ꢍꢎꢔ  
ꢍꢎꢔ  
ꢍꢎꢗ  
ꢍꢎꢗ  
ꢊꢋꢌꢍꢎꢏꢔ  
ꢍꢎꢏꢗꢌꢊꢋ  
ꢋꢌꢍꢎꢏꢄꢂꢌꢐꢄꢑꢒꢓꢔꢄꢅꢕꢄꢖꢉꢕꢄꢗꢅꢕꢄꢘꢓꢙꢄꢚꢉꢕꢄꢋꢛꢄꢘꢑꢑꢜꢒꢎꢔꢄꢍꢌꢄꢍꢝꢎꢄꢇꢖꢈꢄꢞꢌꢓ ꢒ!"ꢐꢘꢍꢒꢌꢓ#ꢄ$ꢁꢃꢓꢄꢘꢑꢑꢜꢒꢎꢔꢄꢍꢌꢄꢍꢝꢎꢄꢇꢖ%ꢄ  
Ball assignment for 165-ball BGA for 512K x 36  
1
2
3
4
5
6
7
8
9
10  
A
11  
NC  
A
B
C
NC  
A
CE0  
BWc  
BWd  
BWb  
BWa  
CE2  
CLK  
BWE ADSC  
GWE OE  
ADV  
ADSP  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
NC  
DQPc  
DQc  
DQc  
DQc  
DQc  
FT  
A
CE1  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
A
NC  
NC  
V
V
V
V
V
SS  
NC  
DQb  
DQb  
DQb  
DQb  
NC  
DQa  
DQa  
DQa  
DQa  
NC  
A
DQPb  
DQb  
DQb  
DQb  
DQb  
ZZ  
SS  
SS  
SS  
SS  
VDD  
V
V
V
SS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
DQc  
DQc  
DQc  
DQc  
NC  
D
E
F
SS  
SS  
V
V
V
V
SS  
DD  
SS  
SS  
V
V
V
V
SS  
DD  
SS  
SS  
V
G
H
J
V
V
V
SS  
DD  
SS  
SS  
V
V
V
V
SS  
DD  
SS  
SS  
DQd  
DQd  
DQd  
DQd  
DQPd  
NC  
DQd  
DQd  
DQd  
DQd  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
A
VDD  
VDD  
VDD  
VDD  
Vss  
Vss  
Vss  
Vss  
NC  
TDI  
TMS  
V
V
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
A
DQa  
DQa  
DQa  
DQa  
DQPa  
A
SS  
SS  
K
L
M
N
P
V
V
SS  
SS  
V
V
SS  
SS  
V
NC  
SS  
V
A
V
V
SS  
SS  
SS  
NC  
A
A11  
A01  
TDO  
TCK  
A
R
LBO  
NC  
A
A
A
A
A
A
1 A0 and A1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is desired.  
12/ 2/ 02, v. 0.9.1  
Alliance Semiconductor  
2 of 21  
AS7C25512PFS32A  
AS7C25512PFS36A  
®
Functional description  
The AS7C25512PFS32A/ 36A is a high-performance CMOS 16-Mbit synchronous Static Random Access Memory (SRAM) device organized as  
524,288 words x 32/ 36. It incorporates a two-stage register-register pipeline for highest frequency on any given technology.  
Fast cycle times of 4/ 4.4/ 5/ 6 ns with clock access times (t ) of 2.6/ 2.8/ 3/ 3.4 ns enable 250, 225, 200, and 166 MHz bus frequencies.  
CD  
Three chip enable (CE) inputs permit easy memory expansion. Burst operation is initiated in one of two ways: the controller address strobe  
(ADSC), or the processor address strobe (ADSP). The burst advance pin (ADV) allows subsequent internally generated burst addresses.  
Read cycles are initiated with ADSP (regardless of WE and ADSC) using the new external address clocked into the on-chip address register  
when ADSP is sampled low, the chip enables are sampled active, and the output buffer is enabled with OE. In a read operation, the data accessed  
by the current address registered in the address registers by the positive edge of CLK are carried to the data-out registers and driven on the  
output pins on the next positive edge of CLK. ADV is ignored on the clock edge that samples ADSP asserted, but is sampled on all subsequent  
clock edges. Address is incremented internally for the next access of the burst when ADV is sampled low and both address strobes are high.  
Burst mode is selectable with the LBO input. With LBO unconnected or driven high, burst operations use an interleaved count sequence. With  
LBO driven low, the device uses a linear count sequence.  
Write cycles are performed by disabling the output buffers with OE and asserting a write command. A global write enable GWE writes all 32/  
36 regardless of the state of individual BW[a:d] inputs. Alternately, when GWE is high, one or more bytes may be written by asserting BWE  
and the appropriate individual byte BWn signals.  
BWn is ignored on the clock edge that samples ADSP low, but it is sampled on all subsequent clock edges. Output buffers are disabled when  
BWn is sampled lOW regardless of OE. Data is clocked into the data input register when BWn is sampled low. Address is incremented internally  
to the next burst address if BWn and ADV are sampled low. This device operates in single-cycle deselect feature during read cycles.  
Read or write cycles may also be initiated with ADSC instead of ADSP. The differences between cycles initiated with ADSC and ADSP follow.  
ADSP must be sampled high when ADSC is sampled low to initiate a cycle with ADSC.  
• WEsignals are sampled on the clock edge that samples ADSC low (and ADSP high).  
• Master chip enable CE0 blocks ADSP, but not ADSC.  
The AS7C33512PFS32A/ 36A family operates from a core 2.5V power supply. These devices are available in a 100-pin TQFP and 165-ball BGA.  
TQFP and BGA capacitance  
Parameter  
Input capacitance  
I/ O capacitance  
Symbol  
Signals  
Address and control pins  
I/ O pins  
Test conditions  
IN = 0V  
OUT = 0V  
Max  
5
Unit  
pF  
C
V
IN  
C
V
7
pF  
I/ O  
12/ 2/ 02, v. 0.9.1  
Alliance Semiconductor  
3 of 21  
AS7C25512PFS32A  
AS7C25512PFS36A  
®
Signal descriptions  
Pin  
CLK  
A0A19  
I/ O Properties Description  
I
I
CLOCK Clock. All inputs except OE, FT, ZZ, and LBO are synchronous to this clock.  
SYNC  
SYNC  
Address. Sampled when all chip enables are active and when ADSC or ADSP are asserted.  
Data. Driven as output when the chip is enabled and when OE is active.  
DQ[a,b,c,d] I/ O  
Master chip enable. Sampled on clock edges when ADSP or ADSC is active. When CE0 is  
inactive, ADSP is blocked. Refer to the “Synchronous truth table” for more information.  
CE0  
I
I
SYNC  
SYNC  
Synchronous chip enables, active high, and active low, respectively. Sampled on clock edges  
when ADSC is active or when CE0 and ADSP are active.  
CE1, CE2  
ADSP  
ADSC  
ADV  
I
I
I
SYNC  
SYNC  
SYNC  
Address strobe processor. Asserted low to load a new address or to enter standby mode.  
Address strobe controller. Asserted low to load a new address or to enter standby mode.  
Advance. Asserted low to continue burst read/ write.  
Global write enable. Asserted low to write all 32/ 36 and 18 bits. When high, BWE and  
BW[a:d] control write enable.  
GWE  
BWE  
I
I
SYNC  
SYNC  
Byte write enable. Asserted low with GWE high to enable effect of BW[a:d] inputs.  
Write enables. Used to control write of individual bytes when GWE is high and BWE is low. If  
any of BW[a:d] is active with GWE high and BWE low, the cycle is a write cycle. If all BW[a:d]  
are inactive, the cycle is a read cycle.  
BW[a,b,c,d]  
I
SYNC  
OE  
I
I
ASYNC Asynchronous output enable. I/ O pins are driven when OE is active and chip is in read mode.  
Count mode. When driven high, count sequence follows Intel XOR convention. When driven  
STATIC  
LBO  
low, count sequence follows linear convention. This signal is internally pulled high.  
TDO  
TDI  
O
I
SYNC  
SYNC  
Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK (BGA only).  
Serial data-in to the JTAG circuit. Sampled on the rising edge of TCK (BGA only).  
This pin controls the Test Access Port state machine. Sampled on the rising edge of TCK (BGA  
only).  
TMS  
TCK  
I
I
SYNC  
Test Clock  
STATIC  
Test Clock. All inputs are sampled on the rising edge of TCK. All outputs are driven from the  
falling edge of TCK.  
Flow-through mode.When low, enables single register flow-through mode. Connect to VDD if  
unused or for pipelined operation.  
FT  
ZZ  
I
I
ASYNC Snooze. Places device in low power mode; data is retained. Connect to GND if unused.  
Write enable truth table (per byte)  
Function  
GWE BWE BWa  
BWb  
X
BWc BWd  
L
H
H
H
H
H
X
L
L
L
H
L
X
L
X
L
X
L
Write All Bytes  
L
Write Byte a  
L
H
H
L
H
L
Write Byte c and d  
H
X
H
H
X
X
H
X
H
Read  
H
ꢀꢁꢂꢃꢄX = dont care, L = low, H = high, n = a, b, c, d; BWE, BWn = internal write signal.  
12/ 2/ 02, v. 0.9.1  
Alliance Semiconductor  
4 of 21  
AS7C25512PFS32A  
AS7C25512PFS36A  
®
Burst sequence table  
Interleaved burst address  
A1 A0 A1 A0 A1 A0 A1 A0  
Linear burst address  
A1 A0 A1 A0 A1 A0 A1 A0  
1st Address  
2nd Address  
3rd Address  
4th Address  
0 0  
0 1  
1 0  
1 1  
0 1  
0 0  
1 1  
1 0  
1 0  
1 1  
0 0  
0 1  
1 1  
1 0  
0 1  
0 0  
1st Address  
2nd Address  
3rd Address  
4th Address  
0 0  
0 1  
1 0  
1 1  
0 1  
1 0  
1 1  
1 0  
1 0  
1 1  
0 0  
0 1  
1 1  
0 0  
0 1  
1 0  
Synchronous truth table  
2
CE01  
CE1  
CE2 ADSP ADSC ADV BWn  
OE Address accessed  
CLK  
Operation  
DQ  
H
L
X
L
X
X
X
H
H
L
X
L
L
X
L
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
X
F
X
X
X
X
X
L
NA  
NA  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
Lto H  
Lto H  
L to H  
L to H  
L to H  
L to H  
Lto H  
L to H  
Lto H  
Deselect  
Deselect  
HiZ  
HiZ  
HiZ  
HiZ  
HiZ  
HiZ3  
HiZ  
HiZ3  
HiZ  
Q
L
L
H
L
NA  
Deselect  
L
X
X
H
H
H
H
X
X
X
X
X
X
X
X
H
X
X
X
X
X
L
NA  
Deselect  
L
H
L
NA  
Deselect  
L
X
X
L
External  
External  
External  
External  
Next  
Begin read  
L
L
L
H
L
Begin read  
L
L
H
H
H
H
H
H
X
X
X
X
H
H
X
H
X
Begin read  
L
L
L
F
H
L
Begin read  
X
X
X
X
H
H
H
H
L
X
X
X
X
X
X
X
X
L
H
H
H
H
H
H
H
H
L
F
Continue read  
Continue read  
Suspend read  
Suspend read  
Continue read  
Continue read  
Suspend read  
Suspend read  
Begin write  
Continue write  
Continue write  
Suspend write  
Suspend write  
L
F
H
L
Next  
HiZ  
Q
H
H
L
F
Current  
Current  
Next  
F
H
L
HiZ  
Q
F
L
F
H
L
Next  
HiZ  
Q
H
H
X
L
F
Current  
Current  
External  
Next  
F
H
X
X
X
X
X
HiZ  
D4  
T
T
T
T
T
X
H
X
H
X
X
X
X
H
H
H
H
D
L
Next  
D
H
H
Current  
Current  
D
D
1 X = dont care, L = low, H = high  
2 See "Write enable truth table (per byte)," on page 4 for more information.  
3 Q in flow-through mode.  
4 For write operation following a READ, OE must be high before the input data set up time and held high throughout the input hold time  
12/ 2/ 02, v. 0.9.1  
Alliance Semiconductor  
5 of 21  
AS7C25512PFS32A  
AS7C25512PFS36A  
®
TQFP and BGA thermal resistance  
Description  
Conditions  
Symbol  
Typical  
40  
Units  
°C/ W  
°C/ W  
1–layer  
4–layer  
θ
θ
JA  
JA  
Thermal resistance  
(junction to ambient)1  
Test conditions follow standard test methods  
and procedures for measuring thermal  
impedance, per EIA/ JESD51  
22  
Thermal resistance  
θ
8
°C/ W  
(junction to top of case)1  
JC  
1 This parameter is sampled  
Absolute maximum ratings  
Parameter  
Symbol  
Min  
–0.3  
–0.3  
–0.3  
Max  
Unit  
Power supply voltage relative to GND  
Input voltage relative to GND (input pins)  
Input voltage relative to GND (I/ O pins)  
Power dissipation  
VDD, VDDQ  
+3.6  
V
V
V
VDD + 0.3  
VDDQ + 0.3  
1.8  
IN  
V
V
IN  
Pd  
IOUT  
stg (TQFP)  
W
mA  
oC  
oC  
oC  
Short circuit output current  
Storage temperature (TQFP)  
Storage temperature (BGA)  
Temperature under bias  
20  
T
–65  
–65  
–65  
+150  
Tstg (BGA)  
+125  
Tbias  
+135  
Stresses greater than those listed under “Absolute maximum ratings” may cause permanent damage to the device. This is a stress rating only, and functional oper-  
ation of the device at these or any other conditions outside those indicated in the operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions may affect reliability.  
Recommended operating conditions  
Parameter  
Supply voltage for inputs  
Supply voltage for I/ O  
Ground supply  
Symbol  
VDD  
Min  
2.375  
2.375  
0
Nominal  
Max  
2.625  
2.625  
0
Unit  
V
2.5  
2.5  
0
VDDQ  
Vss  
V
V
12/ 2/ 02, v. 0.9.1  
Alliance Semiconductor  
6 of 21  
AS7C25512PFS32A  
AS7C25512PFS36A  
®
DC electrical characteristics  
Parameter  
Input leakage current  
Output leakage current  
Sym  
Conditions  
Min  
-2  
Max  
Unit  
µA  
µA  
V
| ILI|  
VDD = Max, OV < VIN < VDD  
2
| ILO  
|
OEV , VDD = Max, OV < VOUT < VDDQ  
-2  
2
VDD+0.3  
VDDQ+0.3  
0.7  
IH  
Address and control pins  
I/ O pins  
1.7  
1.7  
-0.3  
-0.3  
1.7  
Input high (logic 1) voltage  
Input low (logic 0) voltage  
V
IH  
V
Address and control pins  
I/ O pins  
V
V
IL  
0.7  
V
Output high voltage  
Output low voltage  
V
IOH = –4 mA, VDDQ = 2.375V  
IOL = 8 mA, VDDQ = 2.625V  
V
OH  
V
0.7  
V
OL  
I
operating conditions and maximum limits  
DD  
Parameter  
Sym  
ICC  
ISB  
Conditions  
CE0 = V , CE1 = V , CE2 = V , f = fMax  
-250 -225 -200 -166 Unit  
,
IL  
IH  
IL  
Operating power supply current  
450  
160  
70  
425  
150  
70  
400  
130  
70  
350  
120  
70  
mA  
IOUT = 0 mA  
Deselected, f = fMax, ZZ < V  
IL  
Deselected, f = 0, ZZ < 0.2V,  
all V 0.2V or (VDD, VDDQ) – 0.2V  
ISB1  
IN  
Standby power supply current  
mA  
Deselected, f = f  
,
Max  
ISB2  
ZZ (VDD, VDDQ  
all V V or V  
IH  
)
– 0.2V,  
30  
30  
30  
30  
IN  
IL  
12/ 2/ 02, v. 0.9.1  
Alliance Semiconductor  
7 of 21  
AS7C25512PFS32A  
AS7C25512PFS36A  
®
Timing characteristics over operating range  
–250  
–225  
–200  
–166  
Parameter  
Clock frequency  
Sym  
fMax  
tCYC  
Min Max Min Max Min Max Min Max Unit Notes1  
4
250  
4.4  
6.9  
225  
5
200  
6
166 MHz  
Cycle time (pipelined mode)  
ns  
ns  
ns  
Cycle time (flow-through mode)  
Clock access time (pipelined mode)  
tCYCF 6.5  
7.5  
8.5  
tCD  
2.6  
2.8  
3.0  
3.4  
Clock access time (flow-through  
mode)  
tCDF  
6.5  
6.9  
7.5  
8.5  
ns  
Output enable low to data valid  
Clock high to output low Z  
tOE  
tLZC  
tOH  
2.6  
2.8  
3.0  
3.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0
0
0
0
2,3,4  
2
Data output invalid from clock high  
Output enable low to output low Z  
1.5  
0
1.5  
0
1.5  
0
1.5  
0
tLZOE  
2,3,4  
2,3,4  
2,3,4  
Output enable high to output high Z tHZOE  
Clock high to output high Z tHZC  
Output enable high to invalid output tOHOE  
2.6  
2.6  
2.8  
2.8  
3.0  
3.0  
3.4  
3.4  
0
0
0
0
Clock high pulse width  
Clock low pulse width  
tCH  
tCL  
1.5  
1.5  
1.2  
1.2  
1.2  
1.2  
0.3  
0.3  
0.3  
0.3  
1.8  
1.8  
1.4  
1.4  
1.4  
1.4  
0.4  
0.4  
0.4  
0.4  
1.4  
1.4  
1.4  
0.4  
0.4  
0.4  
1.8  
1.8  
1.4  
1.4  
1.4  
1.4  
0.4  
0.4  
0.4  
0.4  
1.4  
1.4  
1.4  
0.4  
0.4  
0.4  
2.1  
2.2  
1.5  
1.5  
1.5  
1.5  
0.5  
0.5  
0.5  
0.5  
1.5  
1.5  
1.5  
0.5  
0.5  
0.5  
5
5
Address setup to clock high  
Data setup to clock high  
Write setup to clock high  
Chip select setup to clock high  
Address hold from clock high  
Data hold from clock high  
Write hold from clock high  
Chip select hold from clock high  
ADV setup to clock high  
ADSP setup to clock high  
ADSC setup to clock high  
ADV hold from clock high  
ADSP hold from clock high  
ADSC hold from clock high  
1 See “Notes” on page 19.  
tAS  
6
tDS  
6
tWS  
tCSS  
tAH  
tDH  
tWH  
tCSH  
6,7  
6,8  
6
6
6,7  
6,8  
6
tADVS 1.2  
tADSPS 1.2  
tADSCS 1.2  
tADVH 0.3  
tADSPH 0.3  
tADSCH 0.3  
6
6
6
6
6
12/ 2/ 02, v. 0.9.1  
Alliance Semiconductor  
8 of 21  
AS7C25512PFS32A  
AS7C25512PFS36A  
®
IEEE 1149.1 serial boundary scan (JTAG)  
The SRAM incorporates a serial boundary scan test access port (TAP). The port operates in accordance with IEEE Standard 1149.1-1990 but  
does not have the set of functions required for full 1149.1 compliance. The inclusion of these functions would place an added delay in the  
critical speed path of the SRAM. The TAP controller functionality does not conflict with the operation of other devices using 1149.1 fully  
compliant TAPs. It uses JEDEC-standard 2.5V I/ O logic levels.  
The SRAM contains a TAP controller, instruction register, boundary scan register, bypass register, and ID register.  
Disabling the JTAG feature  
If the JTAG function is not being implemented, its pins/ balls can be left unconnected. At power-up, the device will come up in a reset state  
which will not interfere with the operation of the device.  
TAP controller state diagram  
TAP controller block diagram  
ꢀ(,ꢀ)  
/12*ꢛ  
,(/(ꢛꢀ  
,(/(ꢛꢀ  
*+),ꢛ'ꢋ  
+&ꢋ)ꢀ(,ꢀ0  
*$/(  
86ꢑꢘꢔꢔꢄ+ꢎ!ꢒꢔꢍꢎꢐ  
$+),ꢛ'ꢋ  
,ꢎꢜꢎꢞꢍꢒꢌꢓ  
ꢛꢒꢐꢞ"ꢒꢍꢐ6  
,ꢎꢜꢎꢞꢍꢒꢌꢓ  
ꢛꢒꢐꢞ"ꢒꢍꢐ6  
   
*ꢓꢔꢍꢐ"ꢞꢍꢒꢌꢓꢄ+ꢎ!ꢒꢔꢍꢎꢐ  
ꢀ$*  
ꢀ$1  
#
# #  
 ꢈ7  
   
ꢛ'ꢃꢀ&+()$+  
ꢛ'ꢃꢀ&+()*+  
*ꢙꢎꢓꢍꢒ ꢒꢞꢘꢍꢒꢌꢓꢄ+ꢎ!ꢒꢔꢍꢎꢐ  
#
# # # #  
   
8ꢌ"ꢓꢙꢘꢐ6ꢄ,ꢞꢘꢓꢄ+ꢎ!ꢒꢔꢍꢎꢐ  
,-*ꢂꢀ)$+  
,-*ꢂꢀ)*+  
(.*ꢀꢅ)*+  
(.*ꢀꢅ)$+  
ꢀꢛ5  
ꢀ4,  
ꢀ'ꢃꢄꢛꢌꢓꢍꢐꢌꢜꢜꢎꢐ  
ꢃ'&,()*+  
ꢃ'&,()$+  
ꢄꢇꢄ9ꢄꢗꢖꢄ ꢌꢐꢄꢍꢝꢎꢄꢇꢅꢚꢄꢞꢌꢓ ꢒ!"ꢐꢘꢍꢒꢌꢓꢕꢄꢇꢄ9ꢄ:ꢈꢄ ꢌꢐꢄꢍꢝꢎꢄꢇꢖ%ꢄꢞꢌꢓ ꢒ!"ꢐꢘꢍꢒꢌꢓ#  
(.*ꢀꢈ)$+  
(.*ꢀꢈ)*+  
&ꢃ$'ꢀ()*+  
&ꢃ$'ꢀ()$+  
ꢀꢁꢂꢃꢄꢄꢀꢝꢎꢄꢉꢄꢌꢐꢄꢅꢄꢓꢎꢇꢍꢄꢍꢌꢄꢎꢘꢞꢝꢄꢔꢍꢘꢍꢎꢄꢐꢎꢑꢐꢎꢔꢎꢓꢍꢔꢄꢍꢝꢎꢄ3ꢘꢜ"ꢎꢄꢌ ꢄꢀ4,ꢄꢘꢍꢄꢍꢝꢎꢄꢐꢒꢔꢒꢓ!ꢄꢎꢙ!ꢎꢄꢌ ꢄꢀꢛ5#  
Test access port (TAP)  
Test clock (TCK)  
The test clock is used with only the TAP controller. All inputs are captured on the rising edge of TCK. All outputs are driven from the falling  
edge of TCK.  
Test mode select (TMS)  
The TAP controller receives commands from TMS input. It is sampled on the rising edge of TCK. You can leave this pin/ ball unconnected if the  
TAP is not used. The pin/ ball is pulled up internally, resulting in a logic high level.  
12/ 2/ 02, v. 0.9.1  
Alliance Semiconductor  
9 of 21  
AS7C25512PFS32A  
AS7C25512PFS36A  
®
Test data-in (TDI)  
The TDI pin/ ball serially inputs information into the registers and can be connected to the input of any of the registers. The register between  
TDI and TDO is chosen by the instruction that is loaded into the TAP instruction register. For information on loading the instruction register,  
see the TAP Controller State Diagram. TDI is internally pulled up and can be unconnected if the TAP is unused in an application. TDI is  
connected to the most significant bit (MSB) of any register.  
Test data-out (TDO)  
The TDO output pin/ ball serially clocks data-out from the registers. The output is active depending upon the current state of the TAP state  
machine. The output changes on the falling edge of TCK. TDO is connected to the least significant bit (LSB) of any register. (See the TAP  
Controller State Diagram.)  
Performing a TAP RESET  
You can perform a RESET by forcing TMS high (V ) for five rising edges of TCK. This RESET does not affect the operation of the SRAM and can  
DD  
be performed while the SRAM is operating.  
At power-up, the TAP is reset internally to ensure that TDO comes up in a high-Z state.  
TAP registers  
Registers are connected between the TDI and TDO pins/ balls. They allow data to be scanned into and out of the SRAM test circuitry. Only one  
register can be selected at a time through the instruction register. Data is serially loaded into the TDI pin/ ball on the rising edge of TCK. Data is  
output on the TDO pin/ ball on the falling edge of TCK.  
Instruction register  
You can serially load three-bit instructions into the instruction register. The register is loaded when it is placed between the TDI and TDO pins/  
balls as shown in the TAP Controller Block Diagram. The instruction register is loaded with the IDCODE instruction at power up and also if the  
controller is placed in a reset state, as described in the previous section.  
When the TAP controller is in the Capture-IR state, the two least significant bits are loaded with a binary “01” pattern to allow for fault isolation  
of the board-level series test data path.  
Bypass register  
To save time when serially shifting data through registers, it is sometimes advantageous to skip certain chips. The bypass register is a single-bit  
register that can be placed between the TDI and TDO pins/ balls. This allows data to be shifted through the SRAM with minimal delay. The  
bypass register is set low (Vss) when the BYPASS instruction is executed.  
Boundary scan register  
The boundary scan register is connected to all the input and bidirectional pins/ balls on the SRAM. The x36 configuration has a 72-bit-long  
register and the x18 configuration has a 53-bit-long register.  
The boundary scan register is loaded with the contents of the RAM I/ O ring when the TAP controller is in the Capture-DR state and is then  
placed between the TDI and TDO pins/ balls when the controller is moved to the Shift-DR state. The EXTEST, SAMPLE/ RELOAD, and SAMPLE Z  
instructions can be used to capture the contents of the I/ O ring.  
The boundary scan order table shows the order in which the bits are connected. Each bit corresponds to one of the bumps on the SRAM  
package. The most significant bit (MSB) of the register is connected to TDI, and the least significant bit (LSB) is connected to TDO.  
Identification (ID) register  
The ID register has a vendor code and other information described in the Identification Register Definitions table. The ID register is loaded with  
a vendor-specific, 32-bit code during the Capture-DR state when the IDCODE command is loaded in the instruction register. The IDCODE is  
hardwired into the SRAM and can be shifted out when the TAP controller is in the Shift-DR state.  
12/ 2/ 02, v. 0.9.1  
Alliance Semiconductor  
10 of 21  
AS7C25512PFS32A  
AS7C25512PFS36A  
®
TAP instruction set  
Eight different instructions are possible with the 3-bit instruction register. All combinations are listed in the Instruction Codes table. Three of  
these instructions are reserved and should not be used.  
Note that the TAP controller used in this SRAM is not fully compliant to the 1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented. The TAP controller cannot be used to load address, data, or control signals into the SRAM and cannot  
preload the I/ O buffers. The SRAM does not implement the 1149.1 commands EXTEST or INTEST or the PRELOAD portion of SAMPLE/  
PRELOAD. Instead, it performs a capture of the I/ O ring when these instructions are executed.  
Instructions are loaded into the TAP controller during the Shift-IR state when the instruction register is placed between TDI and TDO. During  
this state, instructions are shifted through the instruction register through the TDI and TDO pins/ balls. To execute the instruction once it is  
shifted in, the TAP controller needs to be moved into the Update-IR state.  
EXTEST  
The EXTEST instruction, which executes whenever the instruction register is loaded with all 0s, is not implemented in this SRAM TAP  
controller. The TAP controller, however, does recognize an all-0 instruction. When an EXTEST instruction is loaded into the instruction register,  
the SRAM responds as if a SAMPLE/ PRELOAD instruction has been loaded. Unlike the SAMPLE/ PRELOAD instruction, EXTEST places the SRAM  
outputs in a high-Z state.  
EXTEST is a mandatory 1149.1 instruction. this device, therefore, is not compliant with 1149.1.  
IDCODE  
The IDCODE instruction is loaded into the instruction register upon power-up or whenever the TAP controller is given a test logic reset state.  
The IDCODE instruction causes a vendor-specific, 32-bit code to be loaded into the instruction register. It also places the instruction register  
between the TDI and TDO pins/ balls and allows the IDCODE to be shifted out of the device when the TAP controller enters the Shift-DR state.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register to be connected between the TDI and TDO pins/ balls when the TAP controller is in  
a Shift-DR state. It also places all SRAM outputs into a high-Z state.  
SAMPLE/ PRELOAD  
When the SAMPLE/ PRELOAD instruction is loaded into the instruction register and the TAP controller is in the Capture-DR state, a snapshot of  
data on the inputs and bidirectional pins/ balls is captured in the boundary scan register. Note that the SAMPLE/ PRELOAD is a 1149.1  
mandatory instruction, but the PRELOAD portion of this instruction is not implemented in this device. The TAP controller, therefore, is not fully  
1149.1 compliant.  
Be aware that the TAP controller clock can operate only at a frequency up to 10 Mhz, while the SRAM clock operates more than an order of  
magnitude faster. Because there is a large difference in the clock frequencies, it is possible that during the Capture-DR state, an input or output  
can undergo a transition. The TAP may then try to capture a signal while in transition (metastable state). This will not harm the device, but there  
is no guarantee as to the value that will be captured. Repeatable results may not be possible.  
To guarantee that the boundary scan register captures the correct value of a signal, the SRAM signal must be stabilized long enough to meet the  
t
t
TAP controllers capture setup plus hold time ( CS plus CH). The SRAM clock input might not be captured correctly if there is no way in a  
design to stop (or slow) the clock during a SAMPLE/ PRELOAD instruction. If this is an issue, it is possible to capture all other signals and ignore  
the value of the CK and CK# captured in the bounder scan register.  
Once the data is captured, it is possible to shift out the data by putting the TAP into the Shift-DR state. This places the boundary scan register  
between the TDI and TDO pins.  
Note that since the PRELOAD part of the command is not implemented, putting the TAP to the Update-DR state while performing a SAMPLE/  
PRELOAD instruction will have the same effect as the Pause-DR command.  
BYPASS  
The advantage of the BYPASS instruction is that it shortens the boundary scan path when multiple devices are connected together on a board.  
When the BYPASS instruction is loaded in the instruction register and the TAP is placed in a Shift-DR state, the bypass register is placed between  
TDI and TDO.  
12/ 2/ 02, v. 0.9.1  
Alliance Semiconductor  
11 of 21  
AS7C25512PFS32A  
AS7C25512PFS36A  
®
Reserved  
Do not use a reserved instruction. These instructions are not implemented but are reserved for future use.  
TAP timing diagram  
%
ꢔꢍꢄꢛꢜꢌꢞ<  
=ꢀꢛ5>  
ꢀ-ꢀ-  
ꢀ-ꢀ/  
ꢀ/ꢀ-  
ꢔꢍꢄ4ꢌꢙꢎꢄ,ꢎꢜꢎꢞꢍ  
=ꢀ4,>  
   
4;ꢀ- ꢀ-4.  
ꢔꢍꢄ$ꢘꢍꢘ)*ꢓ  
=ꢀ$*>  
ꢀ/1;  
$;ꢀ-  
ꢀ-$.  
ꢀ/1.  
ꢔꢍꢄ$ꢘꢍꢘ)1"ꢍ  
=ꢀ$1>  
&ꢓꢙꢎ ꢒꢓꢎꢙ  
$ꢌꢓRꢍꢄꢞꢘꢐꢎ  
TAP AC electrical characteristics  
o
o
For notes 1 and 2, +10 C T +110 C and +2.4V V +2.6V.  
J
DD  
Description  
Symbol  
Min Max Units  
Clock  
Clock cycle time  
Clock frequency  
Clock high time  
Clock low time  
Output Times  
tTHTH  
fTF  
tTHTL  
tTLTH  
100  
ns  
10 MHz  
ns  
40  
40  
ns  
TCK low to TDO unknown  
TCK low to TDO valid  
TDI valid to TCK high  
TCK high to TDI invalid  
Setup Times  
tTLOX  
tTLOV  
tDVTH  
tTHDX  
0
ns  
20  
ns  
ns  
ns  
10  
10  
TMS setup  
tMVTH  
1
tCS  
10  
10  
ns  
ns  
Capture setup  
Hold Times  
TMS hold  
tTHMX  
tCH1  
10  
10  
ns  
ns  
Capture hold  
t
t
1 CS and CH refer to the setup and hold time requirements of latching data  
from the boundary scan register.  
2
Test conditions are specified using the load in the figure TAP AC output  
load equivalent.  
12/ 2/ 02, v. 0.9.1  
Alliance Semiconductor  
12 of 21  
AS7C25512PFS32A  
AS7C25512PFS36A  
®
TAP AC test conditions  
Input pulse levels. . . . . . . . . . . . . . . Vss to 2.5V  
TAP AC output load equivalent  
ꢅ#ꢈꢗ;  
Input rise and fall times. . . . . . . . . . . . . . . 1 ns  
Input timing refer ence levels. . . . . . . . . . 1.25V  
Output reference levels . . . . . . . . . . . . . . 1.25V  
Test load termination supply voltage. . . . 1.25V  
ꢗꢉΩ  
ꢀ$1  
ꢈꢉꢑꢂ  
@19ꢗꢉΩ  
TAP DC electrical characteristics and operating conditions  
o
o
(+10 C < T < +110 C and +2.4V < V < +2.6V unless otherwise noted)  
J
DD  
Description  
Conditions  
Symbol  
Min  
Max  
VDD + 0.3  
0.7  
Units  
V
Notes  
1, 2  
Input high (logic 1) voltage  
Input low (logic 0) voltage  
Input leakage current  
V
1.7  
-0.3  
-5.0  
IH  
V
IL  
V
1, 2  
0V V VDD  
IL  
5.0  
µA  
IN  
I
Outputs disabled,  
Output leakage current  
ILO  
-5.0  
5.0  
µA  
0V V VDDQ(DQx)  
IN  
Output low voltage  
Output low voltage  
Output high voltage  
Output high voltage  
IOLC = 100µA  
V
0.2  
0.7  
V
V
V
V
1
1
1
1
OL1  
I
OLT = 2mA  
IOHS = -100µA  
OHT = -2mA  
V
OL2  
V
OH1  
2.1  
1.7  
I
V
OH2  
1. All voltage referenced to V (GND).  
SS  
t
2. Overshoot: V (AC) V + 1.5V for t KHKH/ 2  
IH  
DD  
t
Undershoot:V (AC) -0.5 for t KHKH/ 2  
IL  
Power-up: V +2.6V and V 2.4V and V 1.4V for t 200ms  
DDQ  
IH  
DD  
During normal operation, V  
must not exceed V . Control input signals (such as LD, R/ W, etc.) may not have pulsed widths less than  
DD  
DDQ  
t
(Min) or operate at frequencies exceeding f (Max).  
KHKL  
KF  
12/ 2/ 02, v. 0.9.1  
Alliance Semiconductor  
13 of 21  
AS7C25512PFS32A  
AS7C25512PFS36A  
®
Identification register definitions  
Instruction field  
512K x 36  
Description  
Reserved for version number.  
Revision number (31:28)  
Device depth (27:23)  
Device width (22:18)  
Device ID (17:12)  
xxxx  
xxxxx/ xxxxx Defines the depth of 512K words.  
xxxxx/ xxxxx Defines the width of x32 or x36 bits.  
xxxxxx  
Reserved for future use.  
JEDEC ID code (11:1)  
ID register presence indicator (0)  
00000110100 Allows unique identification of SRAM vendor.  
1
Indicates the presence of an ID register.  
Scan register sizes  
Register name  
Instruction  
Bypass  
Bit size  
3
1
ID  
32  
Boundary scan  
x18:53  
x36:72  
Instruction codes  
Instruction  
Code  
Description  
Captures I/ O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM outputs to high-Z state. This instruction is not 1149.1-compliant.  
EXTEST  
000  
Loads the ID register with the vendor ID code and places the register between TDI and  
TDO. This operation does not affect SRAM operations.  
IDCODE  
001  
Captures I/ O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a high-Z state.  
SAMPLE Z  
Reserved  
010  
011  
Do not use. This instruction is reserved for future use.  
Captures I/ O ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation. This instruction does not implement 1149.1 preload  
function and is therefore not 1149.1-compliant.  
SAMPLE/ PRELOAD  
100  
Reserved  
Reserved  
101  
110  
Do not use. This instruction is reserved for future use.  
Do not use. This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operations.  
BYPASS  
111  
12/ 2/ 02, v. 0.9.1  
Alliance Semiconductor  
14 of 21  
AS7C25512PFS32A  
AS7C25512PFS36A  
®
165-ball BGA boundary scan order (x36)  
Bit # s  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
Signal Name  
CLK  
CE2  
Ball ID  
6B  
6A  
5B  
5A  
4A  
4B  
3B  
3A  
2A  
2B  
1C  
1D  
1E  
1F  
Bit # s  
1
Signal Name  
SA  
Ball ID  
11P  
6N  
2
SA  
BWa  
BWb  
BWc  
BWd  
CE1  
3
SA  
8P  
4
SA  
8R  
5
SA  
9R  
6
SA  
9P  
7
SA  
10P  
10R  
11R  
11N  
11M  
11L  
11K  
11J  
CE0  
8
SA  
SA  
9
SA  
SA  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
DQPa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
ZZ  
DQPc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
FT  
1G  
2D  
2E  
2F  
10M  
10L  
10K  
10J  
2G  
1H  
1J  
11H  
11G  
11F  
11E  
11D  
10G  
10F  
10E  
10D  
11C  
10A  
10B  
9A  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQPb  
SA  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQPd  
LBO  
SA  
1K  
1L  
1M  
2J  
2K  
2L  
2M  
1N  
1R  
3P  
SA  
ADV  
ADSP  
ADSC  
OE  
SA  
3R  
4R  
4P  
9B  
SA  
8A  
SA  
8B  
SA1  
6P  
BWE  
GWE  
7A  
SA2  
6R  
7B  
12/ 2/ 02, v. 0.9.1  
Alliance Semiconductor  
15 of 21  
AS7C25512PFS32A  
AS7C25512PFS36A  
®
Key to switching waveforms  
Rising input  
Falling input  
Undefined or don’t care  
Timing waveform of read cycle  
t
CYC  
t
t
CL  
CH  
CLK  
t
ADSPS  
ADSPH  
t
ADSP  
ADSC  
t
ADSCS  
ADSCH  
t
LOAD NEW ADDRESS  
t
AS  
t
AH  
A1  
A2  
A3  
Address  
t
WS  
t
WH  
GWE, BWE  
t
CSS  
t
CSH  
CE0, CE2  
CE1  
t
ADVS  
t
ADVH  
ADV  
OE  
ADV inserts wait states  
t
CD  
t
t
HZC  
HZOE  
t
OH  
Q(A2)  
Q(A2Ý01)  
Q(A2Ý10)  
Q(A2Ý11)  
Q(A3)  
Q(A3Ý01) Q(A3Ý10)  
Q(A1)  
D
OUT  
(pipelined  
mode)  
tOE  
t
LZOE  
Q(A3Ý11)  
Q(A2Ý01)  
Q(A2Ý10)  
Q(A2Ý11)  
Q(A3)  
Q(A3Ý01)  
Q(A3Ý10)  
Q(A1)  
D
OUT  
(flow-through  
mode)  
t
HZC  
Read Suspend Read  
Burst  
Read  
2Ý01  
Burst  
Read  
Suspend  
Read  
Burst  
Read  
Read  
Q(A3)  
Burst  
Read  
3Ý01  
Burst  
Read  
3Ý10  
Burst  
Read  
3Ý11  
) Q(A )  
Q(A1)  
Read  
Q(A2)  
DSEL  
2Ý10  
) Q(A  
2Ý10  
) Q(A  
2Ý11  
Q(A1)  
Q(A  
) Q(A  
)
Q(A  
) Q(A  
Note: Ý = XOR when LBO = high/ no connect; Ý = ADD when LBO = low. BW[a:d] is dont care.  
12/ 2/ 02, v. 0.9.1  
Alliance Semiconductor  
16 of 21  
AS7C25512PFS32A  
AS7C25512PFS36A  
®
Timing waveform of write cycle  
t
t
CYC  
CL  
t
CH  
CLK  
t
ADSPS  
t
ADSPH  
ADSP  
t
ADSCS  
t
ADSCH  
ADSC  
ADSC LOADS NEW ADDRESS  
t
AS  
t
AH  
A1  
A2  
A3  
Address  
t
WS  
t
WH  
BWE  
BW[a:d]  
t
CSS  
t
CSH  
CE0, CE2  
CE1  
t
ADVS  
ADV SUSPENDS BURST  
t
ADVH  
ADV  
OE  
t
DS  
t
DH  
D(A1)  
D(A2)  
D(A2Ý01)  
D(A2Ý01)  
D(A2Ý10)  
D(A2Ý11)  
D(A3)  
D(A3Ý01)  
D(A3Ý10)  
Data In  
ADV  
Burst  
Write  
Read Q(A1) Suspend  
Read  
Q(A2)  
Suspend  
Write  
ADV  
Burst  
Write  
Suspend  
Write  
ADV  
Burst  
Write  
ADV  
Burst  
Write  
Write  
3
D(A )  
Burst  
Write  
3Ý01  
D(A )  
Write  
D(A1)  
2
2Ý01  
D(A )  
D(A  
)
3Ý10  
D(A  
)
2Ý01  
2Ý10  
2Ý11  
Q(A )  
D(A  
)
Q(A  
)
Note: Ý = XOR when LBO = high/ no connect; Ý = ADD when LBO = low.  
12/ 2/ 02, v. 0.9.1  
Alliance Semiconductor  
17 of 21  
AS7C25512PFS32A  
AS7C25512PFS36A  
®
Timing waveform of read/ write cycle  
t
t
CYC  
CL  
t
CH  
CLK  
t
ADSPS  
ADSPH  
t
ADSP  
t
AS  
t
AH  
A2  
A3  
A1  
Address  
t
WS  
t
WH  
GWE  
CE0, CE2  
CE1  
t
ADVS  
t
ADVH  
ADV  
OE  
t
t
DH  
DS  
D
IN  
D(A2)  
t
OE  
t
LZC  
t
OH  
t
t
LZOE  
HZOE  
t
CD  
D
OUT  
Q(A1)  
Q(A3)  
Q(A3Ý01)  
Q(A3Ý10)  
Q(A3Ý11)  
(pipelined mode)  
t
CDF  
D
Q(A1)  
Q(A3Ý11)  
Q(A3Ý01)  
Q(A3Ý10)  
OUT  
(flow-through mode)  
DSEL  
Read  
Q(A1)  
Suspend  
Read  
Q(A1)  
Read  
Q(A2)  
Suspend  
Write  
D(A )  
Read  
Q(A3)  
ADV  
Burst  
Read  
ADV  
Burst  
Read  
ADV  
Burst  
Read  
Suspend  
Read  
2
3Ý11  
)
Q(A  
3Ý01  
3Ý10  
3Ý11  
Q(A )  
D(A  
)
Q(A  
)
Note: Ý = XOR when LBO = high/ no connect; Ý = ADD when LBO = low.  
12/ 2/ 02, v. 0.9.1  
Alliance Semiconductor  
18 of 21  
AS7C25512PFS32A  
AS7C25512PFS36A  
®
AC test conditions  
• Output load: For t , t  
, t  
, t , see Figure C. For all others, see Figure B.  
LZC LZOE HZOE HZC  
• Input pulse level: GND to 3V. See Figure A.  
Thevenin equivalent:  
• Input rise and fall time (measured at 0.3V and 2.7V): 2 ns. See Figure A.  
• Input and output timing reference levels: 1.5V.  
+2.5V  
319Ω/1667Ω  
Z = 50  
50  
0
D
OUT  
+3.0V  
D
V = V / 2  
L DDQ  
OUT  
5 pF*  
90%  
10%  
90%  
10%  
353Ω/1538Ω  
30 pF*  
GND  
*including scope  
and jig capacitance  
GND  
Figure C: Output load(B)  
Figure A: Input waveform  
Figure B: Output load (A)  
Notes  
1
2
3
4
5
6
For test conditions, see “AC test conditions”, Figures A, B, and C.  
This parameter is measured with output load condition in Figure C.  
This parameter is sampled but not 100% tested.  
t
t
is less than t  
, and t  
LZOE  
is less than t at any given temperature and voltage.  
HZC LZC  
HZOE  
CH  
is measured as high if above VIH, and t is measured as low if below VIL.  
CL  
This is a synchronous device. All addresses must meet the specified setup and hold times for all rising edges of CLK. All other synchronous inputs must meet  
the setup and hold times for all rising edges of CLK when chip is enabled.  
Write refers to GWE, BWE, and BW[a:d].  
7
8
Chip select refers to CE0, CE1, and CE2.  
12/ 2/ 02, v. 0.9.1  
Alliance Semiconductor  
19 of 21  
AS7C25512PFS32A  
AS7C25512PFS36A  
®
Package dimensions  
100-pin quad flat pack (TQFP)  
TQFP  
Hd  
D
Min  
0.05  
Max  
0.15  
A1  
A2  
b
1.35  
1.45  
b
e
0.22  
0.38  
c
0.09  
0.20  
D
E
13.90  
19.90  
14.10  
20.10  
e
0.65 nominal  
Hd  
He  
L
15.90  
21.90  
0.45  
16.10  
22.10  
0.75  
He  
E
L1  
α
1.00 nominal  
0°  
7°  
Dimensions in millimeters  
c
α
L1  
L
A1 A2  
165-ball BGA (ball grid array)  
ꢑꢄ;ꢒꢎE  
8ꢌꢍꢍꢌꢊꢄ;ꢒꢎE  
'ꢅꢄꢞꢌꢐꢓꢎꢐꢄꢒꢓꢙꢎꢇꢄꢘꢐꢎꢘ  
% :  
7 ꢅꢉ ꢅꢅ  
ꢅꢅ ꢅꢉ 7  
:
%   
   
'
8
'
8
'
8
$
(
$
(
ꢅꢆꢆꢄꢇꢁꢈꢉꢊꢋꢁꢇꢁꢌꢍꢉꢄꢈꢋꢁꢄꢎꢌꢄꢇꢇꢏ  
2
2
-
ꢐꢎꢌ  
ꢑꢂꢒ  
ꢐꢈꢓ  
-
C
C
ꢀꢁꢂꢂ  
5
/
5
/
ꢀꢃꢁꢄꢂ  
ꢀꢅꢁꢂꢂ  
ꢀꢃꢁꢂꢂ  
ꢀꢇꢁꢂꢂ  
ꢀꢂꢁꢂꢂ  
ꢂꢁꢆꢈ  
ꢀꢅꢁꢀꢂ  
4
+
4
+
ꢀꢆꢁꢄꢂ  
ꢀꢇꢁꢀꢂ  
ꢅ#ꢉꢉ  
ꢅꢖ#ꢉꢉꢟꢉ#ꢅꢉ  
'
$
ꢅꢉ#ꢉꢉ  
ꢅꢖ#ꢉꢉꢟꢉ#ꢅꢉ  
ꢂꢁꢇꢂ  
ꢂꢁꢇꢅ  
ꢂꢁꢃꢂ  
ꢀꢁꢆꢂ  
ꢂꢁꢅꢂ  
(
$
ꢉ#ꢈꢉꢄꢄ@  
ꢂꢁꢃꢂ  
ꢂꢁꢃꢅ  
ꢄ*  
2
ꢉ#ꢅꢈꢄ@  
-
ꢄ0ꢄꢉ#ꢆꢗꢟꢉ#ꢉꢗꢄ=ꢅ%ꢗ.>  
4
ꢠꢄꢉ#ꢅꢗ @ . D  
4
@
ꢠꢄꢉ#ꢉꢚ  
$ꢎꢍꢘꢒꢜꢄꢌ ꢄ,ꢌꢜꢙꢎꢐꢄ8ꢘꢜꢜ  
,ꢒꢙꢎꢄ;ꢒꢎE  
12/ 2/ 02, v. 0.9.1  
Alliance Semiconductor  
20 of 21  
AS7C25512PFS32A  
AS7C25512PFS36A  
®
Ordering information  
Package & Width  
250 MHz  
225 MHz  
200 MHz  
166 MHz  
AS7C25512PFS32A-  
225TQC  
AS7C25512PFS32A-  
200TQC  
AS7C25512PFS32A-  
166TQC  
AS7C25512PFS32A-  
250TQC  
TQFP x32  
TQFP x36  
BGA x32  
AS7C25512PFS32A-  
225TQI  
AS7C25512PFS32A-  
200TQI  
AS7C25512PFS32A-  
166TQI  
AS7C25512PFS36A-  
225TQC  
AS7C25512PFS36A-  
200TQC  
AS7C25512PFS36A-  
166TQC  
AS7C25512PFS36A-  
250TQC  
AS7C25512PFS36A-  
225TQI  
AS7C25512PFS36A-  
200TQI  
AS7C25512PFS36A-  
166TQI  
AS7C25512PFS32A-  
225BC  
AS7C25512PFS32A-  
200BC  
AS7C25512PFS32A-  
166BC  
AS7C25512PFS32A-  
250BC  
AS7C25512PFS32A-  
225BI  
AS7C25512PFS32A-  
200BI  
AS7C25512PFS32A-  
166BI  
AS7C25512PFS36A-  
225BC  
AS7C25512PFS36A-  
200BC  
AS7C25512PFS36A-  
166BC  
AS7C25512PFS36A-  
250BC  
BGA x36  
AS7C25512PFS36A-  
225BI  
AS7C25512PFS36A-  
200BI  
AS7C25512PFS36A-  
166BI  
Part numbering guide  
AS7C  
25  
512  
PF  
S
32/ 36  
A
XXX  
TQ or B  
C/ I  
1
2
3
4
5
6
7
8
9
10  
1. Alliance Semiconductor SRAM prefix  
2. Operating voltage: 25 = 2.5V  
3. Organization: 512 = 512K  
4. Pipelined/ flow-through mode (each device works in both modes)  
5. Deselect: S = single cycle deselect  
6. Organization: 32 = x 32; 36 = x 36  
7. Production version: A = first production version  
8. Clock speed (MHz)  
9. Package type: TQ = TQFP, B = BGA  
10. Operating temperature: C = commercial (0° C to 70° C); I = industrial (-40° C to 85° C)  
12/ 2/ 02, v. 0.9.1  
Alliance Semiconductor  
21 of 21  
© Copyright Alliance Semiconductor Corporation. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and  
product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no  
responsibility for any errors that may appear in this document. The data contained herein represents Alliance’s best data and/or estimates at the time of issuance. Alliance reserves the right to  
change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this  
product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or  
customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to  
the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as  
express agreed to in Alliance’s Terms and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively according to Alliance’s Terms and  
Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights, mask works rights, trademarks, or any other intellectual property rights  
of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting system s where a malfunction or failure may reasonably be expected to result  
in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify Alliance  
against all claims arising from such use.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY