AS7C332MFT18A-65TQCN [ISSI]

Standard SRAM, 2MX18, 6.5ns, CMOS, PQFP100, 14 X 20 MM, LEAD FREE, TQFP-100;
AS7C332MFT18A-65TQCN
型号: AS7C332MFT18A-65TQCN
厂家: INTEGRATED SILICON SOLUTION, INC    INTEGRATED SILICON SOLUTION, INC
描述:

Standard SRAM, 2MX18, 6.5ns, CMOS, PQFP100, 14 X 20 MM, LEAD FREE, TQFP-100

静态存储器
文件: 总23页 (文件大小:565K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
April 2004  
AS7C332MFT18A  
®
3.3V 2M × 18 Flow-through synchronous SRAM  
Features  
• Organization: 2,097152 words × 18 bits  
• Fast clock to data access: 6.5/7.5/8.5 ns  
• Fast OE access time: 3.5/3.5/4.0 ns  
• Fully synchronous flow-through operation  
• Asynchronous output enable control  
• Available in 100-pin TQFP package and 165-ball BGA  
• Individual byte write and global write  
• Multiple chip enables for easy expansion  
• 3.3V core power supply  
• Snooze mode for reduced power-standby  
• Common data inputs and data outputs  
• Boundary scan using IEEE 1149.1 JTAG function  
1
• NTD™ pipelined architecture available  
(AS7C332MNTD18A, AS7C331MNTD32A/  
AS7C331MNTD36A)  
1 NTD™ is a trademark of Alliance Semiconductor Corporation. All  
trademarks mentioned in this document are the property of their  
respective owners.  
• 2.5V or 3.3V I/O operation with separate V  
• Linear or interleaved burst control  
DDQ  
Logic block diagram  
LBO  
CLK  
ADV  
ADSC  
ADSP  
CLK  
CS  
Burst logic  
2M x 18  
CLR  
Memory  
array  
21 19  
21  
21  
Q
D
A[20:0]  
Address  
CS  
register  
CLK  
18  
18  
2
GWE  
BWb  
D
DQb  
Q
Byte Write  
registers  
BWE  
BWa  
CLK  
D
Q
DQa  
Byte Write  
registers  
CLK  
CE0  
CE1  
OE  
Output  
D
Q
Q
Input  
registers  
Enable  
register  
CE  
CLK  
CE2  
registers  
CLK  
CLK  
D
Enable  
delay  
register  
CLK  
Power  
down  
ZZ  
OE  
18  
DQ[a,b]  
Selection guide  
-65  
7.5  
-75  
8.5  
-85  
10  
Units  
ns  
Minimum cycle time  
Maximum clock access time  
Maximum operating current  
Maximum standby current  
Maximum CMOS standby current (DC)  
6.5  
7.5  
8.5  
270  
130  
110  
ns  
310  
140  
110  
290  
130  
110  
mA  
mA  
mA  
4/26/04, v 1.0  
Alliance Semiconductor  
1 of 23  
Copyright © Alliance Semiconductor. All rights reserved.  
AS7C332MFT18A  
®
Pin and ball assignment  
100-pin TQFP - top view  
1
2
3
4
5
6
7
8
9
NC  
NC  
NC  
A
NC  
NC  
VDDQ  
VSSQ  
NC  
DQPa  
DQa7  
DQa6  
VSSQ  
VDDQ  
DQa5  
DQa4  
VSS  
NC  
VDD  
ZZ  
DQa3  
DQa2  
VDDQ  
VSSQ  
DQa1  
DQa0  
NC  
NC  
VSSQ  
VDDQ  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
VDDQ  
VSSQ  
NC  
NC  
DQb0  
DQb1  
VSSQ  
VDDQ  
DQb2  
DQb3  
NC  
VDD  
NC  
VSS  
DQb4  
DQb5  
VDDQ  
VSSQ  
DQb6  
DQb7  
DQPb  
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
TQFP 14 x 20mm  
VSSQ  
VDDQ  
27  
28  
29  
30  
NC  
NC  
NC  
NC  
NC  
NC  
4/26/04, v 1.0  
Alliance Semiconductor  
2 of 23  
AS7C332MFT18A  
®
Ball assignment for 165-ball BGA for 2M X 18  
1
2
3
4
5
6
7
8
9
10  
11  
NC  
A
CE0  
BWb  
NC  
CE2  
BWE  
ADSC  
ADV  
A
A
A
B
C
D
E
F
NC  
NC  
A
CE1  
NC  
BWa  
CLK  
GWE  
OE  
ADSP  
A
NC  
NC  
NC  
NC  
NC  
NC  
DQa  
DQa  
DQa  
DQa  
NC  
A
NC  
DQPa  
DQa  
DQa  
DQa  
DQa  
ZZ  
NC  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
NC  
DQb  
DQb  
DQb  
DQb  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
NC  
VDD  
VDD  
VDD  
VDD  
NC  
NC  
G
H
J
NC  
V
NC  
NC  
SS  
DQb  
DQb  
DQb  
DQb  
DQPb  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
A
V
V
V
V
V
Vss  
Vss  
Vss  
Vss  
NC  
V
NC  
DDQ  
DDQ  
DDQ  
DDQ  
DD  
DD  
DD  
DD  
DDQ  
DDQ  
DDQ  
DDQ  
V
V
V
V
V
V
V
V
NC  
K
L
M
N
P
NC  
NC  
V
A
V
NC  
DDQ  
SS  
SS  
DDQ  
1
A
A
TDI  
TMS  
A1  
TDO  
TCK  
A
A
A
1
A
LBO  
A
A0  
A
A
A
A
R
1 A0 and A1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is desired.  
4/26/04, v 1.0  
Alliance Semiconductor  
3 of 23  
AS7C332MFT18A  
®
Functional description  
The AS7C332MFT18A is a high-performance CMOS 32-Mbit synchronous Static Random Access Memory (SRAM) device organized as  
2,097152 words × 18 bits.  
Fast cycle times of 7.5/8.5/10 ns with clock access times (tCD) of 6.5/7.5/8.5 ns. Three chip enable (CE) inputs permit easy memory  
expansion. Burst operation is initiated in one of two ways: the controller address strobe (ADSC), or the processor address strobe (ADSP). The  
burst advance pin (ADV) allows subsequent internally generated burst addresses.  
Read cycles are initiated with ADSP (regardless of WE and ADSC) using the new external address clocked into the on-chip address register  
when ADSP is sampled low, the chip enables are sampled active, and the output buffer is enabled with OE. In a read operation, the data  
accessed by the current address registered in the address registers by the positive edge of CLK are carried to the data-out buffer. ADV is  
ignored on the clock edge that samples ADSP asserted, but is sampled on all subsequent clock edges. Address is incremented internally for  
the next access of the burst when ADV is sampled low and both address strobes are high. Burst mode is selectable with the LBO input. With  
LBO unconnected or driven high, burst operations use an interleaved count sequence. With LBO driven low, the device uses a linear count  
sequence.  
Write cycles are performed by disabling the output buffers with OE and asserting a write command. A global write enable GWE writes all 18  
bits regardless of the state of individual BW[a,b] inputs. Alternately, when GWE is high, one or more bytes may be written by asserting BWE  
and the appropriate individual byte BWn signals.  
BWn is ignored on the clock edge that samples ADSP low, but it is sampled on all subsequent clock edges. Output buffers are disabled when  
BWn is sampled LOW regardless of OE. Data is clocked into the data input register when BWn is sampled low. Address is incremented  
internally to the next burst address if BWn and ADV are sampled low.  
Read or write cycles may also be initiated with ADSC instead of ADSP. The differences between cycles initiated with ADSC and ADSP  
follow.  
• ADSP must be sampled high when ADSC is sampled low to initiate a cycle with ADSC.  
• WE signals are sampled on the clock edge that samples ADSC low (and ADSP high).  
• Master chip enable CE0 blocks ADSP, but not ADSC.  
The AS7C332MFT18A family operates from a core 3.3V power supply. I/Os use a separate power supply that can operate at 2.5V or 3.3V.  
These devices are available in a 100-pin TQFP and 165-ball BGA.  
TQFP and BGA capacitance  
Parameter  
Input capacitance  
I/O capacitance  
Symbol  
CIN  
Test conditions  
VIN = 0V  
Min  
Max  
Unit  
pF  
-
-
5
7
CI/O  
VOUT = 0V  
pF  
TQFP and BGA thermal resistance  
Description  
Conditions  
Symbol  
Typical  
40  
Units  
°C/W  
°C/W  
1–layer  
4–layer  
θJA  
θJA  
Thermal resistance  
(junction to ambient)1  
Test conditions follow standard test methods and  
procedures for measuring thermal impedance,  
per EIA/JESD51  
22  
Thermal resistance  
θJC  
8
°C/W  
(junction to top of case)1  
1 This parameter is sampled  
4/26/04, v 1.0  
Alliance Semiconductor  
4 of 23  
AS7C332MFT18A  
®
Signal descriptions  
Description  
Pin  
CLK  
I/O Properties  
I
I
CLOCK  
SYNC  
SYNC  
Clock. All inputs except OE, ZZ, and LBO are synchronous to this clock.  
Address. Sampled when all chip enables are active and when ADSC or ADSP are asserted.  
Data. Driven as output when the chip is enabled and when OE is active.  
A,A0,A1  
DQ[a,b]  
I/O  
Master chip enable. Sampled on clock edges when ADSP or ADSC is active. When CE0 is inactive,  
ADSP is blocked. Refer to the “Synchronous truth table” for more information.  
CE0  
I
I
SYNC  
SYNC  
Synchronous chip enables, active high, and active low, respectively. Sampled on clock edges when  
ADSC is active or when CE0 and ADSP are active.  
CE1, CE2  
ADSP  
ADSC  
ADV  
I
I
I
SYNC  
SYNC  
SYNC  
Address strobe processor. Asserted low to load a new address or to enter standby mode.  
Address strobe controller. Asserted low to load a new address or to enter standby mode.  
Advance. Asserted low to continue burst read/write.  
Global write enable. Asserted low to write all 18 bits. When high, BWE and BW[a,b] control write  
enable.  
GWE  
BWE  
I
I
SYNC  
SYNC  
Byte write enable. Asserted low with GWE high to enable effect of BW[a,b] inputs.  
Write enables. Used to control write of individual bytes when GWE is high and BWE is low. If any of  
BW[a,b] is active with GWE high and BWE low, the cycle is a write cycle. If all BW[a,b] are inactive,  
the cycle is a read cycle.  
BW[a,b]  
I
SYNC  
OE  
I
I
ASYNC  
STATIC  
Asynchronous output enable. I/O pins are driven when OE is active and chip is in read mode.  
Selects Burst mode. When tied to VDD or left floating, device follows interleaved Burst order. When  
driven Low, device follows linear Burst order. This signal is internally pulled High.  
LBO  
TDO  
TDI  
O
I
SYNC  
SYNC  
SYNC  
Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK (BGA only).  
Serial data-in to the JTAG circuit. Sampled on the rising edge of TCK (BGA only).  
TMS  
I
This pin controls the Test Access Port state machine. Sampled on the rising edge of TCK (BGA only).  
Test Clock. All inputs are sampled on the rising edge of TCK. All outputs are driven from the falling  
edge of TCK.  
TCK  
I
Test Clock  
ZZ  
I
-
ASYNC  
-
Snooze. Places device in low power mode; data is retained. Connect to GND if unused.  
No connects  
NC  
Write enable truth table (per byte)  
Function  
GWE BWE  
BWa  
X
BWb  
X
L
H
H
H
H
H
X
L
L
L
H
L
Write All Bytes  
L
L
Write Byte a  
Write Byte b  
L
H
H
L
X
X
Read  
H
H
Key: X = don’t care, L = low, H = high, n = a, b; BWE  
,
BWn = internal write signal.  
4/26/04, v 1.0  
Alliance Semiconductor  
5 of 23  
AS7C332MFT18A  
®
Burst sequence table  
Interleaved burst address  
A1 A0 A1 A0 A1 A0 A1 A0  
Linear burst address  
A1 A0 A1 A0 A1 A0 A1 A0  
1st Address  
2nd Address  
3rd Address  
4th Address  
1st Address  
0 0  
0 1  
1 0  
1 1  
0 1  
0 0  
1 1  
1 0  
1 0  
1 1  
0 0  
0 1  
1 1  
1 0  
0 1  
0 0  
0 0  
0 1  
1 0  
1 1  
0 1  
1 0  
1 1  
1 0  
1 0  
1 1  
0 0  
0 1  
1 1  
0 0  
0 1  
1 0  
2nd Address  
3rd Address  
4th Address  
Synchronous truth table  
[2]  
CE01  
H
L
CE1  
X
L
CE2  
X
X
X
H
H
L
ADSP ADSC ADV WRITE  
OE  
Address accessed  
NA  
CLK  
Operation  
Deselect  
DQ  
HiZ  
HiZ  
HiZ  
HiZ  
HiZ  
Q
X
L
L
X
L
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
X
H
H
H
H
H
H
H
H
H
H
L
X
X
X
X
X
L
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
NA  
Deselect  
L
L
H
L
NA  
Deselect  
L
X
X
H
H
H
H
X
X
X
X
X
X
X
X
H
X
X
X
X
X
L
NA  
Deselect  
L
H
L
NA  
Deselect  
L
X
X
L
External  
External  
External  
External  
Next  
Begin read  
L
L
L
H
L
Begin read  
HiZ  
Q
L
L
H
H
H
H
H
H
X
X
X
X
H
H
X
H
X
Begin read  
L
L
L
H
L
Begin read  
HiZ  
Q
X
X
X
X
H
H
H
H
L
X
X
X
X
X
X
X
X
L
H
H
H
H
H
H
H
H
L
Continue read  
Continue read  
Suspend read  
Suspend read  
Continue read  
Continue read  
Suspend read  
Suspend read  
Begin write  
Continue write  
Continue write  
Suspend write  
Suspend write  
L
H
L
Next  
HiZ  
Q
H
H
L
Current  
Current  
Next  
H
L
HiZ  
Q
L
H
L
Next  
HiZ  
Q
H
H
X
L
Current  
Current  
External  
Next  
H
X
X
X
X
X
HiZ  
3
D
X
H
X
H
X
X
X
X
H
H
H
H
L
D
D
D
D
L
L
Next  
H
H
L
Current  
Current  
L
1 X = don’t care, L = low, H = high  
2 For WRITE, L means any one or more byte write enable signals (BWa or BWb) and BWE are LOW or GWE is LOW. WRITE = HIGH for all BWx, BWE,  
GWE HIGH. See "Write enable truth table (per byte)," on page 5 for more information.  
3 For write operation following a READ, OE must be high before the input data set up time and held high throughout the input hold time  
4/26/04, v 1.0  
Alliance Semiconductor  
6 of 23  
AS7C332MFT18A  
®
Absolute maximum ratings  
Parameter  
Power supply voltage relative to GND  
Input voltage relative to GND (input pins)  
Input voltage relative to GND (I/O pins)  
Power dissipation  
Symbol  
DD, VDDQ  
VIN  
Min  
–0.5  
–0.5  
–0.5  
Max  
Unit  
V
V
+4.6  
VDD + 0.5  
VDDQ + 0.5  
1.8  
V
VIN  
V
Pd  
W
Short circuit output current  
IOUT  
20  
mA  
oC  
oC  
oC  
Storage temperature (TQFP)  
Storage temperature (BGA)  
T
stg (TQFP)  
stg (BGA)  
Tbias  
–65  
–65  
–65  
+150  
T
+125  
Temperature under bias  
+135  
Stresses greater than those listed under “Absolute maximum ratings” may cause permanent damage to the device. This is a stress rating only, and functional  
operation of the device at these or any other conditions outside those indicated in the operational sections of this specification is not implied. Exposure to abso-  
lute maximum rating conditions may affect reliability.  
Recommended operating conditions at 3.3V I/O  
Parameter  
Supply voltage for inputs  
Supply voltage for I/O  
Ground supply  
Symbol  
VDD  
Min  
3.135  
3.135  
0
Nominal  
Max  
3.465  
3.465  
0
Unit  
V
3.3  
3.3  
0
VDDQ  
Vss  
V
V
Recommended operating conditions at 2.5V I/O  
Parameter  
Supply voltage for inputs  
Supply voltage for I/O  
Ground supply  
Symbol  
VDD  
Min  
3.135  
2.375  
0
Nominal  
Max  
3.465  
2.625  
0
Unit  
V
3.3  
2.5  
0
VDDQ  
Vss  
V
V
4/26/04, v 1.0  
Alliance Semiconductor  
7 of 23  
AS7C332MFT18A  
®
DC electrical characteristics for 3.3V I/O operation  
Parameter  
Input leakage current1  
Output leakage current  
Sym  
Conditions  
VDD = Max, OV < VIN < VDD  
OE VIH, VDD = Max, OV < VOUT < VDDQ  
Address and control pins  
I/O pins  
Min  
-2  
Max  
Unit  
µA  
|ILI|  
2
2
|ILO  
|
-2  
µA  
2
VDD+0.3  
Input high (logic 1) voltage  
Input low (logic 0) voltage  
VIH  
VIL  
V
V
2
V
DDQ+0.3  
Address and control pins  
I/O pins  
-0.3*  
-0.5*  
2.4  
0.8  
0.8  
Output high voltage  
Output low voltage  
VOH  
VOL  
IOH = –4 mA, VDDQ = 3.135V  
IOL = 8 mA, VDDQ = 3.465V  
V
V
0.4  
1 FT, LBO, and ZZ pins and the 165 BGA JTAG pins (TMS, TDI, and TCK) have an internal pull-up or pull-down, and input leakage = ±10 µa.  
DC electrical characteristics for 2.5V I/O operation  
Parameter  
Input leakage current  
Output leakage current  
Sym  
Conditions  
VDD = Max, OV < VIN < VDD  
OE VIH, VDD = Max, OV < VOUT < VDDQ  
Address and control pins  
I/O pins  
Min  
-2  
Max  
Unit  
µA  
µA  
V
|ILI|  
2
2
|ILO  
|
-2  
1.7  
1.7  
-0.3*  
-0.3*  
1.7  
VDD+0.3  
Input high (logic 1) voltage  
Input low (logic 0) voltage  
VIH  
VIL  
V
DDQ+0.3  
V
Address and control pins  
I/O pins  
0.7  
0.7  
V
V
Output high voltage  
Output low voltage  
VOH  
VOL  
IOH = –4 mA, VDDQ = 2.375V  
IOL = 8 mA, VDDQ = 2.625V  
V
0.7  
V
*V min = -1.5 for pulse width less than 0.2 X t  
IL  
CYC  
IDD operating conditions and maximum limits  
Parameter  
Sym  
ICC  
Conditions  
-65  
310  
140  
110  
-75  
290  
130  
110  
-85  
270  
130  
110  
Unit  
CE0 = VIL, CE1 = VIH, CE2 = VIL, f = fMax  
,
Operating power supply current1  
mA  
IOUT = 0 mA  
ISB  
Deselected, f = fMax, ZZ < VIL  
Deselected, f = 0, ZZ < 0.2V,  
all VIN 0.2V or VDD – 0.2V  
ISB1  
Standby power supply current  
mA  
Deselected, f = f , ZZ  
V
– 0.2V,  
Max  
DD  
ISB2  
100  
100  
100  
all VIN VIL or VIH  
1 I given with no output loading. I increases with faster cycle times and greater output loading.  
CC  
CC  
4/26/04, v 1.0  
Alliance Semiconductor  
8 of 23  
AS7C332MFT18A  
®
Timing characteristics over operating range  
–65  
–75  
–85  
1
Parameter  
Sym  
Min  
7.5  
Max  
Min  
8.5  
Max  
Min  
10  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
Cycle time  
t
6.5  
3.5  
CYC  
Clock access time  
t
7.5  
3.5  
8.5  
4.0  
CD  
Output enable low to data valid  
Clock high to output low Z  
Data output invalid from clock high  
Output enable low to output low Z  
Output enable high to output high Z  
Clock high to output high Z  
Output enable high to invalid output  
Clock high pulse width  
t
OE  
t
2.5  
2.5  
0
2.5  
2.5  
0
2.5  
2.5  
0
2,3,4  
2
LZC  
t
OH  
t
2,3,4  
2,3,4  
2,3,4  
LZOE  
HZOE  
t
-
3.5  
3.8  
-
3.5  
4.0  
4.0  
5.0  
t
-
-
HZC  
t
0
0
0
OHOE  
t
2.2  
2.2  
1.5  
1.5  
1.5  
1.5  
0.5  
0.5  
0.5  
0.5  
1.5  
1.5  
1.5  
0.5  
0.5  
0.5  
2.5  
2.5  
2.0  
2.0  
2.0  
2.0  
0.5  
0.5  
0.5  
0.5  
2.0  
2.0  
2.0  
0.5  
0.5  
0.5  
3.0  
3.0  
2.0  
2.0  
2.0  
2.0  
0.5  
0.5  
0.5  
0.5  
2.0  
2.0  
2.0  
0.5  
0.5  
0.5  
5
5
CH  
Clock low pulse width  
t
t
t
CL  
AS  
DS  
Address setup to clock high  
Data setup to clock high  
6
6
Write setup to clock high  
t
6,7  
6,8  
6
WS  
Chip select setup to clock high  
Address hold from clock high  
Data hold from clock high  
Write hold from clock high  
Chip select hold from clock high  
ADV setup to clock high  
t
CSS  
t
AH  
DH  
WH  
t
6
t
6,7  
6,8  
6
t
CSH  
t
ADVS  
ADSP setup to clock high  
ADSC setup to clock high  
ADV hold from clock high  
ADSP hold from clock high  
ADSC hold from clock high  
1 See “Notes” on page 20.  
t
6
ADSPS  
ADSCS  
t
6
t
6
ADVH  
ADSPH  
ADSCH  
t
6
t
6
4/26/04, v 1.0  
Alliance Semiconductor  
9 of 23  
AS7C332MFT18A  
®
IEEE 1149.1 serial boundary scan (JTAG)  
The SRAM incorporates a serial boundary scan test access port (TAP). The port operates in accordance with IEEE Standard  
1149.1-1990. The SRAM contains a TAP controller, instruction register, boundary scan register, bypass register, and ID  
register.  
Disabling the JTAG feature  
If the JTAG function is not being implemented, TCK should be grounded to avoid mid-level input. At power-up, the device  
will come up in a reset state which will not interfere with the operation of the device.  
TAP controller state diagram  
TAP controller block diagram  
TEST-LOGIC  
RESET  
1
0
0
1
SELECT  
DR-SCAN  
1
1
SELECT  
IR-SCAN  
RUN-TEST/  
IDLE  
Bypass Register  
0
Selection  
Circuitry  
Selection  
Circuitry  
2
1 0  
0
0
Instruction Register  
TDI  
TDO  
1
1
.
. .  
2
3130 29  
Identification Register  
1 0  
1 0  
CAPTURE-DR  
0
CAPTURE-IR  
0
x
. . . . .  
2
1
Boundary Scan Register  
SHIFT-DR  
1
0
SHIFT-IR  
1
0
1
1
EXIT1-IR  
0
EXIT1-DR  
0
TCK  
TMS  
TAP Controller  
PAUSE-IR  
1
PAUSE-DR  
1
0
0
1
x = 75  
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-IR  
UPDATE-DR  
1
0
1
0
Note: The 0 or 1 next to each state represents the value of TMS at the rising edge of TCK.  
Test access port (TAP)  
Test clock (TCK)  
The test clock is used with only the TAP controller. All inputs are captured on the rising edge of TCK. All outputs are driven from the falling  
edge of TCK.  
Test mode select (TMS)  
The TAP controller receives commands from TMS input. It is sampled on the rising edge of TCK. You can leave this pin/ball unconnected if  
the TAP is not used. The pin/ball is pulled up internally, resulting in a logic high level.  
4/26/04, v 1.0  
Alliance Semiconductor  
10 of 23  
AS7C332MFT18A  
®
Test data-in (TDI)  
The TDI pin/ball serially inputs information into the registers and can be connected to the input of any of the registers. The register between  
TDI and TDO is chosen by the instruction that is loaded into the TAP instruction register. For information on loading the instruction register,  
see the TAP Controller State Diagram. TDI is internally pulled up and can be unconnected if the TAP is unused in an application. TDI is  
connected to the most significant bit (MSB) of any register.  
Test data-out (TDO)  
The TDO output pin/ball serially clocks data-out from the registers. The output is active depending upon the current state of the TAP state  
machine. The output changes on the falling edge of TCK. TDO is connected to the least significant bit (LSB) of any register. (See the TAP  
Controller State Diagram.)  
Performing a TAP RESET  
You can perform a RESET by forcing TMS high (VDD) for five rising edges of TCK. This RESET does not affect the operation of the SRAM  
and can be performed while the SRAM is operating.  
At power-up, the TAP is reset internally to ensure that TDO comes up in a high-Z state.  
TAP registers  
Registers are connected between the TDI and TDO pins/balls. They allow data to be scanned into and out of the SRAM test circuitry. Only  
one register can be selected at a time through the instruction register. Data is serially loaded into the TDI pin/ball on the rising edge of TCK.  
Data is output on the TDO pin/ball on the falling edge of TCK.  
Instruction register  
You can serially load three-bit instructions into the instruction register. The register is loaded when it is placed between the TDI and TDO  
pins/balls as shown in the TAP Controller Block Diagram. The instruction register is loaded with the IDCODE instruction at power up and  
also if the controller is placed in a reset state, as described in the previous section.  
When the TAP controller is in the Capture-IR state, the two least significant bits are loaded with a binary “01” pattern to allow for fault  
isolation of the board-level series test data path.  
Bypass register  
To save time when serially shifting data through registers, it is sometimes advantageous to skip certain chips. The bypass register is a single-  
bit register that can be placed between the TDI and TDO pins/balls. This allows data to be shifted through the SRAM with minimal delay.  
The bypass register is set low (Vss) when the BYPASS instruction is executed.  
Boundary scan register  
The boundary scan register is connected to all the input and bidirectional pins/balls on the SRAM. The x36 configuration has a 72-bit-long  
register and the x18 configuration has a 53-bit-long register.  
The boundary scan register is loaded with the contents of the RAM I/O ring when the TAP controller is in the Capture-DR state and is then  
placed between the TDI and TDO pins/balls when the controller is moved to the Shift-DR state. The EXTEST, SAMPLE/RELOAD, and  
SAMPLE Z instructions can be used to capture the contents of the I/O ring.  
The boundary scan order table shows the order in which the bits are connected. Each bit corresponds to one of the bumps on the SRAM  
package. The most significant bit (MSB) of the register is connected to TDI, and the least significant bit (LSB) is connected to TDO.  
Identification (ID) register  
The ID register has a vendor code and other information described in the Identification Register Definitions table. The ID register is loaded  
with a vendor-specific, 32-bit code during the Capture-DR state when the IDCODE command is loaded in the instruction register. The  
IDCODE is hardwired into the SRAM and can be shifted out when the TAP controller is in the Shift-DR state.  
4/26/04, v 1.0  
Alliance Semiconductor  
11 of 23  
AS7C332MFT18A  
®
TAP instruction set  
Eight different instructions are possible with the 3-bit instruction register. All combinations are listed in the Instruction Codes table. Three of  
these instructions are reserved and should not be used.  
Note that the TAP controller used in this SRAM is not fully compliant to the 1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented. The TAP controller cannot be used to load address, data, or control signals into the SRAM and cannot  
preload the I/O buffers. The SRAM does not implement the 1149.1 commands EXTEST or INTEST or the PRELOAD portion of SAMPLE/  
PRELOAD. Instead, it performs a capture of the I/O ring when these instructions are executed.  
Instructions are loaded into the TAP controller during the Shift-IR state when the instruction register is placed between TDI and TDO. During  
this state, instructions are shifted through the instruction register through the TDI and TDO pins/balls. To execute the instruction once it is  
shifted in, the TAP controller needs to be moved into the Update-IR state.  
EXTEST  
The EXTEST instruction, which executes whenever the instruction register is loaded with all 0s, is not implemented in this SRAM TAP  
controller. The TAP controller, however, does recognize an all-0 instruction. When an EXTEST instruction is loaded into the instruction  
register, the SRAM responds as if a SAMPLE/PRELOAD instruction has been loaded. Unlike the SAMPLE/PRELOAD instruction,  
EXTEST places the SRAM outputs in a high-Z state.  
EXTEST is a mandatory 1149.1 instruction. this device, therefore, is not compliant with 1149.1.  
IDCODE  
The IDCODE instruction is loaded into the instruction register upon power-up or whenever the TAP controller is given a test logic reset state.  
The IDCODE instruction causes a vendor-specific, 32-bit code to be loaded into the instruction register. It also places the instruction register  
between the TDI and TDO pins/balls and allows the IDCODE to be shifted out of the device when the TAP controller enters the Shift-DR  
state.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register to be connected between the TDI and TDO pins/balls when the TAP controller  
is in a Shift-DR state. It also places all SRAM outputs into a high-Z state.  
SAMPLE/PRELOAD  
When the SAMPLE/PRELOAD instruction is loaded into the instruction register and the TAP controller is in the Capture-DR state, a  
snapshot of data on the inputs and bidirectional pins/balls is captured in the boundary scan register. Note that the SAMPLE/PRELOAD is a  
1149.1 mandatory instruction, but the PRELOAD portion of this instruction is not implemented in this device. The TAP controller, therefore,  
is not fully 1149.1 compliant.  
Be aware that the TAP controller clock can operate only at a frequency up to 10 Mhz, while the SRAM clock operates more than an order of  
magnitude faster. Because there is a large difference in the clock frequencies, it is possible that during the Capture-DR state, an input or  
output can undergo a transition. The TAP may then try to capture a signal while in transition (metastable state). This will not harm the device,  
but there is no guarantee as to the value that will be captured. Repeatable results may not be possible.  
To guarantee that the boundary scan register captures the correct value of a signal, the SRAM signal must be stabilized long enough to meet  
the TAP controller’s capture setup plus hold time (tCS plus tCH). The SRAM clock input might not be captured correctly if there is no way in  
a design to stop (or slow) the clock during a SAMPLE/PRELOAD instruction. If this is an issue, it is possible to capture all other signals and  
ignore the value of the CK and CK# captured in the bounder scan register.  
Once the data is captured, it is possible to shift out the data by putting the TAP into the Shift-DR state. This places the boundary scan register  
between the TDI and TDO pins.  
Note that since the PRELOAD part of the command is not implemented, putting the TAP to the Update-DR state while performing a  
SAMPLE/PRELOAD instruction will have the same effect as the Pause-DR command.  
4/26/04, v 1.0  
Alliance Semiconductor  
12 of 23  
AS7C332MFT18A  
®
BYPASS  
The advantage of the BYPASS instruction is that it shortens the boundary scan path when multiple devices are connected together on a board.  
When the BYPASS instruction is loaded in the instruction register and the TAP is placed in a Shift-DR state, the bypass register is placed  
between TDI and TDO.  
RESERVED  
Do not use a reserved instruction. These instructions are not implemented but are reserved for future use.  
TAP timing diagram  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
THTH  
THTL  
TLTH  
Test Mode Select  
(TMS)  
t
t
MVTH THMX  
Test Data-In  
(TDI)  
t
TLOV  
t
t
DVTH  
THDX  
t
TLOX  
Test Data-Out  
(TDO)  
Undefined  
Don’t care  
TAP AC electrical characteristics  
o
o
For notes 1 and 2, +10 C T +110 C and +2.4V V +2.6V.  
J
DD  
Description  
Symbol  
Min Max Units  
Clock  
Clock cycle time  
Clock frequency  
Clock high time  
Clock low time  
Output Times  
tTHTH  
fTF  
tTHTL  
tTLTH  
50  
ns  
MHz  
ns  
20  
10  
20  
20  
ns  
TCK low to TDO unknown  
TCK low to TDO valid  
TDI valid to TCK high  
TCK high to TDI invalid  
Setup Times  
tTLOX  
tTLOV  
tDVTH  
tTHDX  
0
ns  
ns  
ns  
ns  
5
5
TMS setup  
tMVTH  
tCS1  
5
5
ns  
ns  
Capture setup  
Hold Times  
TMS hold  
tTHMX  
tCH1  
5
5
ns  
ns  
Capture hold  
1 tCS and tCH refer to the setup and hold time requirements of latching  
data from the boundary scan register.  
2 Test conditions are specified using the load in the figure TAP AC output  
load equivalent.  
4/26/04, v 1.0  
Alliance Semiconductor  
13 of 23  
AS7C332MFT18A  
®
TAP AC test conditions  
TAP AC output load equivalent  
VDDQ/2  
Input pulse levels. . . . . . . . . . . . . . . VSS to VDD  
Input rise and fall times. . . . . . . . . . . . . . . 1 ns  
Input timing reference levels. . . . . . . . . . VDDQ/2  
Output reference levels . . . . . . . . . . . . . .VDDQ/2  
Test load termination supply voltage. . . . . VDDQ/2  
50Ω  
TDO  
20pF  
ZO=50Ω  
3.3V VDD, TAP DC electrical characteristics and operating conditions  
(+10oC < TJ < +110oC and +3.135V < VDD < +3.465V unless otherwise noted)  
Description  
Input high (logic 1) voltage  
Input low (logic 0) voltage  
Input leakage current  
Conditions  
Symbol  
VIH  
Min  
2.0  
Max  
VDD + 0.3  
0.8  
Units  
V
Notes  
1, 2  
VIL  
-0.3  
-5.0  
V
1, 2  
0V VIN VDD  
ILI  
5.0  
µA  
Outputs disabled,  
0V VIN VDDQ(DQx)  
Output leakage current  
ILO  
-5.0  
5.0  
µA  
Output low voltage  
Output low voltage  
Output high voltage  
Output high voltage  
IOLC = 100µA  
VOL1  
VOL2  
VOH1  
VOH2  
0.7  
0.8  
V
V
V
V
1
1
1
1
IOLT = 2mA  
IOHS = -100µA  
2.9  
2.0  
IOHT = -2mA  
2.5V VDD, TAP DC electrical characteristics and operating conditions  
(+10oC < TJ < +110oC and +2.4V < VDD < +2.6V unless otherwise noted)  
Description  
Input high (logic 1) voltage  
Input low (logic 0) voltage  
Input leakage current  
Conditions  
Symbol  
VIH  
Min  
1.7  
Max  
VDD + 0.3  
0.7  
Units  
V
Notes  
1, 2  
VIL  
-0.3  
-5.0  
V
1, 2  
0V VIN VDD  
ILI  
5.0  
µA  
Outputs disabled,  
0V VIN VDDQ(DQx)  
Output leakage current  
ILO  
-5.0  
5.0  
µA  
Output low voltage  
Output low voltage  
Output high voltage  
Output high voltage  
IOLC = 100µA  
VOL1  
VOL2  
VOH1  
VOH2  
0.2  
0.7  
V
V
V
V
1
1
1
1
IOLT = 2mA  
IOHS = -100µA  
2.1  
1.7  
IOHT = -2mA  
1. All voltage referenced to VSS(GND).  
2. Overshoot: VIH(AC) VDD + 1.5V for t tKHKH/2  
Undershoot:VIL(AC) -0.5 for t tKHKH/2  
Power-up:VIH +2.6V and VDD 2.4V and VDDQ 1.4V for t 200ms  
During normal operation, VDDQ must not exceed VDD. Control input signals (such as LD, R/W, etc.) may not have pulsed widths less than  
tKHKL(Min) or operate at frequencies exceeding fKF(Max).  
4/26/04, v 1.0  
Alliance Semiconductor  
14 of 23  
AS7C332MFT18A  
®
Identification register definitions  
Instruction field  
Revision number (31:28)  
Device depth (27:23)  
2M x 18  
xxxx  
Description  
Reserved for version number.  
xxxxx/xxxxx  
xxxxx/xxxxx  
xxxxxx  
Defines the depth of 2M words.  
Defines the width of x18 bits.  
Reserved for future use.  
Device width (22:18)  
Device ID (17:12)  
JEDEC ID code (11:1)  
00000110100  
1
Allows unique identification of SRAM vendor.  
Indicates the presence of an ID register.  
ID register presence indicator (0)  
Scan register sizes  
Register name  
Instruction  
Bit size  
3
1
Bypass  
ID  
32  
Boundary scan  
x18:76  
Instruction codes  
Instruction  
Code  
Description  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Forces all  
SRAM outputs to High-Z state. This instruction is not 1149.1-compliant.  
EXTEST  
IDCODE  
000  
001  
Loads the ID register with the vendor ID code and places the register between TDI and TDO.  
This operation does not affect SRAM operations.  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Forces all  
SRAM output drivers to a high-Z state.  
SAMPLE Z  
RESERVED  
010  
101  
100  
Do not use. This instruction is reserved for future use.  
SAMPLE/  
PRELOAD  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operations.  
BYPASS  
111, 011, 110  
4/26/04, v 1.0  
Alliance Semiconductor  
15 of 23  
AS7C332MFT18A  
®
165-ball BGA boundary scan exit order (x18)  
Bit #s  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
Signal Name  
CLK  
CE2  
BWa  
NC  
Ball ID  
6B  
6A  
5B  
5A  
4A  
4B  
3B  
3A  
2A  
2B  
1B  
1A  
1C  
1D  
1E  
1F  
Bit #s  
1
Signal Name  
A
Ball ID  
6N  
2
A
8P  
3
A
8R  
4
A
9R  
BWb  
NC  
5
A
9P  
6
A
10P  
10R  
11R  
11P  
11H  
11N  
11M  
11L  
11K  
11J  
CE1  
CE0  
A
7
A
8
A
9
A
A
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
ZZ  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQPa  
NC  
10M  
10L  
10K  
10J  
NC  
1G  
2D  
2E  
2F  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQPb  
NC  
11G  
11F  
11E  
11D  
11C  
10F  
10E  
10D  
10G  
11A  
11B  
10A  
10B  
9A  
2G  
1J  
1K  
1L  
1M  
1N  
2K  
2L  
2M  
2J  
NC  
NC  
NC  
NC  
NC  
A
NC  
NC  
A
2R  
1R  
3P  
A
LBO  
A
A
ADV  
ADSP  
ADSC  
OE  
A
3R  
4R  
4P  
9B  
A
8A  
A
8B  
A1  
6P  
BWE  
GWE  
7A  
A0  
6R  
7B  
Note 1 : NC and V pins included in the scan exit order are read as “X” (i.e. Don’t care)  
SS  
4/26/04, v 1.0  
Alliance Semiconductor  
16 of 23  
AS7C332MFT18A  
®
Key to switching waveforms  
Rising input  
Falling input  
Undefined or don’t care  
Timing waveform of read cycle  
tCYC  
tCL  
tCH  
CLK  
tADSPS  
tADSPH  
ADSP  
ADSC  
tADSCS  
tADSCH  
LOAD NEW ADDRESS  
tAS  
tAH  
A1  
A2  
A3  
Address  
tWS  
tWH  
GWE, BWE  
tCSS  
tCSH  
CE0, CE2  
CE1  
tADVS  
tADVH  
ADV  
OE  
ADV inserts wait states  
tOE  
tHZOE  
tOH  
tLZOE  
Q(A3Ý11)  
Q(A2Ý01)  
Q(A2Ý10)  
Q(A2Ý11)  
Q(A3)  
Q(A3Ý01)  
Q(A3Ý10)  
Q(A1)  
DOUT  
tCD  
tHZC  
Read Suspend Read  
Burst  
Read  
Burst  
Read  
2Ý10  
) Q(A  
Suspend  
Read  
Burst  
Read  
2Ý11  
Read  
Q(A3)  
Burst  
Read  
3Ý01  
Burst  
Read  
3Ý10  
Burst  
Read  
3Ý11  
)
Q(A1)  
Read  
Q(A2)  
DSEL  
2Ý01  
) Q(A  
2Ý10  
) Q(A  
Q(A1)  
Q(A  
)
Q(A  
) Q(A  
) Q(A  
Note: Ý = XOR when LBO = high/no connect; Ý = ADD when LBO = low. BW[a,b] is don’t care.  
4/26/04, v 1.0  
Alliance Semiconductor  
17 of 23  
AS7C332MFT18A  
®
Timing waveform of write cycle  
tCYC  
tCL  
tCH  
CLK  
tADSPS  
tADSPH  
ADSP  
ADSC  
tADSCS  
tADSCH  
ADSC LOADS NEW ADDRESS  
A3  
tAS  
tAH  
A1  
A2  
Address  
tWS  
tWH  
BWE  
BW[a,b]  
tCSS  
tCSH  
CE0, CE2  
CE1  
tADVS  
tADVH  
ADV SUSPENDS BURST  
ADV  
OE  
tDS  
tDH  
D(A1)  
D(A2)  
D(A2Ý01)  
D(A2Ý01) D(A2Ý10)  
D(A2Ý11)  
D(A3)  
D(A3Ý01) D(A3Ý10)  
Data In  
ADV  
Burst  
Write  
Read Q(A1) Suspend  
Read  
Q(A2)  
Suspend  
Write  
ADV  
Burst  
Write  
Suspend  
Write  
ADV  
Burst  
Write  
ADV  
Burst  
Write  
Write  
3
D(A )  
Burst  
Write  
3Ý01  
D(A )  
Write  
D(A1)  
2
2Ý01  
D(A )  
D(A  
)
3Ý10  
D(A  
)
2Ý01  
2Ý10  
2Ý11  
Q(A )  
D(A  
)
Q(A  
)
Note: Ý = XOR when LBO = high/no connect; Ý = ADD when LBO = low.  
4/26/04, v 1.0  
Alliance Semiconductor  
18 of 23  
AS7C332MFT18A  
®
Timing waveform of read/write cycle  
tCYC  
tCL  
tCH  
CLK  
tADSPS  
tADSPH  
ADSP  
tAS  
tAH  
A2  
A3  
A1  
Address  
tWS  
tWH  
GWE  
CE0, CE2  
CE1  
tADVS  
tADVH  
ADV  
OE  
tDH  
tDS  
DIN  
D(A2)  
tCD  
tOH  
tOE  
tHZOE  
DOUT  
Q(A1)  
Q(A3Ý01)  
Q(A3Ý10)  
Q(A3Ý11)  
tLZC  
tLZOE  
DSEL  
Read  
Q(A1)  
Suspend  
Read  
Q(A1)  
Read  
Q(A2)  
Suspend  
Write  
D(A )  
Read  
Q(A3)  
ADV  
Burst  
Read  
ADV  
Burst  
Read  
ADV  
Burst  
Read  
Suspend  
Read  
2
3Ý11  
)
Q(A  
3Ý01  
3Ý10  
3Ý11  
Q(A )  
D(A  
)
Q(A  
)
Note: Ý = XOR when LBO = high/no connect; Ý = ADD when LBO = low.  
4/26/04, v 1.0  
Alliance Semiconductor  
19 of 23  
AS7C332MFT18A  
®
AC test conditions  
• Output load: For tLZC, tLZOE, tHZOE, tHZC, see Figure C. For all others, see Figure B.  
• Input pulse level: GND to 3V. See Figure A.  
Thevenin equivalent:  
• Input rise and fall time (measured at 0.3V and 2.7V): 2 ns. See Figure A.  
• Input and output timing reference levels: 1.5V.  
+3.3V for 3.3V I/O;  
/+2.5V for 2.5V I/O  
319Ω/1667Ω  
Z0 = 50Ω  
50  
DOUT  
VL = 1.5V  
for 3.3V I/O;  
= VDDQ/2  
+3.0V  
DOUT  
5 pF*  
90%  
10%  
90%  
10%  
353Ω/1538Ω  
30 pF*  
GND *including scope  
and jig capacitance  
GND  
for 2.5V I/O  
Figure C: Output load(B)  
Figure A: Input waveform  
Figure B: Output load (A)  
Notes  
1
2
3
4
5
6
For test conditions, see “AC test conditions”, Figures A, B, and C.  
This parameter is measured with output load condition in Figure C.  
This parameter is sampled but not 100% tested.  
t
t
HZOE is less than tLZOE, and tHZC is less than tLZC at any given temperature and voltage.  
CH is measured as high if above VIH, and tCL is measured as low if below VIL.  
This is a synchronous device. All addresses must meet the specified setup and hold times for all rising edges of CLK. All other synchronous inputs must  
meet the setup and hold times for all rising edges of CLK when chip is enabled.  
7
8
Write refers to GWE  
,
BWE, and BW[a,b].  
CE1, and CE2  
Chip select refers to CE0  
,
.
4/26/04, v 1.0  
Alliance Semiconductor  
20 of 23  
AS7C332MFT18A  
®
Package dimensions  
100-pin quad flat pack (TQFP)  
TQFP  
Hd  
D
Min  
0.05  
Max  
0.15  
A1  
A2  
b
1.35  
1.45  
b
e
0.22  
0.38  
c
0.09  
0.20  
D
13.90  
19.90  
14.10  
20.10  
E
e
0.65 nominal  
Hd  
He  
L
15.85  
21.80  
0.45  
16.15  
22.20  
0.75  
He  
E
L1  
α
1.00 nominal  
0°  
7°  
Dimensions in millimeters  
c
α
L1  
L
A1 A2  
165-ball BGA (ball grid array)  
Top  
Bottom  
A1 corner index area  
1 2 3 4 5 6 7 8 9 10 11  
11 10 9 8 7 6 5 4 3 2 1  
A
B
C
A
B
C
A
B
D
E
F
D
E
F
All measurements are in mm.  
G
H
J
K
L
M
N
P
R
G
H
J
K
L
M
N
P
R
Min  
Typ  
Max  
1.00  
A
B
C
D
E
F
16.90 17.00 17.10  
C
14.00  
14.90 15.00 15.10  
10.00  
0.26  
1.00  
15.00±0.10  
A
0.35  
1.26  
0.45  
0.40  
1.36  
0.50  
0.45  
1.46  
0.55  
G
H
I
D
10.00  
E
15.00±0.10  
D
0.20 Z  
G
0.12 Z  
H
F
/ 0.50±0.05  
Ø
Ø
M Z X Y  
M Z  
Detail of Solder Ball  
Side View  
4/26/04, v 1.0  
Alliance Semiconductor  
21 of 23  
AS7C332MFT18A  
®
Ordering information  
Package & Width  
-65  
-75  
-85  
AS7C332MFT18A-65TQC  
AS7C332MFT18A-65TQI  
AS7C332MFT18A-65BC  
AS7C332MFT18A-65BI  
AS7C332MFT18A-75TQC  
AS7C332MFT18A-75TQI  
AS7C332MFT18A-75BC  
AS7C332MFT18A-75BI  
AS7C332MFT18A-85TQC  
AS7C332MFT18A-85TQI  
AS7C332MFT18A-85BC  
AS7C332MFT18A-85BI  
TQFP x 18  
BGA x 18  
Note: Add suffix ‘N’ to the above part number for Lead Free Parts (Ex. AS7C332MFT18A-65TQCN)  
Part numbering guide  
AS7C  
33  
2M  
FT  
18  
A
–XX  
TQ or B  
C/I  
X
1
2
3
4
5
6
7
8
9
10  
1.Alliance Semiconductor SRAM prefix  
2.Operating voltage: 33 = 3.3V  
3.Organization: 2M = 2M  
4.Flow-through mode  
5.Organization: 18 = x 18  
6.Production version: A = first production version  
7.Clock speed  
8.Package type: TQ = TQFP, B = BGA  
9.Operating temperature: C = commercial (0° C to 70° C); I = industrial (-40° C to 85° C)  
10. N = Lead free part  
4/26/04, v 1.0  
Alliance Semiconductor  
22 of 23  
AS7C332MFT18A  
®
®
Copyright © Alliance Semiconductor  
All Rights Reserved  
Part Number: AS7C332MFT18A  
Document Version: v 1.0  
Alliance Semiconductor Corporation  
2575, Augustine Drive,  
Santa Clara, CA 95054  
Tel: 408 - 855 - 4900  
Fax: 408 - 855 - 4999  
www.alsc.com  
© Copyright 2003 Alliance Semiconductor Corporation. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of  
Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its  
products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data contained herein represents Alliance's best  
data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product described herein is under  
development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for  
potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility  
or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance  
products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express  
agreed to in Alliance's Terms and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively according to Alliance's Terms  
and Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other  
intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction  
or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems implies that the  
manufacturer assumes all risk of such use and agrees to indemnify Alliance against all claims arising from such use.  

相关型号:

AS7C332MFT18A-65TQI

Standard SRAM, 2MX18, 6.5ns, CMOS, PQFP100, 14 X 20 MM, TQFP-100
ISSI

AS7C332MFT18A-65TQIN

Standard SRAM, 2MX18, 6.5ns, CMOS, PQFP100, 14 X 20 MM, LEAD FREE, TQFP-100
ISSI

AS7C332MFT18A-75TQC

3.3V 2M x 18 Flow-through synchronous SRAM
ALSC

AS7C332MFT18A-75TQCN

3.3V 2M x 18 Flow-through synchronous SRAM
ALSC

AS7C332MFT18A-75TQI

3.3V 2M x 18 Flow-through synchronous SRAM
ALSC

AS7C332MFT18A-75TQIN

3.3V 2M x 18 Flow-through synchronous SRAM
ALSC

AS7C332MFT18A-85TQC

3.3V 2M x 18 Flow-through synchronous SRAM
ALSC

AS7C332MFT18A-85TQCN

3.3V 2M x 18 Flow-through synchronous SRAM
ALSC

AS7C332MFT18A-85TQI

3.3V 2M x 18 Flow-through synchronous SRAM
ALSC

AS7C332MFT18A-85TQIN

3.3V 2M x 18 Flow-through synchronous SRAM
ALSC

AS7C332MNTD18A

3.3V 2M x 18 Pipelined SRAM with NTD
ALSC
ALSC