IS46TR16128A-125KBLA1 [ISSI]

256Mx8, 128Mx16 2Gb DDR3 SDRAM; 256Mx8 , 128Mx16的2Gb DDR3 SDRAM
IS46TR16128A-125KBLA1
型号: IS46TR16128A-125KBLA1
厂家: INTEGRATED SILICON SOLUTION, INC    INTEGRATED SILICON SOLUTION, INC
描述:

256Mx8, 128Mx16 2Gb DDR3 SDRAM
256Mx8 , 128Mx16的2Gb DDR3 SDRAM

动态存储器 双倍数据速率
文件: 总81页 (文件大小:3393K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
256Mx8, 128Mx16 2Gb DDR3 SDRAM  
AUGUST 2013  
FEATURES  
Standard Voltage: VDD and VDDQ = 1.5V ± 0.075V  
Low Voltage (L): VDD and VDDQ = 1.35V + 0.1V, -0.067V  
Refresh Interval:  
7.8 us (8192 cycles/64 ms) Tc= -40°C to 85°C  
3.9 us (8192 cycles/32 ms) Tc= 85°C to 105°C  
High speed data transfer rates with system  
frequency up to 933 MHz  
Partial Array Self Refresh  
8 internal banks for concurrent operation  
8n-Bit pre-fetch architecture  
Asynchronous RESET pin  
TDQS (Termination Data Strobe) supported (x8  
only)  
Programmable CAS Latency  
Programmable Additive Latency: 0, CL-1,CL-2  
OCD (Off-Chip Driver Impedance Adjustment)  
Dynamic ODT (On-Die Termination)  
Driver strength : RZQ/7, RZQ/6 (RZQ = 240 Ω)  
Write Leveling  
Programmable CAS WRITE latency (CWL) based  
on tCK  
Programmable Burst Length: 4 and 8  
Programmable Burst Sequence: Sequential or  
Interleave  
Operating temperature:  
Commercial (TC = 0°C to +95°C)  
Industrial (TC = -40°C to +95°C)  
Automotive, A1 (TC = -40°C to +95°C)  
Automotive, A2 (TC = -40°C to +105°C)  
BL switch on the fly  
Auto Self Refresh(ASR)  
Self Refresh Temperature(SRT)  
ADDRESS TABLE  
Parameter  
OPTIONS  
256Mx8  
A0-A14  
A0-A9  
BA0-2  
1KB  
128Mx16  
A0-A13  
A0-A9  
BA0-2  
2KB  
Configuration:  
Row Addressing  
Column Addressing  
Bank Addressing  
256Mx8  
128Mx16  
Package:  
Page size  
Auto Precharge  
Addressing  
96-ball FBGA (9mm x 13mm) for x16  
78-ball FBGA (8mm x 10.5mm) for x8  
A10/AP  
A10/AP  
BL switch on the fly  
A12/BC#  
A12/BC#  
SPEED BIN  
Speed Option  
187F  
15H  
125K  
107M  
Units  
JEDEC Speed Grade  
DDR3-1066F  
DDR3-1333H  
DDR3-1600K  
DDR3-1866M  
CL-nRCD-nRP  
tRCD,tRP(min)  
7-7-7  
13.125  
9-9-9  
13.125  
11-11-11  
13.125  
13-13-13  
13.91  
tCK  
ns  
Note: Faster speed options are backward compatible to slower speed options.  
Copyright © 2013 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time  
without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised  
to obtain the latest version of this device specification before relying on any published information and before placing orders for products.  
Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product  
can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use  
in such applications unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that:  
a.) the risk of injury or damage has been minimized;  
b.) the user assume all such risks; and  
c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances  
Integrated Silicon Solution, Inc.  www.issi.com  
1
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
1. DDR3 PACKAGE BALLOUT  
1.1 DDR3 SDRAM package ballout 78-ball FBGA x8  
1
VSS  
VSS  
2
VDD  
VSSQ  
DQ2  
DQ6  
VDDQ  
VSS  
VDD  
CS#  
BA0  
3
NC  
4
5
6
7
NU/TDQS#  
DM/TDQS  
DQ1  
VDD  
DQ7  
CK  
CK#  
A10/AP  
NC(A15)  
A12/BC#  
A1  
8
VSS  
VSSQ  
DQ3  
VSS  
DQ5  
VSS  
VDD  
ZQ  
9
A
B
C
D
E
F
G
H
J
K
L
M
N
VDD  
VDDQ  
VSSQ  
VSSQ  
VDDQ  
NC  
DQ0  
DQS  
DQS#  
DQ4  
RAS#  
CAS#  
WE#  
BA2  
A0  
VDDQ  
VSSQ  
VREFDQ  
NC1  
ODT  
NC  
VSS  
VDD  
VSS  
VDD  
VSS  
CKE  
NC  
VREFCA  
BA1  
A4  
VSS  
VDD  
VSS  
VDD  
VSS  
A3  
A5  
A7  
A2  
A9  
A13  
A11  
A14  
A6  
A8  
RESET#  
Note:  
NC balls have no internal connection. NC(A15) is one of NC pins and reserved for higher densities.  
Integrated Silicon Solution, Inc.  www.issi.com  
2
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
1.2 DDR3 SDRAM package ballout 96-ball FBGA x16  
1
VDDQ  
VSSQ  
VDDQ  
VSSQ  
VSS  
VDDQ  
VSSQ  
VREFDQ  
NC  
2
DQU5  
VDD  
DQU3  
VDDQ  
VSSQ  
DQL2  
DQL6  
VDDQ  
VSS  
VDD  
CS#  
BA0  
A3  
A5  
3
4
5
6
7
8
9
VSS  
A
B
C
D
E
F
G
H
J
DQU7  
VSS  
DQU4  
DQSU#  
DQSU  
DQU0  
DML  
DQL1  
VDD  
DQL7  
CK  
CK#  
A10/AP  
NC(A15) VREFCA  
A12/BC#  
A1  
VDDQ  
DQU6  
DQU2  
VSSQ  
VSSQ  
DQL3  
VSS  
DQL5  
VSS  
VDD  
VSSQ  
VDDQ  
VDD  
VDDQ  
VSSQ  
VSSQ  
VDDQ  
NC  
CKE  
NC  
VSS  
VDD  
VSS  
VDD  
VSS  
DQU1  
DMU  
DQL0  
DQSL  
DQSL#  
DQL4  
RAS#  
CAS#  
WE#  
BA2  
K
L
ODT  
NC  
VSS  
VDD  
VSS  
VDD  
VSS  
ZQ  
M
N
P
R
T
A0  
A2  
A9  
A13  
BA1  
A4  
A6  
A7  
RESET#  
A11  
NC(A14)  
A8  
Note:  
NC balls have no internal connection. NC(A14) and NC(A15) are one of NC pins and reserved for higher densities.  
Integrated Silicon Solution, Inc.  www.issi.com  
3
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
1.3 Pinout Description - JEDEC Standard  
Symbol  
Type  
Function  
CK, CK#  
Input  
Clock: CK and CK# are differential clock inputs. All address and control input signals are  
sampled on the crossing of the positive edge of CK and negative edge of CK#.  
CKE  
Input  
Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock signals and device  
input buffers and output drivers. Taking CKE Low provides Precharge Power-Down and Self-  
Refresh operation (all banks idle), or Active Power-Down (row Active in any bank). CKE is  
asynchronous for Self-Refresh exit. After VREFCA and VREFDQ have become stable during the  
power on and initialization sequence, they must be maintained during all operations (including  
Self-Refresh). CKE must be maintained high throughout read and write accesses. Input buffers,  
excluding CK, CK#, ODT and CKE, are disabled during power-down. Input buffers, excluding  
CKE, are disabled during Self-Refresh.  
CS#  
ODT  
Input  
Input  
Chip Select: All commands are masked when CS# is registered HIGH. CS# provides for external  
Rank selection on systems with multiple Ranks. CS# is considered part of the command code.  
On Die Termination: ODT (registered HIGH) enables termination resistance internal to the DDR3  
SDRAM. When enabled, ODT is only applied to each DQ, DQSU, DQSU#, DQSL, DQSL#, DMU,  
and DML signal. The ODT pin will be ignored if MR1 and MR2 are programmed to disable RTT.  
RAS#. CAS#.  
WE#  
DM, (DMU),  
(DML)  
Input  
Input  
Command Inputs: RAS#, CAS# and WE# (along with CS#) define the command being entered.  
Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM is  
sampled HIGH coincident with that input data during a Write access. DM is sampled on both  
edges of DQS. For x8 device, the function of DM or TDQS/TDQS# is enabled by Mode Register  
A11 setting in MR1.  
BA0 - BA2  
A0 - A14  
Input  
Input  
Bank Address Inputs: BA0 - BA2 define to which bank an Active, Read, Write, or Precharge  
command is being applied. Bank address also determines which mode register is to be accessed  
during a MRS cycle.  
Address Inputs: Provide the row address for Active commands and the column address for Read/  
Write commands to select one location out of the memory array in the respective bank. (A10/AP  
and A12/BC# have additional functions; see below). The address inputs also provide the op-code  
during Mode Register Set commands.  
A10 / AP  
Input  
Auto-precharge: A10 is sampled during Read/Write commands to determine whether  
Autoprecharge should be performed to the accessed bank after the Read/Write operation.  
(HIGH: Autoprecharge; LOW: no Autoprecharge). A10 is sampled during a Precharge command  
to determine whether the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). If  
only one bank is to be precharged, the bank is selected by bank addresses.  
A12 / BC#  
RESET#  
Input  
Input  
Burst Chop: A12 / BC# is sampled during Read and Write commands to determine if burst chop  
(on-the-fly) will be performed. (HIGH, no burst chop; LOW: burst chopped). See command truth  
table for details.  
Active Low Asynchronous Reset: Reset is active when RESET# is LOW, and inactive when  
RESET# is HIGH. RESET# must be HIGH during normal operation. RESET# is a CMOS rail- to-  
rail signal with DC high and low at 80% and 20% of VDD, i.e., 1.20V for DC high and 0.30V for  
DC low.  
DQ( DQL, DQU)  
Input / Output Data Input/ Output: Bi-directional data bus.  
DQS,  
Input / Output Data Strobe: output with read data, input with write data. Edge-aligned with read data, centered  
in write data. For the x16, DQSL corresponds to the data on DQL0-DQL7; DQSU corresponds to  
the data on DQU0-DQU7. The data strobes DQS, DQSL, and DQSU are paired with differential  
signals DQS#, DQSL#, and DQSU#, respectively, to provide differential pair signaling to the  
system during reads and writes. DDR3 SDRAM supports differential data strobe only and does  
not support single-ended.  
DQS#, DQSU,  
DQSU#, DQSL,  
DQSL#  
TDQS, TDQS#  
Output  
Termination Data Strobe: TDQS/TDQS# is applicable for x8 DRAMs only. When enabled via  
Mode Register A11 = 1 in MR1, the DRAM will enable the same termination resistance function  
on TDQS/TDQS# that is applied to DQS/DQS#. When disabled via mode register A11 = 0 in  
MR1, DM/TDQS will provide the data mask function and TDQS# is not used. x16 DRAMs must  
disable the TDQS function via mode register A11 = 0 in MR1.  
NC  
No Connect: No internal electrical connection is present.  
Integrated Silicon Solution, Inc.  www.issi.com  
4
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
VDDQ  
VSSQ  
VDD  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
DQ Power Supply: 1.5 V +/- 0.075 V for standard voltage or 1.35V +0.1V, -0.067V for low voltage  
DQ Ground  
Power Supply: 1.5 V +/- 0.075 V for standard voltage or 1.35V +0.1V, -0.067V for low voltage  
VSS  
Ground  
VREFDQ  
VREFCA  
ZQ  
Reference voltage for DQ  
Reference voltage for CA  
Reference Pin for ZQ calibration  
Note : Input only pins (BA0-BA2, A0-A13, RAS#, CAS#, WE#, CS#, CKE, ODT, and RESET#) do not supply termination.  
Integrated Silicon Solution, Inc.  www.issi.com  
5
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
2. FUNCTION DESCRIPTION  
2.1 Simplified State Diagram  
Reset  
MRS,MPR,  
Write  
Leveling  
Self  
Refresh  
Power  
applied  
Power  
On  
Initialization  
ZQCL  
Procedure  
SRE  
SRX  
REF  
From  
Any state  
ZQCL  
ZQCS  
RESET  
ZQ  
Calibration  
Idle  
Refreshing  
PDE  
PDX  
ACT  
Active  
Power  
Down  
Precharge  
Power  
Down  
Activating  
PDX  
PDE  
Bank  
Active  
Write  
Read  
Write  
Read  
Write A Read A  
Read  
Writing  
Write A  
Reading  
Read A  
Write  
Write A  
Read A  
PRE,PREA  
PRE,PREA PRE,PREA  
Writing  
Reading  
Precharging  
Automatic  
Sequence  
Command  
Sequence  
Abbreviation  
Function  
Abbreviation  
Function  
Abbreviation  
Function  
ACT  
Active  
Read  
Read A  
Write  
RD, RDS4, RDS8  
PDE  
Enter Power-down  
Exit Power-down  
Self-Refresh entry  
PRE  
PREA  
MRS  
REF  
Precharge  
Precharge All  
Mode Register Set  
Refresh  
RDA, RDAS4, RDAS8  
WR, WRS4, WRS8  
PDX  
SRE  
SRX  
MPR  
Write A  
RESET  
ZQCS  
WRA, WRAS4, WRAS8  
Start RESET Procedure  
ZQ Calibration Short  
Self-Refresh exit  
Multi-Purpose Register  
ZQCL  
ZQ Calibration Long  
Integrated Silicon Solution, Inc.  www.issi.com  
6
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
2.2 RESET and Initialization Procedure  
2.2.1 Power-up Initialization Sequence  
The following sequence is required for POWER UP and Initialization.  
1. Apply power (RESET# is recommended to be maintained below 0.2 x VDD; all other inputs may be undefined).  
RESET# needs to be maintained for minimum 200 us with stable power. CKE is pulled “Low” anytime before  
RESET# being de-asserted (min. time 10 ns). The power voltage ramp time between 300mV to VDD(min) must be  
no greater than 200 ms; and during the ramp, VDD > VDDQ and (VDD - VDDQ) < 0.3 volts.  
VDD and VDDQ are driven from a single power converter output, AND  
The voltage levels on all pins other than VDD, VDDQ, VSS, VSSQ must be less than or equal to VDDQ and VDD  
on one side and must be larger than or equal to VSSQ and VSS on the other side. In addition, VTT is limited to  
0.95 V max once power ramp is finished, AND  
Vref tracks VDDQ/2.  
OR  
Apply VDD without any slope reversal before or at the same time as VDDQ.  
Apply VDDQ without any slope reversal before or at the same time as VTT & Vref.  
The voltage levels on all pins other than VDD, VDDQ, VSS, VSSQ must be less than or equal to VDDQ and VDD  
on one side and must be larger than or equal to VSSQ and VSS on the other side.  
2. After RESET# is de-asserted, wait for another 500 us until CKE becomes active. During this time, the DRAM will  
start internal state initialization; this will be done independently of external clocks.  
3. Clocks (CK, CK#) need to be started and stabilized for at least 10 ns or 5 tCK (which is larger) before CKE goes  
active. Since CKE is a synchronous signal, the corresponding set up time to clock (tIS) must be met. Also, a NOP or  
Deselect command must be registered (with tIS set up time to clock) before CKE goes active. Once the CKE is  
registered “High” after Reset, CKE needs to be continuously registered “High” until the initialization sequence is  
finished, including expiration of tDLLK and tZQinit.  
4. The DDR3 SDRAM keeps its on-die termination in high-impedance state as long as RESET# is asserted. Further,  
the SDRAM keeps its on-die termination in high impedance state after RESET# deassertion until CKE is registered  
HIGH. The ODT input signal may be in undefined state until tIS before CKE is registered HIGH. When CKE is  
registered HIGH, the ODT input signal may be statically held at either LOW or HIGH. If RTT_NOM is to be enabled  
in MR1, the ODT input signal must be statically held LOW. In all cases, the ODT input signal remains static until the  
power up initialization sequence is finished, including the expiration of tDLLK and tZQinit.  
5. After CKE is being registered high, wait minimum of Reset CKE Exit time, tXPR, before issuing the first MRS  
command to load mode register. (tXPR=max (tXS ; 5 x tCK)  
6. Issue MRS Command to load MR2 with all application settings. (To issue MRS command for MR2, provide “Low” to  
BA0 and BA2, “High” to BA1.)  
7. Issue MRS Command to load MR3 with all application settings. (To issue MRS command for MR3, provide “Low” to  
BA2, “High” to BA0 and BA1.)  
8. Issue MRS Command to load MR1 with all application settings and DLL enabled. (To issue "DLL Enable" command,  
provide "Low" to A0, "High" to BA0 and "Low" to BA1 BA2).  
Integrated Silicon Solution, Inc.  www.issi.com  
7
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
9. Issue MRS Command to load MR0 with all application settings and “DLL reset”. (To issue DLL reset command,  
provide "High" to A8 and "Low" to BA0-2).  
10. Issue ZQCL command to starting ZQ calibration.  
11. Wait for both tDLLK and tZQinit completed.  
12. The DDR3 SDRAM is now ready for normal operation.  
Ta  
Tb  
Tc  
Td  
Te  
Tf  
Tg  
Th  
Ti  
Tj  
Tk  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
) )  
CK,CK#  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
) )  
) )  
) )  
) )  
) )  
) )  
) )  
) )  
) )  
) )  
) )  
) )  
) )  
) )  
) )  
) )  
) )  
tCKSRX  
( (  
) )  
( (  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
VDD,VDDQ  
RESET#  
CKE  
) )  
T=200µS  
T=500µS  
( (  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
) )  
( (  
) )  
tIS  
Tmin=10nS  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
) )  
) )  
) )  
) )  
) )  
) )  
) )  
) )  
Valid  
) )  
) )  
) )  
) )  
) )  
) )  
) )  
) )  
tDLLK  
ZQCL  
tMRD  
tMRD  
tMRD  
tMOD  
tZQinit  
1)  
tXPR  
tIS  
1)  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
) )  
) )  
) )  
) )  
CMMAND  
BA  
( (  
( (  
( (  
( (  
( (  
) )  
) )  
) )  
) )  
) )  
MRD  
MRD  
MRD  
MRD  
Valid  
Valid  
) )  
) )  
) )  
) )  
) )  
) )  
) )  
) )  
) )  
( (  
( (  
) )  
) )  
( (  
( (  
) )  
) )  
( (  
( (  
) )  
) )  
( (  
( (  
) )  
) )  
( (  
( (  
) )  
) )  
( (  
( (  
) )  
) )  
( (  
( (  
) )  
) )  
( (  
( (  
) )  
) )  
( (  
( (  
) )  
) )  
MR2  
MR3  
MR1  
MR0  
tIS  
tIS  
Valid  
( (  
( (  
) )  
) )  
( (  
) )  
( (  
( (  
) )  
) )  
( (  
( (  
) )  
) )  
( (  
) )  
ODT  
RTT  
Static LOW in case RTT_Nom is enabled at time Tg, otherwise static HIGH or LOW  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
Note1. From time point Td” until “Tk” NOP or DES commands must be  
applied between MRS and ZQCL commands.  
( (  
) )  
DON’T  
CARE  
Time  
Break  
Figure2.1.1 Reset and Initialization Sequence at Power-on Ramping  
Integrated Silicon Solution, Inc.  www.issi.com  
8
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
2.2.2 Reset Initialization with Stable Power  
The following sequence is required for RESET at no power interruption initialization.  
1. Asserted RESET below 0.2 * VDD anytime when reset is needed (all other inputs may be undefined). RESET needs  
to be maintained for minimum 100 ns. CKE is pulled “LOW” before RESET being de-asserted (min. time 10 ns).  
2. Follow Power-up Initialization Sequence steps 2 to 11.  
3. The Reset sequence is now completed; DDR3 SDRAM is ready for normal operation.  
Ta  
Tb  
Tc  
Td  
Te  
Tf  
Tg  
Th  
Ti  
Tj  
Tk  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
CK,CK#  
) )  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
) )  
) )  
) )  
) )  
) )  
) )  
) )  
) )  
) )  
) )  
) )  
) )  
) )  
) )  
) )  
) )  
) )  
tCKSRX  
( (  
) )  
( (  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
VDD,VDDQ  
RESET#  
CKE  
) )  
T=100nS  
T=500µS  
( (  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
) )  
( (  
) )  
tIS  
Tmin=10nS  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
) )  
) )  
) )  
) )  
) )  
) )  
) )  
) )  
Valid  
) )  
) )  
) )  
) )  
) )  
) )  
) )  
) )  
tDLLK  
tMRD  
tMRD  
tMRD  
tMOD  
tZQinit  
1)  
tXPR  
tIS  
1)  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
( (  
) )  
) )  
) )  
) )  
) )  
CMMAND  
BA  
( (  
( (  
( (  
( (  
MRD ) )  
MRD ) )  
MRD ) )  
MRD ) ) ZQCL ) )  
Valid  
Valid  
) )  
) )  
) )  
) )  
) )  
( (  
( (  
) )  
) )  
( (  
( (  
) )  
) )  
( (  
( (  
) )  
) )  
( (  
( (  
) )  
) )  
( (  
( (  
) )  
) )  
( (  
( (  
( (  
( (  
( (  
) )  
) )  
( (  
( (  
( (  
) )  
) )  
) )  
MR2  
MR3  
MR1  
MR0  
) )  
) )  
) )  
tIS  
tIS  
Valid  
( (  
( (  
) )  
) )  
( (  
) )  
( (  
( (  
) )  
) )  
( (  
( (  
) )  
) )  
( (  
) )  
ODT  
RTT  
Static LOW in case RTT_Nom is enabled at time Tg, otherwise static HIGH or LOW  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
Note1. From time point Td” until “Tk” NOP or DES commands must be  
applied between MRS and ZQCL commands.  
( (  
) )  
DON’T  
CARE  
Time  
Break  
Figure2.1.2 Reset Procedure at Power Stable Condition  
2.3 Register Definition  
2.3.1 Programming the Mode Registers  
For application flexibility, various functions, features, and modes are programmable in four Mode Registers, provided by  
the DDR3 SDRAM, as user defined variables and they must be programmed via a Mode Register Set (MRS) command.  
As the default values of the Mode Registers (MR#) are not defined, contents of Mode Registers must be fully initialized  
and/or re-initialized, i.e. written, after power up and/or reset for proper operation. Also the contents of the Mode Registers  
can be altered by re-executing the MRS command during normal operation. When programming the mode registers, even  
if the user chooses to modify only a sub-set of the MRS fields, all address fields within the accessed mode register must  
be redefined when the MRS command is issued. MRS command and DLL Reset do not affect array contents, which  
means these commands can be executed any time after power-up without affecting the array contents The mode register  
set command cycle time, tMRD is required to complete the write operation to the mode register and is the minimum time  
required between two MRS commands shown as below.  
Integrated Silicon Solution, Inc.  www.issi.com  
9
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
CK#  
CK  
NOP/  
DEC  
NOP/  
DEC  
NOP/  
DEC  
NOP/  
DEC  
Command  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
MRS  
MRS  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Address  
CKE  
Old Settings  
New Settings  
Settings  
tMRD  
tMRD  
RTT_Nom ENABLED prior and/or after MRS command  
ODTLoff + 1  
ODT  
ODT  
Valid  
Valid  
Valid  
Valid  
RTT_Nom DISABLED prior and after MRS command  
Valid Valid Valid Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
DON’T  
CARE  
( (  
) )  
Time  
Break  
Figure2.3.1a tMRD Timing  
The MRS command to Non-MRS command delay, tMOD, is require for the DRAM to update the features except DLL  
reset, and is the minimum time required from an MRS command to a non-MRS command excluding NOP and DES shown  
as the following figure.  
CK#  
CK  
NOP/  
DEC  
NOP/  
DEC  
NOP/  
DEC  
NOP/  
DEC  
NOP/  
DEC  
Command  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
MRS  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Address  
CKE  
Old Settings  
New Settings  
Settings  
tMOD  
Valid  
RTT_Nom ENABLED prior and/or after MRS command  
ODTLoff + 1  
ODT  
ODT  
Valid  
Valid  
Valid  
Valid  
RTT_Nom DISABLED prior and after MRS command  
Valid Valid Valid Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
DON’T  
CARE  
( (  
) )  
Time  
Break  
Figure 2.3.1b tMOD Timing  
The mode register contents can be changed using the same command and timing requirements during normal operation  
as long as the DRAM is in idle state, i.e., all banks are in the precharged state with tRP satisfied, all data bursts are  
completed and CKE is high prior to writing into the mode register. If the RTT_NOM Feature is enabled in the Mode  
Register prior and/or after an MRS Command, the ODT Signal must continuously be registered LOW ensuring RTT is in  
an off State prior to the MRS command. The ODT Signal maybe registered high after tMOD has expired. If the RTT_NOM  
Feature is disabled in the Mode Register prior and after an MRS command, the ODT Signal can be registered either LOW  
or HIGH before, during and after the MRS command. The mode registers are divided into various fields depending on the  
functionality and/or modes.  
Integrated Silicon Solution, Inc.  www.issi.com  
10  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
2.3.2 Mode Register MR0  
The mode register MR0 stores the data for controlling various operating modes of DDR3 SDRAM. It controls burst length,  
read burst type, CAS latency, test mode, DLL reset, WR and DLL control for precharge Power-Down, which include  
vendor specific options to make DDR3 SDRAM useful for various applications. The mode register is written by asserting  
low on CS#, RAS#, CAS#, WE#, BA0, BA1, and BA2, while controlling the states of address pins according to the  
following figure.  
BA2 BA1 BA0  
A14-A13  
A12 A11 A10 A9  
PPD WR  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0 Address Field  
BL Mode Register 0  
0
0
0
0*1  
DLL TM  
CAS Latency  
RBT CL  
A8  
0
1
DLL Reset  
A7  
0
1
mode  
A3  
0
1
Read Burst Type  
Nibble Sequential  
Interleave  
A1  
0
0
A0  
0
1
BL  
8 (Fixed)  
BC4 or 8 (on the fly)  
BC4 (Fixed)  
Reserved  
No  
Yes  
Nomal  
Test  
1
0
A12  
DLL Control for  
Precharge PD  
Write recovery for autoprecharge  
A11 A10 A9 WR(cycles)  
1
1
0
1
Slow exit (DLL off)  
Fast exit (DLL on)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserved  
5*2  
A6  
0
A5  
0
A4  
0
A2  
0
CAS Latency  
Reserved  
6*2  
0
0
1
0
5
6
BA1 BA0  
MR Select  
MR0  
MR1  
7*2  
8*2  
10*2  
12*2  
14*2  
0
1
0
0
0
0
1
1
0
1
0
1
0
1
1
0
7
1
0
0
0
8
MR2  
1
0
1
0
9
MR3  
1
1
0
0
10  
11  
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
1
1
1
1
1
1
12  
13  
14  
Reserved  
Reserved  
Reserved  
1
1
1
1
0
1
1
1
Reserved  
Reserved  
1. A14 and A13 must be programmed to 0 during MRS.  
2. WR (write recovery for autoprecharge)min in clock cycles is calculated by dividing tWR(in ns) by tCK(in ns) and rounding up to the next integer:  
WRmin[cycles] = Roundup(tWR[ns] / tCK[ns]). The WR value in the mode register must be programmed to be equal or larger than WRmin. The  
programmed WR value is used with tRP to determine tDAL.  
3. The table only shows the encodings for a given Cas Latency. For actual supported Cas Latency, please refer to speedbin tables for each  
frequency  
4. The table only shows the encodings for Write Recovery. For actual Write recovery timing, please refer to AC timing table.  
Figure 2.3.2 MR0 Definition  
2.3.2.1 Burst Length, Type and Order  
Accesses within a given burst may be programmed to sequential or interleaved order. The burst type is selected via bit A3  
as shown in Figure 2.3.2. The ordering of accesses within a burst is determined by the burst length, burst type, and the  
starting column address as shown in Table below. The burst length is defined by bits A0-A1. Burst length options include  
fixed BC4, fixed BL8, and ‘on the fly’ which allows BC4 or BL8 to be selected coincident with the registration of a Read or  
Write command via A12/BC#.  
Integrated Silicon Solution, Inc.  www.issi.com  
11  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
Starting  
burst type = Sequential  
(decimal)  
burst type = Interleaved  
(decimal)  
Burst  
Length  
READ/  
WRITE  
Column  
ADDRESS  
(A2,A1,A0)  
Notes  
A3 = 0  
A3 = 1  
0
1
10  
0,1,2,3,T,T,T,T  
1,2,3,0,T,T,T,T  
2,3,0,1,T,T,T,T  
3,0,1,2,T,T,T,T  
4,5,6,7,T,T,T,T  
5,6,7,4,T,T,T,T  
6,7,4,5,T,T,T,T  
7,4,5,6,T,T,T,T  
0,1,2,3,X,X,X,X  
4,5,6,7,X,X,X,X  
0,1,2,3,4,5,6,7  
1,2,3,0,5,6,7,4  
2,3,0,1,6,7,4,5  
3,0,1,2,7,4,5,6  
4,5,6,7,0,1,2,3  
5,6,7,4,1,2,3,0  
6,7,4,5,2,3,0,1  
7,4,5,6,3,0,1,2  
0,1,2,3,4,5,6,7  
0,1,2,3,T,T,T,T  
1,0,3,2,T,T,T,T  
2,3,0,1,T,T,T,T  
3,2,1,0,T,T,T,T  
4,5,6,7,T,T,T,T  
5,4,7,6,T,T,T,T  
6,7,4,5,T,T,T,T  
7,6,5,4,T,T,T,T  
0,1,2,3,X,X,X,X  
4,5,6,7,X,X,X,X  
0,1,2,3,4,5,6,7  
1,0,3,2,5,4,7,6  
2,3,0,1,6,7,4,5  
3,2,1,0,7,6,5,4  
4,5,6,7,0,1,2,3  
5,4,7,6,1,0,3,2  
6,7,4,5,2,3,0,1  
7,6,5,4,3,2,1,0  
0,1,2,3,4,5,6,7  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 4, 5  
1, 2, 4, 5  
2
2
2
2
2
2
2
2
2, 4  
11  
READ  
100  
101  
110  
111  
0,V,V  
1,V,V  
0
1
10  
11  
100  
101  
110  
111  
V,V,V  
4
Chop  
WRITE  
READ  
8
WRITE  
Notes:  
1. In case of burst length being fixed to 4 by MR0 setting, the internal write operation starts two clock cycles earlier than for the BL8 mode. This means  
that the starting point for tWR and tWTR will be pulled in by two clocks. In case of burst length being selected on-the-fly via A12/BC#, the internal  
write operation starts at the same point in time like a burst of 8 write operation. This means that during on-the-fly control, the starting point for tWR  
and tWTR will not be pulled in by two clocks.  
2. 0...7 bit number is value of CA[2:0] that causes this bit to be the first read during a burst.  
3. T: Output driver for data and strobes are in high impedance.  
4. V: a valid logic level (0 or 1), but respective buffer input ignores level on input pins.  
5. X: Don’t Care.  
2.3.2.2 CAS Latency  
The CAS Latency is defined by MR0 (bits A9-A11) as shown in Figure 2.3.2. CAS Latency is the delay, in clock cycles,  
between the internal Read command and the availability of the first bit of output data. DDR3 SDRAM does not support  
any half-clock latencies. The overall Read Latency (RL) is defined as Additive Latency (AL) + CAS Latency (CL); RL = AL  
+ CL. For more information on the supported CL and AL settings based on the operating clock frequency, refer to  
“Standard Speed Bins”.  
2.3.2.3 Test Mode  
The normal operating mode is selected by MR0 (bit A7 = 0) and all other bits set to the desired values shown in Figure  
2.3.2. Programming bit A7 to a ‘1’ places the DDR3 SDRAM into a test mode that is only used by the DRAM Manufacturer  
and should NOT be used. No operations or functionality is specified if A7 = 1.  
2.3.2.4 DLL Reset  
The DLL Reset bit is self-clearing, meaning that it returns back to the value of ‘0’ after the DLL reset function has been  
issued. Once the DLL is enabled, a subsequent DLL Reset should be applied. Any time that the DLL reset function is  
used, tDLLK must be met before any functions that require the DLL can be used (i.e., Read commands or ODT  
synchronous operations).  
2.3.2.5 Write Recovery  
The programmed WR value MR0 (bits A9, A10, and A11) is used for the auto precharge feature along with tRP to  
determine tDAL. WR (write recovery for auto-precharge) min in clock cycles is calculated by dividing tWR (in ns) by tCK  
Integrated Silicon Solution, Inc.  www.issi.com  
12  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
(in ns) and rounding up to the next integer: WRmin[cycles] = Roundup(tWR[ns]/tCK[ns]). The WR must be programmed to  
be equal to or larger than tWR(min).  
2.3.2.6 Precharge PD DLL  
MR0 (bit A12) is used to select the DLL usage during precharge power-down mode. When MR0 (A12 = 0), or ‘slow-exit’,  
the DLL is frozen after entering precharge power-down (for potential power savings) and upon exit requires tXPDLL to be  
met prior to the next valid command. When MR0 (A12 = 1), or ‘fast-exit’, the DLL is maintained after entering precharge  
power-down and upon exiting power-down requires tXP to be met prior to the next valid command.  
2.3.3 Mode Register MR1  
The Mode Register MR1 stores the data for enabling or disabling the DLL, output driver strength, Rtt_Nom impedance,  
additive latency, Write leveling enable, TDQS enable and Qoff. The Mode Register 1 is written by asserting low on CS#,  
RAS#, CAS#, WE#, high on BA0 and low on BA1 and BA2, while controlling the states of address pins according to  
Figure 2.3.3.  
BA2 BA1 BA0  
A14-A13  
0*1  
A12 A11 A10 A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0 Address Field  
0
0
1
Qoff TDQS 0*1 Rtt 0*1  
Rtt D.I.C  
AL  
Rtt D.I.C DLL Mode Register 1  
Level  
A11  
0
1
TDQS enable  
Disabled  
Enabled  
A7  
0
1
Write leveling enable  
Disabled  
A9  
0
0
A6  
0
0
A2  
0
1
Rtt_Nom *3  
ODT disabled  
RZQ/4  
A0 DLL Enable  
0
1
Enable  
Disable  
Enabled  
0
1
0
RZQ/2  
A4  
0
A3  
0
Additive Latency  
0 (AL disabled)  
CL-1  
0
1
1
0
1
0
RZQ/6  
RZQ/12*4  
RZQ/8*4  
Reserved  
Reserved  
0
1
1
0
1
1
0
1
1
0
CL-2  
1
1
Reserved  
1
1
1
Note: RZQ = 240  
*3:In Write leveling Mode (MR1[bit7] = 1) with  
MR1[bit12]=1, all RTT_Nom settings are allowed; in  
Write Leveling Mode (MR1[bit7] = 1) with  
MR1[bit12]=0, only RTT_Nom settings of RZQ/2,  
RZQ/4 and RZQ/6 are allowed.  
*2  
A12  
0
Qoff  
Output buffer enabled  
Output buffer disabled *2  
1
*2: Outputs disabled - DQs, DQSs, DQS#s.  
BA1 BA0  
MR Select  
MR0  
*4:If RTT_Nom is used during Writes, only the  
values RZQ/2, RZQ/4 and RZQ/6 are allowed.  
0
0
1
1
0
1
0
1
MR1  
MR2  
MR3  
A5  
0
A1  
0
Output Driver Impedance Control  
RZQ/6  
RZQ/7  
0
1
1
0
Reserved  
1
1
Reserved  
* 1 : A8, A10, A13, and A14 must be programmed to 0 during MRS.  
* TDQS must be disabled for x16 option.  
Figure 2.3.3 MR1 Definition  
2.3.3.1 DLL Enable/Disable  
The DLL must be enabled for normal operation. DLL enable is required during power up initialization, and upon returning  
to normal operation after having the DLL disabled. During normal operation (DLL-on) with MR1 (A0 = 0), the DLL is  
automatically disabled when entering Self-Refresh operation and is automatically re-enabled upon exit of Self-Refresh  
operation. Any time the DLL is enabled and subsequently reset, tDLLK clock cycles must occur before a Read or  
synchronous ODT command can be issued to allow time for the internal clock to be synchronized with the external clock.  
Integrated Silicon Solution, Inc.  www.issi.com  
13  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
Failing to wait for synchronization to occur may result in a violation of the tDQSCK, tAON or tAOF parameters. During  
tDLLK, CKE must continuously be registered high. DDR3 SDRAM does not require DLL for any Write operation, except  
when RTT_WR is enabled and the DLL is required for proper ODT operation. For more detailed information on DLL  
Disable operation refer to “DLL-off Mode”.  
The direct ODT feature is not supported during DLL-off mode. The on-die termination resistors must be disabled by  
continuously registering the ODT pin low and/or by programming the RTT_Nom bits MR1{A9,A6,A2} to {0,0,0} via a mode  
register set command during DLL-off mode.  
The dynamic ODT feature is not supported at DLL-off mode. User must use MRS command to set Rtt_WR, MR2 {A10, A9}  
= {0,0}, to disable Dynamic ODT externally.  
2.3.3.2 Output Driver Impedance Control  
The output driver impedance of the DDR3 SDRAM device is selected by MR1 (bits A1 and A5) as shown in Figure 2.3.3.  
2.3.3.3 ODT Rtt Values  
DDR3 SDRAM is capable of providing two different termination values (Rtt_Nom and Rtt_WR). The nominal termination  
value Rtt_Nom is programmed in MR1. A separate value (Rtt_WR) may be programmed in MR2 to enable a unique RTT  
value when ODT is enabled during writes. The Rtt_WR value can be applied during writes even when Rtt_Nom is  
disabled.  
2.3.3.4 Additive Latency (AL)  
Additive Latency (AL) operation is supported to make command and data bus efficient for sustainable bandwidths in  
DDR3 SDRAM. In this operation, the DDR3 SDRAM allows a read or write command (either with or without auto-  
precharge) to be issued immediately after the active command. The command is held for the time of the Additive Latency  
(AL) before it is issued inside the device. The Read Latency (RL) is controlled by the sum of the AL and CAS Latency (CL)  
register settings. Write Latency (WL) is controlled by the sum of the AL and CAS Write Latency (CWL) register settings. A  
summary of the AL register options are shown in Table below.  
A4  
0
0
A3  
0
1
Additive Latency (AL) Settings  
0 (AL Disabled)  
CL - 1  
1
0
CL - 2  
1
1
Reserved  
NOTE: AL has a value of CL - 1 or CL - 2 as per the CL values programmed in the MR0 register.  
2.3.3.5 Write leveling  
For better signal integrity, DDR3 memory module adopted fly-by topology for the commands, addresses, control signals,  
and clocks. The fly-by topology has the benefit of reducing the number of stubs and their length, but it also causes flight  
time skew between clock and strobe at every DRAM on the DIMM. This makes it difficult for the Controller to maintain  
tDQSS, tDSS, and tDSH specification. Therefore, the DDR3 SDRAM supports a ‘write leveling’ feature to allow the  
controller to compensate for skew.  
2.3.3.6 Output Disable  
The DDR3 SDRAM outputs may be enabled/disabled by MR1 (bit A12) as shown in Figure 2.3.3. When this feature is  
enabled (A12 = 1), all output pins (DQs, DQS, DQS#, etc.) are disconnected from the device, thus removing any loading  
of the output drivers. This feature may be useful when measuring module power, for example. For normal operation, A12  
should be set to ‘0’.  
2.3.3.7 TDQS, TDQS#  
TDQS (Termination Data Strobe) is a feature of X8 DDR3 SDRAM that provides additional termination resistance outputs  
that may be useful in some system configurations. The TDQS function is available in X8 DDR3 SDRAM only and must be  
disabled via the mode register A11=0 in MR1 for X16 configuration.  
Integrated Silicon Solution, Inc.  www.issi.com  
14  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
2.3.4 Mode Register MR2  
The Mode Register MR2 stores the data for controlling refresh related features, Rtt_WR impedance, and CAS write  
latency. The Mode Register 2 is written by asserting low on CS#, RAS#, CAS#, WE#, high on BA1 and low on BA0 and  
BA2, while controlling the states of address pins according to the below.  
BA2 BA1 BA0  
A14-A13  
A12 A11 A10 A9  
A8  
0*1  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0 Address Field  
Mode Register 2  
0
1
0
0*1  
Rtt_WR  
ASR  
CWL  
PASR  
SRT  
A7  
0
Self-Refresh Temperature (SRT) Range  
Normal operating temperature range  
Extended operating temperature range  
A2  
0
A1  
0
A0  
0
Partial Array Self-Refresh (Optional)  
Full Array  
1
0
0
1
HalfArray (BA[2:0]=000,001,010, &011)  
Quarter Array (BA[2:0]=000, & 001)  
1/8th Array (BA[2:0] = 000)  
0
1
0
0
1
1
A6  
0
Auto Self-Refresh (ASR)  
Manual SR Reference (SRT)  
ASR enable  
1
0
0
3/4 Array (BA[2:0] = 010,011,100,101,110, & 111)  
HalfArray (BA[2:0] = 100, 101, 110, &111)  
Quarter Array (BA[2:0]=110, &111)  
1/8th Array (BA[2:0]=111)  
1
0
1
1
1
1
0
1
1
1
*2  
A10 A9  
Rtt_WR  
A5  
0
A4  
0
A3  
0
CAS write Latency (CWL)  
5 (tCK(avg) 2.5 ns)  
6 (2.5 ns > tCK(avg) 1.875 ns)  
7 (1.875 ns > tCK(avg) 1.5 ns)  
0
0
1
0
1
0
Dynamic ODT off (Write does not affect Rtt value)  
RZQ/4  
RZQ/2  
0
0
1
0
1
0
1
1
Reserved  
0
1
1
8 (1.5 ns > tCK(avg) 1.25 ns)  
9 (1.25 ns > tCK(avg) 1.07ns)  
1
1
1
1
0
0
1
1
0
1
0
1
BA1 BA0  
MR Select  
MR0  
10 (1.07 ns > tCK(avg) 0.935 ns)  
0
0
1
1
0
1
0
1
Reserved  
MR1  
Reserved  
MR2  
MR3  
* 1 : A5, A8, A11 ~ A14 must be programmed to 0 during MRS.  
* 2 : The Rtt_WR value can be applied during writes even when Rtt_Nom is disabled. During write leveling, Dynamic ODT is not available.  
Figure 2.3.4 MR2 Definition  
2.3.4.1 Partial Array Self-Refresh (PASR)  
If PASR (Partial Array Self-Refresh) is enabled, data located in areas of the array beyond the specified address range  
shown in Figure 2.3.4 will be lost if Self-Refresh is entered. Data integrity will be maintained if tREFI conditions are met  
and no Self-Refresh command is issued.  
2.3.4.2 CAS Write Latency (CWL)  
The CAS Write Latency is defined by MR2 (bits A3-A5), as shown in Figure 2.3.4. CAS Write Latency is the delay, in clock  
cycles, between the internal Write command and the availability of the first bit of input data. DDR3 SDRAM does not  
support any half-clock latencies. The overall Write Latency (WL) is defined as Additive Latency (AL) + CAS Write Latency  
(CWL); WL = AL + CWL. For more information on the supported CWL and AL settings based on the operating clock  
frequency, refer to “Standard Speed Bins”.  
2.3.4.3 Auto Self-Refresh (ASR) and Self-Refresh Temperature (SRT)  
For more details refer to “Extended Temperature Usage”. DDR3 SDRAMs support Self-Refresh operation at all supported  
temperatures. Applications requiring Self-Refresh operation in the Extended Temperature Range must use the ASR  
function or program the SRT bit appropriately.  
Integrated Silicon Solution, Inc.  www.issi.com  
15  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
2.3.4.4 Dynamic ODT (Rtt_WR)  
DDR3 SDRAM introduces a new feature “Dynamic ODT”. In certain application cases and to further enhance signal  
integrity on the data bus, it is desirable that the termination strength of the DDR3 SDRAM can be changed without issuing  
an MRS command. MR2 Register locations A9 and A10 configure the Dynamic ODT setings. In Write leveling mode, only  
RTT_Nom is available. For details on Dynamic ODT operation, refer to “Dynamic ODT”.  
2.3.5 Mode Register MR3  
The Mode Register MR3 controls Multi-purpose registers. The Mode Register 3 is written by asserting low on CS#, RAS#,  
CAS#, WE#, high on BA1 and BA0, and low on BA2 while controlling the states of address pins according to the below.  
BA2 BA1 BA0  
A14-A13  
A12 A11 A10 A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0 Address Field  
0
1
1
0*1  
MPR MPR Loc Mode Register 3  
MRP Operation  
MPR Address  
A2  
0
MPR  
Normal operation  
A1  
0
A0  
0
MPR location  
*3  
*2  
Predefined pattern  
1
Dataflow from MPR  
0
1
RFU  
RFU  
RFU  
1
0
1
1
BA1 BA0  
MR Select  
MR0  
0
0
1
1
0
1
0
1
MR1  
MR2  
MR3  
* 1 : A3 - A14 must be programmed to 0 during MRS.  
* 2 : The predefined pattern will be used for read synchronization.  
* 3 : When MPR control is set for normal operation (MR3 A[2] = 0) then MR3 A[1:0] will be ignored.  
Figure 2.3.5 MR3 Definition  
2.3.5.1 Multi-Purpose Register (MPR)  
The Multi Purpose Register (MPR) function is used to Read out a predefined system timing calibration bit sequence. To  
enable the MPR, a Mode Register Set (MRS) command must be issued to MR3 register with bit A2=1. Prior to issuing the  
MRS command, all banks must be in the idle state (all banks precharged and tRP met). Once the MPR is enabled, any  
subsequent RD or RDA commands will be redirected to the Multi Purpose Register. When the MPR is enabled, only RD  
or RDA commands are allowed until a subsequent MRS command is issued with the MPR disabled (MR3 bit A2=0).  
Power down mode, Self-Refresh and any other non-RD/RDA command is not allowed during MPR enable mode. The  
RESET function is supported during MPR enable mode.  
The Multi Purpose Register (MPR) function is used to Read out a predefined system timing calibration bit sequence. The  
basic concept of the MPR is shown in Figure 2.3.5.1.  
Integrated Silicon Solution, Inc.  www.issi.com  
16  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
Memory Core  
(all banks  
precharged)  
MR3[A2]  
Multipurpose  
Register pre-defined  
data for read  
DQ, DM, DQS, DQS#  
Figure 2.3.5.1 MPR Block Diagram  
To enable the MPR, a MODE Register Set (MRS) command must be issued to MR3 Register with bit A2 = 1. Prior to  
issuing the MRS command, all banks must be in the idle state (all banks precharged and tRP met). Once the MPR is  
enabled, any subsequent RD or RDA commands will be redirected to the Multi Purpose Register.  
The resulting operation, when a RD or RDA command is issued, is defined by MR3 bits A[1:0] when the MPR is enabled.  
When the MPR is enabled, only RD or RDA commands are allowed until a subsequent MRS command is issued with the  
MPR disabled (MR3 bit A2 = 0).  
Note that in MPR mode RDA has the same functionality as a READ command which means the auto precharge part of  
RDA is ignored. Power-Down mode, Self-Refresh and any other non-RD/RDA command is not allowed during MPR  
enable mode. The RESET function is supported during MPR enable mode.  
MPR MR3 Register Definition  
MR3 A[2]  
MR3 A[1:0]  
Function  
MPR  
MPR-Loc  
Normal operation, no MPR transaction. All subsequent Reads will come from DRAM  
array. All subsequent Write will go to DRAM array.  
don’t care (0b or 1b)  
0b  
1b  
Enable MPR mode, subsequent RD/RDA commands defined by MR3 A[1:0].  
See Table 13  
Integrated Silicon Solution, Inc.  www.issi.com  
17  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
MPR Register Address Definition  
The following Table provides an overview of the available data locations, how they are addressed by MR3 A[1:0] during a  
MRS to MR3, and how their individual bits are mapped into the burst order bits during a Multi Purpose Register Read.  
MPR MR3 Register Definition  
MR3  
A[2]  
MR3  
A[1:0]  
Burst  
Length  
Read Address  
A[2:0]  
Function  
Burst Order and Data Pattern  
Burst order 0,1,2,3,4,5,6,7  
Pre-defined Data Pattern [0,1,0,1,0,1,0,1]  
Burst order 0,1,2,3  
Pre-defined Data Pattern [0,1,0,1]  
Burst order 4,5,6,7  
Pre-defined Data Pattern [0,1,0,1]  
Burst order 0,1,2,3,4,5,6,7  
Burst order 0,1,2,3  
Burst order 4,5,6,7  
Burst order 0,1,2,3,4,5,6,7  
Burst order 0,1,2,3  
BL8  
BC4  
BC4  
000b  
000b  
100b  
Read predefined pattern  
for system Calibration  
1b  
00b  
BL8  
BC4  
BC4  
BL8  
BC4  
BC4  
BL8  
BC4  
BC4  
000b  
000b  
100b  
000b  
000b  
100b  
000b  
000b  
100b  
1b  
1b  
1b  
01b  
10b  
11b  
RFU  
RFU  
RFU  
Burst order 4,5,6,7  
Burst order 0,1,2,3,4,5,6,7  
Burst order 0,1,2,3  
Burst order 4,5,6,7  
NOTE: Burst order bit 0 is assigned to LSB and the burst order bit 7 is assigned to MSB of the selected MPR agent  
MPR Functional Description  
One bit wide logical interface via all DQ pins during READ operation.  
Register Read on x16:  
o
o
DQL[0] and DQU[0] drive information from MPR.  
DQL[7:1] and DQU[7:1] either drive the same information as DQL[0], or they drive 0b.  
Addressing during for Multi Purpose Register reads for all MPR agents:  
o
o
o
BA[2:0]: don’t care  
A[1:0]: A[1:0] must be equal to ‘00’b. Data read burst order in nibble is fixed  
A[2]: For BL=8, A[2] must be equal to 0b, burst order is fixed to [0,1,2,3,4,5,6,7], *) For Burst Chop 4  
cases, the burst order is switched on nibble base A[2]=0b, Burst order: 0,1,2,3 *) A[2]=1b, Burst order:  
4,5,6,7 *)  
o
o
o
o
A[9:3]: don’t care  
A10/AP: don’t care  
A12/BC: Selects burst chop mode on-the-fly, if enabled within MR0.  
A11, A13, A14: don’t care  
Regular interface functionality during register reads:  
o
o
o
Support two Burst Ordering which are switched with A2 and A[1:0]=00b.  
Support of read burst chop (MRS and on-the-fly via A12/BC)  
All other address bits (remaining column address bits including A10, all bank address bits) will be ignored  
by the DDR3 SDRAM.  
o
o
Regular read latencies and AC timings apply.  
DLL must be locked prior to MPR Reads.  
NOTE: *) Burst order bit 0 is assigned to LSB and burst order bit 7 is assigned to MSB of the selected MPR agent.  
NOTE: Good reference for the example of MPR feature is the JEDEC standard No.93-3D, 4.10.4 Protocol example.  
Integrated Silicon Solution, Inc.  www.issi.com  
18  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
Relevant Timing Parameters  
AC timing parameters are important for operating the Multi Purpose Register: tRP, tMRD, tMOD, and tMPRR. For more  
details refer to “Electrical Characteristics & AC Timing  
Integrated Silicon Solution, Inc.  www.issi.com  
19  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
2.4 DDR3 SDRAM Command Description and Operation  
2.4.1 Command Truth Table  
[BA=Bank Address, RA=Row Address, CA=Column Address, BC#=Burst Chop, X=Don’t Care, V=Valid]  
CKE  
Previous  
Cycle  
A11,  
A13,  
A14  
BA0-  
BA2  
A12/  
BC#  
A10/  
AP  
A0-  
A9  
Function  
Abbreviation  
CS#  
RAS#  
CAS#  
WE#  
Notes  
Current  
Cycle  
Mode Register Set  
Refresh  
Self Refresh Entry  
MRS  
REF  
SRE  
H
H
H
H
H
L
L
L
L
H
L
L
L
L
L
L
L
L
L
L
X
H
L
L
L
H
H
H
L
L
L
X
H
H
H
H
L
L
H
H
X
H
L
L
H
L
BA  
V
V
X
V
BA  
V
BA  
BA  
BA  
BA  
OP Code  
V
V
X
V
V
V
V
V
X
V
V
V
V
V
X
V
L
V
V
X
V
V
V
7,9,12  
Self Refresh Exit  
SRX  
L
H
7,8,9,12  
Single Bank Precharge  
Precharge all Banks  
Bank Activate  
Write (Fixed BL8 or BC4)  
Write (BC4, on the Fly)  
Write (BL8, on the Fly)  
Write with Auto Precharge  
(Fixed BL8 or BC4)  
Write with Auto Precharge  
(BC4, on the Fly)  
Write with Auto Precharge  
(BL8, on the Fly)  
PRE  
PREA  
ACT  
WR  
WRS4  
WRS8  
H
H
H
H
H
H
H
H
H
H
H
H
H
Row Address(RA)  
RFU  
RFU  
RFU  
V
L
H
L
L
L
CA  
CA  
CA  
L
L
L
L
WRA  
H
H
H
H
H
H
L
L
L
H
H
H
L
L
L
L
L
L
BA  
BA  
BA  
RFU  
RFU  
RFU  
V
L
H
H
H
CA  
CA  
CA  
WRAS4  
WRAS8  
H
Read (Fixed BL8 or BC4)  
Read (BC4, on the Fly)  
Read (BL8, on the Fly)  
Read with Auto Precharge  
(Fixed BL8 or BC4)  
Read with Auto Precharge  
(BC4, on the Fly)  
Read with Auto Precharge  
(BL8, on the Fly)  
RD  
RDS4  
RDS8  
H
H
H
H
H
H
L
L
L
H
H
H
L
L
L
H
H
H
BA  
BA  
BA  
RFU  
RFU  
RFU  
V
L
H
L
L
L
CA  
CA  
CA  
RDA  
H
H
H
H
H
H
L
L
L
H
H
H
L
L
L
H
H
H
BA  
BA  
BA  
RFU  
RFU  
RFU  
V
L
H
H
H
CA  
CA  
CA  
RDAS4  
RDAS8  
H
No Operation  
Device Deselected  
NOP  
DES  
H
H
H
H
L
H
L
H
L
H
L
L
H
X
H
X
H
X
H
H
H
X
H
X
H
X
H
H
H
X
H
X
H
X
L
V
X
V
X
V
X
X
X
V
X
V
X
V
X
X
X
V
X
V
X
V
X
X
X
V
X
V
X
V
X
H
L
V
X
V
X
V
X
X
X
10  
11  
Power Down Entry  
Power Down Exit  
PDE  
PDX  
H
L
L
6,12  
6,12  
H
ZQ Calibration Long  
ZQ Calibration Short  
Notes:  
ZQCL  
ZQCS  
H
H
H
H
L
1. All DDR3 SDRAM commands are defined by states of CS#, RAS#, CAS#, WE# and CKE at the rising edge of the clock. The MSB of BA, RA and CA  
are device density and configuration dependant.  
2. RESET# is Low enable command which will be used only for asynchronous reset so must be maintained HIGH during any function.  
3. Bank addresses (BA) determine which bank is to be operated upon. For (E)MRS BA selects an (Extended) Mode Register.  
4. “V” means “H or L (but a defined logic level)” and “X” means either “defined or undefined (like floating) logic level”.  
5. Burst reads or writes cannot be terminated or interrupted and Fixed/on-the-Fly BL will be defined by MRS.  
6. The Power Down Mode does not perform any refresh operation.  
7. The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh.  
8. Self Refresh Exit is asynchronous.  
9. VREF(Both VrefDQ and VrefCA) must be maintained during Self Refresh operation. VrefDQ supply may be turned OFF and VREFDQ may take any  
value between VSS and VDD during Self Refresh operation, provided that VrefDQ is valid and stable prior to CKE going back High and that first  
Write operation or first Write Leveling Activity may not occur earlier than 512 nCK after exit from Self Refresh.  
10. The No Operation command should be used in cases when the DDR3 SDRAM is in an idle or wait state. The purpose of the No Operation command  
(NOP) is to prevent the DDR3 SDRAM from registering any unwanted commands between operations. A No Operation command will not terminate a  
pervious operation that is still executing, such as a burst read or write cycle.  
11. The Deselect command performs the same function as No Operation command.  
12. Refer to the CKE Truth Table for more detail with CKE transition.  
Integrated Silicon Solution, Inc.  www.issi.com  
20  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
2.4.1. CKE Truth Table  
Command (N)3  
RAS#, CAS#, WE#,  
CS#  
CKE  
Current State2  
Power-Down  
Self-Refresh  
Action (N)3  
Notes  
Previous Cycle1 (N-  
1)  
Current Cycle1(N)  
L
L
L
L
L
H
L
X
Maintain Power-Down  
Power-Down Exit  
14,15  
11,14  
DESELECT or  
NOP  
X
Maintain Self-Refresh  
Self-Refresh Exit  
15,16  
DESELECT or  
NOP  
H
8,12,16  
DESELECT or  
NOP  
DESELECT or  
NOP  
DESELECT or  
NOP  
DESELECT or  
NOP  
DESELECT or  
NOP  
DESELECT or  
NOP  
Bank(s) Active  
Reading  
H
H
H
H
H
L
L
L
L
L
Active Power-Down Entry  
Power-Down Entry  
11,13,14  
11,13,14,17  
11,13,14,17  
11,13,14,17  
11  
Writing  
Power-Down Entry  
Precharging  
Refreshing  
All Bank Idle  
Power-Down Entry  
Precharge Power-Down Entry  
H
H
L
L
Precharge Power-Down Entry 11,13,14,18  
Self-Refresh 9.13.18  
REFRESH  
Notes:  
1. CKE (N) is the logic state of CKE at clock edge N; CKE (N-1) was the state of CKE at the previous clock edge.  
2. Current state is defined as the state of the DDR3 SDRAM immediately prior to clock edge N.  
3. COMMAND (N) is the command registered at clock edge N, and ACTION (N) is a result of COMMAND (N), ODT is not included here.  
4. All states and sequences not shown are illegal or reserved unless explicitly described elsewhere in this document.  
5. The state of ODT does not affect the states described in this table. The ODT function is not available during Self-Refresh.  
6. CKE must be registered with the same value on tCKEmin consecutive positive clock edges. CKE must remain at the valid input level the entire time it  
takes to achieve the tCKEmin clocks of registeration. Thus, after any CKE transition, CKE may not transition from its valid level during the time  
period of tIS + tCKEmin + tIH.  
7. DESELECT and NOP are defined in the Command Truth Table.  
8. On Self-Refresh Exit DESELECT or NOP commands must be issued on every clock edge occurring during the tXS period. Read or ODT commands  
may be issued only after tXSDLL is satisfied.  
9. Self-Refresh mode can only be entered from the All Banks Idle state.  
10. Must be a legal command as defined in the Command Truth Table.  
11. Valid commands for Power-Down Entry and Exit are NOP and DESELECT only.  
12. Valid commands for Self-Refresh Exit are NOP and DESELECT only.  
13. Self-Refresh cannot be entered during Read or Write operations.  
14. The Power-Down does not perform any refresh operations.  
15. “X” means “don’t care“ (including floating around VREF) in Self-Refresh and Power-Down. It also applies to Address pins.  
16. VREF (Both Vref_DQ and Vref_CA) must be maintained during Self-Refresh operation.VrefDQ supply may be turned OFF and VREFDQ may take  
any value between VSS and VDD during Self Refresh operation, provided that VrefDQ is valid and stable prior to CKE going back High and that first  
Write operation or first Write Leveling Activity may not occur earlier than 512 nCK after exit from Self Refresh.  
17. If all banks are closed at the conclusion of the read, write or precharge command, then Precharge Power-Down is entered, otherwise Active Power-  
Down is entered.  
18. ‘Idle state’ is defined as all banks are closed (tRP, tDAL, etc. satisfied), no data bursts are in progress, CKE is high, and all timings from previous  
operations are satisfied (tMRD, tMOD, tRFC, tZQinit, tZQoper, tZQCS, etc.) as well as all Self-Refresh exit and Power-Down Exit parameters are  
satisfied (tXS, tXP, tXPDLL, etc).  
2.4.2 No Operation (NOP) Command  
The No operation (NOP) command is used to instruct the selected DDR3 SDRAM to perform a NOP ( CS# low and  
RAS#,CAS#,WE# high). This prevents unwanted commands from being registered during idle or wait states. Operations  
already in progress are not affected.  
Integrated Silicon Solution, Inc.  www.issi.com  
21  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
2.4.3 Deselect(DES) Command  
The Deselect function (CS# HIGH) prevents new commands from being executed by the DDR3 SDRAM. The DDR3  
SDRAM is effectively deselected. Operations already in progress are not affected.  
2.4.4 DLL-off Mode  
DDR3 DLL-off mode is entered by setting MR1 bit A0 to “1”; this will disable the DLL for subsequent operations until A0 bit  
set back to “0”. The MR1 A0 bit for DLL control can be switched either during initialization or later. The DLL-off Mode  
operations listed below are an optional feature for DDR3. The maximum clock frequency for DLL-off Mode is specified by  
the parameter tCKDLL_OFF. There is no minimum frequency limit besides the need to satisfy the refresh interval, tREFI.  
Due to latency counter and timing restrictions, only one value of CAS Latency (CL) in MR0 and CAS Write Latency (CWL)  
in MR2 are supported. The DLL-off mode is only required to support setting of both CL=6 and CWL=6. DLL-off mode will  
affect the Read data Clock to Data Strobe relationship (tDQSCK) but not the data Strobe to Data relationship (tDQSQ,  
tQH). Special attention is needed to line up Read data to controller time domain.  
Comparing with DLL-on mode, where tDQSCK starts from the rising clock edge (AL+CL) cycles after the Read command,  
the DLL-off mode tDQSCK starts (AL+CL-1) cycles after the read command. Another difference is that tDQSCK may not  
be small compared to tCK (it might even be larger than tCK) and the difference between tDQSCKmin and tDQSCKmax is  
significantly larger than in DLL-on mode. The timing relations on DLL-off mode READ operation have shown at the  
following Timing Diagram (CL=6, BL=8)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
CK#  
CK  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
Address  
RL (DLL_on) = AL+CL =6 (CL=6,AL=0)  
CL=6  
DQS,DQS#(DLL_on)  
DQ(DLL_on)  
RL (DLL_off) = AL+(CL-1) = 5  
tDQSCK(DLL_off)_min  
DQS,DQS#(DLL_off)  
DQ(DLL_off)  
tDQSCK(DLL_off)_max  
DQS,DQS#(DLL_off)  
DQ(DLL_off)  
Dont Care  
Note: The tDQSCK is used here for DQS, DQS, and DQ to have a simplified diagram; the DLL_off shift will affect both timings in the same way and the  
skew between all DQ, DQS, and DQS# signals will still be tDQSQ.  
Figure 2.4.4 DLL-off mode READ Timing Operation  
Integrated Silicon Solution, Inc.  www.issi.com  
22  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
2.4.5 DLL on/off switching procedure  
DDR3 DLL-off mode is entered by setting MR1 bit A0 to “1”; this will disable the DLL for subsequent operation until A0 bit  
set back to “0”.  
2.4.5.1 DLL “on” to DLL “off” Procedure  
To switch from DLL “on” to DLL “off” requires te frequency to be changed during Self-Refresh outlined in the following  
procedure:  
1. Starting from Idle state (all banks pre-charged, all timing fulfilled, and DRAMs On-die Termination resistors, RTT,  
must be in high impedance state before MRS to MR1 to disable the DLL).  
2. Set MR1 Bit A0 to “1” to disable the DLL.  
3. Wait tMOD.  
4. Enter Self Refresh Mode; wait until (tCKSRE) satisfied.  
5. Change frequency, in guidance with “Input Clock Frequency Change” section.  
6. Wait until a stable clock is available for at least (tCKSRX) at DRAM inputs.  
7. Starting with the Self Refresh Exit command, CKE must continuously be registered HIGH until all tMOD timings from  
any MRS command are satisfied. In addition, if any ODT features were enabled in the mode registers when Self  
Refresh mode was entered, the ODT signal must continuously be registered LOW until all tMOD timings from any  
MRS command are satisfied. If both ODT features were disabled in the mode registers when Self Refresh mode was  
entered, ODT signal can be registered LOW or HIGH.  
8. Wait tXS, and then set Mode Registers with appropriate values (especially an update of CL, CWL, and WR may be  
necessary. A ZQCL command may also be issued after tXS).  
9. Wait for tMOD, and then DRAM is ready for next command.  
2.4.5.2 DLL “off” to DLL “on” Procedure  
To switch from DLL “off” to DLL “on” (with required frequency change) during Self-Refresh:  
1. Starting from Idle state (All banks pre-charged, all timings fulfilled and DRAMs On-die Termination resistors (RTT)  
must be in high impedance state before Self-Refresh mode is entered.)  
2. Enter Self Refresh Mode, wait until tCKSRE satisfied.  
3. Change frequency, in guidance with "Input clock frequency change".  
4. Wait until a stable clock is available for at least (tCKSRX) at DRAM inputs.  
5. Starting with the Self Refresh Exit command, CKE must continuously be registered HIGH until tDLLK timing from  
subsequent DLL Reset command is satisfied. In addition, if any ODT features were enabled in the mode registers  
when Self Refresh mode was entered, the ODT signal must continuously be registered LOW until tDLLK timings from  
subsequent DLL Reset command is satisfied. If both ODT features are disabled in the mode registers when Self  
Refresh mode was entered, ODT signal can be registered LOW or HIGH.  
6. Wait tXS, then set MR1 bit A0 to “0” to enable the DLL.  
7. Wait tMRD, then set MR0 bit A8 to “1” to start DLL Reset.  
8. Wait tMRD, then set Mode Registers with appropriate values (especially an update of CL, CWL and WR may be  
necessary. After tMOD satisfied from any proceeding MRS command, a ZQCL command may also be issued during  
or after tDLLK.)  
9. Wait for tMOD, then DRAM is ready for next command (Remember to wait tDLLK after DLL Reset before applying  
command requiring a locked DLL!). In addition, wait also for tZQoper in case a ZQCL command was issued.  
Integrated Silicon Solution, Inc.  www.issi.com  
23  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
2.4.6. Input clock frequency change  
Once the DDR3 SDRAM is initialized, the DDR3 SDRAM requires the clock to be “stable” during almost all states of  
normal operation. This means that, once the clock frequency has been set and is to be in the “stable state”, the clock  
period is not allowed to deviate except for what is allowed for by the clock jitter and SSC (spread spectrum clocking)  
specifications.  
The input clock frequency can be changed from one stable clock rate to another stable clock rate under two conditions:  
(1) Self-Refresh mode and (2) Precharge Power-down mode. Outside of these two modes, it is illegal to change the clock  
frequency.  
For the first condition, once the DDR3 SDRAM has been successfully placed in to Self-Refresh mode and tCKSRE has  
been satisfied, the state of the clock becomes a don’t care. Once a don’t care, changing the clock frequency is  
permissible, provided the new clock frequency is stable prior to tCKSRX. When entering and exiting Self-Refresh mode  
for the sole purpose of changing the clock frequency, the Self-Refresh entry and exit specifications must still be met.  
The DDR3 SDRAM input clock frequency is allowed to change only within the minimum and maximum operating  
frequency specified for the particular speed grade. Any frequency change below the minimum operating frequency would  
require the use of DLL_on- mode -> DLL_off -mode transition sequence, refer to “DLL on/off switching procedure”.  
The second condition is when the DDR3 SDRAM is in Precharge Power-down mode (either fast exit mode or slow exit  
mode). If the RTT_NOM feature was enabled in the mode register prior to entering Precharge power down mode, the  
ODT signal must continuously be registered LOW ensuring RTT is in an off state. If the RTT_NOM feature was disabled in  
the mode register prior to entering Precharge power down mode, RTT will remain in the off state. The ODT signal can be  
registered either LOW or HIGH in this case. A minimum of tCKSRE must occur after CKE goes LOW before the clock  
frequency may change. The DDR3 SDRAM input clock frequency is allowed to change only within the minimum and  
maximum operating frequency specified for the particular speed grade. During the input clock frequency change, ODT  
and CKE must be held at stable LOW levels. Once the input clock frequency is changed, stable new clocks must be  
provided to the DRAM tCKSRX before Precharge Power-down may be exited; after Precharge Power-down is exited and  
tXP has expired, the DLL must be RESET via MRS. Depending on the new clock frequency, additional MRS commands  
may need to be issued to appropriately set the WR, CL, and CWL with CKE continuously registered high. During DLL re-  
lock period, ODT must remain LOW and CKE must remain HIGH. After the DLL lock time, the DRAM is ready to operate  
with new clock frequency.  
2.4.7 Write leveling  
For better signal integrity, the DDR3 memory module adopted fly-by topology for the commands, addresses, control  
signals, and clocks. The fly-by topology has benefits from reducing number of stubs and their length, but it also causes  
flight time skew between clock and strobe at every DRAM on the DIMM. This makes it difficult for the Controller to  
maintain tDQSS, tDSS, and tDSH specification. Therefore, the DDR3 SDRAM supports a ‘write leveling’ feature to allow  
the controller to compensate for skew.  
The memory controller can use the ‘write leveling’ feature and feedback from the DDR3 SDRAM to adjust the DQS -  
DQS# to CK - CK# relationship. The memory controller involved in the leveling must have adjustable delay setting on  
DQS - DQS# to align the rising edge of DQS - DQS# with that of the clock at the DRAM pin. The DRAM asynchronously  
feeds back CK - CK#, sampled with the rising edge of DQS - DQS#, through the DQ bus. The controller repeatedly delays  
DQS - DQS# until a transition from 0 to 1 is detected. The DQS - DQS# delay established though this exercise would  
ensure tDQSS specification.  
Besides tDQSS, tDSS and tDSH specification also needs to be fulfilled. One way to achieve this is to combine the actual  
tDQSS in the application with an appropriate duty cycle and jitter on the DQS - DQS# signals. Depending on the actual  
tDQSS in the application, the actual values for tDQSL and tDQSH may have to be better than the absolute limits provided  
in the chapter "AC Timing Parameters" in order to satisfy tDSS and tDSH specification. A conceptual timing of this  
scheme is shown in Figure 2.4.7.  
Integrated Silicon Solution, Inc.  www.issi.com  
24  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CK#  
CK  
Source  
diff_DQS  
Tn  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CK#  
CK  
Destination  
diff_DQS  
DQ  
0 or 1  
0
0
0
Push DQS to capture  
0-1 transition  
diff_DQS  
DQ  
0 or 1  
1
1
1
Figure 2.4.7 Write Leveling Concept  
DQS - DQS# driven by the controller during leveling mode must be terminated by the DRAM based on ranks populated.  
Similarly, the DQ bus driven by the DRAM must also be terminated at the controller.  
One or more data bits carry the leveling feedback to the controller across the DRAM configurations X8 and X16. On a X16  
device, both byte lanes should be leveled independently.  
Therefore, a separate feedback mechanism should be available for each byte lane. The upper data bits should provide  
the feedback of the upper diff_DQS(diff_UDQS) to clock relationship whereas the lower data bits would indicate the lower  
diff_DQS(diff_LDQS) to clock relationship.  
2.4.7.1 DRAM setting for write leveling & DRAM termination function in that mode  
DRAM enters into Write leveling mode if A7 in MR1 set ’High’ and after finishing leveling, DRAM exits from write leveling  
mode if A7 in MR1 set ’Low’. Note that in write leveling mode, only DQS/DQS# terminations are activated and deactivated  
via ODT pin, unlike normal operation.  
MR setting involved in the leveling procedure  
Function  
MR1  
Enable  
Disable  
Write leveling enable  
A7  
1
0
0
1
Output buffer mode (Qoff)  
A12  
DRAM termination function in the leveling mode  
ODT pin @DRAM  
DQS/DQS# termination  
DQs termination  
De-asserted  
Asserted  
Off  
On  
Off  
Off  
NOTE: In Write Leveling Mode with its output buffer disabled (MR1[bit7] = 1 with MR1[bit12] = 1) all RTT_Nom settings are allowed; in Write Leveling  
Mode with its output buffer enabled (MR1[bit7] = 1 with MR1[bit12] = 0) only RTT_Nom settings of RZQ/2, RZQ/4 and RZQ/6 are allowed.  
Integrated Silicon Solution, Inc.  www.issi.com  
25  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
2.4.7.2 Procedure Description  
The Memory controller initiates Leveling mode of all DRAMs by setting bit 7 of MR1 to 1. When entering write leveling mode, the  
DQ pins are in undefined driving mode. During write leveling mode, only NOP or DESELECT commands are allowed, as well as  
an MRS command to exit write leveling mode. Since the controller levels one rank at a time, the output of other ranks must be  
disabled by setting MR1 bit A12 to 1.  
The Controller may assert ODT after tMOD, at which time the DRAM is ready to accept the ODT signal.  
The Controller may drive DQS low and DQS# high after a delay of tWLDQSEN, at which time the DRAM has applied on-die  
termination on these signals. After tDQSL and tWLMRD, the controller provides a single DQS, DQS# edge which is used by the  
DRAM to sample CK - CK# driven from controller. tWLMRD(max) timing is controller dependent.  
DRAM samples CK - CK# status with rising edge of DQS - DQS# and provides feedback on the DQ bus asynchronously after  
tWLO timing. In this product, the DQ0 for x8, or all data bits (“prime DQ bits”) for x16 provide the leveling feedback.(For the x8,  
the remaining DQ bits are driven Low statically after the first sampling procedure.) There is a DQ output uncertainty of tWLOE  
defined to allow mismatch on DQ bits. The tWLOE period is defined from the transition of the earliest DQ bit to the  
corresponding transition of the latest DQ bit. There are no read strobes (DQS/DQS#) needed for these DQs. Controller samples  
incoming DQ and decides to increment or decrement DQS - DQS# delay setting and launches the next DQS/DQS# pulse after  
some time, which is controller dependent. Once a 0 to 1 transition is detected, the controller locks DQS - DQS# delay setting  
and write leveling is achieved for the device. Figure 2.4.7.2 describes the timing diagram and parameters for the overall Write  
Leveling procedure.  
T1  
T2  
tWLH  
tWLH  
tWLS  
tWLS  
CK#(5)  
CK  
(2)  
MRS  
(3)  
NOP  
tMOD  
CMD  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
ODT  
tDQSH(6)  
tDQSH(6)  
tWLDQSEN  
tDQSL(6)  
tDQSL(6)  
diff_DQS(4)  
One Prime DQ:  
tWLMRD  
tWLO  
tWLO  
Prime DQ(1)  
tWLO  
Late Remaining DQs  
Early Remaining DQs  
tWLO  
tWLO  
tWLOE  
All DQs are Prime:  
tWLMRD  
tWLO  
tWLO  
Late Remaining DQs(1)  
Early Remaining DQs(1)  
tWLO  
tWLOE  
Undefined  
Driving Mode  
Time Break  
DONT CARE  
Notes:  
1. The JEDEC specification for DDR3 DRAM has the option to drive leveling feedback on a single prime DQ or all DQs. For best compatibility with  
future DDR3 products, applications should use the lowest order DQ for each byte lane (DQ0 for x8, or DQ0 and DQ8 for x16).  
2. MRS: Load MR1 to enter write leveling mode.  
3. NOP: NOP or Deselect.  
4. diff_DQS is the differential data strobe (DQS, DQS#). Timing reference points are the zero crossings. DQS is shown with solid line, DQS# is shown  
with dotted line.  
5. CK, CK# : CK is shown with solid dark line, where as CK# is drawn with dotted line.  
6. DQS, DQS# needs to fulfill minimum pulse width requirements tDQSH(min) and tDQSL(min) as defined for regular Writes; the max pulse width is  
system dependent.  
Figure 2.4.7.2 Write leveling sequence [DQS - DQS# is capturing CK-CK# low at T1 and CK-CK# high at T2]  
Integrated Silicon Solution, Inc.  www.issi.com  
26  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
2.4.7.3 Write Leveling Mode Exit  
The following sequence describes how the Write Leveling Mode should be exited:  
1. After the last rising strobe edge, stop driving the strobe signals. Note: From now on, DQ pins are in undefined driving  
mode, and will remain undefined, until tMOD after the respective MR command.  
2. Drive ODT pin low (tIS must be satisfied) and continue registering low.  
3. After the RTT is switched off, disable Write Level Mode via MRS command.  
4. After tMOD is satisfied, any valid command may be registered. (MR commands may be issued after tMRD ).  
2.4.8 Extended Temperature Usage  
a. Auto Self-refresh supported  
b. Extended Temperature Range supported  
c. Double refresh required for operation in the Extended Temperature Range (applies only for devices supporting the  
Extended Temperature Range)  
Mode Register Description  
Field  
Bits  
Description  
Auto Self-Refresh (ASR)  
when enabled, DDR3 SDRAM automatically provides Self-Refresh power management functions for all  
supported operating temperature values. If not enabled, the SRT bit must be programmed to indicate TOPER  
during subsequent Self-Refresh operation  
ASR  
MR2 (A6)  
0 = Manual SR Reference (SRT)  
1 = ASR enable  
Self-Refresh Temperature (SRT) Range  
If ASR = 0, the SRT bit must be programmed to indicate TOPER during subsequent Self-Refresh operation  
SRT  
MR2 (A7)  
If ASR = 1, SRT bit must be set to 0b  
0 = Normal operating temperature range  
1 = Extended operating temperature range  
2.4.8.1 Auto Self-Refresh mode - ASR Mode  
DDR3 SDRAM provides an Auto Self-Refresh mode (ASR) for application ease. ASR mode is enabled by setting MR2 bit  
A6 = 1b and MR2 bit A7 = 0b. The DRAM will manage Self-Refresh entry in either the Normal or Extended (optional)  
Temperature Ranges. In this mode, the DRAM will also manage Self-Refresh power consumption when the DRAM  
operating temperature changes, lower at low temperatures and higher at high temperatures.  
If the ASR option is not supported by the DRAM, MR2 bit A6 must be set to 0b.  
If the ASR mode is not enabled (MR2 bit.A6 = 0b), the SRT bit (MR2 A7) must be manually programmed with the  
operating temperature range required during Self-Refresh operation.  
Support of the ASR option does not automatically imply support of the Extended Temperature Range. Refer to operating  
temperature range for restrictions on operating conditions.  
Integrated Silicon Solution, Inc.  www.issi.com  
27  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
2.4.8.2 Self-Refresh Temperature Range - SRT  
SRT applies to devices supporting Extended Temperature Range only. If ASR = 0b, the Self-Refresh Temperature (SRT)  
Range bit must be programmed to guarantee proper self-refresh operation. If SRT = 0b, then the DRAM will set an  
appropriate refresh rate for Self-Refresh operation in the Normal Temperature Range. If SRT = 1b then the DRAM will set  
an appropriate, potentially different, refresh rate to allow Self-Refresh operation in either the Normal or Extended  
Temperature Ranges. The value of the SRT bit can effect self-refresh power consumption, please refer to the IDD table  
for details.  
For parts that do not support the Extended Temperature Range, MR2 bit A7 must be set to 0b and the DRAM should not  
be operated outside the Normal Temperature Range.  
Self-Refresh mode summary  
MR2 MR2  
Allowed Operating Temperature Range for  
Self-Refresh Mode  
Self-Refresh operation  
A[6]  
A[7]  
0
0
Self-refresh rate appropriate for the Normal Temperature Range  
Normal (0 to 85 oC)  
Self-refresh rate appropriate for either the Normal or Extended  
Temperature Ranges. The DRAM must support Extended  
Temperature Range. The value of the SRT bit can effect self-  
refresh power consumption, please refer to the IDD table for  
details.  
0
1
1
0
Normal (0 to 85 oC) and Extended (85 to 95 oC)  
ASR enabled (for devices supporting ASR and Normal  
Temperature Range). Self-Refresh power consumption is  
temperature dependent  
Normal (0 to 85 oC)  
ASR enabled (for devices supporting ASR and Extended  
Temperature Range). Self-Refresh power consumption is  
temperature dependent  
1
1
0
1
Normal (0 to 85 oC) and Extended (85 to 95 oC)  
Illegal  
Integrated Silicon Solution, Inc.  www.issi.com  
28  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
3. ABSOLUTE MAXIMUM RATINGS AND AC & DC OPERATING CONDITIONS  
3.1 Absolute Maximum DC Ratings.  
Symbol  
VDD  
Parameter  
Rating  
Units  
V
Note  
1,3  
1,3  
1
Voltage on VDD pin relative to Vss  
Voltage on VDDQ pin relative to Vss  
Voltage on any pin relative to Vss  
Storage Temperature  
-0.4 V ~ 1.975 V  
-0.4 V ~ 1.975 V  
-0.4 V ~ 1.975 V  
-55 to +150  
VDDQ  
V
VIN, VOUT  
TSTG  
V
°C  
1,2  
Notes:  
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not  
implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM.  
3. VDD and VDDQ must be within 300 mV of each other at all times; and VREF must be not greater than 0.6 x VDDQ, When VDD and VDDQ are less  
than 500 mV; VREF may be equal to or less than 300 mV  
3.2 Component Operating Temperature Range  
Symbol  
Parameter  
Rating  
Tc = 0 to 85  
Units  
°C  
°C  
°C  
°C  
°C  
°C  
°C  
°C  
Notes  
1,2  
1,3  
1,2  
1,3  
1,2  
1,3  
1,2  
1,3  
1,4  
Commercial  
Tc = 85 to 95  
Tc = -40 to 85  
Tc = 85 to 95  
Tc = -40 to 85  
Tc = 85 to 95  
Tc = -40 to 85  
Tc = 85 to 95  
Tc = 95 to 105  
Industrial  
TOPER  
Automotive (A1)  
Automotive (A2)  
°C  
Notes:  
1. Operating Temperature TOPER is the case surface temperature (Tc) on the center / top side of the DRAM.  
2. This temperature range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature  
must be maintained in this range under all operating conditions.  
3. Some applications require operation of the DRAM in the Extended Temperature Range (85°C < Tc 95°C). Full specifications are supported in this  
range, but the following additional conditions apply:  
a ) Refresh commands must be doubled in frequency, therefore reducing the Refresh interval tREFI to 3.9 µs.  
b) If Self-Refresh operation is required for this range, it is mandatory to use either the Manual Self-Refresh mode with Extended Temperature Range  
capability (MR2 A6 = 0b and MR2 A7 = 1b) or enable the Auto Self-Refresh mode (MR2 A6 = 1b and MR2 A7 = 0b).  
4. No type of Self-Refresh mode is supported for this range.  
3.3 Recommended DC Operating Conditions(SSTL_1.5)  
Rating  
Typ  
1.5  
1.35  
1.5  
1.35  
Symbol  
VDD  
Parameter  
Unit  
Notes  
Min  
Max  
1.575  
1.45  
1.575  
1.45  
DDR3  
DDR3L  
DDR3  
1.425  
1.283  
1.425  
1.283  
V
V
V
V
1,2  
3,4,5,6,7  
1,2  
Supply Voltage  
Supply Voltage  
for Output  
VDDQ  
DDR3L  
3,4,5,6,7  
Notes:  
1. Under all conditions VDDQ must be less than or equal to VDD.  
2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.  
3. Maximum DC value may not be greater than 1.425V. The DC value is the linear average of VDD/VDD (t) over a long period of time.  
4. If the limit is exceeded, the input levels are covered by the DDR3 specification.  
5. With these supply voltages, the device operates with DDR3L specifications.  
6. After initialized for DDR3 operation, the DDR3L may be used only upon reset.  
7. The DDR3L product supports 1.5V operation, and if initialized as such, retains the original speed timings defined for DDR3L speed.  
Integrated Silicon Solution, Inc.  www.issi.com  
29  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
3.4 Thermal Resistance  
Package  
Substrate  
Theta-ja  
Theta-ja  
Theta-ja  
Theta-jc  
Units  
(Airflow = 0m/s) (Airflow = 1m/s) (Airflow = 2m/s)  
78-ball  
96-ball  
4-layer  
4-layer  
45.2  
29.4  
35.8  
24.5  
33.4  
23.1  
5.3  
3.3  
C/W  
C/W  
4. AC & DC INPUT MEASUREMENT LEVELS  
4.1. AC and DC Logic Input Levels for Single-Ended Signals  
4.1.1 AC and DC Input Levels for Single-Ended Command and Address Signals  
DDR3-800/1066/1333/1600  
Symbol  
Parameter  
Unit  
V
Note  
Min  
Max  
1
VIH.DQ(DC100)  
DC input logic high  
DC input logic low  
AC input logic high  
Vref + 0.100  
VSS  
VDD  
V
V
V
1
VIL.DQ(DC100)  
VIH.DQ(AC175)  
VIL.DQ(AC175)  
Vref - 0.100  
Note 2  
1,2  
1,2  
Vref + 0.175  
Vref - 0.175  
AC input logic low  
AC input logic high  
AC input logic low  
Note 2  
Vref + 0.150  
Note2  
VIH.CA(AC150)  
VIL.CA(AC150)  
VREFCA(DC)  
Note2  
Vref - 0.150  
0.51 * VDD  
V
V
V
1,2  
1,2  
3,4  
Reference Voltage for ADD, CMD inputs  
0.49 * VDD  
DDR3L-800/1066/1333/1600  
Symbol  
Parameter  
Unit  
Note  
Min  
Max  
V
V
V
V
1
VIH.DQ(DC90)  
DC input logic high  
DC input logic low  
AC input logic high  
Vref + 0.09  
VSS  
VDD  
1
VIL.DQ(DC90)  
VIH.DQ(AC160)  
VIL.DQ(AC160)  
Vref - 0.09  
Note 2  
1,2  
1,2  
Vref + 0.160  
Vref - 0.160  
AC input logic low  
AC input logic high  
AC input logic low  
Note 2  
Vref + 0.135  
Note2  
VIH.CA(AC135)  
VIL.CA(AC135)  
VREFCA(DC)  
Note2  
Vref - 0.135  
0.51 * VDD  
V
V
V
1,2  
1,2  
3,4  
Reference Voltage for ADD, CMD inputs  
0.49 * VDD  
Notes:  
1. For input only pins except RESET.Vref=VrefCA(DC)  
2. See "Overshoot and Undershoot Specifications"  
3. The ac peak noise on Vref may not allow Vref to deviate from Vref(DC) by more than +/- 0.1% VDD.  
4. For reference: DDR3 has approx. VDD/2 +/- 15mV, DDR3L has approx VDD/2 +/- 13.5mV.  
5. To allow VREFCA margining, all DRAM Command and Address Input Buffers MUST use external VREF (provided by system) as the input for their  
VREFCA pins. All VIH/L input level MUST be compared with the external VREF level at the 1st stage of the Command and Address input buffer  
Integrated Silicon Solution, Inc.  www.issi.com  
30  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
4.1.2 AC and DC Logic Input Levels for Single-Ended Signals & DQ and DM  
DDR3-800/1066  
DDR3-1333/1600  
DDR3-1866  
Symbol  
Parameter  
Unit  
Note  
Min.  
Vref  
+0.100  
Max.  
VDD  
Min.  
Vref  
+0.100  
Max.  
VDD  
Min.  
Vref  
+0.100  
Max.  
VDD  
VIH.DQ(DC100) DC input logic high  
VIL.DQ(DC100) DC input logic low  
VIH.DQ(AC175) AC input logic high  
VIL.DQ(AC175) AC input logic low  
VIH.DQ(AC150) AC input logic high  
VIL.DQ(AC150) AC input logic low  
V
V
V
V
V
V
V
V
1
Vref -  
0.100  
Vref -  
0.100  
Vref -  
0.100  
VSS  
VSS  
VSS  
1
Vref  
+0.175  
Note2  
-
-
-
-
-
-
-
-
-
-
-
-
1,2,5  
1,2,5  
1,2,5  
1,2,5  
3,4  
Vref -  
0.175  
Note2  
Vref  
+0.150  
Vref  
+0.150  
Note2  
Note2  
Vref -  
0.150  
Vref -  
0.150  
Note2  
Note2  
Reference Voltage for  
VREFDQ(DC)  
0.49  
*VDD  
0.45  
*VDD  
0.49  
*VDD  
0.45  
*VDD  
0.51  
*VDD  
0.55  
*VDD  
0.51 *VDD  
0.55 *VDD  
0.51 *VDD 0.49 *VDD  
0.55 *VDD 0.45 *VDD  
DQ, DM inputs  
Reference Voltage for  
trained DQ, DM inputs  
3,4,  
6,7  
VREFDQ_t(DC)  
DDR3L-800/1066  
DDR3L-1333/1600  
Symbol  
Parameter  
Unit  
Note  
Min.  
Vref +0.09  
VSS  
Vref +0.175  
Note2  
Vref +0.150  
Note2  
Max.  
VDD  
Vref -0.09  
Note2  
Vref -0.160  
Note2  
Vref -0.135  
Min.  
Vref +0.09  
Max.  
VDD  
VIH.DQ(DC90)  
VIL.DQ(DC90)  
VIH.DQ(AC160)  
VIL.DQ(AC160)  
VIH.DQ(AC135)  
VIL.DQ(AC135)  
DC input logic high  
DC input logic low  
AC input logic high  
AC input logic low  
AC input logic high  
AC input logic low  
Reference Voltage for DQ,  
DM inputs  
V
V
V
V
V
V
1
1
VSS  
-
-
Vref -0.09  
-
1,2,5  
1,2,5  
1,2,5  
1,2,5  
-
Vref +0.135  
Note2  
Note2  
Vref -0.135  
VREFDQ(DC)  
0.49 *VDD  
0.45 *VDD  
0.51 *VDD  
0.55 *VDD  
0.49 *VDD  
0.45 *VDD  
0.51 *VDD  
0.55 *VDD  
V
V
3,4  
Reference Voltage for  
trained DQ, DM inputs  
3,4,  
6,7  
VREFDQ_t(DC)  
Notes:  
1. For input only pins except RESET#. Vref = VrefDQ(DC)  
2. See "Overshoot and Undershoot Specifications"  
3. The ac peak noise on Vref may not allow Vref to deviate from Vref(DC) by more than ± 0.1% VDD.  
4. For reference: DDR3 has approx. VDD/2 ±15mV, and DDR3L has approx. VDD/2 ± 13.5mV.  
5. Single-ended swing requirement for DQS-DQS#, is 350mV (peak to peak). Differential swing requirement for DQS-DQS#, is 700mV (peak to peak)  
6. VRefDQ training is performed only during system boot. Once the training is completed and an optimal VRefDQ_t(DC) voltage level is identified, the  
optimal VRefDQ_t(DC) voltage level will be used during system runtime. During VRefDQ training, VRefDQ is swept from 40% of VDD to 60% of VDD to  
find the optimal VRefDQ_t(DC) voltage level; and once the optimal VRefDQ_t(DC) is set, it must stay within ±1% of its set value as well as not be less  
than 45% of VDD or exceed 55% of VDD. VIH.DQ(AC)min/VIL.DQ(AC)max = Optimal VRefDQ_t(DC) ±AC Level, where "AC Level" is the actual AC  
voltage level per DDR3 speed bins as specified in JESD79-3 specification. After VRefDQ training is completed and the optimal VRefDQ_t(DC) is set, the  
Memory Controller provides the DRAM device a valid write window. Through DQS placement optimization and VRefDQ centering, the valid write window  
is optimized for both input voltage margin and tDS+tDH window for the DRAM receiver. The DRAM device supports the use of the above techniques to  
optimize the write timing and voltage margin, as long as the technique does not create any DIMM failures due to DRAM input voltage and/or timing spec  
violations as defined in JESD79-3 specification.  
7. To allow VREFDQ margining, all DRAM Data Input Buffers MUST use external VREF (provided by system) as the input for their VREFDQ pins. All  
VIH/L input level MUST be compared with the external VREF level at the 1st stage of the Data input buffer.  
Integrated Silicon Solution, Inc.  www.issi.com  
31  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
4.2 Vref Tolerances  
The dc-tolerance limits and ac-moist limits for the reference voltages VrefCA and VrefDQ are illustrated in the following  
figure. It shows a valid reference voltage Vref(t) as a function of time. (Vref stands for VrefCA and VrefDQ likewise).  
Vref(DC) is the linear average of Vref(t) over a very long period of time (e.g.,1 sec). This average has to meet the min/max  
requirement in previous page. Furthermore Vref(t) may temporarily deviate from Vref(DC) by no more than ±1% VDD.  
The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC), and VIL(DC) are dependent on  
Vref. “Vref” shall be understood as Vref(DC). The clarifies that dc-variations of Vref affect the absolute voltage a signal  
has to reach to achieve a valid high or low level and therefore the time to which setup and hold is measured. System  
timing and voltage budgets need to account for Vref(DC) deviations from the optimum position within the data-eye of the  
input signals.  
This also clarifies that the DRAM setup/hold specification and de-rating values need to include time and voltage  
associated with Vref ac-noise. Timing and voltage effects due to ac-noise on Vref up to the specified limit (±1% of VDD)  
are included in DRAM timing and their associated de-ratings.  
Figure 4.2 Illustration of Vref(DC) tolerance and Vrefac-noise limits  
Voltage  
VDD  
Vref(t)  
Vref ac-noise  
Vref(DC)  
Vref(D  
Vref(DC)  
VSS  
time  
Integrated Silicon Solution, Inc.  www.issi.com  
32  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
4.3. AC and DC Logic Input Levels for Differential Signals  
4.3.1 Differential signal definition  
Figure 4.3.1 Definition of differential ac-swing and “time above ac-level”  
tDVAC  
VIH.DIFF.AC.MIN  
VIH.DIFF.MIN  
Half cycle  
VIH.DIFF.MAX  
VIH.DIFF.AC.MAX  
tDVAC  
time  
4.3.2 Differential swing requirements for clock (CK - CK#) and strobe (DQS - DQS#)  
4.3.2.1 Differential AC and DC Input Levels  
DDR3-800, 1066, 1333, & 1600  
Symbol  
Parameter  
unit  
Notes  
Min  
Max  
VIHdiff  
VILdiff  
Differential input logic high  
Differential input logic low  
Differential input high ac  
Differential input low ac  
+0.200  
Note3  
V
V
V
V
1
1
2
2
Note3  
-0.200  
VIHdiff(ac)  
VILdiff(ac)  
2 x ( VIH(ac) Vref )  
Note3  
Note3  
2 x ( Vref - VIL(ac) )  
DDR3L-800, 1066, 1333, & 1600  
Symbol  
Parameter  
unit  
Notes  
Min  
Max  
VIHdiff  
VILdiff  
Differential input logic high  
Differential input logic low  
Differential input high ac  
Differential input low ac  
+0.180  
Note3  
V
V
V
V
1
1
2
2
Note3  
-0.180  
VIHdiff(ac)  
VILdiff(ac)  
2 x ( VIH(ac) Vref )  
Note3  
Note3  
2 x ( Vref - VIL(ac) )  
Notes:  
1. Used to define a differential signal slew-rate.  
2. For CK - CK# use VIH/VIL(ac) of ADD/CMD and VREFCA; for DQS - DQS#, DQSL, DQSL#, DQSU, DQSU# use VIH/VIL(ac) of DQs and VREFDQ; if  
a reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here.  
3. These values are not defined; however, the single-ended signals CK, CK#, DQS, DQS#, DQSL, DQSL#, DQSU, DQSU# need to be within the  
respective limits (VIH(dc) max, VIL(dc)min) for single-ended signals as well as the limitations for overshoot and undershoot.  
Integrated Silicon Solution, Inc.  www.issi.com  
33  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
4.3.2.2 Allowed time before ringback (tDVAC) for CK - CK# and DQS - DQS#  
Slew Rate [V/ns]  
tDVAC [ps] @IVIH/Ldiff(ac)I = 350mV  
tDVAC [ps] @IVIH/Ldiff(ac)I = 300mV  
min  
75  
57  
50  
38  
34  
29  
22  
13  
0
max  
min  
175  
170  
167  
163  
162  
161  
159  
155  
150  
150  
max  
> 4.0  
4.0  
3.0  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
< 1.0  
0
4.3.3. Single-ended requirements for differential signals  
Each individual component of a differential signal (CK, DQS, DQSL, DQSU, CK#, DQS#, DQSL#, or DQSU#) has also to  
comply with certain requirements for single-ended signals.  
CK and CK# have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels (VIH(ac) / VIL(ac) )  
for ADD/CMD signals) in every half-cycle. DQS, DQSL, DQSU, DQS#, DQSL# have to reach VSEHmin / VSELmax  
(approximately the ac-levels (VIH(ac) / VIL(ac) ) for DQ signals) in every half-cycle preceding and following a valid  
transition.  
4.3.3.1. Single-ended levels for CK, DQS, DQSL, DQSU, CK#, DQS#, DQSL# or DQSU#  
DDR3/DDR3L-800, 1066, 1333, & 1600  
Symbol  
VSEH  
VSEL  
Parameter  
Unit  
Notes  
Min  
(VDDQ/2) + 0.175  
(VDDQ/2) + 0.175  
note3  
Max  
note3  
note3  
Single-ended high-level for strobes  
Single-ended high-level for CK, CK  
Single-ended low-level for strobes  
Single-ended Low-level for CK, CK  
V
V
V
V
1, 2  
1, 2  
1, 2  
1, 2  
(VDDQ/2) - 0.175  
(VDDQ/2) - 0.175  
note3  
Notes:  
1. For CK, CK# use VIH/VIL(ac) of ADD/CMD; for strobes (DQS, DQS#, DQSL, DQSL#, DQSU, DQSU#) use VIH/VIL(ac) of DQs.  
2. VIH(ac)/VIL(ac) for DQs is based on VREFDQ; VIH(ac)/VIL(ac) for ADD/CMD is based on VREFCA; if a reduced ac-high or ac-low level is used for a  
signal group, then the reduced level applies also here  
3. These values are not defined, however the single-ended signals CK, CK#, DQS, DQS#, DQSL, DQSL#, DQSU, DQSU# need to be within the  
respective limits (VIH(dc) max, VIL(dc)min) for single-ended signals as well as the limitations for overshoot and undershoot.  
VDD or VDDQ  
VSEHmin  
VSEH  
VDD/2 or VDDQ/2  
CK or DQS  
VSELmax  
VSEL  
VSS or VSSQ  
time  
Figure 4.3.3 Single-ended requirement for differential signals.  
Integrated Silicon Solution, Inc.  www.issi.com  
34  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
4.4 Differential Input Cross Point Voltage  
To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross  
point voltage of differential input signals (CK, CK and DQS, DQS) must meet the requirements in the following table. The  
differential input cross point voltage Vix is measured from the actual cross point of true and completement signal to the  
midlevel between of VDD and VSS.  
VDD  
CK#,DQS#  
VIX  
VDD/2  
VIX  
VIX  
CK,DQS  
VSS  
Figure 4.4. Vix Definition  
4.4.1 Cross point voltage for differential input signals (CK, DQS)  
DDR3/DDR3L-800,  
1066, 1333, & 1600  
Symbol  
Parameter  
Unit  
Note  
Min.  
Max.  
150  
-150  
-175  
mV  
mV  
DDR3  
Differential Input Cross Point Voltage  
relative to VDD/2 for CK, CK  
175  
1
2
Vix  
DDR3L  
DDR3  
-150  
-150  
-150  
150  
150  
150  
mV  
mV  
mV  
Differential Input Cross Point Voltage  
relative to VDD/2 for DQS, DQS  
DDR3L  
Notes:  
1. Extended range for Vix is only allowed for clock and if single-ended clock input signals CK and CK# are monotonic with a single-ended swing  
VSEL / VSEH of at least VDD/2 +/-250 mV, and when the differential slew rate of CK - CK# is larger than 3 V/ns.  
2. The following must be true: (VDD/2) + Vix(min) VSEL > 2.5 mV and VSEH ((VDD/2) + Vix (max.)) > 25mV.  
4.5 Slew Rate Definitions for Single-Ended Input Signals  
See “Address / Command Setup, Hold and Derating” for single-ended slew rate definitions for address and command  
signals.  
See “Data Setup, Hold and Slew Rate Derating” for single-ended slew rate definitions for data signals.  
Integrated Silicon Solution, Inc.  www.issi.com  
35  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
4.6. Slew Rate Definition for Differential Input Signals  
4.6.1 Differential Input Slew Rate Definition  
Measured  
From  
Description  
Defined by  
To  
Differential input slew rate for rising edge (CK-CK# & DQS-  
VILdiffmax  
VIHdiffmin  
[VIHdiffmin-VILdiffmax] / DeltaTRdiff  
[VIHdiffmin-VILdiffmax] / DeltaTFdiff  
DQS#)  
Differential input slew rate for falling edge (CK-CK# & DQS-  
DQS#)  
VIHdiffmin  
VILdiffmax  
Note : The differential signal (i.e., CK-CK# & DQS-DQS#) must be linear between these thresholds.  
Figure 4.6.1 Input Nominal Slew Rate Definition for DQS, DQS# and CK, CK#  
Integrated Silicon Solution, Inc.  www.issi.com  
36  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
5. AC AND DC OUTPUT MEASUREMENT LEVELS  
5.1 Single Ended AC and DC Output Levels  
Symbol  
VOH(DC)  
VOM(DC)  
VOL(DC)  
VOH(AC)  
VOL(AC)  
Parameter  
Value  
0.8xVDDQ  
0.5xVDDQ  
0.2xVDDQ  
Unit  
V
V
V
V
Notes  
DC output high measurement level (for IV curve linearity)  
DC output mid measurement level (for IV curve linearity)  
DC output low measurement level (fro IV curve linearity)  
AC output high measurement level (for output SR)  
AC output low measurement level (for output SR)  
VTT+0.1xVDDQ  
VTT-0.1xVDDQ  
1
1
V
NOTE 1. The swing of ± 0.1 × VDDQ is based on approximately 50% of the static single-ended output high or low swing with a driver impedance of 40  
and an effective test load of 25to VTT = VDDQ/2.  
5.2 Differential AC and DC Output Levels  
Symbol  
VOHdiff(AC)  
Parameter  
Value  
+0.2 x VDDQ  
Unit  
V
Notes  
1
AC differential output high measurement level (for output SR)  
VOLdiff(AC)  
AC differential output low measurement level (for output SR)  
-0.2 x VDDQ  
V
1
NOTE 1. The swing of ± 0.2 × VDDQ is based on approximately 50% of the static single-ended output high or low swing with a driver impedance of 40  
and an effective test load of 25to VTT = VDDQ/2 at each of the differential outputs.  
5.3 Single Ended Output Slew Rate  
5.3.1 Single Ended Output Slew Rate Definition  
Measured  
Description  
Defined by  
From  
To  
Single ended output slew rate for rising edge  
Single ended output slew rate for falling edge  
VOL(AC)  
VOH(AC)  
VOH(AC)  
VOL(AC)  
[VOH(AC)-VOL(AC)] / DeltaTRse  
[VOH(AC)-VOL(AC)] / DeltaTFse  
Figure 5.3.1 Single Ended Output Slew Rate Definition  
5.3.2 Output Slew Rate (single-ended)  
DDR3-800  
DDR3-1066  
DDR3-1333  
DDR3-1600  
Parameter  
Symbol  
SRQse  
Unit  
Min.  
2.5  
Max.  
5
Min.  
2.5  
Max.  
5
Max.  
2.5  
Max.  
5
Max.  
2.5  
Max.  
5
DDR3  
Single-ended Output Slew Rate  
DDR3L  
V/ns  
1.75  
5
1.75  
5
1.75  
5
1.75  
5
Note: SR: Slew Rate. Q: Query Output (like in DQ, which stands for Data-in, Query -Output). se: Single-ended signals. For Ron = RZQ/7 setting.  
Integrated Silicon Solution, Inc.  www.issi.com  
37  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
5.4 Differential Output Slew Rate  
5.4.1 Differential Output Slew Rate Definition  
Measured  
Description  
Defined by  
From  
VOLdiff(AC)  
VOHdiff(AC)  
To  
Differential output slew rate for rising  
Differential output slew rate for falling  
VOHdiff(AC)  
VOLdiff(AC)  
[VOHdiff(AC)-VOLdiff(AC)]/DeltaTRdiff  
[VOHdiff(AC)-VOLdiff(AC)]/DeltaTFdiff  
Note: Output slew rate is verified by design and characterization, and not 100% tested in production.  
Figure 5.4.1 Differential Output Slew Rate Definition  
5.4.2 Differential Output Slew Rate  
DDR3-800  
DDR3-1066  
DDR3-1333  
DDR3-1600  
Parameter  
Symbol  
SRQdiff  
Unit  
Min.  
Max.  
Min.  
Max.  
Max.  
Max.  
Max.  
Max.  
DDR3  
DDR3L  
5
10  
5
10  
5
10  
5
10  
Differential Output Slew Rate  
V/ns  
3.5  
12  
3.5  
12  
3.5  
12  
3.5  
12  
Description: SR: Slew Rate, Q: Query Output (like in DQ, which stands for Data-in, Query-Output), diff: Differential Signals, For Ron = RZQ/7 setting  
5.5 Reference Load for AC Timing and Output Slew Rate  
The following figure represents the effective reference load of 25 ohms used in defining the relevant AC timing parameters  
of the device as well as output slew rate measurements. It is not intended as a precise representation of any particular  
system environment or a depiction of the actual load presented by a production tester. System designers should use IBIS  
or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to their  
production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics.  
VDDQ  
DUT  
25ohm  
DQ,  
CK,CK#  
VTT=VDDQ/2  
DQS,  
DQS#  
Timing Reference Point  
Figure 5.5 Reference Load for AC Timing and Output Slew Rate  
Integrated Silicon Solution, Inc.  www.issi.com  
38  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
5.6 Overshoot and Undershoot Specifications  
5.6.1 AC Overshoot/Undershoot Specification for Address and Control Pins  
Item  
DDR3-800  
DDR3-1066  
DDR3-1333  
DDR3-1600  
0.4  
Units  
V
V
V-ns  
V-ns  
Maximum peak amplitude allowed for overshoot area  
Maximum peak amplitude allowed for undershoot area  
Maximum overshoot area above VDD  
0.4  
0.4  
0.67  
0.67  
0.4  
0.4  
0.5  
0.5  
0.4  
0.4  
0.4  
0.4  
0.4  
0.33  
0.33  
undershoot area below VSS  
Note : A0-A13, BA0-BA2, CS#, RAS#, CAS#, WE#, CKE, ODT  
Maximum Amplitude  
Overshoot Area  
VDD  
VSS  
Volts(V)  
Undershoot Area  
Maximum Amplitude  
Time(ns)  
5.6.2 AC Overshoot/Undershoot Specification for Clock, Data, Strobe, and Mask  
Item  
DDR3-800  
DDR3-1066  
DDR3-1333  
0.4  
DDR3-1600  
0.4  
Units  
V
V
V-ns  
V-ns  
Maximum peak amplitude allowed for overshoot area  
Maximum peak amplitude allowed for undershoot area  
Maximum overshoot area above VDD  
undershoot area below VSS  
0.4  
0.4  
0.25  
0.25  
0.4  
0.4  
0.19  
0.19  
0.4  
0.15  
0.15  
0.4  
0.13  
0.13  
Note : CK, CK#, DQ, DQS, DQS#, DM  
Maximum Amplitude  
Overshoot Area  
VDDQ  
VSSQ  
Volts(V)  
Maximum Amplitude  
Time(ns)  
5.7 34Ohm Output Driver DC Electrical Characteristics  
A Functional representation of the output buffer is shown as below. Output driver impedance RON is defined by the value  
ofthe external reference resistor RZQ as follows:  
RON34 = RZQ / 7 (nominal 34.4ohms +/-10% with nominal RZQ=240ohms)  
The individual pull-up and pull-down resistors (RONPu and RONPd) are defined as follows:  
RONPu = [VDDQ-Vout] / | Iout | ------------------- under the condition that RONPd is turned off (1)  
RONPd = Vout / | Iout | -------------------------------under the condition that RONPu is turned off (2)  
Integrated Silicon Solution, Inc.  www.issi.com  
39  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
Chip in Drive Mode  
Output  
Driver  
VDDQ  
IPu  
RONPu  
DQ  
Iout  
RONPd  
IPd  
Vout  
VSSQ  
Figure 5.7 Output Driver : Definition of Voltages and Currents  
5.7.1 Output Driver DC Electrical Characteristics  
DDR3 (assuming 1.5V, RZQ = 240ohms; entire operating temperature range; after proper ZQ calibration)  
RONNom  
Resistor  
Vout  
Min  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
Nom  
Max  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
Unit  
Notes  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
VOLdc=0.2xVDDQ  
VOMdc=0.5xVDDQ  
VOHdc =0.8xVDDQ  
VOLdc=0.2xVDDQ  
VOMdc=0.5xVDDQ  
VOHdc=0.8xVDDQ  
1
1
1
1
1
1
RZQ/7  
RZQ/7  
RZQ/7  
RZQ/7  
RZQ/7  
RZQ/7  
RON34Pd  
34 ohms  
RON34Pu  
RON40Pd  
RON40Pu  
VOLdc=0.2xVDDQ  
VOMdc=0.5xVDDQ  
VOHdc =0.8xVDDQ  
VOLdc=0.2xVDDQ  
VOMdc=0.5xVDDQ  
VOHdc=0.8xVDDQ  
VOMdc= 0.5xVDDQ  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
-10  
1
1
1
1
1
1
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
+10  
RZQ/6  
RZQ/6  
RZQ/6  
RZQ/6  
RZQ/6  
RZQ/6  
%
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,4  
40 ohms  
Mismatch between pull-up and pull-down, MMPuPd  
Integrated Silicon Solution, Inc.  www.issi.com  
40  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
DDR3L (assuming 1.35V, RZQ = 240ohms; entire operating temperature range; after proper ZQ calibration)  
RONNom  
Resistor  
Vout  
Min  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
Nom  
Max  
1.15  
1.15  
1.45  
1.45  
1.15  
1.15  
Unit  
Notes  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
VOLdc=0.2xVDDQ  
VOMdc=0.5xVDDQ  
VOHdc =0.8xVDDQ  
VOLdc=0.2xVDDQ  
VOMdc=0.5xVDDQ  
VOHdc=0.8xVDDQ  
1
1
1
1
1
1
RZQ/7  
RZQ/7  
RZQ/7  
RZQ/7  
RZQ/7  
RZQ/7  
RON34Pd  
34 ohms  
RON34Pu  
RON40Pd  
RON40Pu  
VOLdc=0.2xVDDQ  
VOMdc=0.5xVDDQ  
VOHdc =0.8xVDDQ  
VOLdc=0.2xVDDQ  
VOMdc=0.5xVDDQ  
VOHdc=0.8xVDDQ  
VOMdc= 0.5xVDDQ  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
-10  
1
1
1
1
1
1
1.15  
1.15  
1.45  
1.45  
1.15  
1.15  
+10  
RZQ/6  
RZQ/6  
RZQ/6  
RZQ/6  
RZQ/6  
RZQ/6  
%
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,4  
40 ohms  
40 ohms  
Mismatch between pull-up and pull-down, MMPuPd  
Notes:  
1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or  
voltage changes after calibration, see following section on voltage and temperature sensitivity.  
2. The tolerance limits are specified under the condition that VDDQ=VDD and that VSSQ=VSS.  
3. Pull-down and pull-up output driver impedances are recommended to be calibrated at 0.5xVDDQ. Other calibration schemes may be used to  
achieve the linearity spec shown above, e.g. calibration at 0.2 * VDDQ and 0.8 x VDDQ.  
4. Measurement definition for mismatch between pull-up and pull-down, MMPuPd:  
Measure RONPu and RONPd, both at 0.5 x VDDQ:  
MMPuPd = [RONPu - RONPd] / RONNom x 100  
5.7.2 Output Driver Temperature and Voltage sensitivity  
If temperature and/or voltage after calibration, the tolerance limits widen according to the following table below.  
Delta T = T - T(@calibration); Delta V = VDDQ - VDDQ(@calibration); VDD = VDDQ  
5.7.2.1 Output Driver Sensitivity Definition  
Items  
Min.  
Max.  
Unit  
RONPU@VOHdc  
RON@VOMdc  
RONPD@VOLdc  
0.6 - dRONdTH*lDelta Tl - dRONdVH*lDelta Vl  
0.9 - dRONdTM*lDelta Tl - dRONdVM*lDelta Vl  
0.6 - dRONdTL*lDelta Tl - dRONdVL*lDelta Vl  
1.1 + dRONdTH*lDelta Tl - dRONdVH*lDelta Vl  
1.1 + dRONdTM*lDelta Tl - dRONdVM*lDelta Vl  
1.1 + dRONdTL*lDelta Tl - dRONdVL*lDelta Vl  
RZQ/7  
RZQ/7  
RZQ/7  
Note: dRONdT and dRONdV are not subject to production test but are verified by design and characterization.  
Integrated Silicon Solution, Inc.  www.issi.com  
41  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
5.7.2.2 Output Driver Voltage and Temperature Sensitivity  
Speed Bin  
Items  
DDR3-800/1066/1333  
DDR3-1600  
Unit  
Min.  
Max  
1.5  
Min.  
0
0
0
0
Max  
1.5  
0.13  
1.5  
0.13  
1.5  
0.13  
dRONdTM  
dRONdVM  
dRONdTL  
dRONdVL  
dRONdTH  
dRONdVH  
0
0
0
0
0
0
%/°C  
%/mV  
%/°C  
%/mV  
%/°C  
%/mV  
0.15  
1.5  
0.15  
1.5  
0
0
0.15  
Note: dRONdT and dRONdV are not subject to production test but are verified by design and characterization.  
5.8 On-Die Termination (ODT) Levels and I-V Characteristics  
5.8.1 On-Die Termination (ODT) Levels and I-V Characteristics  
On-Die Termination effective resistance RTT is defined by bits A9, A6, and A2 of the MR1 Register.  
ODT is applied to the DQ, DM, DQS/DQS, and TDQS/TDQS (x8 devices only) pins.  
A functional representation of the on-die termination is shown in the following figure. The individual pull-up and pull-down  
resistors (RTTPu and RTTPd) are defined as follows:  
RTTPu = [VDDQ - Vout] / | Iout | ------------------ under the condition that RTTPd is turned off (3)  
RTTPd = Vout / | Iout | ------------------------------ under the condition that RTTPu is turned off (4)  
Chip in Termination Mode  
ODT  
VDDQ  
IPu  
Iout = Ipd -Ipu  
RTTPu  
DQ  
Iout  
RTTPd  
Vout  
IPd  
VSSQ  
Figure 5.8.1 On-Die Termination : Definition of Voltages and Currents  
5.8.2 ODT DC Electrical Characteristics  
The following table provides an overview of the ODT DC electrical characteristics. The values for RTT60Pd120,  
RTT60Pu120, RTT120Pd240, RTT120Pu240, RTT40Pd80, RTT40Pu80, RTT30Pd60, RTT30Pu60, RTT20Pd40,  
RTT20Pu40 are not specification requirements, but can be used as design guide lines:  
Integrated Silicon Solution, Inc.  www.issi.com  
42  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
ODT DC Electrical Characteristics  
(assuming RZQ = 240ohms +/- 1% entire operating temperature range; after proper ZQ calibration)  
MR1 A9, A6, A2  
RTT  
Resistor  
Vout  
Min  
0.6  
0.9  
0.9  
0.6  
0.9  
0.9  
0.9  
0.6  
0.9  
0.9  
0.6  
0.9  
0.9  
0.9  
0.6  
0.9  
0.9  
0.6  
0.9  
0.9  
0.9  
0.6  
0.9  
0.9  
0.6  
0.9  
0.9  
0.9  
0.6  
0.9  
0.9  
0.6  
0.9  
0.9  
0.9  
Nom  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Max  
1.1  
1.1  
1.4  
1.1  
1.1  
1.4  
1.6  
1.1  
1.1  
1.4  
1.1  
1.1  
1.4  
1.6  
1.1  
1.1  
1.4  
1.1  
1.1  
1.4  
1.6  
1.1  
1.1  
1.4  
1.1  
1.1  
1.4  
1.6  
1.1  
1.1  
1.4  
1.1  
1.1  
1.4  
1.6  
Unit  
RZQ  
Notes  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,5  
VOLdc = 0.2 x VDDQ  
0.5 x VDDQ  
RTT120Pd240  
RZQ  
VOHdc = 0.8 x VDDQ  
VOLdc = 0.2 x VDDQ  
0.5 x VDDQ  
RZQ  
0,1,0  
RZQ  
120  
RTT120Pu240  
RTT120  
RZQ  
VOHdc = 0.8 x VDDQ  
VIL(ac) to VIH(ac)  
VOLdc = 0.2 x VDDQ  
0.5 x VDDQ  
RZQ  
RZQ/2  
RZQ/2  
RZQ/2  
RZQ/2  
RZQ/2  
RZQ/2  
RZQ/2  
RZQ/4  
RZQ/3  
RZQ/3  
RZQ/3  
RZQ/3  
RZQ/3  
RZQ/3  
RZQ/6  
RZQ/4  
RZQ/4  
RZQ/4  
RZQ/4  
RZQ/4  
RZQ/4  
RZQ/8  
RZQ/6  
RZQ/6  
RZQ/6  
RZQ/6  
RZQ/6  
RZQ/6  
RZQ/12  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,5  
RTT60Pd120  
VOHdc = 0.8 x VDDQ  
VOLdc = 0.2 x VDDQ  
0.5 x VDDQ  
0,0,1  
0,1,1  
1,0,1  
1,0,0  
60  
40  
30  
20  
RTT60Pu120  
RTT60  
VOHdc = 0.8 x VDDQ  
VIL(ac) to VIH(ac)  
VOLdc = 0.2 x VDDQ  
0.5 x VDDQ  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,5  
RTT40Pd80  
VOHdc = 0.8 x VDDQ  
VOLdc = 0.2 x VDDQ  
0.5 x VDDQ  
RTT40Pu80  
RTT40  
VOHdc = 0.8 x VDDQ  
VIL(ac) to VIH(ac)  
VOLdc = 0.2 x VDDQ  
0.5 x VDDQ  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,5  
RTT30Pd60  
VOHdc = 0.8 x VDDQ  
VOLdc = 0.2 x VDDQ  
0.5 x VDDQ  
RTT30Pu60  
RTT30  
VOHdc = 0.8 x VDDQ  
VIL(ac) to VIH(ac)  
VOLdc = 0.2 x VDDQ  
0.5 x VDDQ  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,5  
RTT20Pd40  
VOHdc = 0.8 x VDDQ  
VOLdc = 0.2 x VDDQ  
0.5 x VDDQ  
RTT20Pu40  
RTT20  
VOHdc = 0.8 x VDDQ  
VIL(ac) to VIH(ac)  
Notes:  
1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or  
voltage changes after calibration, see following section on voltage and temperature sensitivity.  
2. The tolerance limits are specified under the condition that VDDQ = VDD and that VSSQ = VSS.  
3. Pull-down and pull-up ODT resistors are recommended to be calibrated at 0.5 x VDDQ. Other calibration schemes may be used to achieve the  
linearity spec shown above.  
4. Not a specification requirement, but a design guide line.  
5. Measurement definition for RTT:  
Apply VIH(ac) to pin under test and measure current I(VIH(ac)), then apply VIL(ac) to pin under test and measure current I(VIL(ac)) respectively.  
RTT = [VIH(ac) - VIL(ac)] / [I(VIH(ac)) - I(VIL(ac))]  
6. Measurement definition for VM and DVM:  
Integrated Silicon Solution, Inc.  www.issi.com  
43  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
Measure voltage (VM) at test pin (midpoint) with no load:  
Delta VM = [2VM / VDDQ -1] x 100  
5.8.3 ODT Temperature and Voltage sensitivity  
If temperature and/or voltage after calibration, the tolerance limits widen according to the following table.  
Delta T = T - T(@calibration); Delta V = VDDQ - VDDQ(@calibration); VDD = VDDQ  
5.8.3.1 ODT Sensitivity Definition  
min  
max  
Unit  
RTT  
0.9 - dRTTdT*lDelta Tl - dRTTdV*lDelta Vl  
1.6 + dRTTdT*lDelta Tl + dRTTdV*lDelta Vl  
RZQ/2,4,6,8,12  
5.8.3.2 ODT Voltage and Temperature Sensitivity  
Min  
0
Max  
1.5  
Unit  
%/°C  
dRTTdT  
dRTTdV  
0
0.15  
%/mV  
Note: These parameters may not be subject to production test. They are verified by design and characterization  
5.9 ODT Timing Definitions  
5.9.1 Test Load for ODT Timings  
Different than for timing measurements, the reference load for ODT timings is defined in the following figure.  
VDDQ  
DQ,DM  
DQS,  
DUT  
25ohm  
DQS#,  
TDQS,  
TDQS#  
CK,CK#  
VTT=VSSQ  
VSSQ  
Timing Reference Point  
Figure 5.9.1 ODT Timing Reference Load  
5.9.2 ODT Timing Definitions  
Definitions for tAON, tAONPD, tAOF, tAOFPD, and tADC are provided in the following table and subsequent figures.  
Symbol  
Begin Point Definition  
End Point Definition  
tAON  
Rising edge of CK - CK defined by the end point of ODTLon  
Rising edge of CK - CK with ODT being first registered high  
Rising edge of CK - CK defined by the end point of ODTLoff  
Rising edge of CK - CK with ODT being first registered low  
Extrapolated point at VSSQ  
tAONPD  
tAOF  
Extrapolated point at VSSQ  
End point: Extrapolated point at VRTT_Nom  
End point: Extrapolated point at VRTT_Nom  
tAOFPD  
Rising edge of CK - CK defined by the end point of ODTLcnw,  
ODTLcwn4, or ODTLcwn8  
End point: Extrapolated point at VRTT_Wr and  
VRTT_Nom respectively  
tADC  
Integrated Silicon Solution, Inc.  www.issi.com  
44  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
Reference Settings for ODT Timing Measurements  
Measured Parameter  
RTT_Nom Setting  
RTT_Wr Setting  
VSW1[V]  
0.05  
0.10  
VSW2[V]  
0.10  
0.20  
RZQ/4  
RZQ/12  
NA  
NA  
tAON  
RZQ/4  
RZQ/12  
NA  
NA  
0.05  
0.10  
0.10  
0.20  
tAONPD  
RZQ/4  
RZQ/12  
RZQ/12  
NA  
NA  
RZQ/2  
0.05  
0.10  
0.20  
0.10  
0.20  
0.30  
tAOFPD  
tADC  
Figure 5.9.2.1 Definition of tAON  
Begin Point : Rising edge of CK-CK#  
defined by the end of ODTLon  
CK  
VTT  
CK#  
tAON  
Tsw2  
Tsw1  
Vsw2  
Vsw1  
DQ,DM,DQS,  
DQS#,TDQS,  
TDQS#  
VSSQ  
End Point : Extrapolated point at VSSQ  
Figure 5.9.2.2 Definition of tAONPD  
Begin Point : Rising edge of CK-CK# with  
ODT being first register high  
CK  
VTT  
CK#  
tAONPD  
Tsw2  
Tsw1  
DQ,DM,DQS,  
DQS#,TDQS,  
TDQS#  
Vsw2  
Vsw1  
End Point : Extrapolated point at VSSQ  
VSSQ  
Integrated Silicon Solution, Inc.  www.issi.com  
45  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
Figure 5.9.2.3 Definition of tAOF  
Begin Point : Rising edge of CK-CK# with  
defined by the end point of ODTLoff  
CK  
VTT  
CK#  
tAOF  
VRTT_NOM  
End Point : Extrapolated point at VRTT_NOM  
Tsw2  
Vsw2  
Tsw1  
DQ,DM,DQS,  
DQS#,TDQS,  
TDQS#  
Vsw1  
VSSQ  
Figure 5.9.2.4 Definition of tAOFPD  
Begin Point : Rising edge of CK-CK# with  
ODT being first registered low  
CK  
VTT  
CK#  
tAOFPD  
VRTT_NOM  
End Point : Extrapolated point at VRTT_NOM  
Tsw2  
Vsw2  
Tsw1  
DQ,DM,DQS,  
DQS#,TDQS,  
TDQS#  
Vsw1  
VSSQ  
Integrated Silicon Solution, Inc.  www.issi.com  
46  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
Figure 5.9.2.5 Definition of tADC  
Begin Point : Rising edge of CK-CK#  
defined by the end point of ODTLcnw  
Begin Point : Rising edge of CK-CK# defined by  
the end point of ODTLcwn4 or ODTLcwn8  
CK  
VTT  
CK#  
tADC  
tADC  
VRTT_NOM  
Tsw21  
End Point : Extrapolated  
DQ,DM,DQS,  
DQS#,TDQS,  
TDQS#  
Tsw22  
Tsw12  
Tsw11  
point at VRTT_NOM  
Vsw2  
VRTT_Wr  
Vsw1  
End Point : Extrapolated point at VRTT_Wr  
VSSQ  
Integrated Silicon Solution, Inc.  www.issi.com  
47  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
6. INPUT / OUTPUT CAPACITANCE  
DDR3/DDR3L DDR3/DDR3L DDR3/DDR3L DDR3/DDR3L  
-800 -1066 -1333 -1600  
Max Max Max  
Symbol  
CIO  
Parameter  
Units  
pF  
Notes  
1,2,3  
Min  
1.5  
Max  
3
Min  
1.5  
Min  
1.5  
Min  
1.5  
DDR3  
3
2.5  
2.3  
2.3  
2.3  
Input/output capacitance (DQ,  
DM, DQS,DQS#,TDQS,TDS#)  
DDR3L  
1.5  
2.5  
1.5  
2.5  
1.5  
1.5  
CCK  
Input capacitance, CK and CK#  
0.8  
0
1.6  
0.8  
0
1.6  
0.8  
0
1.4  
0.8  
0
1.4  
pF  
pF  
2,3  
CDCK  
Input capacitance delta, CK and CK#  
0.15  
0.15  
0.15  
0.15  
2,3,4  
Input/output capacitance delta, DQS and  
DQS#  
CDDQS  
0
0.2  
0
0.2  
0
0.15  
1.3  
0
0.15  
1.3  
pF  
2,3,5  
DDR3  
0.75  
0.75  
1.35  
0.75  
1.35  
0.75  
0.75  
Input capacitance, CTRL,  
CI  
ADD, command input-only  
pF  
2,3,7,8  
pins  
DDR3L  
1.3  
0.75  
1.3  
0.75  
1.3  
0.75  
1.3  
CDI_CTR Input capacitance delta, all CTRL input-  
-0.5  
-0.5  
0.3  
0.5  
-0.5  
-0.5  
0.3  
0.5  
-0.4  
-0.4  
0.2  
0.4  
-0.4  
-0.4  
0.2  
0.4  
pF  
pF  
2,3,7,8  
only pins  
L
CDI_ADD Input capacitance delta, all ADD/CMD  
2,3,9,10  
input-only pins  
_CMD  
Input/output capacitance delta, DQ, DM,  
CDIO  
-0.5  
-
0.3  
3
-0.5  
-
0.3  
3
-0.5  
-
0.3  
3
-0.5  
-
0.3  
3
pF  
pF  
2,3,11  
2,3,12  
DQS, DQS# TDQS,TDQS# TDQS  
CZQ  
Input/output capacitance of ZQ pin  
Notes:  
1. Although the DM, TDQS and TDQS# pins have different functions, the loading matches DQ and DQS  
2. This parameter is not subject to production test. It is verified by design and characterization. VDD=VDDQ=1.5V, VBIAS=VDD/2 and on-die  
termination off.  
3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here  
4. Absolute value of CCK-CCK#  
5. Absolute value of CIO(DQS)-CIO(DQS#)  
6. CI applies to ODT, CS#, CKE, A0-A14, BA0-BA2, RAS#,CAS#,WE#.  
7. CDI_CTRL applies to ODT, CS# and CKE  
8. CDI_CTRL=CI(CTRL)-0.5*(CI(CK)+CI(CK#))  
9. CDI_ADD_CMD applies to A0-A14, BA0-BA2, RAS#, CAS# and WE#  
10. CDI_ADD_CMD=CI(ADD_CMD) - 0.5*(CI(CK)+CI(CK#))  
11. CDIO=CIO(DQ,DM) - 0.5*(CIO(DQS)+CIO(DQS#))  
12. Maximum external load capacitance on ZQ pin: 5 pF.  
Integrated Silicon Solution, Inc.  www.issi.com  
48  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
7. IDD SPECIFICATIONS AND MEASUREMENT CONDITIONS  
IDD Specifications (x8), 1.5 Operation Voltage  
DDR3-1333  
Max.  
DDR3-1600  
Max.  
Unit  
Typ.  
mA  
Symbol  
Parameter/Condition  
IDD0  
Operating Current 0  
-> One Bank Activate->  
Precharge  
75  
80  
IDD1  
Operating Current 1  
-> One Bank Activate->  
Read->  
95  
100  
mA  
Precharge  
IDD2P0  
IDD2P1  
Precharge Power-Down  
Current  
Slow Exit - MR0 bit A12 = 0  
Precharge Power-Down  
Current  
14  
35  
43  
14  
40  
46  
mA  
mA  
mA  
Fast Exit - MR0 bit A12 = 1  
IDD2PQ Precharge Quiet Standby  
Current  
IDD2N  
IDD3P  
Precharge Standby Current  
Active Power-Down Current  
Always Fast Exit  
46  
45  
50  
50  
mA  
mA  
IDD3N  
IDD4R  
IDD4W  
IDD5B  
IDD6  
Active Standby Current  
50  
145  
145  
190  
14  
55  
160  
160  
195  
14  
mA  
mA  
mA  
mA  
mA  
Operating Current Burst Read  
Operating Current Burst Write  
Burst Refresh Current  
Self-Refresh Current Normal  
Temperature Range (0-85°C)  
IDD6ET Self-Refresh Current:  
extended  
16  
16  
mA  
mA  
temperature range  
IDD7  
All Bank Interleave Read  
Current  
245  
260  
Integrated Silicon Solution, Inc.  www.issi.com  
49  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
IDD Specifications (x16), 1.5 Operation Voltage  
DDR3-1066  
Max.  
DDR3-1333 DDR3-1600  
DDR3-1866  
Max.  
Unit  
Typ.  
mA  
Symbol  
Parameter/Condition  
Max.  
Max.  
IDD0  
Operating Current 0  
-> One Bank Activate->  
Precharge  
80  
85  
90  
98  
IDD1  
Operating Current 1  
-> One Bank Activate->  
Read->  
112  
114  
117  
124  
mA  
Precharge  
IDD2P0  
IDD2P1  
Precharge Power-Down  
Current  
Slow Exit - MR0 bit A12 = 0  
Precharge Power-Down  
Current  
20  
29  
35  
20  
33  
40  
20  
34  
45  
22  
42  
53  
mA  
mA  
mA  
Fast Exit - MR0 bit A12 = 1  
IDD2PQ Precharge Quiet Standby  
Current  
IDD2N  
IDD3P  
Precharge Standby Current  
Active Power-Down Current  
Always Fast Exit  
45  
65  
50  
70  
55  
75  
63  
83  
mA  
mA  
IDD3N  
IDD4R  
IDD4W  
IDD5B  
IDD6  
Active Standby Current  
80  
200  
210  
185  
15  
85  
245  
255  
190  
15  
90  
270  
280  
195  
15  
98  
295  
315  
205  
15  
mA  
mA  
mA  
mA  
mA  
Operating Current Burst Read  
Operating Current Burst Write  
Burst Refresh Current  
Self-Refresh Current Normal  
Temperature Range (0-85°C)  
IDD6ET Self-Refresh Current:  
extended  
20  
20  
20  
20  
mA  
mA  
temperature range  
IDD7  
All Bank Interleave Read  
Current  
271  
286  
330  
363  
Integrated Silicon Solution, Inc.  www.issi.com  
50  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
IDD Specifications (x8), 1.35 Operation Voltage  
DDR3L-1333  
DDR3L-1600  
Unit  
Typ.  
mA  
Symbol  
IDD0  
Parameter/Condition  
Operating Current 0  
Max.  
70  
Max.  
75  
-> One Bank Activate-> Precharge  
IDD1  
Operating Current 1  
-> One Bank Activate-> Read->  
Precharge  
89  
95  
mA  
IDD2P0  
IDD2P1  
IDD2PQ  
Precharge Power-Down Current  
Slow Exit - MR0 bit A12 = 0  
14  
41  
42  
14  
43  
46  
mA  
mA  
mA  
Precharge Power-Down Current  
Fast Exit - MR0 bit A12 = 1  
Precharge Quiet Standby Current  
IDD2N  
IDD3P  
Precharge Standby Current  
Active Power-Down Current  
Always Fast Exit  
38  
42  
43  
46  
mA  
mA  
IDD3N  
IDD4R  
IDD4W  
IDD5B  
IDD6  
Active Standby Current  
47  
128  
135  
185  
14  
52  
147  
151  
190  
14  
mA  
mA  
mA  
mA  
mA  
Operating Current Burst Read  
Operating Current Burst Write  
Burst Refresh Current  
Self-Refresh Current Normal  
Temperature Range (0-85°C)  
IDD6ET  
IDD7  
Self-Refresh Current: extended  
temperature range  
16  
16  
mA  
mA  
All Bank Interleave Read Current  
240  
255  
Integrated Silicon Solution, Inc.  www.issi.com  
51  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
IDD Specifications (x16), 1.35 Operation Voltage  
DDR3L-1333  
DDR3L-1600  
Unit  
Typ.  
mA  
Symbol  
IDD0  
Parameter/Condition  
Operating Current 0  
Max.  
82  
Max.  
85  
-> One Bank Activate-> Precharge  
IDD1  
Operating Current 1  
-> One Bank Activate-> Read->  
Precharge  
97  
103  
mA  
IDD2P0  
IDD2P1  
IDD2PQ  
Precharge Power-Down Current  
Slow Exit - MR0 bit A12 = 0  
20  
30  
37  
20  
32  
40  
mA  
mA  
mA  
Precharge Power-Down Current  
Fast Exit - MR0 bit A12 = 1  
Precharge Quiet Standby Current  
IDD2N  
IDD3P  
Precharge Standby Current  
Active Power-Down Current  
Always Fast Exit  
48  
65  
52  
70  
mA  
mA  
IDD3N  
IDD4R  
IDD4W  
IDD5B  
IDD6  
Active Standby Current  
82  
200  
210  
180  
15  
87  
230  
235  
185  
15  
mA  
mA  
mA  
mA  
mA  
Operating Current Burst Read  
Operating Current Burst Write  
Burst Refresh Current  
Self-Refresh Current Normal  
Temperature Range (0-85°C)  
IDD6ET  
IDD7  
Self-Refresh Current: extended  
temperature range  
20  
20  
mA  
mA  
All Bank Interleave Read Current  
255  
285  
Integrated Silicon Solution, Inc.  www.issi.com  
52  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
8. Electrical Characteristics and AC timing for DDR3-800 to DDR3-1600  
8.1 Clock Specification  
The jitter specified is a random jitter meeting a Gaussian distribution. Input clocks violating the min/max values may result  
in malfunction of the DDR3 SDRAM device.  
8.1.1 Definition for tCK(avg)  
tCK(avg) is calculated as the average clock period across any consecutive 200 cycle window, where each clock period is  
calculated from rising edge to rising edge.  
tCK(avg) = (  
tCKj ) / N  
Where N=200  
8.1.2 Definition for tCK(abs)  
tCK(abs) is defind as the absolute clock period, as measured from one rising edge to the next consecutive rising edge.  
tCK(abs) is not subject to production test.  
8.1.3 Definition for tCH(avg) and tCL(avg)  
tCH(avg) is defined as the average high pulse width, as calculated across any consecutive 200 high pulses:  
tCH(avg) = (  
tCHj ) / (N x tCK(avg)  
Where N=200  
tCL(avg) is defined as the average low pulse width, as calculated across any consecutive 200 low pulses:  
tCL(avg) = (  
tCLj ) / (N x tCK(avg)  
Where N=200  
8.1.4 Definition for note for tJIT(per), tJIT(per, Ick)  
tJIT(per) is defined as the largest deviation of any single tCK from tCK(avg).  
tJIT(per) = min/max of {tCKi-tCK(avg) where i=1 to 200}  
tJIT(per) defines the single period jitter when the DLL is already locked.  
tJIT(per,lck) uses the same definition for single period jitter, during the DLL locking period only.  
tJIT(per) and tJIT(per,lck) are not subject to production test.  
8.1.5 Definition for tJIT(cc), tJIT(cc, Ick)  
Integrated Silicon Solution, Inc.  www.issi.com  
53  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
tJIT(cc) is defined as the absolute difference in clock period between two consecutive clock cycles: tJIT(cc) = Max of  
{tCKi+1-tCKi}  
tJIT(cc) defines the cycle to cycle jitter when the DLL is already locked.  
tJIT(cc,lck) uses the same definition for cycle to cycle jitter, during the DLL locking period only.  
tJIT(cc) and tJIT(cc,lck) are not subject to production test.  
8.1.6 Definition for tERR(nper)  
tERR is defined as the cumulative error across n multiple consecutive cycles from tCK(avg). tERR is not subject to  
production test.  
8.2 Refresh Parameters  
Refresh parameters(1)  
Parameter  
Symbol  
Units  
ns  
All Bank Refresh to active/refresh cmd time  
tRFC  
160  
7.8  
3.9  
-40°C < TCASE < 85°C  
85°C < TCASE < 105°C  
μs  
μs  
Average periodic refresh interval  
tREFI  
Notes:  
1. The permissible Tcase (Tc) operating temperature is specified by temperature grade. The maximum Tc is 95 C unless A2 grade, for which the  
maximum is 105 C. Refer to 3.2 Component Operating Temperature Range.  
8.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin  
DDR3-1066MT/s  
DDR3/DDR3L-1066  
Speed Bin  
CL-nRCD-nRP  
7-7-7 (-187F)  
Unit  
Parameter  
Symbol  
tAA  
tRCD  
tRP  
tRC  
Min  
Max  
20.000  
Internal read command to first data  
ACT to internal read or write delay time  
PRE command period  
ACT to ACT or REF command period  
ACT to PRE command period  
13.125  
13.125  
13.125  
50.625  
37.500  
3.000  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
-
-
tRAS  
9*tREFI  
3.300  
CWL =5  
CWL=6  
CWL =5  
CWL=6  
CWL =5  
CWL=6  
CWL =5  
CWL=6  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
CL=5  
Reserved  
2.500  
3.300  
CL=6  
Reserved  
Reserved  
1.875 <2.5  
Reserved  
1.875 <2.5  
CL=7  
CL=8  
Supported CL Settings  
Supported CWL Settings  
5,6,7,8  
5,6  
nCK  
nCK  
Integrated Silicon Solution, Inc.  www.issi.com  
54  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
DDR3-1333MT/s  
Speed Bin  
DDR3/DDR3L-1333  
9-9-9 (-15H)  
CL-nRCD-nRP  
Unit  
Parameter  
Symbol  
tAA  
Min  
Max  
Internal read command to first data  
ACT to internal read or write delay  
PRE command period  
13.125  
13.125  
13.125  
49.125  
36.0  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
nCK  
nCK  
tRCD  
-
tRP  
-
-
ACT to ACT or REF period  
ACT to PRE command period  
CWL =5  
tRC  
tRAS  
9*tREFI  
3.3  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
3.0  
CL=5  
CL=6  
CL=7  
CL=8  
CL=9  
CL=10  
CWL=6  
CWL=7  
CWL =5  
CWL=6  
CWL=7  
CWL =5  
CWL=6  
CWL=7  
CWL =5  
CWL=6  
CWL=7  
CWL=5  
CWL=6  
CWL=7  
CWL =5  
CWL=6  
CWL=7  
Reserved  
Reserved  
2.5  
3.3  
Reserved  
Reserved  
Reserved  
1.875  
<2.5  
Reserved  
Reserved  
1.875 <2.5  
Reserved  
Reserved  
Reserved  
1.5  
1.5  
<1.875  
Reserved  
Reserved  
<1.875  
Supported CL Settings  
Supported CWL Settings  
5,6,7,8,9,10  
5,6,7  
Note : *: Optional  
DDR3-1600MT/s  
Speed Bin  
CL-nRCD-nRP  
Parameter  
DDR3/DDR3L-1600  
11-11-11 (-125K)  
Unit  
Symbol  
tAA  
Min  
13.125  
13.125  
13.125  
48.125  
35  
Max  
Internal read command to first data  
ACT to internal read or write delay  
PRE command period  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tRCD  
-
tRP  
-
-
ACT to ACT or REF period  
ACT to PRE command period  
CWL =5  
tRC  
tRAS  
9*tREFI  
3.3  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
3.0  
CWL=6  
Reserved  
CL=5  
CWL=7  
Reserved  
Reserved  
CWL=8  
CWL =5  
2.5  
3.3  
CWL=6  
Reserved  
Reserved  
Reserved  
CL=6  
CWL=7  
CWL=8  
Integrated Silicon Solution, Inc.  www.issi.com  
55  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
CWL =5  
CWL=6  
CWL=7  
CWL=8  
CWL =5  
CWL=6  
CWL=7  
CWL=8  
CWL =5  
CWL=6  
CWL=7  
CWL=8  
CWL =5  
CWL=6  
CWL=7  
CWL =8  
CWL =5  
CWL= 6  
CWL= 7  
CWL =8  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
Reserved  
1.875 <2.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
nCK  
nCK  
CL=7  
Reserved  
Reserved  
Reserved  
1.875  
<2.5  
CL=8  
Reserved  
Reserved  
Reserved  
Reserved  
CL=9  
1.5  
1.5  
<1.875  
Reserved  
Reserved  
Reserved  
CL=10  
CL=11  
<1.875  
Reserved  
Reserved  
Reserved  
Reserved  
1.250  
<1.5  
Supported CL Settings  
Supported CWL Settings  
5,6,7,8,9,10,11  
5,6,7,8  
Note : *: Optional  
DDR3-1866MT/s  
Speed Bin  
CL-nRCD-nRP  
Parameter  
DDR3/DDR3L-1866  
13-13-13 (-107M)  
Unit  
Symbol  
tAA  
Min  
13.91  
13.91  
13.91  
47.91  
34  
Max  
Internal read command to first data  
ACT to internal read or write delay  
PRE command period  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tRCD  
-
tRP  
-
ACT to ACT or REF period  
ACT to PRE command period  
CWL =5  
tRC  
-
tRAS  
9*tREFI  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
Reserved  
CWL=6  
Reserved  
Reserved  
Reserved  
CL=5  
CWL=7  
CWL=8,9  
CWL =5  
2.5  
3.3  
CWL=6  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
CL=6  
CWL=7  
CWL=8,9  
CWL =5  
CWL=6  
CL=7  
CWL=7  
CWL=8,9  
CWL =5  
CWL=6  
1.875  
<2.5  
Reserved  
Reserved  
CL=8  
CWL=7  
CWL=8,9  
Integrated Silicon Solution, Inc.  www.issi.com  
56  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
CWL =5  
CWL=6  
CWL=7  
CWL=8,9  
CWL =5  
CWL=6  
CWL=7  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CL=9  
CL=10  
1.5  
<1.875  
CWL =8,9 tCK(AVG)  
Reserved  
CWL  
CL=11  
CL=12  
CL=13  
tCK(AVG)  
=5,6,7,8  
Reserved  
ns  
ns  
ns  
CWL=5,6,  
tCK(AVG)  
7,8,9  
CWL=5,6,  
tCK(AVG)  
7,8  
Reserved  
Reserved  
CWL =9  
tCK(AVG)  
1.07  
<1.25  
ns  
Supported CL Settings  
Supported CWL Settings  
5,6,7,8,9,10,11,12,13  
5,6,7,8,9  
nCK  
nCK  
Note: In these tables in section 8.3, grey shading is for readability purposes only.  
9. ELECTRICAL CHARACTERISTICS & AC TIMING  
9.1 Timing Parameter by Speed Bin (DDR3-800, DDR3-1066)  
DDR3/DDR3L-800  
DDR3/DDR3L-1066  
Units  
Notes  
6
Parameter  
Symbol  
Min.  
Max.  
Min.  
Max.  
Clock Timing  
Minimum Clock Cycle Time (DLL off mode)  
Average Clock Period  
tCK(DLL_OFF)  
tCK(avg)  
8
-
8
-
ns  
ps  
Refer to Standard Speed Bins  
Average high pulse width  
Average low pulse width  
tCH(avg)  
tCL(avg)  
0.47  
0.47  
0.53  
0.53  
0.47  
0.47  
0.53  
0.53  
tCK(avg)  
tCK(avg)  
Min.: tCK(avg)min + tJIT(per)min  
Max.: tCK(avg)max + tJIT(per)max  
Absolute Clock Period  
tCK(abs)  
ps  
Absolute clock HIGH pulse width  
Absolute clock LOW pulse width  
Clock Period Jitter  
tCH(abs)  
tCL(abs)  
JIT(per)  
JIT(per, lck)  
tJIT(cc)  
0.43  
0.43  
-100  
-90  
-
-
0.43  
0.43  
-90  
-80  
180  
-
-
tCK(avg)  
tCK(avg)  
ps  
25  
26  
100  
90  
200  
90  
80  
180  
Clock Period Jitter during DLL locking period  
ps  
ps  
Cycle to Cycle Period Jitter  
Cycle to Cycle Period Jitter during DLL locking  
period  
200  
JIT(cc, lck)  
180  
180  
160  
160  
ps  
Duty Cycle Jitter  
tJIT(duty)  
tERR(2per)  
tERR(3per)  
tERR(4per)  
tERR(5per)  
tERR(6per)  
tERR(7per)  
tERR(8per)  
tERR(9per)  
tERR(10per)  
tERR(11per)  
-
-
-
-
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
Cumulative error across 2 cycles  
Cumulative error across 3 cycles  
Cumulative error across 4 cycles  
Cumulative error across 5 cycles  
Cumulative error across 6 cycles  
Cumulative error across 7 cycles  
Cumulative error across 8 cycles  
Cumulative error across 9 cycles  
Cumulative error across 10 cycles  
Cumulative error across 11 cycles  
-147  
-175  
-194  
-209  
-222  
-232  
-241  
-249  
-257  
-263  
147  
175  
194  
209  
222  
232  
241  
249  
257  
263  
-132  
-157  
-175  
-188  
-200  
-209  
-217  
-224  
-231  
-237  
132  
157  
175  
188  
200  
209  
217  
224  
231  
237  
Integrated Silicon Solution, Inc.  www.issi.com  
57  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
DDR3/DDR3L-800  
DDR3/DDR3L-1066  
Units  
Notes  
Parameter  
Symbol  
Min.  
-269  
Max.  
269  
Min.  
-242  
Max.  
242  
Cumulative error across 12 cycles  
tERR(12per)  
ps  
ps  
tERR(nper)min = (1 + 0.68ln(n)) * tJIT(per)min  
tERR(nper)max = (1 + 0.68ln(n)) *  
tJIT(per)max  
Cumulative error across n = 13, 14 . . . 49, 50  
cycles  
tERR(nper)  
24  
13  
Data Timing  
DQS, DQS# to DQ skew, per group, per  
access  
tDQSQ  
-
200  
-
150  
ps  
DQ output hold time from DQS, DQS#  
DQ low-impedance time from CK, CK#  
DQ high impedance time from CK, CK#  
Data setup time to DQS, DQS# referenced to  
Vih(ac) / Vil(ac) levels  
Data setup time to DQS, DQS# referenced to  
Vih(ac) / Vil(ac) levels  
tQH  
tLZ(DQ)  
tHZ(DQ)  
tDS(base)  
AC175  
tDS(base)  
AC150  
0.38  
-800  
-
-
0.38  
-600  
-
-
tCK(avg)  
13,g  
13,14,f  
13,14,f  
400  
400  
300  
300  
ps  
ps  
ps  
ps  
d,17  
d,17  
See table for Data Setup and Hold  
Data hold time from DQS, DQS# referenced  
to Vih(dc) / Vil(dc) levels  
DQ and DM Input pulse width for each input  
tDH(base)  
DC100  
tDIPW  
ps  
ps  
d,17  
28  
600  
-
490  
-
Data Strobe Timing  
DQS,DQS# differential READ Preamble  
DQS, DQS# differential READ Postamble  
DQS, DQS# differential output high time  
DQS, DQS# differential output low time  
DQS, DQS# differential WRITE Preamble  
DQS, DQS# differential WRITE Postamble  
DQS, DQS# rising edge output access time  
from rising CK, CK#  
tRPRE  
tRPST  
tQSH  
tQSL  
tWPRE  
tWPST  
0.9  
0.3  
0.38  
0.38  
0.9  
Note  
Note  
-
-
-
-
19  
11  
0.38  
0.38  
0.9  
0.9  
0.3  
-
-
-
-
Note  
Note  
tCK(avg)  
tCK(avg)  
tCK(avg)  
tCK(avg)  
13,19,g  
11,13,g  
13,g  
13,g  
0.3  
0.3  
tDQSCK  
tLZ(DQS)  
tHZ(DQS)  
-400  
-800  
-
400  
400  
400  
-300  
-600  
-
300  
300  
300  
tCK(avg)  
tCK(avg)  
tCK(avg)  
13,f  
DQS and DQS# low-impedance time  
(Referenced from RL - 1)  
DQS and DQS# high-impedance time  
(Referenced from RL + BL/2)  
13,14,f  
13,14,f  
DQS, DQS# differential input low pulse width  
tDQSL  
tDQSH  
0.45  
0.45  
0.55  
0.55  
0.45  
0.45  
0.55  
0.55  
tCK(avg)  
tCK(avg)  
29,31  
30,31  
DQS, DQS# differential input high pulse width  
DQS, DQS# rising edge to CK, CK# rising  
edge  
DQS, DQS# falling edge setup time to CK,  
CK# rising edge  
tDQSS  
tDSS  
-0.25  
0.2  
0.25  
-0.25  
0.2  
0.25  
tCK(avg)  
tCK(avg)  
tCK(avg)  
c
-
-
-
-
c,32  
c,32  
DQS, DQS# falling edge hold time from CK,  
CK# rising edge  
tDSH  
0.2  
0.2  
Command and Address Timing  
DLL locking time  
tDLLK  
tRTP  
512  
-
512  
-
nCK  
tRTPmin.: max(4nCK, 7.5ns)  
tRTPmax.: -  
Internal READ Command to PRECHARGE  
Command delay  
e
tWTRmin.: max(4nCK, 7.5ns)  
tWTRmax.:  
Delay from start of internal write transaction to  
internal read command  
tWTR  
e,18  
e,18  
WRITE recovery time  
Mode Register Set command cycle time  
tWR  
tMRD  
15  
4
-
-
15  
4
-
-
ns  
nCK  
tMODmin.: max(12nCK, 15ns)  
tMODmax.:  
Mode Register Set command update delay  
tMOD  
ACT to internal read or write delay time  
PRE command period  
ACT to ACT or REF command period  
CAS# to CAS# command delay  
tRCD  
tRP  
tRC  
Standard Speed Bins  
Standard Speed Bins  
Standard Speed Bins  
e
e
e
tCCD  
4
-
4
-
nCK  
Integrated Silicon Solution, Inc.  www.issi.com  
58  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
DDR3/DDR3L-800  
DDR3/DDR3L-1066  
Units  
Notes  
Parameter  
Symbol  
Min.  
Max.  
Min.  
Max.  
Auto precharge write recovery + precharge  
time  
Multi-Purpose Register Recovery Time  
ACTIVE to PRECHARGE command period  
ACTIVE to ACTIVE command period for 1KB  
page size  
tDAL(min)  
WR + roundup(tRP / tCK(avg))  
nCK  
nCK  
tMPRR  
tRAS  
1
-
1
-
-
22  
e
Standard Speed Bins  
max(4nCK,  
10ns)  
max(4nCK,  
7.5ns)  
tRRD  
tRRD  
-
e
e
tRRDmin.: max(4nCK, 10ns)  
tRRDmax.:  
ACTIVE to ACTIVE command period for 2KB  
page size  
Four activate window for 1KB page size  
tFAW  
tFAW  
40  
50  
-
-
37.5  
50  
-
-
ns  
ns  
e
e
Four activate window for 2KB page size  
Command and Address setup time to CK,  
CK# referenced to Vih(ac) / Vil(ac) levels  
Command and Address hold time from CK,  
CK# referenced to Vih(dc) / Vil(dc) levels  
Command and Address setup time to CK,  
CK# referenced to Vih(ac) / Vil(ac) levels  
Control and Address Input pulse width for  
each input  
tIS(base)  
tIH(base)  
ps  
ps  
ps  
ps  
b,16  
b,16,27  
b,16  
See table for ADD/CMD setup and hold  
tIS(base)  
AC150  
tIPW  
900  
-
780  
-
28  
Calibration Timing  
Power-up and RESET calibration time  
Normal operation Full calibration time  
Normal operation Short calibration time  
Reset Timing  
tZQinit  
tZQoper  
tZQCS  
512  
256  
64  
-
-
-
512  
256  
64  
-
-
-
nCK  
nCK  
nCK  
23  
tXPRmin.: max(5nCK, tRFC(min) + 10ns)  
tXPRmax.: -  
Exit Reset from CKE HIGH to a valid  
command  
tXPR  
Self Refresh Timings  
tXSmin.: max(5nCK, tRFC(min) + 10ns)  
tXSmax.: -  
Exit Self Refresh to commands not requiring a  
locked DLL  
tXS  
tXSDLLmin.: tDLLK(min)  
tXSDLLmax.: -  
tCKESRmin.: tCKE(min) + 1 nCK  
tCKESRmax.: -  
tCKSREmin.: max(5 nCK, 10 ns)  
tCKSREmax.: -  
Exit Self Refresh to commands requiring a  
locked DLL  
tXSDLL  
tCKESR  
tCKSRE  
nCK  
2
Minimum CKE low width for Self Refresh entry  
to exit timing  
Valid Clock Requirement after Self Refresh  
Entry (SRE) or Power-Down Entry (PDE)  
Valid Clock Requirement before Self Refresh  
Exit (SRX) or Power-Down Exit (PDX) or  
Reset Exit  
tCKSRXmin.: max(5 nCK, 10 ns)  
tCKSRX  
tCKSRXmax.: -  
Power Down Timings  
Exit Power Down with DLL on to any valid  
command; Exit Precharge Power Down with  
DLL frozen to commands not requiring a  
locked DLL  
tXPmin.: max(3nCK, 7.5ns)  
tXPmax.: -  
tXP  
tXPDLLmin.: max(10nCK, 24ns)  
tXPDLLmax.: -  
Exit Precharge Power Down with DLL frozen  
to commands requiring a locked DLL  
tXPDLL  
tCKE  
tCKEmin.: max(3nCK  
7.5ns)  
tCKEmin.: max(3nCK  
5.625ns)  
CKE minimum pulse width  
tCKEmax.: -  
tCKEmax.: -  
tCPDEDmin.: 1  
Command pass disable delay  
tCPDED  
tPD  
nCK  
tCPDEDmax.: -  
tPDmin.: tCKE(min)  
tPDmax.: 9*tREFI  
Power Down Entry to Exit Timing  
15  
Integrated Silicon Solution, Inc.  www.issi.com  
59  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
DDR3/DDR3L-800  
Min. Max.  
DDR3/DDR3L-1066  
Min. Max.  
Units  
nCK  
Notes  
20  
Parameter  
Symbol  
tACTPDEN  
tPRPDEN  
Symbol  
tACTPDENmin.: 1  
tACTPDENmax.: -  
tPRPDENmin.: 1  
tPRPDENmax.: -  
Timing of ACT command to Power Down  
entry  
Timing of PRE or PREA command to Power  
Down entry  
nCK  
20  
DDR3-800  
Min. Max.  
DDR3-1066  
Min. Max.  
Units  
Notes  
Parameter  
tRDPDENmin.: RL+4+1  
tRDPDENmax.: -  
tWRPDENmin.: WL + 4 + (tWR / tCK(avg))  
tWRPDENmax.: -  
tWRAPDENmin.: WL+4+WR+1  
tWRAPDENmax.: -  
tWRPDENmin.: WL + 2 + (tWR / tCK(avg))  
tWRPDENmax.: -  
Timing of RD/RDA command to Power Down  
entry  
tRDPDEN  
tWRPDEN  
tWRAPDEN  
tWRPDEN  
tWRAPDEN  
nCK  
nCK  
nCK  
nCK  
nCK  
Timing of WR command to Power Down entry  
(BL8OTF, BL8MRS, BC4OTF)  
9
10  
9
Timing of WRA command to Power Down  
entry (BL8OTF, BL8MRS, BC4OTF)  
Timing of WR command to Power Down entry  
(BC4MRS)  
tWRAPDENmin.: WL + 2 +WR + 1  
tWRAPDENmax.: -  
Timing of WRA command to Power Down  
entry (BC4MRS)  
10  
tREFPDENmin.: 1  
tREFPDENmax.: -  
tMRSPDENmin.: tMOD(min)  
tMRSPDENmax.: -  
Timing of REF command to Power Down  
entry  
tREFPDEN  
tMRSPDEN  
nCK  
20,21  
Timing of MRS command to Power Down  
entry  
ODT Timings  
ODTH4min.: 4  
ODTH4max.: -  
ODTH8min.: 6  
ODTH8max.: -  
ODT high time without write command or with  
write command and BC4  
ODTH4  
nCK  
ODT high time with Write command and BL8  
ODTH8  
nCK  
ns  
Asynchronous RTT turn-on delay (Power-  
Down with DLL frozen)  
tAONPD  
2
8.5  
2
8.5  
Asynchronous RTT turn-off delay (Power-  
Down with DLL frozen)  
RTT turn-on  
RTT_Nom and RTT_WR turn-off time from  
ODTLoff reference  
tAOFPD  
tAON  
2
8.5  
400  
0.7  
0.7  
2
8.5  
300  
0.7  
0.7  
ns  
-400  
0.3  
0.3  
-300  
0.3  
0.3  
ps  
7,f  
8,f  
f
tAOF  
tCK(avg)  
tCK(avg)  
RTT dynamic change skew  
tADC  
Write Leveling Timings  
First DQS/DQS# rising edge after write  
leveling mode is programmed  
tWLMRD  
tWLDQSEN  
tWLS  
40  
25  
-
-
-
-
40  
25  
-
-
-
-
nCK  
nCK  
ps  
3
3
DQS/DQS# delay after write leveling mode is  
programmed  
Write leveling setup time from rising CK, CK#  
crossing to rising DQS, DQS# crossing  
Write leveling hold time from rising DQS,  
DQS# crossing to rising CK, CK# crossing  
325  
325  
245  
245  
tWLH  
ps  
Write leveling output delay  
Write leveling output error  
tWLO  
tWLOE  
0
0
9
2
0
0
9
2
ns  
ns  
Integrated Silicon Solution, Inc.  www.issi.com  
60  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
9.2.1 Timing Parameter by Speed Bin (DDR3-1333, DDR3-1600)  
DDR3/DDR3L-1333  
DDR3/DDR3L-1600  
Units  
Notes  
6
Parameter  
Symbol  
Min.  
Max.  
Min.  
Max.  
Clock Timing  
Minimum Clock Cycle Time (DLL off mode)  
Average Clock Period  
tCK(DLL_OFF)  
tCK(avg)  
8
-
8
-
ns  
ps  
Refer to Standard Speed Bins  
Average high pulse width  
Average low pulse width  
tCH(avg)  
tCL(avg)  
0.47  
0.47  
0.53  
0.53  
0.47  
0.47  
0.53  
0.53  
tCK(avg)  
tCK(avg)  
Min.: tCK(avg)min + tJIT(per)min  
Max.: tCK(avg)max + tJIT(per)max  
Absolute Clock Period  
tCK(abs)  
ps  
Absolute clock HIGH pulse width  
Absolute clock LOW pulse width  
Clock Period Jitter  
tCH(abs)  
tCL(abs)  
JIT(per)  
JIT(per, lck)  
tJIT(cc)  
0.43  
0.43  
-80  
-70  
160  
-
-
0.43  
0.43  
-70  
-60  
140  
-
-
tCK(avg)  
tCK(avg)  
ps  
25  
26  
80  
70  
160  
70  
60  
140  
Clock Period Jitter during DLL locking period  
Cycle to Cycle Period Jitter  
ps  
ps  
Cycle to Cycle Period Jitter during DLL  
locking period  
JIT(cc, lck)  
140  
140  
120  
120  
ps  
Duty Cycle Jitter  
tJIT(duty)  
tERR(2per)  
tERR(3per)  
tERR(4per)  
tERR(5per)  
tERR(6per)  
tERR(7per)  
tERR(8per)  
tERR(9per)  
tERR(10per)  
tERR(11per)  
tERR(12per)  
-
-
-
-
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
Cumulative error across 2 cycles  
Cumulative error across 3 cycles  
Cumulative error across 4 cycles  
Cumulative error across 5 cycles  
Cumulative error across 6 cycles  
Cumulative error across 7 cycles  
Cumulative error across 8 cycles  
Cumulative error across 9 cycles  
Cumulative error across 10 cycles  
Cumulative error across 11 cycles  
Cumulative error across 12 cycles  
-118  
-140  
-155  
-168  
-177  
-186  
-193  
-200  
-205  
-210  
-215  
118  
140  
155  
168  
177  
186  
193  
200  
205  
210  
215  
-103  
-122  
-136  
-147  
-155  
-163  
-169  
-175  
-180  
-184  
-188  
103  
122  
136  
147  
155  
163  
169  
175  
180  
184  
188  
tERR(nper)min = (1 + 0.68ln(n)) * tJIT(per)min  
tERR(nper)max = (1 + 0.68ln(n)) *  
tJIT(per)max  
Cumulative error across n = 13, 14 . . . 49, 50  
cycles  
tERR(nper)  
ps  
Data Timing  
DQS, DQS# to DQ skew, per group, per  
access  
tDQSQ  
-
125  
-
100  
ps  
13  
DQ output hold time from DQS, DQS#  
DQ low-impedance time from CK, CK#  
DQ high impedance time from CK, CK#  
Data setup time to DQS, DQS# referenced to  
Vih(ac) / Vil(ac) levels  
tQH  
0.38  
-500  
-
-
0.38  
-450  
-
-
tCK(avg)  
13,g  
13,14,f  
13,14,f  
tLZ(DQ)  
tHZ(DQ)  
tDS(base)  
AC175  
tDS(base)  
AC150  
250  
250  
225  
225  
ps  
ps  
ps  
ps  
d,17  
d,17  
Data setup time to DQS, DQS# referenced to  
Vih(ac) / Vil(ac) levels  
See table for Data Setup and Hold  
Data hold time from DQS, DQS# referenced  
to Vih(dc) / Vil(dc) levels  
DQ and DM Input pulse width for each input  
Data Strobe Timing  
tDH(base)  
DC100  
tDIPW  
ps  
ps  
d,17  
28  
400  
-
360  
-
Note  
19  
Note  
11  
DQS,DQS# differential READ Preamble  
DQS, DQS# differential READ Postamble  
tRPRE  
tRPST  
0.9  
0.3  
Note 19  
Note 11  
0.9  
0.3  
Note  
Note  
13,19,g  
11,13,g  
DQS, DQS# differential output high time  
DQS, DQS# differential output low time  
DQS, DQS# differential WRITE Preamble  
DQS, DQS# differential WRITE Postamble  
DQS, DQS# rising edge output access time  
from rising CK, CK#  
tQSH  
tQSL  
tWPRE  
tWPST  
0.4  
0.4  
0.9  
0.3  
-
-
-
-
0.4  
0.4  
0.9  
0.3  
-
-
-
-
tCK(avg)  
tCK(avg)  
tCK(avg)  
tCK(avg)  
13,g  
13,g  
tDQSCK  
-255  
255  
-225  
225  
tCK(avg)  
13,f  
Integrated Silicon Solution, Inc.  www.issi.com  
61  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
DDR3/DDR3L-1333  
DDR3/DDR3L-1600  
Units  
Notes  
Parameter  
Symbol  
tLZ(DQS)  
tHZ(DQS)  
Min.  
Max.  
Min.  
Max.  
DQS and DQS# low-impedance time  
(Referenced from RL - 1)  
-500  
250  
-450  
225  
tCK(avg)  
tCK(avg)  
13,14,f  
13,14,f  
DQS and DQS# high-impedance time  
(Referenced from RL + BL/2)  
DQS, DQS# differential input low pulse width  
DQS, DQS# differential input high pulse width  
DQS, DQS# rising edge to CK, CK# rising  
edge  
DQS, DQS# falling edge setup time to CK,  
CK# rising edge  
DQS, DQS# falling edge hold time from CK,  
CK# rising edge  
-
250  
-
225  
tDQSL  
tDQSH  
0.45  
0.45  
0.55  
0.55  
0.45  
0.45  
0.55  
0.55  
tCK(avg)  
tCK(avg)  
29,31  
30,31  
tDQSS  
tDSS  
-0.25  
0.2  
0.25  
-0.27  
0.18  
0.18  
0.27  
tCK(avg)  
tCK(avg)  
tCK(avg)  
c
-
-
-
-
c,32  
c,32  
tDSH  
0.2  
Command and Address Timing  
DLL locking time  
Internal READ Command to PRECHARGE  
Command delay  
tDLLK  
tRTP  
512  
-
512  
-
nCK  
tRTPmin.: max(4nCK, 7.5ns)  
tRTPmax.: -  
tWTRmin.: max(4nCK, 7.5ns)  
tWTRmax.:  
Delay from start of internal write transaction to  
internal read command  
tWTR  
WRITE recovery time  
Mode Register Set command cycle time  
tWR  
tMRD  
15  
4
-
-
15  
4
-
-
ns  
nCK  
e,18  
tMODmin.: max(12nCK, 15ns)  
tMODmax.:  
Mode Register Set command update delay  
tMOD  
ACT to internal read or write delay time  
PRE command period  
ACT to ACT or REF command period  
CAS# to CAS# command delay  
Auto precharge write recovery + precharge  
time  
Multi-Purpose Register Recovery Time  
ACTIVE to PRECHARGE command period  
ACTIVE to ACTIVE command period for 1KB  
page size  
ACTIVE to ACTIVE command period for 2KB  
page size  
tRCD  
tRP  
tRC  
Standard Speed Bins  
Standard Speed Bins  
Standard Speed Bins  
tCCD  
4
1
-
4
-
nCK  
nCK  
nCK  
tDAL(min)  
WR + roundup(tRP / tCK(avg))  
tMPRR  
tRAS  
-
1
-
-
22  
e
Standard Speed Bins  
max(4nCK,  
6ns)  
max(4nCK,  
tRRD  
tRRD  
-
6ns)  
tRRDmin.: max(4nCK, 7.5ns)  
tRRDmax.:  
Four activate window for 1KB page size  
Four activate window for 2KB page size  
Command and Address setup time to CK,  
CK# referenced to Vih(ac) / Vil(ac) levels  
Command and Address hold time from CK,  
CK# referenced to Vih(dc) / Vil(dc) levels  
Command and Address setup time to CK,  
CK# referenced to Vih(ac) / Vil(ac) levels  
Control and Address Input pulse width for  
each input  
tFAW  
tFAW  
30  
45  
-
-
30  
40  
-
-
ns  
ns  
e
e
tIS(base)  
tIH(base)  
ps  
ps  
ps  
ps  
b,16  
b,16,27  
b,16  
See table for ADD/CMD Setup and Hold  
tIS(base)  
AC150  
tIPW  
620  
-
560  
-
28  
Calibration Timing  
Power-up and RESET calibration time  
Normal operation Full calibration time  
Normal operation Short calibration time  
Reset Timing  
tZQinit  
tZQoper  
tZQCS  
512  
256  
64  
-
-
-
512  
256  
64  
-
-
-
nCK  
nCK  
nCK  
23  
tXPRmin.: max(5nCK, tRFC(min) + 10ns)  
tXPRmax.: -  
Exit Reset from CKE HIGH to a valid  
command  
tXPR  
tXS  
Self Refresh Timings  
tXSmin.: max(5nCK, tRFC(min) + 10ns)  
tXSmax.: -  
Exit Self Refresh to commands not requiring a  
locked DLL  
Integrated Silicon Solution, Inc.  www.issi.com  
62  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
DDR3/DDR3L-1333  
Min. Max.  
DDR3/DDR3L-1600  
Min. Max.  
Units  
nCK  
Notes  
Parameter  
Symbol  
tXSDLL  
tCKESR  
tCKSRE  
tXSDLLmin.: tDLLK(min)  
tXSDLLmax.: -  
tCKESRmin.: tCKE(min) + 1 nCK  
tCKESRmax.: -  
tCKSREmin.: max(5 nCK, 10 ns)  
tCKSREmax.: -  
tCKSRXmin.: max(5 nCK, 10 ns)  
Exit Self Refresh to commands requiring a  
locked DLL  
Minimum CKE low width for Self Refresh entry  
to exit timing  
Valid Clock Requirement after Self Refresh  
Entry (SRE) or Power-Down Entry (PDE)  
Valid Clock Requirement before Self Refresh  
Exit (SRX) or Power-Down Exit (PDX) or  
Reset Exit  
tCKSRX  
tCKSRXmax.: -  
Power Down Timings  
Exit Power Down with DLL on to any valid  
command; Exit Precharge Power Down with  
DLL frozen to commands not requiring a  
locked DLL  
tXPmin.: max(3nCK, 6ns)  
tXPmax.: -  
tXP  
tXPDLLmin.: max(10nCK, 24ns)  
tXPDLLmax.: -  
Exit Precharge Power Down with DLL frozen  
to commands requiring a locked DLL  
tXPDLL  
tCKE  
tCKEmin.: max(3nCK  
5.625ns)  
tCKEmin.: max(3nCK  
5ns)  
CKE minimum pulse width  
tCKEmax.: -  
tCKEmax.: -  
tCPDEDmin.: 1  
tCPDEDmax.: -  
tPDmin.: tCKE(min)  
Command pass disable delay  
tCPDED  
tPD  
nCK  
Power Down Entry to Exit Timing  
tPDmax.: 9*tREFI  
tACTPDENmin.: 1  
tACTPDENmax.: -  
tPRPDENmin.: 1  
tPRPDENmax.: -  
Timing of ACT command to Power Down  
entry  
Timing of PRE or PREA command to Power  
Down entry  
Timing of RD/RDA command to Power Down  
entry  
Timing of WR command to Power Down entry  
(BL8OTF, BL8MRS, BC4OTF)  
Timing of WRA command to Power Down  
entry (BL8OTF, BL8MRS, BC4OTF)  
Timing of WR command to Power Down entry  
(BC4MRS)  
Timing of WRA command to Power Down  
entry (BC4MRS)  
Timing of REF command to Power Down  
entry  
Timing of MRS command to Power Down  
entry  
tACTPDEN  
tPRPDEN  
tRDPDEN  
tWRPDEN  
tWRAPDEN  
tWRPDEN  
tWRAPDEN  
tREFPDEN  
tMRSPDEN  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
tRDPDENmin.: RL+4+1  
tRDPDENmax.: -  
tWRPDENmin.: WL + 4 + (tWR / tCK(avg))  
tWRPDENmax.: -  
tWRAPDENmin.: WL+4+WR+1  
tWRAPDENmax.: -  
tWRPDENmin.: WL + 2 + (tWR / tCK(avg))  
tWRPDENmax.: -  
tWRAPDENmin.: WL + 2 +WR + 1  
tWRAPDENmax.: -  
tREFPDENmin.: 1  
tREFPDENmax.: -  
tMRSPDENmin.: tMOD(min)  
tMRSPDENmax.: -  
ODT Timings  
ODTH4min.: 4  
ODTH4max.: -  
ODTH8min.: 6  
ODTH8max.: -  
ODT high time without write command or with  
write command and BC4  
ODTH4  
ODTH8  
tAONPD  
nCK  
nCK  
ns  
ODT high time with Write command and BL8  
Asynchronous RTT turn-on delay (Power-  
Down with DLL frozen)  
2
8.5  
2
8.5  
Asynchronous RTT turn-off delay (Power-  
Down with DLL frozen)  
RTT turn-on  
RTT_Nom and RTT_WR turn-off time from  
ODTLoff reference  
tAOFPD  
tAON  
2
8.5  
250  
0.7  
2
8.5  
225  
0.7  
ns  
ps  
-250  
0.3  
-225  
0.3  
tAOF  
tCK(avg)  
7,f  
8,f  
RTT dynamic change skew  
tADC  
0.3  
0.7  
0.3  
0.7  
tCK(avg)  
Integrated Silicon Solution, Inc.  www.issi.com  
63  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
DDR3/DDR3L-1333  
DDR3/DDR3L-1600  
Units  
Notes  
f
Parameter  
Symbol  
Min.  
Max.  
Min.  
Max.  
Write Leveling Timings  
First DQS/DQS# rising edge after write  
leveling mode is programmed  
tWLMRD  
tWLDQSEN  
tWLS  
40  
25  
-
-
-
-
40  
25  
-
-
-
-
nCK  
nCK  
ps  
DQS/DQS# delay after write leveling mode is  
programmed  
3
Write leveling setup time from rising CK, CK#  
crossing to rising DQS, DQS# crossing  
Write leveling hold time from rising DQS,  
DQS# crossing to rising CK, CK# crossing  
Write leveling output delay  
195  
195  
165  
165  
tWLH  
ps  
tWLO  
tWLOE  
0
0
9
2
0
0
7.5  
2
ns  
ns  
Write leveling output error  
9.2.2 Timing Parameter by Speed Bin (DDR3-1866)  
DDR3/DDR3L-1866  
DDR3/DDR3L-1866  
Units  
Notes  
6
Parameter  
Symbol  
Min.  
Max.  
Min.  
Max.  
Clock Timing  
Minimum Clock Cycle Time (DLL off mode)  
Average Clock Period  
tCK(DLL_OFF)  
tCK(avg)  
8
-
ns  
ps  
Refer to Standard Speed Bins  
Average high pulse width  
Average low pulse width  
tCH(avg)  
tCL(avg)  
0.47  
0.47  
0.53  
0.53  
tCK(avg)  
tCK(avg)  
Min.: tCK(avg)min + tJIT(per)min  
Max.: tCK(avg)max + tJIT(per)max  
Absolute Clock Period  
tCK(abs)  
ps  
Absolute clock HIGH pulse width  
Absolute clock LOW pulse width  
Clock Period Jitter  
tCH(abs)  
tCL(abs)  
JIT(per)  
JIT(per, lck)  
tJIT(cc)  
0.43  
0.43  
-60  
-50  
120  
-
-
-
-
tCK(avg)  
tCK(avg)  
ps  
25  
26  
60  
50  
120  
Clock Period Jitter during DLL locking period  
Cycle to Cycle Period Jitter  
ps  
ps  
Cycle to Cycle Period Jitter during DLL  
locking period  
JIT(cc, lck)  
100  
100  
ps  
Duty Cycle Jitter  
tJIT(duty)  
tERR(2per)  
tERR(3per)  
tERR(4per)  
tERR(5per)  
tERR(6per)  
tERR(7per)  
tERR(8per)  
tERR(9per)  
tERR(10per)  
tERR(11per)  
tERR(12per)  
-
-
88  
-
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
Cumulative error across 2 cycles  
Cumulative error across 3 cycles  
Cumulative error across 4 cycles  
Cumulative error across 5 cycles  
Cumulative error across 6 cycles  
Cumulative error across 7 cycles  
Cumulative error across 8 cycles  
Cumulative error across 9 cycles  
Cumulative error across 10 cycles  
Cumulative error across 11 cycles  
Cumulative error across 12 cycles  
-88  
-105  
-117  
-126  
-133  
-139  
-145  
-150  
-154  
-158  
-161  
105  
117  
126  
133  
139  
145  
150  
154  
158  
161  
tERR(nper)min = (1 + 0.68ln(n)) * tJIT(per)min  
tERR(nper)max = (1 + 0.68ln(n)) *  
tJIT(per)max  
Cumulative error across n = 13, 14 . . . 49, 50  
cycles  
tERR(nper)  
ps  
Data Timing  
DQS, DQS# to DQ skew, per group, per  
access  
tDQSQ  
-
85  
-
ps  
13  
DQ output hold time from DQS, DQS#  
DQ low-impedance time from CK, CK#  
DQ high impedance time from CK, CK#  
Data setup time to DQS, DQS# referenced to  
Vih(ac) / Vil(ac) levels  
tQH  
0.38  
-390  
-
-
-
tCK(avg)  
13,g  
13,14,f  
13,14,f  
tLZ(DQ)  
tHZ(DQ)  
tDS(base)  
AC175  
195  
195  
ps  
ps  
-
-
-
-
ps  
d,17  
See table for Data  
Setup and Hold  
Data setup time to DQS, DQS# referenced to  
Vih(ac) / Vil(ac) levels  
tDS(base)  
AC150  
ps  
d,17  
Integrated Silicon Solution, Inc.  www.issi.com  
64  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
DDR3/DDR3L-1866  
DDR3/DDR3L-1866  
Units  
Notes  
Parameter  
Symbol  
Min.  
Max.  
Min.  
Max.  
Data hold time from DQS, DQS# referenced  
to Vih(dc) / Vil(dc) levels  
tDH(base)  
DC100  
-
ps  
ps  
d,17  
28  
DQ and DM Input pulse width for each input  
tDIPW  
320  
-
-
Data Strobe Timing  
DQS,DQS# differential READ Preamble  
DQS, DQS# differential READ Postamble  
DQS, DQS# differential output high time  
DQS, DQS# differential output low time  
DQS, DQS# differential WRITE Preamble  
DQS, DQS# differential WRITE Postamble  
DQS, DQS# rising edge output access time  
from rising CK, CK#  
tRPRE  
tRPST  
tQSH  
tQSL  
tWPRE  
tWPST  
0.9  
0.3  
0.4  
0.4  
0.9  
0.3  
Note 19  
Note 11  
Note  
Note  
tCK(avg)  
tCK(avg)  
tCK(avg)  
tCK(avg)  
13,19,g  
11,13,g  
13,g  
-
-
-
-
13,g  
tDQSCK  
tLZ(DQS)  
tHZ(DQS)  
-195  
-390  
-
195  
195  
195  
tCK(avg)  
tCK(avg)  
tCK(avg)  
13,f  
DQS and DQS# low-impedance time  
(Referenced from RL - 1)  
DQS and DQS# high-impedance time  
(Referenced from RL + BL/2)  
13,14,f  
13,14,f  
DQS, DQS# differential input low pulse width  
DQS, DQS# differential input high pulse width  
DQS, DQS# rising edge to CK, CK# rising  
edge  
DQS, DQS# falling edge setup time to CK,  
CK# rising edge  
tDQSL  
tDQSH  
0.45  
0.45  
0.55  
0.55  
tCK(avg)  
tCK(avg)  
29,31  
30,31  
tDQSS  
tDSS  
-0.27  
0.18  
0.27  
-
tCK(avg)  
tCK(avg)  
c
c,32  
DQS, DQS# falling edge hold time from CK,  
CK# rising edge  
tDSH  
0.18  
512  
-
tCK(avg)  
nCK  
c,32  
Command and Address Timing  
DLL locking time  
Internal READ Command to PRECHARGE  
Command delay  
tDLLK  
tRTP  
-
tRTPmin.: max(4nCK, 7.5ns)  
tRTPmax.: -  
tWTRmin.: max(4nCK, 7.5ns)  
Delay from start of internal write transaction to  
internal read command  
tWTR  
tWTRmax.:  
WRITE recovery time  
Mode Register Set command cycle time  
tWR  
tMRD  
15  
4
-
-
ns  
nCK  
e,18  
tMODmin.: max(12nCK, 15ns)  
tMODmax.:  
Mode Register Set command update delay  
tMOD  
ACT to internal read or write delay time  
PRE command period  
ACT to ACT or REF command period  
CAS# to CAS# command delay  
Auto precharge write recovery + precharge  
time  
Multi-Purpose Register Recovery Time  
ACTIVE to PRECHARGE command period  
ACTIVE to ACTIVE command period for 1KB  
page size  
tRCD  
tRP  
tRC  
Standard Speed Bins  
Standard Speed Bins  
Standard Speed Bins  
-
tCCD  
4
1
nCK  
nCK  
nCK  
tDAL(min)  
WR + roundup(tRP / tCK(avg))  
tMPRR  
tRAS  
-
22  
e
Standard Speed Bins  
max(4nCK,  
6ns)  
max(4nCK,  
6ns)  
tRRD  
-
-
tRRDmin.: max(4nCK, 7.5ns)  
ACTIVE to ACTIVE command period for 2KB  
page size  
tRRD  
tRRDmax.:  
Four activate window for 1KB page size  
Four activate window for 2KB page size  
Command and Address setup time to CK,  
CK# referenced to Vih(ac) / Vil(ac) levels  
Command and Address hold time from CK,  
CK# referenced to Vih(dc) / Vil(dc) levels  
Command and Address setup time to CK,  
CK# referenced to Vih(ac) / Vil(ac) levels  
tFAW  
tFAW  
27  
35  
-
-
ns  
ns  
e
e
tIS(base)  
tIH(base)  
ps  
ps  
ps  
b,16  
b,16,27  
b,16  
See table for  
ADD/CMD setup and  
hold  
tIS(base)  
AC150  
Integrated Silicon Solution, Inc.  www.issi.com  
65  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
DDR3/DDR3L-1866  
DDR3/DDR3L-1866  
Min. Max.  
Units  
ps  
Notes  
28  
Parameter  
Symbol  
tIPW  
Min.  
Max.  
Control and Address Input pulse width for each  
535  
-
input  
Calibration Timing  
Power-up and RESET calibration time  
Normal operation Full calibration time  
Normal operation Short calibration time  
Reset Timing  
tZQinit  
tZQoper  
tZQCS  
512  
256  
64  
-
-
-
nCK  
nCK  
nCK  
23  
tXPRmin.: max(5nCK, tRFC(min) + 10ns)  
tXPRmax.: -  
Exit Reset from CKE HIGH to a valid command  
tXPR  
Self Refresh Timings  
tXSmin.: max(5nCK, tRFC(min) + 10ns)  
tXSmax.: -  
Exit Self Refresh to commands not requiring a  
locked DLL  
tXS  
tXSDLLmin.: tDLLK(min)  
tXSDLLmax.: -  
tCKESRmin.: tCKE(min) + 1 nCK  
tCKESRmax.: -  
tCKSREmin.: max(5 nCK, 10 ns)  
tCKSREmax.: -  
Exit Self Refresh to commands requiring a  
locked DLL  
tXSDLL  
tCKESR  
tCKSRE  
nCK  
Minimum CKE low width for Self Refresh entry to  
exit timing  
Valid Clock Requirement after Self Refresh Entry  
(SRE) or Power-Down Entry (PDE)  
Valid Clock Requirement before Self Refresh  
Exit (SRX) or Power-Down Exit (PDX) or Reset  
Exit  
tCKSRXmin.: max(5 nCK, 10 ns)  
tCKSRX  
tXP  
tCKSRXmax.: -  
Power Down Timings  
tXPmin.: max(3nCK, 6ns)  
tXPmax.: -  
Exit Power Down with DLL on to any valid  
command; Exit Precharge Power Down with DLL  
frozen to commands not requiring a locked DLL  
tXPDLLmin.: max(10nCK, 24ns)  
tXPDLLmax.: -  
tCKEmin.: max(3nCK 5 ns)  
tCKEmax.: -  
Exit Precharge Power Down with DLL frozen to  
commands requiring a locked DLL  
tXPDLL  
tCKE  
CKE minimum pulse width  
Command pass disable delay  
tCPDEDmin.: 1  
tCPDEDmax.: -  
tCPDED  
nCK  
tPDmin.: tCKE(min)  
tPDmax.: 9*tREFI  
Power Down Entry to Exit Timing  
tPD  
tACTPDENmin.: 1  
tACTPDENmax.: -  
tPRPDENmin.: 1  
tPRPDENmax.: -  
Timing of ACT command to Power Down entry  
tACTPDEN  
tPRPDEN  
tRDPDEN  
tWRPDEN  
tWRAPDEN  
tWRPDEN  
tWRAPDEN  
tREFPDEN  
tMRSPDEN  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
Timing of PRE or PREA command to Power  
Down entry  
tRDPDENmin.: RL+4+1  
tRDPDENmax.: -  
tWRPDENmin.: WL + 4 + (tWR / tCK(avg))  
tWRPDENmax.: -  
Timing of RD/RDA command to Power Down  
entry  
Timing of WR command to Power Down entry  
(BL8OTF, BL8MRS, BC4OTF)  
tWRAPDENmin.: WL+4+WR+1  
Timing of WRA command to Power Down entry  
(BL8OTF, BL8MRS, BC4OTF)  
Timing of WR command to Power Down entry  
(BC4MRS)  
Timing of WRA command to Power Down entry  
(BC4MRS)  
tWRAPDENmax.: -  
tWRPDENmin.: WL + 2 + (tWR / tCK(avg))  
tWRPDENmax.: -  
tWRAPDENmin.: WL + 2 +WR + 1  
tWRAPDENmax.: -  
tREFPDENmin.: 1  
tREFPDENmax.: -  
Timing of REF command to Power Down entry  
tMRSPDENmin.: tMOD(min)  
tMRSPDENmax.: -  
Timing of MRS command to Power Down entry  
ODT Timings  
ODTH4min.: 4  
ODTH4max.: -  
ODT high time without write command or with  
write command and BC4  
ODTH4  
nCK  
Integrated Silicon Solution, Inc.  www.issi.com  
66  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
DDR3/DDR3L-1866  
DDR3/DDR3L-1866  
Min. Max.  
ODTH8min.: 6  
Units  
Notes  
Parameter  
Symbol  
ODTH8  
tAONPD  
Min.  
Max.  
ODT high time with Write command and BL8  
nCK  
ns  
ODTH8max.: -  
Asynchronous RTT turn-on delay (Power-  
Down with DLL frozen)  
2
8.5  
Asynchronous RTT turn-off delay (Power-  
Down with DLL frozen)  
RTT turn-on  
RTT_Nom and RTT_WR turn-off time from  
ODTLoff reference  
tAOFPD  
tAON  
2
8.5  
195  
0.7  
0.7  
ns  
-195  
0.3  
0.3  
ps  
tAOF  
tCK(avg)  
tCK(avg)  
7,f  
RTT dynamic change skew  
tADC  
8,f  
f
Write Leveling Timings  
First DQS/DQS# rising edge after write  
leveling mode is programmed  
DQS/DQS# delay after write leveling mode is  
programmed  
Write leveling setup time from rising CK, CK#  
crossing to rising DQS, DQS# crossing  
Write leveling hold time from rising DQS,  
DQS# crossing to rising CK, CK# crossing  
Write leveling output delay  
tWLMRD  
tWLDQSEN  
tWLS  
40  
25  
-
-
-
-
nCK  
nCK  
ps  
3
140  
140  
tWLH  
ps  
tWLO  
tWLOE  
0
0
7.5  
2
ns  
ns  
Write leveling output error  
9.3 Jitter Notes  
Specific Note a  
Unit “tCK(avg)” represents the actual tCK(avg) of the input clock under operation. Unit “nCK” represents one clock cycle of  
the input clock, counting the actual clock edges. ex) tMRD=4 [nCK] means; if one Mode Register Set command is  
registered at Tm, another Mode Register Set command may be registered at Tm+4, even if (Tm+4-Tm) is 4 x tCK(avg) +  
tERR(4per), min.  
Specific Note b  
These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc)  
transition edge to its respective clock signal (CK/CK) crossing. The spec values are not affected by the amount of clock  
jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as the setup and hold are relative to the clock signal crossing that latches the  
command/address. That is, these parameters should be met whether clock jitter is present or not.  
Specific Note c  
These parameters are measured from a data strobe signal (DQS(L/U), DQS(L/U)) crossing to its respective clock signal  
(CK, CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc), as  
these are relative to the clock signal crossing. That is, these parameters should be met whether clock jitter is present or  
not.  
Specific Note d  
These parameters are measured from a data signal (DM(L/U), DQ(L/U)0, DQ(L/U)1, etc.) transition edge to its respective  
data strobe signal (DQS(L/U), DQS(L/U)) crossing.  
Specific Note e  
For these parameters, the DDR3 SDRAM device supports tnPARAM [nCK] = RU{tPARAM[ns] / tCK(avg)[ns]}, which is in  
clock cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP  
=RU{tRP/tCK(avg)}, which is in clock cycles, if all input clock jitter specifications are met. This means: For DDR3-800 6-6-  
6, of which tRP = 15ns, the device will support tnRP = RU{tRP/tCK(avg)} = 6, as long as the input clock jitter specifications  
are met, i.e. Precharge command at Tm and Active command at Tm+6 is valid even if (Tm+6-Tm) is less than 15ns due to  
input clock jitter.  
Integrated Silicon Solution, Inc.  www.issi.com  
67  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
Specific Note f  
When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(mper), act of  
the input clock, where 2 <= m <=12. (output derating are relative to the SDRAM input clock.)  
For example, if the measured jitter into a DDR3-800 SDRAM has tERR(mper),act,min = -172ps and tERR(mper),act,max  
= 193ps, then tDQSCK,min(derated) = tDQSCK,min - tERR(mper),act,max = -400ps - 193ps = -593ps and  
tDQSCK,max(derated) = tDQSCK,max - ERR(mper),act,min = 400ps + 172ps = 572ps. Similarly, tLZ(DQ) for DDR3-800  
derates to tLZ(DQ),min(derated) = -800ps - 193ps = -993ps and tLZ(DQ),max(derated) = 400ps + 172ps = 572ps.  
(Caution on the min/max usage!)  
Note that tERR(mper),act,min is the minimum measured value of tERR(nper) where 2 <= n <= 12, and  
tERR(mper),act,max is the maximum measured value of tERR(nper) where 2 <= n <= 12.  
Specific Note g  
When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(per),act of the  
input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR3-800  
SDRAM has tCK(avg),act=2500ps, tJIT(per),act,min = -72ps and tJIT(per),act,max = 93ps, then tRPRE,min(derated) =  
tRPRE,min + tJIT(per),act,min = 0.9 x tCK(avg),act + tJIT(per),act,min = 0.9 x 2500ps - 72ps = 2178ps. Similarly,  
tQH,min(derated) = tQH,min + tJIT(per),act,min = 0.38 x tCK(avg),act + tJIT(per),act,min = 0.38 x 2500ps - 72ps = 878ps.  
(Caution on the min/max usage!)  
9.4 Timing Parameter Notes  
1. Actual value dependent upon measurement level definitions.  
2. Commands requiring a locked DLL are: READ ( and RAP) are synchronous ODT commands.  
3. The max values are system dependent.  
4. WR as programmed in mode register.  
5. Value must be rouned-up to next higher integer value.  
6. There is no maximum cycle time limit besides the need to satisfy the refresh interval, tREFI.  
7. For definition of RTT-on time tAON See “Timing Parameters”.  
8. For definition of RTT-off time tAOF See “Timing Parameters”.  
9. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR / tCK to the next integer.  
10. WR in clock cycles are programmed in MR0.  
11. The maximum read postamble is bonded by tDQSCK(min) plus tQSH(min) on the left side and tHZ(DQS)max on the  
right side.  
12. Output timing deratings are relative to the SDRAM input clock. When the device is operated with input clock jitter, this  
parameter needs to be derated by TBD.  
13. Value is only valid for RON34.  
14. Single ended signal parameter.  
15. tREFI depends on TOPER.  
16. tIS(base) and tIH(base) values are for 1V/ns CMD/ADD single-ended slew rate and 2V/ns CK, CK differential slew  
rate. Note for DQ and DM signals, VREF(DC)=VRefDQ(DC). For input only pins except RESET,  
VRef(DC)=VRefCA(DC).  
17. tDS(base) and tDH(base) values are for 1V/ns DQ single-ended slew rate and 2V/ns DQS, DQS differential slew rate.  
18. Note for DQ and DM signals, VREF(DC)=VRefDQ(DC). For input only pins except RESET, VRef(DC)=VRefCA(DC).  
19. Start of internal write transaction is defined as follows:  
20. For BL8 (fixed by MRS and on-the-fly): Rising clock edge 4 clock cycles after WL.  
21. For BC4 (on-the-fly): Rising clock edge 4 clock cycles after WL.  
22. For BC4 (fixed by MRS): Rising clock edge 2 clock cycles after WL.  
19. The maximum preamble is bound by tLZ(DQS)max on the left side and tDQSCK(max) on the right side.  
20. CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are  
in progress, but power-down IDD spec will not be applied until finishing those operations.  
21. Although CKE is allowed to be registered LOW after a REFRESH command once tREFPDEN(min) is satisfied, there  
are cases where additional time such as tXPDLL(min) is also required.  
22. Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function.  
Integrated Silicon Solution, Inc.  www.issi.com  
68  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
23. One ZQCS command can effectively correct a minimum of 0.5% (ZQCorrection) of RON and RTT impedance error  
within 64 nCK for all speed bins assuming the maximum sensitivities specified in the “Output Driver Voltage and  
Temperature Sensitivity” and “ODT Voltage and Temperature Sensitivity” tables. The appropriate interval between  
ZQCS commands can be determined from these tables and other application-specific parameters.  
23. One method for calculating the interval between ZQCS commands, given the temperature (Tdriftrate) and voltage  
(Vdriftrate) drift rates that the SDRAM is subject to in the application, is illustrated. the interval could be defined by the  
following formula:  
ZQCorrection / [(TSens x Tdriftrate) + (VSens x Vdriftrate)]  
, where TSens = max(dRTTdT, dRONdTM) and VSens = max(dRTTdV, dRONdVM) define the SDRAM temperature and  
voltage sensitivities.  
For example, if TSens = 1.5%/C, VSens = 0.15%/mV, Tdriftrate = 1 C/sec and Vdriftrate = 15mV/sec, then the interval  
between ZQCS commands is calculated as  
0.5 / [(1.5x1)+(0.15x15)] = 0.133 128ms  
24. n = from 13 cycles to 50 cycles. This row defines 38 parameters.  
25. tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following  
falling edge.  
26. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following  
rising edge.  
27. The tIS(base) AC150 specifications are adjusted from the tIS(base) specification by adding an additional 100ps of  
derating to accommodate for the lower altemate threshold of 150mV and another 25ps to account for the earlier  
reference point [(175mV - 150mV) / 1V/ns].  
28. Pulse width of a input signal is defined as the width between the first crossing of Vref(dc) and the consecutive  
crossing of Vref(dc).  
29. tDQSL describes the instantaneous differential input low pulse width on DQS - DQS#, as measured from one falling  
edge to the next consecutive rising edge.  
30. tDQSH describes the instantaneous differential input high pulse width on DQS - DQS#, as measured from one rising  
edge to the next consecutive falling edge.  
31. tDQSH,act + tDQSL,act = 1 tCK,act ; with tXYZ,act being the actual measured value of the respective timing  
parameter in the application.  
32. tDSH,act + tDSS,act = 1 tCK,act ; with tXYZ,act being the actual measured value of the respective timing parameter  
in the application.  
Integrated Silicon Solution, Inc.  www.issi.com  
69  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
9.5 Address / Command Setup, Hold and Derating  
For all input signals the total tIS (setup time) and tIH (hold time) required is calculated by adding the datasheet tIS(base)  
and tIH(base) value to the tIS and tIH derating value respectively. Example: tIS (total setup time) = tIS(base) + tIS  
Setup (tIS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VREF(dc) and the  
first crossing of VIH(ac)min. Setup (tIS) nominal slew rate for a falling signal is defined as the slew rate between the last  
crossing of VREF(dc) and the first crossing of Vil(ac)max. If the actual signal is always earlier than the nominal slew rate  
line between shaded ‘VREF(dc) to ac region’, use nominal slew rate for derating value . If the actual signal is later than  
the nominal slew rate line anywhere between shaded ‘VREF(dc) to ac region’, the slew rate of a tangent line to the actual  
signal from the ac level to VREF (dc) level is used for derating value.  
Hold (tIH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of Vil(dc)max and the  
first crossing of VREF(dc). Hold (tIH) nominal slew rate for a falling signal is defined as the slew rate between the last  
crossing of Vih(dc)min and the first crossing of VREF(dc). If the actual signal is always later than the nominal slew rate  
line between shaded ‘dc to VREF(dc) region’, use nominal slew rate for derating value. If the actual signal is earlier than  
the nominal slew rate line anywhere between shaded ‘dc to VREF(dc) region’, the slew rate of a tangent line to the actual  
signal from the dc level to VREF (dc) level is used for derating value.  
For a valid transition the input signal has to remain above/below VIH/IL(ac) for some time tVAC. Although for slow slew  
rates the total setup time might be negative (i.e. a valid input signal will not have reached VIH/IL(ac) at the time of the  
rising clock transition, a valid input signal is still required to complete the transition and reach VIH/IL(ac). For slew rates in  
between the values listed in Table 69, the derating values may obtained by linear interpolation.  
These values are typically not subject to production test. They are verified by design and characterization.  
9.5.1 ADD/CMD Setup and Hold Base-Values for 1V/ns  
Symbol  
Reference  
DDR3-800  
DDR3-1066  
DDR3-1333  
DDR3-1600  
Units  
tIS(base) AC175  
tIS(base) AC150  
tIH(base) DC100  
VIH/L(ac)  
VIH/L(ac)  
VIH/L(dc)  
200  
350  
275  
125  
275  
200  
65  
45  
ps  
ps  
ps  
190  
140  
170  
120  
Symbol  
Reference  
DDR3L-800  
DDR3L-1066  
DDR3L-1333  
DDR3L-1600  
Units  
tIS(base) AC160  
tIS(base) AC135  
tIH(base) DC90  
VIH/L(ac)  
VIH/L(ac)  
VIH/L(dc)  
215  
365  
285  
140  
290  
210  
80  
60  
ps  
ps  
ps  
205  
150  
185  
130  
Notes:  
1. (ac/dc referenced for 1V/ns Address/Command slew rate and 2 V/ns differential CK-CK# slew rate)  
2. The tIS(base) AC150 specifications are adjusted from the tIS(base) AC175 specification by adding an additional 125 ps for DDR3-800/1066 or  
100ps for DDR3-1333/1600 of derating to accommodate for the lower alternate threshold of 150 mV and another 25 ps to account for the earlier  
reference point [(175 mv - 150 mV) / 1 V/ns].  
Integrated Silicon Solution, Inc.  www.issi.com  
70  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
9.5.2 Derating values DDR3-800/1066/1333/1600 tIS/tIH - ac/dc based AC175 Threshold  
ΔtIS, ΔtIH derating in [ps] AC/DC based  
AC175 Threshold -> VIH(ac)=VREF(dc)+175mV, VIL(ac)=VREF(dc)-175mV  
CK,CK# Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4 V/ns  
1.2 V/ns  
1.0 V/ns  
ΔtIS  
ΔtIH  
ΔtIS  
ΔtIH  
ΔtIS  
ΔtIH  
ΔtIS  
ΔtIH  
ΔtIS  
ΔtIH  
ΔtIS  
ΔtIH  
ΔtIS  
ΔtIH  
ΔtIS  
ΔtIH  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
88  
59  
0
50  
34  
88  
59  
0
50  
34  
88  
59  
0
50  
34  
96  
67  
8
58  
42  
8
104  
75  
16  
14  
10  
5
66  
50  
16  
12  
6
112  
83  
24  
22  
18  
13  
7
74  
58  
24  
20  
14  
8
120  
91  
32  
30  
26  
21  
15  
-2  
84  
68  
34  
30  
24  
18  
8
128  
99  
40  
38  
34  
29  
23  
5
100  
84  
50  
46  
40  
34  
24  
10  
-10  
0
0
0
-2  
-4  
-2  
-4  
-2  
-4  
6
4
CMADDD/  
Slew rate  
V/ns  
-6  
-10  
-16  
-26  
-40  
-60  
-6  
-10  
-16  
-26  
-40  
-60  
-6  
-10  
-16  
-26  
-40  
-60  
2
-2  
-11  
-17  
-35  
-62  
-11  
-17  
-35  
-62  
-11  
-17  
-35  
-62  
-3  
-9  
-27  
-54  
-8  
0
-18  
-32  
-52  
-1  
-10  
-24  
-44  
-2  
-19  
-46  
-11  
-38  
-16  
-36  
-6  
-30  
-26  
-22  
9.5.3 Derating values DDR3-800/1066/1333/1600 tIS/tIH - ac/dc based Alternate AC150 Threshold  
ΔtIS, ΔtIH derating in [ps] AC/DC based  
Alternate AC150 Threshold -> VIH(ac)=VREF(dc)+150mV, VIL(ac)=VREF(dc)-150mV  
CK,CK# Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4 V/ns  
1.2 V/ns  
1.0 V/ns  
ΔtIS  
ΔtIH  
ΔtIS  
ΔtIH  
ΔtIS  
ΔtIH  
ΔtIS  
ΔtIH  
ΔtIS  
ΔtIH  
ΔtIS  
ΔtIH  
ΔtIS  
ΔtIH  
ΔtIS  
ΔtIH  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
75  
50  
0
50  
34  
75  
50  
0
50  
34  
75  
50  
0
50  
34  
83  
58  
8
58  
42  
8
91  
66  
16  
16  
16  
16  
15  
6
66  
50  
16  
12  
6
99  
74  
24  
24  
24  
24  
23  
14  
-1  
74  
58  
24  
20  
14  
8
107  
82  
32  
32  
32  
32  
31  
22  
7
84  
68  
34  
30  
24  
18  
8
115  
90  
40  
40  
40  
40  
39  
30  
15  
100  
84  
50  
46  
40  
34  
24  
10  
-10  
0
0
0
0
-4  
0
-4  
0
-4  
8
4
CADDMD/  
Slew rate  
V/ns  
0
-10  
-16  
-26  
-40  
-60  
0
-10  
-16  
-26  
-40  
-60  
0
-10  
-16  
-26  
-40  
-60  
8
-2  
0
0
0
8
-8  
0
-1  
-10  
-25  
-1  
-10  
-25  
-1  
-10  
-25  
7
-18  
-32  
-52  
-10  
-24  
-44  
-2  
-2  
-17  
-16  
-36  
-6  
-9  
-26  
9.5.4 Required time tVAC above VIH(ac) {below VIL(ac)} for valid transition  
Slew Rate [V/ns]  
tVAC @ AC175 [ps]  
tVAC @ AC150 [ps]  
min max  
min  
max  
> 2.0  
2.0  
75  
57  
50  
38  
34  
29  
22  
13  
0
-
-
-
-
-
-
-
-
-
-
175  
170  
167  
163  
162  
161  
159  
155  
150  
150  
-
-
-
-
-
-
-
-
-
-
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
< 0.5  
0
Integrated Silicon Solution, Inc.  www.issi.com  
71  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
9.5.5 Address / Command Setup, Hold and Derating  
9.5.5.1 Nominal slew rate and tVAC for setup time tIS(left) and hold time t IH(right) ADD/CMD with respect to clock  
CK#  
CK  
CK#  
CK  
tIS  
tIH  
tIS  
tIH  
tIS  
tIH  
tIS  
tIH  
VDDQ  
VDDQ  
tVAC  
VIH(ac)MIN  
VIH(dc)MIN  
Setup slew Rate @  
Falling signal  
VIH(ac)MIN  
VIH(dc)MIN  
Hold slew Rate @  
Rising signal  
=
=
[VREF(dc)-VIL(ac)max]  
[VREF(dc)-VIL(dc)max]  
Nominal  
slew rate  
/ ΔTF  
Nominal  
slew rate  
/ ΔTR  
Nominal  
slew rate  
VREF(dc)  
VREF(dc)  
Nominal  
slew rate  
Hold slew Rate @  
Falling signal  
Setup slew Rate @ Rising  
VIL(dc)MAX  
VIL(ac)MAX  
signal  
=
VIL(dc)MAX  
VIL(ac)MAX  
=
[VIH(dc)min-VREF(dc)]  
[VIH(ac)min-VREF(dc)]  
/ ΔTF  
/ ΔTR  
tVAC  
tVAC  
VSS  
VSS  
TF  
TR  
TF  
TR  
9.5.5.2 Tangent line for setup time tIS(left) and hold time tIH(right) - ADD/CMD with respect to clock  
CK#  
CK#  
CK  
CK  
tIS  
tIH  
tIS  
tIH  
tIS  
tIH  
tIS  
tIH  
tVAC  
VDDQ  
Nominal  
slew rate  
VDDQ  
Setup slew Rate @  
Falling signal  
= tangent line  
Hold slew Rate @  
Rising signal  
= tangent line  
VIH(ac)MIN  
VIH(dc)MIN  
Nominal  
slew rate  
VIH(ac)MIN  
VIH(dc)MIN  
[VREF(dc)-VIL(ac)max]  
tangent  
line  
[VREF(dc)-VIL(dc)max]  
/ ΔTF  
/ ΔTR  
tangent  
line  
Setup slew Rate @  
Rising signal  
= tangent line  
tangent  
line  
VREF(dc)  
VREF(dc)  
[VIH(ac)min-VREF(dc)]  
VIL(dc)MAX  
VIL(ac)MAX  
/ ΔTR  
tangent  
line  
Nominal  
slew rate  
Hold slew Rate @  
Falling signal  
= tangent line  
VIL(dc)MAX  
Nominal  
slew rate  
tVAC  
TR  
VSS  
VIL(ac)MAX  
VSS  
[VIH(dc)min-VREF(dc)]  
/ ΔTF  
TF  
TR  
TF  
Integrated Silicon Solution, Inc.  www.issi.com  
72  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
9.6 Data Setup, Hold and Slew Rate Derating  
For all input signals the total tDS (setup time) and tDH (hold time) required is calculated by adding the data sheet  
tDS(base) and tDH(base) value (see Table 72) to the tDS and tDH (see Table 73) derating value respectively. Example:  
tDS (total setup time) = tDS(base) + tDS.  
Setup (tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VREF(dc) and the  
first crossing of V IH(ac) min. Setup (tDS) nominal slew rate for a falling signal is defined as the slew rate between the last  
crossing of VREF(dc) and the first crossing of VIL(ac) max. If the actual signal is always earlier than the nominal slew rate  
line between shaded ‘VREF(dc) to ac region’, use nominal slew rate for derating value. If the actual signal is later than the  
nominal slew rate line anywhere between shaded ‘VREF(dc) to ac region’, the slew rate of a tangent line to the actual  
signal from the ac level to VREF(dc) level is used for derating value.  
Hold (tDH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(dc) max and  
the first crossing of VREF(dc) . Hold (tDH) nominal slew rate for a falling signal is defined as the slew rate between the  
last crossing of VIH(dc) min and the first crossing of VREF(dc). If the actual signal is always later than the nominal slew  
rate line between shaded ‘dc level to VREF(dc) region’, use nominal slew rate for derating value. If the actual signal is  
earlier than the nominal slew rate line anywhere between shaded ‘dc to V REF(dc) region’, the slew rate of a tangent line  
to the actual signal from the dc level to VREF(dc) level is used for derating value.  
For a valid transition the input signal has to remain above/below VIH/IL(ac) for some time tVAC.  
Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached VIH/IL(ac)  
at the time of the rising clock transition) a valid input signal is still required to complete the transition and reach VIH/IL(ac) .  
For slew rates in between the values listed in the tables the derating values may obtained by linear interpolation.  
These values are typically not subject to production test. They are verified by design and characterization.  
9.6.1 Data Setup and Hold Base-Values  
Symbol  
Reference  
DDR3-800  
DDR3-1066  
DDR3-1333  
DDR3-1600  
Units  
tDS(base) AC175  
tDS(base) AC150  
tDH(base) DC100  
VIH/L(ac)  
VIH/L(ac)  
VIH/L(dc)  
75  
25  
75  
-
-
ps  
ps  
ps  
125  
150  
30  
65  
10  
45  
100  
Symbol  
Reference  
DDR3L-800  
DDR3L-1066  
DDR3L-1333  
DDR3L-1600  
Units  
tDS(base) AC160  
tDS(base) AC135  
tDH(base) DC90  
VIH/L(ac)  
VIH/L(ac)  
VIH/L(dc)  
90  
40  
90  
-
-
ps  
ps  
ps  
140  
160  
45  
75  
25  
55  
110  
NOTE: (ac/dc referenced for 1V/ns DQ-slew rate and 2 V/ns DQS slew rate)  
Integrated Silicon Solution, Inc.  www.issi.com  
73  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
9.6.2 Derating values DDR3-800/1066 tDS/tDH - (AC175)  
ΔtDS, ΔDH derating in [ps] AC/DC based1  
DQS, DQS# Differential Slew Rate  
1.8 V/ns 1.6 V/ns  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.4 V/ns  
1.2 V/ns  
1.0 V/ns  
ΔtDS  
ΔtDH  
ΔtDS  
ΔtDH  
ΔtDS  
ΔtDH  
ΔtDS  
ΔtDH  
ΔtDS  
ΔtDH  
ΔtDS  
ΔtDH  
ΔtDS  
ΔtDH  
ΔtDS  
ΔtDH  
2.0  
1.5  
88  
59  
50  
34  
88  
59  
50  
34  
88  
59  
50  
34  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
67  
42  
1.0  
0
0
0
0
0
0
8
8
16  
16  
-
-
-
-
-
-
DQ  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
-
-
-
-
-
-
-
-
-
-
-
-
-2  
-
-4  
-
-2  
-6  
-
-4  
6
2
-3  
-
4
-2  
-8  
-
14  
10  
5
12  
6
22  
18  
13  
7
20  
14  
8
-
-
-
-
-
Slew  
rate  
V/ns  
-10  
26  
21  
15  
-2  
24  
18  
8
-
-
-
-
-
-
-
0
29  
23  
5
34  
24  
10  
-10  
-
-
-
-1  
-
-10  
-
-2  
-16  
-
-
-
-
-
-
-11  
-
-6  
-
-
-
-
-
-
-
-30  
-26  
-22  
NOTE 1. Cell contents shaded in red are defined as ‘not supported’.  
9.6.3 Derating values for DDR3-800/1066/1333/1600 tDS/tDH - (AC150)  
ΔtDS, ΔDH derating in [ps] AC/DC based1  
DQS, DQS# Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4 V/ns  
1.2 V/ns  
1.0 V/ns  
ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH  
2.0  
1.5  
75  
50  
50  
34  
75  
50  
50  
34  
75  
50  
50  
34  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
58  
42  
1.0  
0
0
0
0
0
0
8
8
16  
16  
-
-
-
-
-
-
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
-
-
-
-
-
-
-
-
-
-
-
-
0
-
-4  
-
0
0
-
-4  
8
8
8
-
4
-2  
-8  
-
16  
16  
16  
15  
-
12  
6
24  
24  
24  
23  
14  
-
20  
14  
8
-
-
-
-
DQ  
-10  
32  
32  
31  
22  
7
24  
18  
8
-
-
Slew  
rate  
V/ns  
-
-
-
-
-
-
0
40  
39  
30  
15  
34  
24  
10  
-10  
-
-
-
-10  
-
-2  
-16  
-
-
-
-
-
-
-6  
-
-
-
-
-
-
-
-26  
NOTE 1. Cell contents shaded in red are defined as ‘not supported’.  
9.6.4 Required time tVAC above VIH(ac) {below VIL(ac)} for valid transition  
Slew Rate [V/ns]  
DDR3-800/1066 (AC175)  
DDR3-800/1066/1333/1600 (AC150)  
tVAC [ps]  
Slew Rate [V/ns]  
tVAC [ps]  
min  
max  
min  
max  
> 2.0  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
75  
57  
50  
38  
34  
29  
22  
13  
0
-
-
-
-
-
-
-
-
-
-
175  
170  
167  
163  
162  
161  
159  
155  
155  
150  
-
-
-
-
-
-
-
-
-
-
< 0.5  
0
Integrated Silicon Solution, Inc.  www.issi.com  
74  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
9.6.5 Data Setup, Hold and Slew Rate Derating  
9.6.5.1 Nominal slew rate and tVAC for setup time tDS(left) and hold time t DH(right) - DQ with respect to strobe  
DQS  
VDDQ  
DQS  
VDDQ  
tDS  
tDH  
tDS tDH  
tVAC  
tDS  
tDH  
tDS tDH  
Setup slew Rate @  
Falling signal  
Hold slew Rate @  
Rising signal  
VIH(ac)MIN  
VIH(dc)MIN  
VREF(dc)  
VIH(ac)MIN  
VIH(dc)MIN  
VREF(dc)  
=
=
[VREF(dc)-VIL(ac)max]  
[VREF(dc)-VIL(dc)max]  
/ ΔTF  
/ ΔTR  
Nominal  
slew rate  
Nominal  
slew rate  
Nominal  
slew rate  
Nominal  
slew rate  
Setup slew Rate @ Rising  
VIL(dc)MAX  
VIL(ac)MAX  
signal  
=
Hold slew Rate @  
Falling signal  
VIL(dc)MAX  
VIL(ac)MAX  
[VIH(ac)min-VREF(dc)]  
=
[VIH(dc)min-VREF(dc)]  
/ ΔTR  
/ ΔTF  
tVAC  
tVAC  
VSS  
TF  
TR  
VSS  
TF  
TR  
9.6.5.2 Tangent line for setup time tDS(left) and hold time tDH(right) - DQ with respect to strobe  
DQS#  
DQS#  
DQS  
DQS  
tDS tDH  
tVAC  
tDS tDH  
VDDQ  
tDS  
tDH  
VDDQ  
Nominal  
slew rate  
tDS  
tDH  
Nominal  
slew rate  
VIH(ac)MIN  
VIH(dc)MIN  
VIH(ac)MIN  
Setup slew Rate @  
Falling signal  
= tangent line  
Hold slew Rate @  
Rising signal  
= tangent line  
VIH(dc)MIN  
VREF(dc)  
[VREF(dc)-VIL(ac)max]  
tangent  
line  
[VREF(dc)-VIL(dc)max]  
/ ΔTF  
tangent  
line  
/ ΔTR  
VREF(dc)  
tangent  
line  
Setup slew Rate @  
Rising signal  
= tangent line  
tangent  
line  
VIL(dc)MAX  
VIL(ac)MAX  
Nominal  
slew rate  
[VIH(ac)min-VREF(dc)]  
/ ΔTR  
VIL(dc)MAX  
Hold slew Rate @  
Falling signal  
= tangent line  
Nominal  
slew rate  
VIL(ac)MAX  
VSS  
TR  
tVAC  
[VIH(dc)min-VREF(dc)]  
VSS  
/ ΔTF  
TF  
TR  
TF  
Integrated Silicon Solution, Inc.  www.issi.com  
75  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
ORDERING INFORMATION,128MX16, 1.5V (DDR3)  
128Mx16 - Commercial Range: (0°C ≤ TC ≤ 95°C)  
Data Rate  
1066MT/s  
1333MT/s  
1600MT/s  
1866MT/s  
CL-tRCD-tRP  
7-7-7  
Order Part No.  
Package  
IS43TR16128A -187FBL  
IS43TR16128A -15HBL  
IS43TR16128A -125KBL  
IS43TR16128A -107MBL  
96-ball FBGA,Lead-free  
96-ball FBGA,Lead-free  
96-ball FBGA,Lead-free  
96-ball FBGA,Lead-free  
9-9-9  
11-11-11  
13-13-13  
128Mx16 - Industrial Range: (–40°C ≤ TC ≤ 95°C)  
Data Rate  
1066MT/s  
1333MT/s  
1600MT/s  
1866MT/s  
CL-tRCD-tRP  
7-7-7  
Order Part No.  
Package  
IS43TR16128A -187FBLI  
IS43TR16128A -15HBLI  
IS43TR16128A -125KBLI  
IS43TR16128A -107MBLI  
96-ball FBGA,Lead-free  
96-ball FBGA,Lead-free  
96-ball FBGA,Lead-free  
96-ball FBGA,Lead-free  
9-9-9  
11-11-11  
13-13-13  
128Mx16 Automotive, A1 Range: (–40°C ≤ TC ≤ 95°C)  
Data Rate  
1066MT/s  
1333MT/s  
1600MT/s  
CL-tRCD-tRP  
7-7-7  
Order Part No.  
Package  
IS46TR16128A -187FBLA1  
IS46TR16128A -15HBLA1  
IS46TR16128A -125KBLA1  
96-ball FBGA,Lead-free  
96-ball FBGA,Lead-free  
96-ball FBGA,Lead-free  
9-9-9  
11-11-11  
128Mx16 Automotive, A2 Range: (–40°C ≤ TC ≤ 105°C)  
Data Rate  
1066MT/s  
1333MT/s  
1600MT/s  
CL-tRCD-tRP  
7-7-7  
Order Part No.  
Package  
IS46TR16128A -187FBLA2  
IS46TR16128A -15HBLA2  
IS46TR16128A -125KBLA2  
96-ball FBGA,Lead-free  
96-ball FBGA,Lead-free  
96-ball FBGA,Lead-free  
9-9-9  
11-11-11  
Note: Contact ISSI for availability of options.  
Integrated Silicon Solution, Inc.  www.issi.com  
76  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
ORDERING INFORMATION,128MX16,1.35V (DDR3L)  
128Mx16 - Commercial Range: (0°C ≤ TC ≤ 95°C)  
Data Rate  
1333MT/s  
1600MT/s  
CL-tRCD-tRP  
9-9-9  
Order Part No.  
Package  
IS43TR16128AL -15HBL  
IS43TR16128AL -125KBL  
96-ball FBGA,Lead-free  
96-ball FBGA,Lead-free  
11-11-11  
128Mx16 - Industrial Range: (–40°C ≤ TC ≤ 95°C)  
Data Rate  
1333MT/s  
1600MT/s  
CL-tRCD-tRP  
9-9-9  
Order Part No.  
Package  
IS43TR16128AL -15HBLI  
IS43TR16128AL -125KBLI  
96-ball FBGA,Lead-free  
96-ball FBGA,Lead-free  
11-11-11  
128Mx16 Automotive, A1 Range: (–40°C ≤ TC ≤ 95°C)  
Data Rate  
1333MT/s  
1600MT/s  
CL-tRCD-tRP  
9-9-9  
Order Part No.  
Package  
IS46TR16128AL -15HBLA1  
IS46TR16128AL -125KBLA1  
96-ball FBGA,Lead-free  
96-ball FBGA,Lead-free  
11-11-11  
128Mx16 Automotive, A2 Range: (–40°C ≤ TC ≤ 105°C)  
Data Rate  
1333MT/s  
1600MT/s  
CL-tRCD-tRP  
9-9-9  
Order Part No.  
Package  
IS46TR16128AL -15HBLA2  
IS46TR16128AL -125KBLA2  
96-ball FBGA,Lead-free  
96-ball FBGA,Lead-free  
11-11-11  
Note: Contact ISSI for availability of options.  
Integrated Silicon Solution, Inc.  www.issi.com  
77  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
ORDERING INFORMATION, 256MX8, 1.5V (DDR3)  
256Mx8 - Commercial Range: (0°C ≤ TC ≤ 95°C)  
Data Rate  
1333MT/s  
1600MT/s  
CL-tRCD-tRP  
9-9-9  
Order Part No.  
Package  
IS43TR82560A -15HBL  
IS43TR82560A -125KBL  
78-ball FBGA,Lead-free  
78-ball FBGA,Lead-free  
11-11-11  
256Mx8 - Industrial Range: (–40°C ≤ TC ≤ 95°C)  
Data Rate  
1333MT/s  
1600MT/s  
CL-tRCD-tRP  
9-9-9  
Order Part No.  
Package  
IS43TR82560A -15HBLI  
IS43TR82560A -125KBLI  
78-ball FBGA,Lead-free  
78-ball FBGA,Lead-free  
11-11-11  
256Mx8 Automotive, A1 Range: (–40°C ≤ TC ≤ 95°C)  
Data Rate  
1333MT/s  
1600MT/s  
CL-tRCD-tRP  
9-9-9  
Order Part No.  
Package  
IS46TR82560A -15HBLA1  
IS46TR82560A -125KBLA1  
78-ball FBGA,Lead-free  
78-ball FBGA,Lead-free  
11-11-11  
256Mx8 Automotive, A2 Range: (–40°C ≤ TC ≤ 105°C)  
Data Rate  
1333MT/s  
1600MT/s  
CL-tRCD-tRP  
9-9-9  
Order Part No.  
Package  
IS46TR82560A -15HBLA2  
IS46TR82560A -125KBLA2  
78-ball FBGA,Lead-free  
78-ball FBGA,Lead-free  
11-11-11  
Note: Contact ISSI for availability of options.  
Integrated Silicon Solution, Inc.  www.issi.com  
78  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
ORDERING INFORMATION, 256MX8, 1.35V (DDR3L)  
256Mx8 - Commercial Range: (0°C ≤ TC ≤ 95°C)  
Data Rate  
1333MT/s  
1600MT/s  
CL-tRCD-tRP  
9-9-9  
Order Part No.  
Package  
IS43TR82560AL -15HBL  
IS43TR82560AL -125KBL  
78-ball FBGA,Lead-free  
78-ball FBGA,Lead-free  
11-11-11  
256Mx8 - Industrial Range: (–40°C ≤ TC ≤ 95°C)  
Data Rate  
1333MT/s  
1600MT/s  
CL-tRCD-tRP  
9-9-9  
Order Part No.  
Package  
IS43TR82560AL -15HBLI  
IS43TR82560AL -125KBLI  
78-ball FBGA,Lead-free  
78-ball FBGA,Lead-free  
11-11-11  
256Mx8 Automotive, A1 Range: (–40°C ≤ TC ≤ 95°C)  
Data Rate  
1333MT/s  
1600MT/s  
CL-tRCD-tRP  
9-9-9  
Order Part No.  
Package  
IS46TR82560AL -15HBLA1  
IS46TR82560AL -125KBLA1  
78-ball FBGA,Lead-free  
78-ball FBGA,Lead-free  
11-11-11  
256Mx8 Automotive, A2 Range: (–40°C ≤ TC ≤ 105°C)  
Data Rate  
1333MT/s  
1600MT/s  
CL-tRCD-tRP  
9-9-9  
Package  
Order Part No.  
IS46TR82560AL -15HBLA2  
78-ball FBGA,Lead-free  
78-ball FBGA,Lead-free  
11-11-11  
IS46TR82560AL -125KBLA2  
Note: Contact ISSI for availability of options.  
Integrated Silicon Solution, Inc.  www.issi.com  
79  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
Integrated Silicon Solution, Inc.  www.issi.com  
80  
Rev. B1  
8/08/2013  
IS43/46TR16128A, IS43/46TR16128AL,  
IS43/46TR82560A, IS43/46TR82560AL  
PACKAGE OUTLINE DRAWING  
78-ball BGA (8mm x 10.5mm): 0.8mm x 0.8mm Pitch (x8)  
Integrated Silicon Solution, Inc.  www.issi.com  
81  
Rev. B1  
8/08/2013  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY