IS61QDB44M18-300M3I [ISSI]

72 Mb (2M x 36 & 4M x 18) QUAD (Burst of 4) Synchronous SRAMs; 72 MB( 2M ×36和4M ×18 ) QUAD (突发的4 )同步SRAM
IS61QDB44M18-300M3I
型号: IS61QDB44M18-300M3I
厂家: INTEGRATED SILICON SOLUTION, INC    INTEGRATED SILICON SOLUTION, INC
描述:

72 Mb (2M x 36 & 4M x 18) QUAD (Burst of 4) Synchronous SRAMs
72 MB( 2M ×36和4M ×18 ) QUAD (突发的4 )同步SRAM

存储 内存集成电路 静态存储器 双倍数据速率 时钟
文件: 总28页 (文件大小:679K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
72 Mb (2M x 36 & 4M x 18)  
.
QUAD (Burst of 4) Synchronous SRAMs  
November 2009  
Two echo clocks (CQ and CQ) that are delivered  
Features  
simultaneously with data.  
2M x 36 or 4M x 18.  
• +1.8V core power supply and 1.5, 1.8V VDDQ  
used with 0.75, 0.9V VREF  
,
• On-chip delay-locked loop (DLL) for wide data  
valid window.  
.
• HSTL input and output levels.  
• Separate read and write ports with concurrent  
read and write operations.  
• Registered addresses, write and read controls,  
byte writes, data in, and data outputs.  
• Synchronous pipeline read with late write opera-  
tion.  
• Full data coherency.  
• Boundary scan using limited set of JTAG 1149.1  
functions.  
• Double data rate (DDR) interface for read and  
write input ports.  
• Byte write capability.  
• Fixed 4-bit burst for read and write operations.  
• Clock stop support.  
• Fine ball grid array (FBGA) package  
- 15mm x 17mm body size  
- 1mm pitch  
Two input clocks (K and K) for address and con-  
trol registering at rising edges only.  
- 165-ball (11 x 15) array  
Two input clocks (C and C) for data output con-  
trol.  
• Programmable impedance output drivers via 5x  
user-supplied precision resistor.  
Industrial temperature available  
Description  
The 72Mb IS61QDB42M36 and  
• Byte writes for burst addresses 2 and 4  
• Data-in for burst addresses 2 and 4  
IS61QDB44M18 are synchronous, high-perfor-  
mance CMOS static random access memory  
(SRAM) devices. These SRAMs have separate I/Os,  
eliminating the need for high-speed bus turnaround.  
The rising edge of K clock initiates the read/write  
operation, and all internal operations are self-timed.  
Refer to the Timing Reference Diagram for Truth  
Table on page 8 for a description of the basic opera-  
tions of these QUAD (Burst of 4) SRAMs.  
Byte writes can change with the corresponding data-  
in to enable or disable writes on a per-byte basis. An  
internal write buffer enables the data-ins to be regis-  
tered one cycle after the write address. The first  
data-in burst is clocked one cycle later than the write  
command signal, and the second burst is timed to  
the following rising edge of the K clock. Two full  
clock cycles are required to complete a write opera-  
tion.  
Read and write addresses are registered on alter-  
nating rising edges of the K clock. Reads and writes  
are performed in double data rate. The following are  
registered internally on the rising edge of the K  
clock:  
During the burst read operation, the data-outs from  
the first and third bursts are updated from output  
registers off the second and fourth rising edges of  
the C clock (starting 1.5 cycles later). The data-outs  
from the second and fourth bursts are updated with  
the third and fifth rising edges of the C clock. The K  
and K clocks are used to time the data-outs when-  
ever the C and C clocks are tied high. Two full clock  
cycles are required to complete a read operation  
• Read/write address  
• Read enable  
• Write enable  
• Byte writes for burst addresses 1 and 3  
• Data-in for burst addresses 1 and 3  
The following are registered on the rising edge of  
the K clock:  
The device is operated with a single +1.8V power  
supply and is compatible with HSTL I/O interfaces.  
Integrated Silicon Solution, Inc.  
1
Rev. B  
11/10/09  
72 Mb (2M x 36 & 4M x 18)  
QUAD (Burst of 4) Synchronous SRAMs  
x36 FBGA Pinout (Top View)  
1
2
NC/SA*  
Q18  
3
4
5
6
K
7
8
R
9
10  
NC/SA*  
Q17  
Q7  
11  
CQ  
Q8  
D8  
D7  
Q6  
Q5  
D5  
ZQ  
D4  
Q3  
Q2  
D2  
D1  
Q0  
TDI  
A
B
C
D
E
F
CQ  
SA  
W
BW  
BW  
BW  
SA  
2
1
Q27  
D27  
D28  
Q29  
Q30  
D30  
Doff  
D31  
Q32  
Q33  
D33  
D34  
Q35  
TDO  
D18  
D19  
Q19  
Q20  
D21  
Q22  
SA  
K
BW  
SA  
D17  
D16  
Q16  
Q15  
D14  
Q13  
3
0
Q28  
V
SA  
NC  
SA  
V
SS  
SS  
SS  
SS  
D20  
V
V
V
V
V
V
V
V
V
V
V
V
V
D15  
D6  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
D29  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
Q21  
V
V
V
V
V
V
V
V
V
V
Q14  
D13  
G
H
J
D22  
V
V
V
V
REF  
REF  
DDQ  
DDQ  
Q31  
D32  
Q24  
Q34  
D26  
D35  
TCK  
D23  
D12  
Q4  
D3  
K
L
Q23  
D24  
D25  
Q25  
Q26  
SA  
Q12  
D11  
D10  
Q10  
Q9  
V
V
V
V
Q11  
Q1  
SS  
SS  
SS  
SS  
M
N
P
R
V
V
SS  
SS  
SS  
SS  
V
SA  
SA  
SA  
SA  
C
SA  
SA  
SA  
V
D9  
SA  
SA  
SA  
SA  
D0  
C
SA  
TMS  
Note: *The following pins are reserved for higher densities: 10A for 144Mb, and 2A for 288Mb.  
x18 FBGA Pinout (Top View)  
1
2
NC/SA*  
Q9  
3
4
5
6
K
7
8
R
9
10  
SA  
NC  
Q7  
NC  
D6  
NC  
NC  
11  
CQ  
Q8  
D8  
D7  
Q6  
Q5  
D5  
ZQ  
D4  
Q3  
Q2  
D2  
D1  
Q0  
TDI  
A
B
C
D
E
F
CQ  
NC  
NC  
NC  
NC  
NC  
NC  
Doff  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
SA  
W
BW  
NC  
SA  
NC  
NC  
NC  
NC  
NC  
NC  
1
D9  
SA  
NC  
SA  
K
BW  
SA  
0
NC  
D10  
Q10  
Q11  
D12  
Q13  
V
NC  
SA  
V
SS  
SS  
SS  
SS  
D11  
NC  
V
V
V
V
V
V
V
V
V
V
V
V
V
SS  
SS  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
Q12  
D13  
V
V
V
V
V
V
V
V
V
V
G
H
J
V
V
V
V
REF  
REF  
DDQ  
DDQ  
NC  
NC  
D14  
NC  
Q4  
D3  
K
L
Q14  
D15  
D16  
Q16  
Q17  
SA  
NC  
NC  
NC  
NC  
NC  
SA  
Q15  
NC  
V
V
V
V
NC  
Q1  
SS  
SS  
SS  
SS  
M
N
P
R
V
V
SS  
SS  
SS  
SS  
D17  
NC  
V
SA  
SA  
SA  
SA  
C
SA  
SA  
SA  
V
NC  
D0  
SA  
SA  
SA  
SA  
TCK  
C
TMS  
Note: *The following pins are reserved for higher densities: 2A for 144Mb.  
2
Integrated Silicon Solution, Inc.  
Rev. B  
11/10/09  
72 Mb (2M x 36 & 4M x 18)  
QUAD (Burst of 4) Synchronous SRAMs  
Pin Description  
Symbol  
Pin Number  
Description  
K, K  
C, C  
6B, 6A  
6P, 6R  
Input clock.  
Input clock for output data control.  
CQ, CQ  
Doff  
11A, 1A  
1H  
Output echo clock.  
DLL disable when low.  
3A, 9A, 4B, 8B, 5C, 7C, 5N, 6N, 7N, 4P, 5P, 7P, 8P, 3R, 4R, 5R,  
7R, 8R, 9R  
SA  
SA  
2M x 36 address inputs.  
4M x 18 address inputs.  
10A, 3A, 9A, 4B, 8B, 5C, 7C, 5N, 6N, 7N, 4P, 5P, 7P, 8P, 3R, 4R,  
5R, 7R, 8R, 9R  
D0–D8  
10P, 11N, 11M, 10K, 11J, 11G, 10E, 11D, 11C  
10N, 9M, 9L, 9J, 10G, 9F, 10D, 9C, 9B  
3B, 3C, 2D, 3F, 2G, 3J, 3L, 3M, 2N  
D9–D17  
D18–D26  
D27–D35  
2M x 36 data inputs.  
2M x 36 data outputs.  
1C, 1D, 2E, 1G, 1J, 2K, 1M, 1N, 2P  
Q0–Q8  
11P, 10M, 11L, 11K, 10J, 11F, 11E, 10C, 11B  
9P, 9N, 10L, 9K, 9G, 10F, 9E, 9D, 10B  
2B, 3D, 3E, 2F, 3G, 3K, 2L, 3N, 3P  
Q9–Q17  
Q18–Q26  
Q27–Q35  
1B, 2C, 1E, 1F, 2J, 1K, 1L, 2M, 1P  
D0–D8  
D9–D17  
10P, 11N, 11M, 10K, 11J, 11G, 10E, 11D, 11C  
3B, 3C, 2D, 3F, 2G, 3J, 3L, 3M, 2N  
4M x 18 data inputs.  
4M x 18 data outputs.  
Q0–Q8  
Q9–Q17  
11P, 10M, 11L, 11K, 10J, 11F, 11E, 10C, 11B  
2B, 3D, 3E, 2F, 3G, 3K, 2L, 3N, 3P  
W
R
4A  
8A  
Write control, active low.  
Read control, active low.  
2M x 36 byte write control, active low.  
4M x 18 byte write control, active low.  
Input reference level.  
BW BW BW BW 7B, 7A, 5A,5B  
0,  
1,  
2,  
3
BW BW  
7B, 5A  
0,  
1
V
V
V
2H, 10H  
REF  
DD  
5F, 7F, 5G, 7G, 5H, 7H, 5J, 7J, 5K, 7K  
4E,8E,4F,8F,4G,8G,3H,4H,8H,9H,4J,8J,4K,8K,4L,8L  
Power supply.  
Output power supply.  
DDQ  
4C, 8C, 4D, 5D, 6D, 7D, 8D, 5E, 6E, 7E, 6F, 6G, 6H, 6J,  
6K, 5L, 6L, 7L, 4M, 5M, 6M, 7M, 8M, 4N, 8N  
V
Ground.  
SS  
ZQ  
11H  
Output driver impedance control.  
IEEE 1149.1 test inputs (1.8V LVTTL lev-  
els).  
TMS, TDI, TCK  
TDO  
10R, 11R, 2R  
1R  
IEEE 1149.1 test output (1.8V LVTTL level).  
NC for x36  
NC for x18  
2A, 10A, 6C  
2A, 7A, 1B, 5B, 9B, 10B, 1C, 2C, 6C, 9C, 1D, 9D, 10D, 1E, 2E,  
9E, 1F, 9F, 10F, 1G, 9G, 10G, 1J, 2J, 9J, 1K, 2K, 9K, 1L, 9L,  
10L, 1M, 2M, 9M, 1N, 9N, 10N, 1P, 2P, 9P  
Integrated Silicon Solution, Inc.  
3
Rev. B  
11/10/09  
72 Mb (2M x 36 & 4M x 18)  
QUAD (Burst of 4) Synchronous SRAMs  
Block Diagram  
36 (o r 18)  
Data  
D (Data-In)  
Reg  
72 (or 36 )  
72 (or 36)  
Write Driver  
36 ( or 18)  
19 (or 20 )  
19 (o r 20)  
Add  
Reg  
72  
Address  
144  
Q (Data-Out)  
(or 36)  
(or 72)  
2M x 36  
(4M x 18)  
Memory  
Array  
CQ, CQ  
R
Control  
Logic  
72  
W
(Ech o Cloc k Out)  
(or 36)  
4 (or 2)  
BW  
x
K
K
C
C
Cloc k  
Gen  
Select OutputControl  
SRAM Features  
Read Operations  
The SRAM operates continuously in a burst-of-four mode. Read cycles are started by registering R in active  
low state at the rising edge of the K clock. R can be activated every other cycle because two full cycles are  
required to complete the burst of four in DDR mode. A second set of clocks, C and C, are used to control the  
timing to the outputs. A set of free-running echo clocks, CQ and CQ, are produced internally with timings  
identical to the data-outs. The echo clocks can be used as data capture clocks by the receiver device.  
When the C and C clocks are connected high, the K and K clocks assume the function of those clocks. In this  
case, the data corresponding to the first address is clocked 1.5 cycles later by the rising edge of the K clock.  
The data corresponding to the second burst is clocked 2 cycles later by the following rising edge of the K  
clock. The third data-out is clocked by the subsequent rising edge of the K clock, and the fourth data-out is  
clocked by the subsequent rising edge of the K clock.  
A NOP operation (R is high) does not terminate the previous read.  
Write Operations  
Write operations can also be initiated at every other rising edge of the K clock whenever W is low. The write  
address is provided simultaneously. Again, the write always occurs in bursts of four.  
The write data is provided in a late writemode; that is, the data-in corresponding to the first address of the  
burst, is presented 1 cycle later or at the rising edge of the following K clock. The data-in corresponding to the  
second write burst address follows next, registered by the rising edge of K. The third data-in is clocked by the  
subsequent rising edge of the K clock, and the fourth data-in is clocked by the subsequent rising edge of the  
K clock.  
4
Integrated Silicon Solution, Inc.  
Rev. B  
11/10/09  
72 Mb (2M x 36 & 4M x 18)  
QUAD (Burst of 4) Synchronous SRAMs  
The data-in provided for writing is initially kept in write buffers. The information in these buffers is written into  
the array on the third write cycle. A read cycle to the last two write addresses produces data from the write  
buffers. The SRAM maintains data coherency.  
During a write, the byte writes independently control which byte of any of the four burst addresses is written  
(see X18/X36 Write Truth Tables on page 10 and Timing Reference Diagram for Truth Table on page 8).  
Whenever a write is disabled (W is high at the rising edge of K), data is not written into the memory.  
RQ Programmable Impedance  
An external resistor, RQ, must be connected between the ZQ pin on the SRAM and VSS to enable the SRAM  
to adjust its output driver impedance. The value of RQ must be 5x the value of the intended line impedance  
driven by the SRAM. For example, an RQ of 250results in a driver impedance of 50. The allowable range  
of RQ to guarantee impedance matching is between 175and 350, with the tolerance described in  
Programmable Impedance Output Driver DC Electrical Characteristics on page 16. The RQ resistor should  
be placed less than two inches away from the ZQ ball on the SRAM module. The capacitance of the loaded  
ZQ trace must be less than 3 pF.  
The ZQ pin can also be directly connected to VDDQ to obtain a minimum impedance setting. ZQ must never  
be connected to VSS  
.
Programmable Impedance and Power-Up Requirements  
Periodic readjustment of the output driver impedance is necessary as the impedance is greatly affected by  
drifts in supply voltage and temperature. At power-up, the driver impedance is in the middle of allowable  
impedances values. The final impedance value is achieved within 1024 clock cycles.  
Single Clock Mode  
This device can be also operated in single-clock mode. In this case, C and C are both connected high at  
power-up and must never change. Under this condition, K and K will control the output timings.  
Either clock pair must have both polarities switching and must never connect to VREF, as they are not differ-  
ential clocks  
Depth Expansion  
Separate input and output ports enable easy depth expansion, as each port can be selected and deselected  
independently. Read and write operations can occur simultaneously without affecting each other. Also, all  
pending read and write transactions are always completed prior to deselecting the corresponding port.  
In the following application example, the second pair of C and C clocks is delayed such that the return data  
meets the data setup and hold times at the memory controller.  
Integrated Silicon Solution, Inc.  
5
Rev. B  
11/10/09  
72 Mb (2M x 36 & 4M x 18)  
QUAD (Burst of 4) Synchronous SRAMs  
Application Example  
R=250  
SRAM #1  
SRAM #4  
ZQ  
CQ  
CQ  
Q
R=250Ω  
ZQ  
CQ  
CQ  
Q
D
D
Vt  
SA  
R
W
BW BW  
C
C
K
K
SA  
R
W
BW BW C  
1
C
K
K
0
1
0
R
Data In  
Data Out  
Address  
R
Vt  
Vt  
R
W
BW  
Memory  
Controller  
Return CLK  
Vt  
Vt  
Source CLK  
Return CLK  
Source CLK  
R=50Vt=V  
REF  
SRAM1 Input CQ  
SRAM1 Input CQ  
SRAM4 Input CQ  
SRAM4 Input CQ  
Power-Up and Power-Down Sequences  
The following sequence is used for power-up:  
1. The power supply inputs must be applied in the following order while keeping Doff in LOW logic state:  
1) VDD  
2) VDDQ  
3) VREF  
2. Start applying stable clock inputs (K, K, C, and C).  
3. After clock signals have stabilized, change Doff to HIGH logic state.  
4. Once the Doff is switched to HIGH logic state, wait an additional 1024 clock cycles to lock the DLL.  
NOTES:  
1. The power-down sequence must be done in reverse of the power-up sequence.  
2. VDDQ can be allowed to exceed VDD by no more than 0.6V.  
3. VREF can be applied concurrently with VDDQ.  
6
Integrated Silicon Solution, Inc.  
Rev. B  
11/10/09  
72 Mb (2M x 36 & 4M x 18)  
QUAD (Burst of 4) Synchronous SRAMs  
State Diagram  
Power-Up  
Read NOP  
Read  
Write NOP  
Read  
Write  
Write  
Load New  
Read Address  
D count = 0  
Load New  
Write Address  
D count = 0  
Read  
D count = 2  
Write  
D count = 2  
Write  
D count = 2  
Read  
D count = 2  
Always  
Always  
DDR-II Read  
DDR-II Write  
D count =  
D count =  
D count + 1  
D count + 1  
Read  
D count = 1  
Write  
D count = 1  
Always  
Always  
Increment  
Read Address  
Increment  
Write Address  
Notes: 1. Internal burst counter is fixed as four-bit linear; that is, when first address is A0+0, next internal burst addresses are  
A0+1, A0+2, and A0+3  
.
2. Read refers to read active status with R = low. Read refers to read inactive status with R = high.  
3. Write refers to write active status with W = low. Write refers to write inactive status with W = high.  
4. The read and write state machines can be active simultaneously.  
5. State machine control timing sequence is controlled by K.  
The Timing Reference Diagram for Truth Table on page 8 is helpful in understanding the clock and write truth  
tables, as it shows the cycle relationship between clocks, address, data in, data out, and controls. All read  
and write commands are issued at the beginning of cycle t.  
Integrated Silicon Solution, Inc.  
7
Rev. B  
11/10/09  
72 Mb (2M x 36 & 4M x 18)  
QUAD (Burst of 4) Synchronous SRAMs  
Timing Reference Diagram for Truth Table  
Cycle  
t
t+1  
Write B  
t+2  
t+3  
Read A  
K Clock  
K Clock  
R
W
BW  
X
Address  
Data-In  
A
B
DB  
QA  
DB+1  
QA+1  
DB+2  
QA+2  
DB+3  
QA+3  
Data-Out  
C Clock  
C Clock  
CQ Clock  
CQ Clock  
8
Integrated Silicon Solution, Inc.  
Rev. B  
11/10/09  
72 Mb (2M x 36 & 4M x 18)  
QUAD (Burst of 4) Synchronous SRAMs  
Clock Truth Table (Use the following table with the Timing Reference Diagram for Truth Table.)  
Clock  
K
Controls  
Data In  
Data Out  
Mode  
D
D
D
D
Q
Q
Q
Q
A+3  
R
X
H
L
W
X
B
B+1  
B+2  
B+3  
A
A+1  
A+2  
Previous Previous Previous Previous Previous Previous Previous Previous  
Stop Clock  
Stop  
State  
State  
State  
State  
State  
State  
State  
State  
No Operation (NOP) LH  
H
X
X
X
X
X
High-Z  
High-Z  
High-Z  
High-Z  
Dout at C Dout at C Dout at C Dout at C  
Read B  
Write A  
L H  
L H  
X
X
X
X
(t + 1.5)  
(t + 2)  
(t + 2.5)  
(t + 3)  
Din at K Din at K Din at K Din at K  
(t + 1) (t + 1.5) (t + 2) (t + 2.5)  
X
L
X
X
X
X
Notes:  
1. Internal burst counter is always fixed as four-bit.  
2. X = dont care; H = logic 1; L = logic 0.  
3. A read operation is started when control signal R is active low  
4. A write operation is started when control signal W is active low. Before entering into stop clock, all pending read and write com-  
mands must be completed.  
5. Consecutive read or write operations can be started only at every other K clock rising edge. If two read or write operations are  
issued in consecutive K clock rising edges, the second one will be ignored.  
6. If both R and W are active low after a NOP operation, the write operation will be ignored.  
7. For timing definitions, refer to the AC Characteristics on page 17. Signals must have AC specifications at timings indicated in  
parenthesis with respect to switching clocks K, K, C, and C.  
Integrated Silicon Solution, Inc.  
9
Rev. B  
11/10/09  
72 Mb (2M x 36 & 4M x 18)  
QUAD (Burst of 4) Synchronous SRAMs  
X36 Write Truth Table Use the following table with the Timing Reference Diagram for Truth Table on  
page 9.  
BW  
L
BW  
H
L
BW BW  
D
D
D
D
B+3  
Operation  
Write Byte 0  
Write Byte 1  
Write Byte 2  
Write Byte 3  
K
(t+1)  
K
(t+1.5)  
K(t+2) K(t+2.5)  
0
1
2
3
B
B+1  
B+2  
LH  
LH  
LH  
LH  
H
H
L
H
H
H
L
D0-8 (t+1)  
D9-17 (t+1)  
D18-26 (t+1)  
D27-35 (t+1)  
H
H
H
L
H
H
L
H
L
Write All Bytes LH  
L
D0-35 (t+1  
)
Abort Write  
Write Byte 0  
Write Byte 1  
LH  
H
L
H
H
L
H
H
H
H
H
H
Dont care  
LH  
LH  
D0-8 (t+1.5)  
H
D9-17 (t+1.5)  
D18-26  
(t+1.5)  
Write Byte 2  
Write Byte 3  
LH  
LH  
H
H
H
H
L
H
L
D27-35  
(t+1.5)  
H
Write All Bytes  
Abort Write  
LH  
LH  
L
H
L
L
H
H
L
L
L
H
H
H
D0-35 (t+1.5)  
H
H
H
Dont care  
Write Byte 0  
Write Byte 1  
LH  
LH  
D0-8 (t+2)  
H
D9-17 (t+2)  
D18-26  
(t+2)  
Write Byte 2  
Write Byte 3  
LH  
LH  
H
H
H
H
L
H
L
D27-35  
(t+2)  
H
Write All Bytes  
Abort Write  
Write Byte 0  
Write Byte 1  
Write Byte 2  
Write Byte 3  
Write All Bytes  
Abort Write  
Notes;  
LH  
LH  
L
H
L
L
H
H
L
L
H
H
H
L
L
H
H
H
H
L
D0-35 (t+2  
)
Dont care  
LH  
LH  
LH  
LH  
LH  
LH  
D0-8 (t+2.5)  
D9-17 (t+2.5)  
D18-26 (t+2.5)  
D27-35 (t+2.5)  
H
H
H
L
H
H
L
H
L
L
D0-35 (t+2.5)  
H
H
H
H
Dont care  
1. For all cases, W needs to be active low during the rising edge of K occurring at time t.  
2. For timing definitions refer to the AC Characteristics on page 17. Signals must have AC specifications with respect to switching  
clocks K and K.  
10  
Integrated Silicon Solution, Inc.  
Rev. B  
11/10/09  
72 Mb (2M x 36 & 4M x 18)  
QUAD (Burst of 4) Synchronous SRAMs  
X18 Write Truth Table Use the following table with the Timing Reference Diagram for Truth Table on  
page 9.  
BW  
L
BW  
H
L
D
D
D
D
B+3  
Operation  
Write Byte 0  
Write Byte 1  
K
(t+1)  
K
(t+1.5)  
K(t+2) K(t+2.5)  
0
1
B
B+1  
B+2  
LH  
LH  
D0-8 (t+1)  
H
L
D9-17 (t+1)  
Write All Bytes LH  
LH  
L
D0-17 (t+1  
)
Abort Write  
Write Byte 0  
Write Byte 1  
Write All Bytes  
Abort Write  
Write Byte 0  
Write Byte 1  
Write All Bytes  
Abort Write  
Write Byte 0  
Write Byte 1  
Write All Bytes  
Abort Write  
Notes;  
H
L
H
H
L
Dont care  
LH  
LH  
LH  
LH  
D0-8 (t+1.5)  
H
L
D9-17 (t+1.5)  
L
D0-17 (t+1.5  
)
H
L
H
H
L
Dont care  
LH  
LH  
LH  
LH  
D0-8 (t+2)  
H
L
D9-17 (t+2)  
L
D0-17 (t+2  
)
H
L
H
H
L
Dont care  
LH  
LH  
LH  
LH  
D0-8 (t+2.5)  
H
L
D9-17 (t+2.5)  
L
D0-17 (t+2.5)  
H
H
Dont care  
1. For all cases. W needs to be active low during the rising edge of K occurring at time t.  
2. For timing definitions refer to the AC Characteristics on page 17. Signals must have AC specifications with respect to switching  
clocks K and K.  
Integrated Silicon Solution, Inc.  
11  
Rev. B  
11/10/09  
72 Mb (2M x 36 & 4M x 18)  
QUAD (Burst of 4) Synchronous SRAMs  
Absolute Maximum Ratings  
Item  
Power supply voltage  
Output power supply voltage  
Input voltage  
Symbol  
Rating  
Units  
V
V
-0.5 to 2.9V  
-0.5 to 2.9V  
-0.5 to VDD+0.3V  
-0.5 to 2.6  
0 to 70  
DD  
V
V
DDQ  
V
V
IN  
Data out voltage  
V
V
DOUT  
Operating temperature  
Junction temperature  
Storage temperature  
T
°C  
°C  
°C  
A
T
110  
J
T
-55 to +125  
STG  
Note: Stresses greater than those listed in this table can cause permanent damage to the device. This is a stress rating only and func-  
tional operation of the device at these or any other conditions above those indicated in the operational sections of this datasheet is not  
implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
12  
Integrated Silicon Solution, Inc.  
Rev. B  
11/10/09  
72 Mb (2M x 36 & 4M x 18)  
QUAD (Burst of 4) Synchronous SRAMs  
Recommended DC Operating Conditions (TA = 0 to +70°C)  
Parameter  
Symbol  
Minimum  
1.8 - 5%  
1.4  
Typical  
Maximum  
1.8 + 5%  
1.9  
Units  
V
Notes  
1
Supply voltage  
V
DD  
Output driver supply voltage  
Input high voltage  
V
V
1
DDQ  
V
V
+0.1  
V + 0.3  
DDQ  
V
1, 2  
1, 3  
1, 5  
1, 4  
IH  
REF  
Input low voltage  
V
-0.3  
V
- 0.1  
V
IL  
REF  
Input reference voltage  
Clocks signal voltage  
V
0.68  
0.95  
V
REF  
V
-0.3  
V
+ 0.3  
V
IN - CLK  
DDQ  
1. All voltages are referenced to V . All V , V  
, and V pins must be connected.  
SS  
SS  
DD  
DDQ  
2. V (Max) AC = See 0vershoot and Undershoot Timings.  
IH  
3. V (Min) AC = See 0vershoot and Undershoot Timings.  
IL  
4. V  
specifies the maximum allowable DC excursions of each clock (K, K, C, and C).  
IN-CLK  
5. Peak-to-peak AC component superimposed on V  
may not exceed 5% of V  
REF  
REF.  
0vershoot and Undershoot Timings  
20% Min Cycle Time  
VIL(Min) AC  
V
+0.6V  
DDQ  
Undershoot Timing  
VDDQ  
GND  
V (Max) AC  
IH  
GND-0.6V  
Overshoot Timing  
20% Min Cycle Time  
PBGA Thermal Characteristics  
Item  
Thermal resistance junction to ambient (airflow = 1m/s)  
Thermal resistance junction to case  
Symbol  
Rating  
18.6  
4.3  
Units  
° C/W  
° C/W  
° C/W  
RΘJA  
RΘJC  
RΘJB  
Thermal resistance junction to pins  
1.77  
Integrated Silicon Solution, Inc.  
13  
Rev. B  
11/10/09  
72 Mb (2M x 36 & 4M x 18)  
QUAD (Burst of 4) Synchronous SRAMs  
Capacitance (TA = 0 to + 70 C, VDD = 1.8V -5%, +5%, f = 1MHz)  
Parameter  
Symbol  
Test Condition  
Maximum  
Units  
pF  
Input capacitance  
C
V
= 0V  
= 0V  
4
4
4
4
IN  
IN  
Data-in capacitance (D0–D35)  
Data-out capacitance (Q0–Q35)  
C
V
pF  
DIN  
OUT  
CLK  
DIN  
C
C
V
= 0V  
= 0V  
pF  
OUT  
Clocks Capacitance (K, K, C, C  
)
V
pF  
CLK  
DC Electrical Characteristics (TA = 0 to + 70 C, VDD = 1.8V -5%, +5%)  
Parameter  
Symbol  
Minimum Maximum  
Units  
Notes  
1
I
I
I
DD33  
DD40  
950  
x36 average power supply operating current  
850  
mA  
(I  
= 0, V = V or V )  
OUT  
IN  
IH  
IL  
750  
DD50  
I
I
I
DD33  
DD40  
900  
x18 average power supply operating current  
(I = 0, V = V or V )  
800  
mA  
1
1
OUT  
IN  
IH  
IL  
700  
DD50  
Power supply standby current  
(R = V , W = V . All other inputs = V or V , I = 0)  
I
-2  
400  
+2  
mA  
µA  
µA  
SB  
IH  
IH  
IH  
IH IH  
Input leakage current, any input (except JTAG)  
(V = V or V  
I
LI  
)
DD  
IN  
SS  
Output leakage current  
(V = V or V , Q in High-Z)  
I
-2  
+2  
LO  
OUT  
SS  
DDQ  
Output “high” level voltage (I = -6mA)  
V
V
-.4  
V
DDQ  
V
V
2, 3  
OH  
OH  
DDQ  
Output “low” level voltage (I = +6mA)  
V
V
V +.4  
SS  
2, 3  
OL  
OL  
SS  
JTAG leakage current  
I
-100  
+100  
A
4
LIJTAG  
(V = V or V  
)
IN  
SS  
DD  
1. I  
= chip output current.  
OUT  
2. Minimum impedance output driver.  
3. JEDEC Standard JESD8-6 Class 1 compatible.  
4. For JTAG inputs only.  
14  
Integrated Silicon Solution, Inc.  
Rev. B  
11/10/09  
72 Mb (2M x 36 & 4M x 18)  
QUAD (Burst of 4) Synchronous SRAMs  
Typical AC Input Characteristics  
Item  
Symbol  
Minimum  
Maximum  
Notes  
1, 2, 3, 4  
1, 2, 3, 4  
1, 2, 3  
AC input logic high  
V
(ac)  
(ac)  
V
+ 0.2  
IH  
REF  
AC input logic low  
V
V
- 0.2  
- 0.2  
IL  
REF  
Clock input logic high (K, K, C, C)  
Clock input logic low (K, K, C, C)  
V
(ac)  
(ac)  
V
+ 0.2  
IH-CLK  
REF  
V
V
1, 2, 3  
IL-CLK  
REF  
1. The peak-to-peak AC component superimposed on V  
may not exceed 5% of the DC component of V  
.
REF  
REF  
2. Performance is a function of V and V levels to clock inputs.  
IH  
IL  
3. See the AC Input Definition diagram.  
4. See the AC Input Definition diagram. The signals should swing monotonically with no steps rail-to-rail with input signals never ring-  
ing back past VIH (AC) and VIL (AC) during the input setup and input hold window. VIH (AC) and VIL (AC) are used for timing pur-  
poses only.  
AC Input Definition  
K
V
REF  
K
V
RAIL  
V
(AC)  
IH  
V
REF  
Setup  
Time  
Hold  
Time  
V
(AC)  
IL  
V
-RAIL  
Programmable Impedance Output Driver DC Electrical Characteristics  
(TA = 0 to +70° C, VDD = 1.8V -5%, +5%, VDDQ = 1.5, 1.8V)  
Parameter  
Output highlevel voltage  
Output lowlevel voltage  
Symbol  
Minimum  
/ 2  
Maximum  
Units  
V
Notes  
1, 3  
V
V
V
DDQ  
OH  
DDQ  
V
V
V / 2  
DDQ  
V
2, 3  
OL  
SS  
VDDQ  
------------------  
RQ  
--------  
1. I  
=
=
15% @ V = V  
/ 2 For: 175Ω ≤RQ 350.  
/ 2 For: 175RQ 350.  
= 1.5V.  
OH  
OL  
OH  
DDQ  
2
5
VDDQ  
------------------  
RQ  
--------  
2. I  
15% @ V = V  
OL  
DDQ  
2
5
3. Parameter tested with RQ = 250and V  
DDQ  
Integrated Silicon Solution, Inc.  
15  
Rev. B  
11/10/09  
72 Mb (2M x 36 & 4M x 18)  
QUAD (Burst of 4) Synchronous SRAMs  
AC Test Conditions (TA = 0 to +70° C, VDD = 1.8V -5%, +5%, VDDQ = 1.5, 1.8V)  
Parameter  
Symbol  
Conditions  
1.5, 1.8  
Units  
V
Notes  
Output driver supply voltage  
Input high level  
V
DDQ  
V
V
+0.5  
REF  
V
IH  
Input Low Level  
V
V
-0.5  
REF  
V
IL  
Input reference voltage  
Input rise time  
V
0.75, 0.9  
0.35  
V
REF  
T
ns  
ns  
V
R
Input fall time  
T
0.35  
F
Output timing reference level  
Clocks reference level  
V
V
REF  
REF  
V
Output load conditions  
1, 2  
1. See AC Test Loading.  
2. Parameter tested with RQ = 250and V  
= 1.5V.  
DDQ  
AC Test Loading  
50  
0.75, 0.9V  
Q
50  
Test  
Comparator  
5pF  
0.75, 0.9V  
16  
Integrated Silicon Solution, Inc.  
Rev. B  
11/10/09  
72 Mb (2M x 36 & 4M x 18)  
QUAD (Burst of 4) Synchronous SRAMs  
AC CHARACTERISTICS(VDD=1.8V 0.1V, TA=0 C to +70 C)  
33 (300 MHz)  
40 (250 MHz)  
50 (200 MHz)  
PARAMETER  
SYMBOL  
UNIT NOTE  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
Clock  
Clock Cycle Time (K, K, C, C)  
Clock Phase Jitter (K, K, C, C)  
Clock High Time (K, K, C, C)  
Clock Low Time (K, K, C, C)  
tKHKH  
tKC var  
3.30  
7.5  
4.00  
7.5  
5.00  
7.5  
ns  
0.20  
0.20  
0.20  
ns  
ns  
5
6
tKHKL  
1.32  
1.32  
1.49  
0.00  
1024  
5
1.60  
1.60  
1.80  
0.00  
1024  
5
2.00  
2.00  
2.20  
0.00  
1024  
5
tKLKH  
ns  
Clock to Clock (K  
K
, C  
C
C )  
tKHKH  
ns  
Clock to data clock (K  
, K  
C )  
tKHCH  
0.8  
0.8  
0.8  
ns  
DLL Lock Time (K, C)  
tKC lock  
tDoꢀLowToReset  
cycle  
ns  
Doff Low period to DLL reset  
Output Times  
C, C High to Output Valid  
C, C High to Output Hold  
tCHQV  
tCHQX  
0.45  
0.40  
0.27  
0.45  
0.45  
0.40  
0.30  
0.45  
0.45  
0.40  
0.35  
0.45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3
3
-0.45  
-0.40  
-0.27  
-0.45  
-0.45  
-0.40  
-0.30  
-0.45  
-0.45  
-0.40  
-0.35  
-0.45  
C, C High to Echo Clock Valid  
C, C High to Echo Clock Hold  
CQ, CQ High to Output Valid  
CQ, CQ High to Output Hold  
C, High to Output High-Z  
tCHCQV  
tCHCQX  
tCQHQV  
tCQHQX  
tCHQZ  
7
7
3
3
C, High to Output Low-Z  
tCHQX1  
Setup Times  
Address valid to K rising edge  
Control inputs valid to K rising edge  
Data-in valid to K, K rising edge  
Hold Times  
tAVKH  
tIVKH  
tDVKH  
0.35  
0.35  
0.35  
0.35  
0.35  
0.35  
0.4  
0.4  
0.4  
ns  
ns  
ns  
2
K rising edge to address hold  
K rising edge to control inputs hold  
K, K rising edge to data-in hold  
tKHAX  
tKHIX  
0.35  
0.35  
0.35  
0.35  
0.35  
0.35  
0.4  
0.4  
0.4  
ns  
ns  
ns  
tKHDX  
Notes: 1. All address inputs must meet the specified setup and hold times for all latching clock edges.  
2. Control singles are R, W,BW0,BW1 and (BW2, BW3, also for x36)  
3. If C,C are tied high, K,K become the references for C,C timing parameters.  
4. To avoid bus contention, at a given voltage and temperature tCHQX1 is bigger than tCHQZ.  
The specs as shown do not imply bus contention because tCHQX1 is a MIN parameter that is worst case at totally different test conditions  
(0 C, 1.9V) than tCHQZ, which is a MAX parameter (worst case at 70 C, 1.7V)  
It is not possible for two SRAMs on the same board to be at such different voltage and temperature.  
5. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.  
6. Vdd slew rate must be less than 0.1V DC per 50ns for DLL lock retention. DLL lock time begins once Vdd and input clock are stable.  
7. Echo clock is very tightly controlled to data valid/data hold. By design, there is a  
The data sheet parameters reflect tester guard bands and test setup variations.  
ns variation from echo clock to data.  
+ 0.1  
Integrated Silicon Solution, Inc.  
17  
Rev. B  
11/10/09  
72 Mb (2M x 36 & 4M x 18)  
QUAD (Burst of 4) Synchronous SRAMs  
Read and Deselect Cycles Timing Diagram  
Read  
Read  
NOP  
NOP  
t
KHKH  
t
t
KHKL  
KLKH  
K
K
t
KHKH  
t
AVKH  
t
KHAX  
A1  
A2  
SA  
t
t
IVKH  
KHIX  
R
Q1-1  
t
Q1-2  
Q1-3  
Q1-4  
Q2-1  
Q2-2  
Q2-3  
Q2-4  
Q (Data-Out)  
t
CHQX  
CHQV  
t
KHKH  
t
CHQX  
t
t
t
KHKL  
KLKH  
CHQZ  
C
C
t
KHCH  
t
CHQV  
t
CHCQX  
t
CQHQX  
t
CQHQV  
CQ  
CQ  
t
CHCQV  
t
CHCQX  
t
CHCQV  
Don’t Care  
Undefined  
Note: 1. Q1-1 refers to the output from address A1+0, Q1-2, Q1-3, Q1-4 refers to the output from address A1+1, A1+2, A1+3,  
which is the nex internal burst addresses following A1+0.  
2. Outputs are disabled one cycle after a NOP.  
18  
Integrated Silicon Solution, Inc.  
Rev. B  
11/10/09  
72 Mb (2M x 36 & 4M x 18)  
QUAD (Burst of 4) Synchronous SRAMs  
Write and NOP Timing Diagram  
Write  
Write  
NOP  
NOP  
t
KLKH  
t
KHKH  
t
KHKL  
K
K
t
KHKH  
t
AVKH  
t
t
KHAX  
KHIX  
SA  
A1  
A2  
t
t
IVKH  
KHIX  
W
B1-1  
D1-1  
B1-2  
D1-2  
B1-3  
B1-4  
B2-1  
B2-2  
D2-2  
B2-3  
B2-4  
D2-4  
BW  
X
t
t
KHDX  
DVKH  
D (Data-In)  
D1-3  
D1-4  
D2-1  
D2-3  
Don’t Care  
Undefined  
NOTE: (B1-1 refers to all BW byte controls for D1-1)  
X
Integrated Silicon Solution, Inc.  
19  
Rev. B  
11/10/09  
72 Mb (2M x 36 & 4M x 18)  
QUAD (Burst of 4) Synchronous SRAMs  
Read, Write, and NOP Timing Diagram  
Read  
NOP  
Read  
Write  
Read  
Write  
NOP  
K
K
SA  
BW  
R
A1  
A2  
A3  
A4  
B2-2  
B4-1  
B4-3  
B2-1  
B2-3  
B4-2  
B2-4  
X
W
D (Data-In)  
D2-1  
Q1-1  
D2-2  
Q1-2  
D2-3  
Q1-3  
D2-4  
Q1-4  
D4-1  
Q3-1  
D4-2  
Q3-2  
D4-3  
Q3-3  
D (Data-Out)  
C
C
CQ  
CQ  
Dont Care  
Undefined  
Note: If address A3=A2, data Q3-1=D2-1, data Q3-2=D2-2, data Q3-3=D2-3, and  
data Q3-4=D2-4, then write data is forwarded immediately as read results.  
20  
Integrated Silicon Solution, Inc.  
Rev. B  
11/10/09  
72 Mb (2M x 36 & 4M x 18)  
QUAD (Burst of 4) Synchronous SRAMs  
IEEE 1149.1 TAP and Boundary Scan  
The SRAM provides a limited set of JTAG functions to test the interconnection between SRAM I/Os and  
printed circuit board traces or other components. There is no multiplexer in the path from I/O pins to the RAM  
core.  
In conformance with IEEE Standard 1149.1, the SRAM contains a TAP controller, instruction register,  
boundary scan register, bypass register, and ID register.  
The TAP controller has a standard 16-state machine that resets internally on power-up. Therefore, a TRST  
signal is not required.  
Signal List  
TCK: test clock  
TMS: test mode select  
TDI: test data-in  
TDO: test data-out  
JTAG DC Operating Characteristics (TA = 0 to +70° C)  
Operates with JEDEC Standard 8-5 (1.8V) logic signal levels  
Parameter  
JTAG input high voltage  
Symbol  
Minimum  
1.3  
Typical  
Maximum  
Units  
Notes  
1
V
V
+0.3  
DD  
V
V
V
V
IH1  
JTAG input low voltage  
JTAG output high level  
JTAG output low level  
V
-0.3  
0.5  
1
IL1  
V
V
-0.4  
V
1, 2  
1, 3  
OH1  
DD  
DD  
V
V
0.4  
OL1  
SS  
1. All JTAG inputs and outputs are LVTTL-compatible.  
2. I  
3. I  
= -2mA  
= +2mA  
OH1  
OL1  
JTAG AC Test Conditions (TA = 0 to +70° C, VDD = 1.8V -5%, +5%)  
Parameter  
Symbol  
Conditions  
1.3  
Units  
V
Input pulse high level  
V
IH1  
Input pulse low level  
V
T
0.5  
V
IL1  
Input rise time  
1.0  
ns  
ns  
V
R1  
Input fall time  
T
1.0  
F1  
Input and output timing reference level  
0.9  
Integrated Silicon Solution, Inc.  
21  
Rev. B  
11/10/09  
72 Mb (2M x 36 & 4M x 18)  
QUAD (Burst of 4) Synchronous SRAMs  
JTAG AC Characteristics (TA = 0 to +70° C, VDD = 1.8V -5%, +5%)  
Parameter  
Symbol  
Minimum  
Maximum  
Units  
ns  
Notes  
TCK cycle time  
TCK high pulse width  
TCk low pulse width  
TMS setup  
t
20  
7
7
THTH  
t
ns  
THTL  
t
7
ns  
TLTH  
MVTH  
THMX  
t
t
4
ns  
TMS hold  
4
ns  
TDI setup  
t
4
ns  
DVTH  
THDX  
TDI hold  
t
4
ns  
TCK low to valid data  
t
ns  
1
TLOV  
1. See AC Test Loading on page 16.  
JTAG Timing Diagram  
t
t
t
THTH  
THTL  
TLTH  
TCK  
TMS  
t
THMX  
t
MVTH  
t
THDX  
TDI  
t
DVTH  
TDO  
t
TLOV  
22  
Integrated Silicon Solution, Inc.  
Rev. B  
11/10/09  
72 Mb (2M x 36 & 4M x 18)  
QUAD (Burst of 4) Synchronous SRAMs  
Scan Register Definition  
Register Name  
Instruction  
Bypass  
Bit Size x18 or x36  
3
1
ID  
32  
109  
Boundary Scan  
ID Register Definition  
Field Bit Number and Description  
Part  
Revision Number  
(31:29)  
Part Configuration  
(28:12)  
JEDEC Code  
Start Bit  
(0)  
(11:1)  
4M x 18  
2M x 36  
000  
000  
00def0wx0t0q0b0s0  
00def0wx0t0q0b0s0  
000 101 001 00  
000 101 001 00  
1
1
Part Configuration Definition:  
def = 011 for 72Mb  
wx = 11 for x36, 10 for x18  
t = 1 for DLL, 0 for non-DLL  
q = 1 for QUADB4, 0 for DDR-II  
b = 1 for burst of 4, 0 for burst of 2  
s = 1 for separate I/0, 0 for common I/O  
Integrated Silicon Solution, Inc.  
23  
Rev. B  
11/10/09  
72 Mb (2M x 36 & 4M x 18)  
QUAD (Burst of 4) Synchronous SRAMs  
Instruction Set  
Code  
000  
001  
010  
011  
100  
101  
110  
111  
Instruction  
EXTEST  
IDCODE  
TDO Output  
Boundary Scan Register  
32-bit Identification Register  
Boundary Scan Register  
Do not use  
Notes  
2,6  
SAMPLE-Z  
PRIVATE  
SAMPLE  
PRIVATE  
PRIVATE  
BYPASS  
1, 2  
5
Boundary Scan Register  
Do not use  
4
5
Do not use  
5
Bypass Register  
3
1. Places Qs in high-Z in order to sample all input data, regardless of other SRAM inputs.  
2. TDI is sampled as an input to the first ID register to allow for the serial shift of the external TDI data.  
3. BYPASS register is initiated to V when BYPASS instruction is invoked. The BYPASS register also holds the last serially loaded  
SS  
TDI when exiting the shift-DR state.  
4. SAMPLE instruction does not place DQs in high-Z.  
5. This instruction is reserved. Invoking this instruction will cause improper SRAM functionality.  
6. This EXTEST is not IEEE 1149.1-compliant. By default, it places Q in high-Z. If the internal register on the scan chain is set high,  
Q will be updated with information loaded via a previous SAMPLE instruction. The actual transfer occurs during the update IR  
state after EXTEST is loaded. The value of the internal register can be changed during SAMPLE and EXTEST only.  
List of IEEE 1149.1 Standard Violations  
7.2.1.b, e  
7.7.1.a-f  
10.1.1.b, e  
10.7.1.a-d  
6.1.1.d  
JTAG Block Diagram  
TDI  
Bypass Register (1 bit)  
Identification Register (32 bits)  
Instruction Register (3 bits)  
TDO  
Control Signals  
TAP Controller  
TMS  
TCK  
24  
Integrated Silicon Solution, Inc.  
Rev. B  
11/10/09  
72 Mb (2M x 36 & 4M x 18)  
QUAD (Burst of 4) Synchronous SRAMs  
TAP Controller State Machine  
1
Test Logic Reset  
0
0
1
1
1
Select IR  
0
Run Test Idle  
Select DR  
0
1
Capture IR  
0
1
Capture DR  
0
0
Shift IR  
1
0
Shift DR  
1
1
Exit1 IR  
0
1
Exit1 DR  
0
0
0
Pause IR  
1
Pause DR  
1
0
Exit2 DR  
1
Exit2 IR  
1
0
1
Update DR  
0
Update IR  
0
1
Integrated Silicon Solution, Inc.  
25  
Rev. B  
11/10/09  
72 Mb (2M x 36 & 4M x 18)  
QUAD (Burst of 4) Synchronous SRAMs  
Boundary Scan Exit Order The same length is used for x18 and x36 I/O configuration.  
Order  
Pin ID  
Order  
Pin ID  
Order  
Pin ID  
1
6R  
6P  
37  
37  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
10D  
9E  
73  
74  
2C  
3E  
2D  
2E  
1E  
2F  
2
3
6N  
10C  
11D  
9C  
9D  
11B  
11C  
9B  
75  
4
7P  
76  
5
7N  
77  
6
7R  
78  
7
8R  
79  
3F  
8
8P  
80  
1G  
1F  
9
9R  
81  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
11P  
10P  
10N  
9P  
10B  
11A  
10A  
9A  
82  
3G  
2G  
1H  
1J  
83  
84  
85  
10M  
11N  
9M  
8B  
86  
2J  
7C  
6C  
8A  
87  
3K  
3J  
88  
9N  
89  
2K  
1K  
2L  
11L  
11M  
9L  
7A  
90  
7B  
91  
6B  
92  
3L  
10L  
11K  
10K  
9J  
6A  
93  
1M  
1L  
5B  
94  
5A  
95  
3N  
3M  
1N  
2M  
3P  
2N  
2P  
1P  
3R  
4R  
4P  
5P  
5N  
5R  
Internal  
4A  
96  
9K  
5C  
4B  
97  
10J  
11J  
11H  
10G  
9G  
98  
3A  
99  
2A  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
1A  
2B  
11F  
11G  
9F  
3B  
1C  
1B  
10F  
11E  
10E  
3D  
3C  
1D  
Note:  
1) NC pins as defined on FBGA pinouts on page 2 are read as dont cares.  
2) State of Internal pin (#109) is loaded via JTAG  
26  
Integrated Silicon Solution, Inc.  
Rev. B  
11/10/09  
72 Mb (2M x 36 & 4M x 18)  
QUAD (Burst of 4) Synchronous SRAMs  
Integrated Silicon Solution, Inc.  
27  
Rev. B  
11/10/09  
72 Mb (2M x 36 & 4M x 18)  
QUAD (Burst of 4) Synchronous SRAMs  
ORDERING INFORMATION:  
Commercial Range: 0°C to +70°C  
Speed  
Order Part No.  
Organization  
2Mx36  
4Mx18  
2Mx36  
4Mx18  
Package  
165 BGA  
165 BGA  
165 BGA  
300 MHz  
IS61QDB42M36-300M3  
IS61QDB44M18-300M3  
IS61QDB42M36-250M3  
IS61QDB44M18-250M3L  
250 MHz  
165 BGA, Lead-free  
Industrial Range: -40°C to +85°C  
Speed  
Order Part No.  
Organization  
Package  
300 MHz  
IS61QDB44M18-300M3I  
4Mx18  
165 BGA  
28  
Integrated Silicon Solution, Inc.  
Rev. B  
11/10/09  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY