IS31LT3170-STLS4-TR [ISSI]

Display Driver,;
IS31LT3170-STLS4-TR
型号: IS31LT3170-STLS4-TR
厂家: INTEGRATED SILICON SOLUTION, INC    INTEGRATED SILICON SOLUTION, INC
描述:

Display Driver,

驱动 光电二极管 接口集成电路
文件: 总19页 (文件大小:454K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IS31LT3170/71  
10-TO-150MA CONSTANT-CURRENT LED DRIVER  
October 2017  
GENERAL DESCRIPTION  
FEATURES  
The IS31LT3170 and IS31LT3171 are adjustable  
linear current devices with excellent temperature  
stability. A single resistor is all that is required to set  
the operating current from 10mA to 150mA. The  
devices can operate from an input voltage from 2.5V  
to 42V with a minimal voltage headroom of 1V  
(typical). Designed with a low dropout voltage; the  
device can drive LED strings close to the supply  
voltage without switch capacitors or inductors.  
Low-side current sink  
- Current preset to 10mA  
- Adjustable from 10mA to 150mA with external  
resistor selection  
Wide input voltage range from  
- 2.5V to 42V (IS31LT3171)  
- 5V to 42V (IS31LT3170)  
with a low dropout of typical 1V  
Up to 10kHz PWM input (IS31LT3171 only)  
Protection features:  
The IS31LT3170/71 simplifies designs by  
providing a stable current without the additional  
requirement of input or output capacitors,  
inductors, FETs or diodes. The complete constant  
current driver requires only a current set resistor  
and a small PCB area making designs both  
efficient and cost effective.  
- 0.26%/K negative temperature coefficient at  
high temp for thermal protection  
Up to 1W power dissipation in a small SOT23-6  
package  
RoHS compliant (Pb-free) package  
The EN pin (1) of the IS31LT3170 can be tied to  
Vbat or BCM PWM signal for high side dimming.  
The EN Pin (1) of the IS31LT3171 can function as  
the PWM signal input used for low side dimming.  
APPLICATIONS  
Architectural LED lighting  
Channel letters for advertising, LED strips for  
decorative lighting  
As a current sink it is ideal for LED lighting  
applications or current limiter for power supplies.  
Retail lighting in fridge, freezer case and  
vending machines  
The device is provided in a lead (Pb) free, SOT23-6  
package.  
Emergency lighting (e.g. steps lighting, exit way  
sign etc.)  
TYPICAL APPLICATION CIRCUIT  
Figure 1 Typical Application Circuit  
Integrated Silicon Solution, Inc. – www.issi.com  
Rev. C, 10/20/2017  
1
IS31LT3170/71  
PIN CONFIGURATION  
Package  
Pin Configuration (Top View)  
SOT23-6  
PIN DESCRIPTION  
No.  
Pin  
Description  
1
EN  
Enable pin (PWM input IS31LT3171 only).  
Current sink.  
2,3,5  
OUT  
GND  
REXT  
4
6
Ground.  
Optional current adjust.  
Integrated Silicon Solution, Inc. – www.issi.com  
2
Rev. C, 10/20/2017  
IS31LT3170/71  
ORDERING INFORMATION  
Industrial Range: -40°C to +125°C  
Order Part No.  
Package  
QTY/Reel  
IS31LT3170-STLS4-TR  
IS31LT3171-STLS4-TR  
SOT-23-6, Lead-free  
3000  
Copyright © 2017 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any  
time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are  
advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.  
Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the  
product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not  
authorized for use in such applications unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that:  
a.) the risk of injury or damage has been minimized;  
b.) the user assume all such risks; and  
c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances  
Integrated Silicon Solution, Inc. – www.issi.com  
3
Rev. C, 10/20/2017  
IS31LT3170/71  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
Maximum enable voltage, VEN(MAX) only for IS31LT3170-STLS4-TR  
45V  
VEN(MAX) only for IS31LT3171-STLS4-TR  
6V  
Maximum output current, IOUT(MAX)  
Maximum output voltage, VOUT(MAX)  
Reverse voltage between all terminals, VR  
Package thermal resistance, junction to ambient (4 layer standard test  
PCB based on JEDEC standard), θJA  
Power dissipation, PD(MAX) (Note 2)  
Maximum junction temperature, TJMAX  
Storage temperature range, TSTG  
Operating temperature range, TA=TJ  
ESD (HBM)  
200mA  
45V  
0.5V  
130°C/W  
0.77W  
+150°C  
-65°C ~ +150°C  
-40°C ~ +125°C  
±2kV  
ESD (CDM)  
±500V  
Note 1:  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only  
and functional operation of the device at these or any other condition beyond those indicated in the operational sections of the specifications is  
not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
Note 2:  
Detail information please refer to package thermal de-rating curve on Page 14.  
ELECTRICAL CHARACTERISTICS  
”  
This symbol in the table means these parameters are for IS31LT3170-STLS4-TR.  
” This symbol in the table means these parameters are for IS31LT3171-STLS4-TR.  
Test condition is TA = TJ = 25°C, unless otherwise specified. (Note 3)  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max. Unit  
VBD_OUT OUT pin breakdown voltage  
VEN= 0V  
42  
V
VEN= 24V  
VEN= 3.3V  
0.35  
0.35  
106  
IEN  
Enable current  
Internal resistor  
mA  
RINT  
IRINT = 10mA  
OUT = 1.4V, VEN = 24V,  
V
9
9
10  
10  
11  
REXT OPEN  
mA  
11  
VOUT = 1.4V, VEN = 3.3V,  
REXT OPEN  
Output current  
VOUT > 2.0V, VEN = 24V,  
REXT = 10Ω  
100  
100  
10  
10  
113  
113  
120  
mA  
120  
IOUT  
VOUT > 2.0V, VEN = 3.3V,  
REXT = 10Ω  
VOUT > 2.0V, VEN = 24V  
VOUT > 2.0V, VEN = 3.3V  
150  
mA  
150  
Output current Range  
(Note 4, 5)  
Integrated Silicon Solution, Inc. – www.issi.com  
4
Rev. C, 10/20/2017  
IS31LT3170/71  
DC CHARACTERISTICS WITH STABILIZED LED LOAD  
”  
This symbol in the table means these parameters are for IS31LT3170-STLS4-TR.  
” This symbol in the table means these parameters are for IS31LT3171-STLS4-TR.  
Test condition is TA= TJ= 25°C, unless otherwise specified. (Note 3)  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max. Unit  
5
42  
V
Sufficient supply voltage on EN  
pin  
VS  
2.5  
5.5  
Lowest sufficient headroom  
voltage on OUT pin  
VHR  
IOUT = 100mA  
1
1.2  
V
VOUT > 2.0V, VEN = 24V,  
EXT = 10Ω  
-0.26  
-0.26  
1.9  
R
Output current change versus  
ambient temp change  
%/K  
VOUT > 2.0V, VEN = 3.3V,  
REXT = 10Ω  
IOUT/IOUT  
(Note 4)  
VOUT > 2.0V, VEN = 24V,  
R
EXT = 10Ω  
VOUT > 2.0V, VEN = 3.3V,  
EXT = 10Ω  
Output current change versus  
Vout  
%/V  
1.9  
R
Note 3: Production testing of the device is performed at 25°C. Functional operation of the device and parameters specified over -40°C to  
+125°C temperature range, are guaranteed by design and characterization.  
Note 4: Guaranteed by design.  
Note 5: The maximum output current is dependent on the PCB board design, air flow, ambient temperature and power dissipation in the  
device. Please refer to the package thermal de-rating curve on Page 14 for more detail information.  
Integrated Silicon Solution, Inc. – www.issi.com  
5
Rev. C, 10/20/2017  
IS31LT3170/71  
FUNCTIONAL BLOCK DIAGRAM  
IS31LT3170  
IS31LT3171  
Integrated Silicon Solution, Inc. – www.issi.com  
6
Rev. C, 10/20/2017  
IS31LT3170/71  
TYPICAL PERFORMANCE CHARACTERISTICS  
IS31LT3170  
30  
80  
60  
V
EN = 42V  
V
EN = 42V  
TA = 25°C  
TA  
= -40°C  
R
EXT = 20  
R
EXT Open  
25  
20  
15  
10  
TA = 125°C  
TA = 85°C  
40  
TA = 85°C  
TA = 25°C  
20  
0
T = 125°C  
A
T = -40°C  
A
5
0
0.5  
2
3.5  
5
6.5  
8
9.5  
11  
12.5  
14  
0.5  
2
3.5  
5
6.5  
8
9.5  
11  
12.5  
14  
Output Voltage (V)  
Output Voltage (V)  
Figure 2 IOUT vs. VOUT  
Figure 3 IOUT vs. VOUT  
150  
100  
50  
180  
160  
V
EN = 42V  
V
EN = 42V  
R
EXT = 7.5Ω  
REXT = 10  
T = 25°C  
A
TA = 25°C  
T = -40°C  
A
TA  
= -40°C  
140  
120  
100  
80  
TA = 85°C  
TA = 85°C  
TA = 125°C  
TA = 125°C  
60  
40  
20  
0
0
0.5  
2
3.5  
5
6.5  
8
9.5  
11  
12.5  
14  
0.5  
2
3.5  
5
6.5  
8
9.5  
11  
12.5  
14  
Output Voltage (V)  
Output Voltage (V)  
Figure 4 IOUT vs. VOUT  
Figure 5 IOUT vs. VOUT  
200  
180  
160  
140  
120  
100  
80  
200  
180  
160  
140  
120  
100  
80  
V
f
EN = 5V  
PWM = 100Hz@1% Duty Cycle  
= 25°C  
V
EN = 42V  
= 25°C  
REXT = 7.5  
TA  
TA  
R
EXT = 10Ω  
REXT = 7.5Ω  
REXT = 10Ω  
R
EXT= 20Ω  
REXT = 20Ω  
60  
60  
40  
40  
REXT Open  
REXT Open  
20  
0
20  
0
0
2
4
6
8
10  
12  
14  
0
2
4
6
8
10  
12  
14  
Output Voltage (V)  
Output Voltage (V)  
Figure 6 IOUT vs. VOUT  
Figure 7 IOUT vs. VOUT  
Integrated Silicon Solution, Inc. – www.issi.com  
7
Rev. C, 10/20/2017  
IS31LT3170/71  
20  
80  
60  
40  
VOUT = 2V  
V
OUT = 2V  
TA  
= 25°C  
R
EXT Open  
REXT = 20  
TA = 85°C  
16  
12  
8
TA = -40°C  
TA = 125°C  
T = 25°C  
A
TA  
= 85°C  
TA = 125°C  
TA  
= -40°C  
20  
0
4
0
5
15  
25  
35  
42  
5
15  
25  
35  
42  
V
EN (V)  
V
EN (V)  
Figure 8 IOUT vs. VEN  
Figure 9 IOUT vs. VEN  
150  
120  
200  
175  
150  
125  
100  
75  
V
OUT = 2V  
V
OUT = 2V  
R
EXT = 10  
R
EXT = 7.5Ω  
T = 25°C  
A
TA = 25°C  
TA  
= 85°C  
T = 85°C  
A
T = -40°C  
A
T = -40°C  
A
90  
60  
TA = 125°C  
TA = 125°C  
50  
30  
0
25  
0
5
15  
25  
35  
42  
5
15  
25  
35  
42  
VEN (V)  
V
EN (V)  
Figure 10 IOUT vs. VEN  
Figure 11 IOUT vs. VEN  
180  
160  
500  
400  
300  
200  
V
OUT = 2V  
= 25°C  
R
EXT = 7.5Ω  
I
R
OUT = 0A  
EXT Open  
TA  
TA = -40°C  
140  
120  
100  
80  
TA = 25°C  
R
EXT = 10Ω  
TA  
= 85°C  
R
EXT = 20Ω  
TA = 125°C  
60  
40  
100  
0
R
EXT Open  
20  
0
0
5
10  
15  
20  
25  
30  
35  
40 42  
42  
0
5
10  
15  
20  
25  
30  
35  
40  
V
EN (V)  
V
EN (V)  
Figure 12 IOUT vs. VEN  
Figure 13 IEN vs. VEN  
Integrated Silicon Solution, Inc. – www.issi.com  
8
Rev. C, 10/20/2017  
IS31LT3170/71  
250  
V
V
EN = 42V  
OUT = 2V  
200  
150  
100  
50  
0
1
10  
100  
R
EXT ()  
Figure 14 IOUT vs. REXT  
Integrated Silicon Solution, Inc. – www.issi.com  
9
Rev. C, 10/20/2017  
IS31LT3170/71  
IS31LT3171  
30  
80  
60  
V
EN = 3.3V  
T
A
= -40°C  
= 125°C  
T = 25°C  
A
V
EN = 3.3V  
R
EXT = 20Ω  
R
EXT Open  
25  
20  
15  
10  
TA = 85°C  
TA  
40  
TA = 25°C  
TA = 85°C  
20  
0
T = 125°C  
A
5
0
TA  
= -40°C  
2
0.5  
2
3.5  
5
6.5  
8
9.5  
11  
12.5  
14  
0.5  
3.5  
5
6.5  
8
9.5  
11  
12.5  
14  
Output Voltage (V)  
Output Voltage (V)  
Figure 16 IOUT vs. VOUT  
Figure 15 IOUT vs. VOUT  
150  
100  
50  
180  
160  
V
EN = 3.3V  
V
EN = 3.3V  
R
EXT = 7.5Ω  
T = 25°C  
A
R
EXT = 10Ω  
T
A
= -40°C  
T = 25°C  
A
T = -40°C  
A
140  
120  
100  
80  
T = 85°C  
A
TA = 85°C  
T = 125°C  
A
TA = 125°C  
60  
40  
20  
0
0
0.5  
2
3.5  
5
6.5  
8
9.5  
11  
12.5  
14  
0.5  
2
3.5  
5
6.5  
8
9.5  
11  
12.5  
14  
Output Voltage (V)  
Output Voltage (V)  
Figure 17 IOUT vs. VOUT  
Figure 18 IOUT vs. VOUT  
200  
180  
160  
140  
120  
100  
80  
200  
180  
160  
140  
120  
100  
80  
V
EN = 5V  
V
EN = 3.3V  
= 25°C  
REXT = 7.5Ω  
fPWM = 100Hz@1% Duty Cycle  
TA  
TA  
= 25°C  
REXT = 7.5Ω  
R
EXT = 10Ω  
R
EXT = 10Ω  
R
EXT = 20Ω  
R
EXT= 20Ω  
60  
60  
40  
40  
REXT Open  
R
EXT Open  
20  
0
20  
0
0
2
4
6
8
10  
12  
14  
0
2
4
6
8
10  
12  
14  
Output Voltage (V)  
Output Voltage (V)  
Figure 19 IOUT vs. VOUT  
Figure 20 IOUT vs. VOUT  
Integrated Silicon Solution, Inc. – www.issi.com  
10  
Rev. C, 10/20/2017  
IS31LT3170/71  
20  
80  
60  
40  
TA = 25°C  
V
OUT = 2V  
VOUT = 2V  
TA = 85°C  
REXT = 20  
R
EXT Open  
16  
12  
8
TA = 125°C  
TA = -40°C  
TA = 85°C  
TA = 25°C  
TA = 125°C  
TA = -40°C  
20  
0
4
0
2.5  
2.5  
0.5  
3
3.5  
4
4.5  
5
5
5
2.5  
3
3.5  
4
4.5  
5
V
EN (V)  
V
EN (V)  
Figure 21 IOUT vs. VEN  
Figure 22 IOUT vs. VEN  
150  
120  
200  
175  
150  
125  
100  
75  
V
R
OUT = 2V  
V
R
OUT = 2V  
EXT = 7.5  
T = 25°C  
A
EXT = 10Ω  
T = 25°C  
A
T = -40°C  
A
TA  
= 85°C  
TA = 85°C  
T = -40°C  
A
T
A
= 125°C  
TA  
= 125°C  
90  
60  
50  
30  
0
25  
0
3
3.5  
4
4.5  
2.5  
3
3.5  
4
4.5  
5
V
EN (V)  
VEN (V)  
Figure 23 IOUT vs. VEN  
Figure 24 IOUT vs. VEN  
180  
160  
500  
400  
300  
200  
REXT = 7.5Ω  
VOUT = 2V  
IOUT = 0A  
T
A
= 25°C  
R
EXT Open  
140  
120  
100  
80  
R
EXT = 10Ω  
TA  
= -40°C  
TA  
= 25°C  
R
EXT = 20Ω  
T = 85°C  
A
TA = 125°C  
60  
40  
100  
0
R
EXT Open  
20  
0
2.5  
3
3.5  
4
4.5  
5
1
1.5  
2
2.5  
3
3.5  
4
4.5  
VEN (V)  
V
EN (V)  
Figure 25 IOUT vs. VEN  
Figure 26 IEN vs. VEN  
Integrated Silicon Solution, Inc. – www.issi.com  
11  
Rev. C, 10/20/2017  
IS31LT3170/71  
250  
V
OUT = 3V, 3 LEDs  
V
V
EN = 3.3V  
OUT = 2V  
VEN = 5V, 100Hz, 50% Duty Cycle  
REXT = 10  
200  
150  
100  
TJ  
= -40°C  
V
EN  
2V/Div  
50  
0
I
OUT  
50mA/Div  
1
10  
100  
Time (200ns/Div)  
R
EXT ()  
Figure 27 IOUT vs. REXT  
Figure 28 VEN vs. IOUT Delay and Rising Edge  
V
V
OUT = 3V, 3 LEDs  
EN = 5V, 100Hz, 50% Duty Cycle  
V
OUT = 3V, 3 LEDs  
VEN = 5V, 100Hz, 50% Duty Cycle  
R
EXT = 10  
REXT = 10Ω  
T
J
= 25°C  
TJ  
= 125°C  
VEN  
VEN  
2V/Div  
2V/Div  
IOUT  
IOUT  
50mA/Div  
50mA/Div  
Time (200ns/Div)  
Time (200ns/Div)  
Figure 29 VEN vs. IOUT Delay and Rising Edge  
Figure 30 VEN vs. IOUT Delay and Rising Edge  
V
OUT = 3V, 3 LEDs  
V
OUT = 3V, 3 LEDs  
VEN = 5V, 100Hz, 50% Duty Cycle  
VEN = 5V, 100Hz, 50% Duty Cycle  
REXT = 10Ω  
REXT = 10Ω  
TJ  
= -40°C  
TJ  
= 25°C  
V
EN  
V
EN  
2V/Div  
2V/Div  
I
OUT  
I
OUT  
50mA/Div  
50mA/Div  
Time (100ns/Div)  
Time (100ns/Div)  
Figure 31 VEN vs. IOUT Delay and Falling Edge  
Figure 32 VEN vs. IOUT Delay and Falling Edge  
Integrated Silicon Solution, Inc. – www.issi.com  
12  
Rev. C, 10/20/2017  
IS31LT3170/71  
V
V
OUT = 3V, 3 LEDs  
EN = 5V, 100Hz, 50% Duty Cycle  
R
EXT = 10Ω  
T
J
= 125°C  
VEN  
2V/Div  
IOUT  
50mA/Div  
Time (100ns/Div)  
Figure 33 VEN vs. IOUT Delay and Falling Edge  
Integrated Silicon Solution, Inc. – www.issi.com  
13  
Rev. C, 10/20/2017  
IS31LT3170/71  
APPLICATIONS INFORMATION  
IS31LT3170/71 provides an easy constant current  
source solution for LED lighting applications. It uses  
an external resistor to adjust the LED current from  
10mA to 150mA. The LED current can be  
determined by the Equation (1):  
When operating the chip at high ambient  
temperatures, or when driving maximum load  
current, care must be taken to avoid exceeding the  
package power dissipation limits. Exceeding the  
package dissipation will cause the device to enter  
thermal protection mode. The maximum package  
power dissipation can be calculated using the  
following Equation (2):  
RINT REXT  
(1)  
ISET 10mA  
REXT  
Where RINT (106Typ.) is an internal resistor and  
EXT is the external resistor.  
R
TJ (MAX ) TA  
(2)  
PD(MAX )  
Paralleling a low tolerance resistor REXT with the  
internal resistor RINT will improve the overall  
accuracy of the current sense resistance. The  
resulting output current will vary slightly lower due to  
the negative temperature coefficient (NTC) resulting  
from the self heating of the IS31LT3170/71.  
JA  
Where TJ(MAX) is the maximum junction temperature,  
TA is the ambient temperature, and θJA is the junction  
to ambient thermal resistance; a metric for the  
relative thermal performance of a package.  
HIGH INPUT VOLTAGE APPLICATION  
The recommended maximum operating junction  
temperature, TJ(MAX), is 125°C and so the maximum  
ambient temperature is determined by the package  
parameter; θJA. The θJA for the IS31LT3170/71  
SOT23-6 package, is 130°C/W.  
When driving a long string of LEDs whose total  
forward voltage drop exceeds the IS31LT3170  
VBD_OUT limit of 42V, it is possible to stack several  
LEDs(such as 2 LEDs) between the EN pin and the  
OUT pins 2,3, and 5 so the voltage on the EN pin is  
higher than 5V. The remaining string of LEDs can  
then be placed between power supply +VS and EN  
pin, (Figure 34). The number of LEDs required to  
stack at EN pin will depend on the LED’s forward  
voltage drop (VF) and the +VS value.  
Therefore the maximum power dissipation at TA =  
25°C is:  
125C 25C  
130C /W  
PD(MAX )  
0.77W  
The actual power dissipation PD is:  
(3)  
PD VOUT IOUT VEN IEN  
To ensure the performance, the die temperature (TJ)  
of the IS31LT3170/71 should not exceed 125°C. The  
graph below gives details for the package power  
derating.  
1.2  
SOT23-6  
Figure 34 High Input Voltage Application Circuit  
1
0.8  
0.6  
0.4  
Note: when operating the IS31LT3170 at voltages  
exceeding the device operating limits, care needs to  
be taken to keep the EN pin and OUT pin voltage  
below 42V.  
THERMAL PROTECTION AND DISSIPATION  
The IS31LT3170/71 implements thermal foldback  
protection to reduce the LED current when the  
package’s thermal dissipation is exceeded and  
prevent “thermal runaway”. The thermal foldback  
implements a negative temperature coefficient  
(NTC) of -0.26%/K.  
0.2  
0
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
Temperature (°C)  
Figure 35 PD vs. TA (SOT23-6)  
Integrated Silicon Solution, Inc. – www.issi.com  
14  
Rev. C, 10/20/2017  
IS31LT3170/71  
The thermal resistance is achieved by mounting the  
IS31LT3170/71 on a standard FR4 double-sided  
printed circuit board (PCB) with a copper area of a  
few square inches on each side of the board under  
the IS31LT3170/71. Multiple thermal vias, as shown  
in Figure 36, help to conduct the heat from the  
exposed pad of the IS31LT3170/71 to the copper on  
each side of the board. The thermal resistance can  
be reduced by using a metal substrate or by adding  
a heatsink.  
Figure 36 Board Via Layout For Thermal Dissipation  
Integrated Silicon Solution, Inc. – www.issi.com  
15  
Rev. C, 10/20/2017  
IS31LT3170/71  
CLASSIFICATION REFLOW PROFILES  
Profile Feature  
Pb-Free Assembly  
Preheat & Soak  
150°C  
Temperature min (Tsmin)  
200°C  
Temperature max (Tsmax)  
60-120 seconds  
Time (Tsmin to Tsmax) (ts)  
Average ramp-up rate (Tsmax to Tp)  
Liquidous temperature (TL)  
Time at liquidous (tL)  
3°C/second max.  
217°C  
60-150 seconds  
Max 260°C  
Peak package body temperature (Tp)*  
Time (tp)** within 5°C of the specified  
classification temperature (Tc)  
Average ramp-down rate (Tp to Tsmax)  
Time 25°C to peak temperature  
Max 30 seconds  
6°C/second max.  
8 minutes max.  
Figure 37 Classification Profile  
Integrated Silicon Solution, Inc. – www.issi.com  
16  
Rev. C, 10/20/2017  
IS31LT3170/71  
PACKAGE INFORMATION  
SOT23-6  
Integrated Silicon Solution, Inc. – www.issi.com  
17  
Rev. C, 10/20/2017  
IS31LT3170/71  
RECOMMENDED LAND PATTERN  
Note:  
1. Land pattern complies to IPC-7351.  
2. All dimensions in MM.  
3. This document (including dimensions, notes & specs) is a recommendation based on typical circuit board manufacturing parameters. Since  
land pattern design depends on many factors unknown (eg. user’s board manufacturing specs), user must determine suitability for use.  
Integrated Silicon Solution, Inc. – www.issi.com  
18  
Rev. C, 10/20/2017  
IS31LT3170/71  
REVISION HISTORY  
Revision  
Detail Information  
Date  
A
B
C
Initial release  
2016.05.04  
2016.07.05  
2017.10.20  
Update EC table (output current limit)  
Update θJA value  
Integrated Silicon Solution, Inc. – www.issi.com  
19  
Rev. C, 10/20/2017  

相关型号:

IS31LT3171

10-TO-150MA CONSTANT-CURRENT LED DRIVER
ISSI

IS31LT3172

10-TO-200MA CONSTANT-CURRENT LED DRIVER
ISSI
ISSI

IS31LT3173

10-TO-200MA CONSTANT-CURRENT LED DRIVER
ISSI

IS31LT3350

40V LED DRIVER WITH INTERNAL SWITCH
ISSI

IS31LT3350-V1SDLS2-TR

40V LED DRIVER WITH INTERNAL SWITCH
ISSI

IS31LT3350-V1STLS2-TR

40V LED DRIVER WITH INTERNAL SWITCH
ISSI

IS31LT3350-V2SDLS2-TR

LED Driver, 10-Segment, PDSO5, LEAD FREE, SOT-89, 5 PIN
ISSI

IS31LT3350-V2STLS2-TR

40V LED DRIVER WITH INTERNAL SWITCH
ISSI

IS31LT3352

40V LED DRIVER WITH TEMPERATURE COMPENSATION
ISSI

IS31LT3352-V1GRLS2-TR

LED Driver, 10-Segment, PDSO8, LEAD FREE, SOP-8
ISSI
ISSI