HAL400S [ITT]

Linear Hall Effect Sensor IC; 线性霍尔效应传感器IC
HAL400S
型号: HAL400S
厂家: ITT Cannon    ITT Cannon
描述:

Linear Hall Effect Sensor IC
线性霍尔效应传感器IC

传感器
文件: 总16页 (文件大小:213K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY DATA SHEET  
HAL400  
Linear Hall Effect  
Sensor IC  
Edition Jan. 23, 1997  
6251-346-3PD  
HAL400  
PRELIMINARY DATA SHEET  
Linear Hall Effect Sensor IC  
in CMOS technology  
Specifications  
Marking Code  
Type  
Release Notes: Revision bars indicate significant  
changes to the previous edition.  
Temperature Range  
Features:  
A
E
C
The linear CMOS Hall Sensor is used for precise mea-  
surements of the magnetic flux. The differential output  
voltage is proportional to the magnetic flux density at a  
right angle to the sensitive area. Due to chopper com-  
pensation, low magnetic offset and offset drift is  
achieved. It can be used as a current sensor or can de-  
tect any mechanical movement. Very accurate angle  
measurements or distance measurements can be done.  
The sensor is very robust and can be used in an electri-  
cally and mechanically hostile environment.  
HAL400S  
400A  
400E  
400C  
Operating Junction Temperature Range  
A: T = –40 °C to +170 °C  
J
E: T = –40 °C to +100 °C  
J
C: T = 0 °C to +100 °C  
J
– low magnetic offset  
– extremely sensitive  
– 4.8 to 12 Volt operation  
Designation of Hall Sensors  
HALXXXPP-T  
Temperature Range: A, E, or C  
Package: S for SOT-89A  
– wide temperature range T = –40 to +150 °C  
A
– over-voltage protection  
– differential output  
Type: 400  
– accurate absolute measurements of DC and low fre-  
quency magnetic flux densities  
Example: HAL400S-E  
– on-chip temperature compensation  
– low 1/f-noise  
Type: 400  
Package: SOT-89A  
Temperature Range: T = –40 °C to +100 °C  
J
Solderability  
– Package SOT-89A: according to IEC68-2-58  
V
1
DD  
2
3
OUT1  
OUT2  
4
GND  
Fig. 1: Pin configuration  
2
ITT Semiconductors  
HAL400  
PRELIMINARY DATA SHEET  
Functional Description  
External filtering or integrating measurement can be  
done to eliminate the AC component of the signal. So  
the influence of mechanical stress and temperature  
cycling is suppressed. No adjustment of magnetic offset  
is needed.  
GND  
4
The sensitivity is stabilized over a wide range of temper-  
ature and supply voltage due to internal voltage regula-  
tion and circuits for temperature compensation.  
Oscillator  
Temp.  
Dependant  
Bias  
Offset  
Compensation;  
Hallplate  
Switching  
Matrix  
Offset Compensation (see Fig. 3)  
The Hall Offset Voltage is the residual voltage measured  
in absence of a magnetic field (zero-field residual volt-  
age). This voltage is caused by mechanical stress and  
can be modeled by a displacement of the connections  
for voltage measurement and/or current supply.  
Protection  
Device  
V
OUT1  
2
OUT2  
3
Compensation of this kind of offset is done by cyclic  
commutating the connections for current flow and volt-  
age measurement.  
DD  
1
Fig. 2: Block diagram of the HAL 400 (top view)  
– First cycle:  
The hall supply current flowsbetween the points 4 and  
2. In the absence of a magnetic field V is the Hall Off-  
13  
The Linear Hall Sensor measures accurate constant  
and low frequency magnetic flux densities. The differen-  
tial output voltage is proportional to the magnetic flux  
density passing vertically through the sensitive area of  
the chip. The common mode voltage (average of the  
voltages on pin 2 and pin 3) of the differential output am-  
plifier is a constant 2.2 V.  
set Voltage (+V ). In case of a magnetic field, V is  
Offs  
13  
the sum of the Hall voltage (V ) and V  
.
H
Offs  
V
13  
= V  
V
H + Offs  
– Second cycle:  
The hall supply current flows between the points 1 and  
3. In the absence of a magnetic field V is the Hall Off-  
24  
set Voltage with negativ polarity (–V ). In case of a  
Offs  
The differential output voltage consists of two compo-  
nents due to the switching offset compensation tech-  
nique. The average of the differential output voltage rep-  
resents the magnetic flux density. This component is  
overlaid by an differential AC signal at a typical frequen-  
cy of 147 kHz. The AC signal represents the internal off-  
set voltages of amplifiers and hall plates, that are in-  
fluenced by mechanical stress and temperature cycling.  
magnetic field, V is the difference of the Hall voltage  
24  
(V ) and V  
H
.
Offs  
V
24  
= V  
V
H – Offs  
The output shows in the first cycle the sum of the Hall  
voltage and the offset, in the second the difference of  
both. The difference of the mean values of V  
and  
OUT1  
V
(V  
) is equivalent to V  
OUTDIF  
.
OUT2  
Hall  
V
for Bu0 mT  
V
OUT1  
Note: The numbers do not  
represent pin numbers.  
I
C
1
V
OUTDIF/2  
V
CM  
2
1
V
V
Offs  
OUTDIF  
4
V
V
OUTAC  
OUTDIF/2  
V
Offs  
I
C
2
3
4
V
OUT2  
1/f = 6.7 µs  
CH  
3
V
V
t
a) Offset Voltage  
b) Switched Current Supply  
c) Output Voltage  
Fig. 3: Hall Offset Compensation  
ITT Semiconductors  
3
HAL400  
PRELIMINARY DATA SHEET  
Outline Dimensions  
+0.1  
4.5  
sensitive area  
2.25  
+0.05  
0.1  
position of hall sensor  
referenced to the  
center of package  
x = 0 ± 0.1 mm  
1.7  
0.7  
4
0.95  
y = 0.3 ± 0.1 mm  
(0.37 mm x 0.17 mm)  
+0.2  
3.1  
+0.1  
2.5  
4.0 ±0.25  
1
2
3
0.4  
0.4  
+0.1  
1.5  
0.4  
top view  
1.5  
3.0  
branded side  
10°  
max. 0.05  
–0.05  
10°  
Fig. 4: Plastic Package SOT-89A  
Weight approximately 0.04 g  
Dimensions in mm  
Absolute Maximum Ratings  
Symbol  
Parameter  
Pin No.  
Min.  
–15  
Max.  
Unit  
V
V
DD  
Supply Voltage  
1
1
12  
1)  
1)  
1)  
I
Supply Current through  
Protection Device  
–400  
400  
mA  
DDZ  
I
I
Output Current  
2, 3  
1
–5  
5
mA  
mA  
OUT  
1)  
Output Current through  
Protection Device  
–300  
300  
OUTZ  
T
T
Storage Temperature Range  
Junction Temperature Range  
–65  
150  
150  
°C  
S
J
–40  
–40  
°C  
°C  
2)  
170  
1)  
2)  
tv2 ms  
tt1000 h  
Stresses beyond those listed in the “Absolute Maximum Ratings” may cause permanent damage to the device. This  
is a stress rating only. Functional operation of the device at these or any other conditions beyond those indicated in the  
“Recommended Operating Conditions/Characteristics” of this specification is not implied. Exposure to absolute maxi-  
mum ratings conditions for extended periods may affect device reliability.  
4
ITT Semiconductors  
HAL400  
PRELIMINARY DATA SHEET  
Recommended Operating Conditions  
Symbol  
Parameter  
Pin No.  
2, 3  
Min.  
–2.25  
–1  
Max.  
2.25  
1
Unit  
mA  
mA  
nF  
Remarks  
T = 25 °C  
I
Continuous Output Current  
Continuous Output Current  
Load Capacitance  
OUT  
OUT  
J
I
2, 3  
T = 170 °C  
J
C
2, 3  
1
L
V
DD  
power dissipation limit  
12 V  
8.0 V  
6.8 V  
4.8 V  
4.5 V  
min. V  
DD  
for specified  
sensitivity  
–40 °C  
150 °C T  
A
25 °C  
125 °C  
Fig. 5: Recommended Operating Supply Voltage  
Extended Operational Range  
Within the extended operating range, the ICs operate as mentioned in the functional description. The functionality has  
been tested on samples, whereby the characteristics may lie outside the specified limits.  
Symbol  
Parameter  
Pin No.  
Min.  
4.3  
–3  
Max.  
12  
Unit  
V
Remarks  
V
DD  
Supply Voltage  
Output Current  
1
I
2,3  
3
mA  
T = –40 °C to +170 °C  
J
OUT  
ITT Semiconductors  
5
HAL400  
PRELIMINARY DATA SHEET  
Electrical and Magnetic Characteristics  
see Fig. 5 for T and V as not otherwise specified; Typical characteristics for T = 25 °C, –75 mT < B < 75 mT and  
A
DD  
J
V
DD  
= 6.8 V  
Symbol  
Parameter  
Pin No.  
Min.  
11.8  
9.3  
Typ.  
14.5  
14.5  
Max.  
17.1  
18.5  
Unit  
mA  
mA  
Test Conditions  
T = 25 °C; I  
I
I
Supply Current  
1
1
= 0 mA  
OUT1,2  
DD  
J
Supply Current under Recom-  
mended Operating Conditions  
I
= 0 mA  
DD  
OUT1,2  
V
Common Mode Output Voltage  
Common Mode Rejection Ratio  
2, 3  
2, 3  
2.1  
–2  
2.2  
0
2.3  
2
V
I
V
= 0 mA  
CM  
OUT1,2  
= (V  
+ V  
) / 2  
OUT2  
CM  
OUT1  
CMRR  
mV/V  
I
= 0 mA  
OUT1,2  
CMRR is limited by the influ-  
ence of power dissipation  
S
Differential Magnetic Sensitivity  
2–3  
2–3  
37  
33  
42.5  
42.5  
49.5  
49.5  
mV/mT  
mV/mT  
B = ±60 mT ; T = 25 °C  
J
B =  
V  
/B  
V
= V  
– V  
OUTDIF  
OUTDIF  
OUT1  
OUT2  
S
B
Differential Magnetic Sensitivity  
under Recommended Operating  
Conditions  
B = ±60 mT  
= V  
V
– V  
OUTDIF  
OUT1  
OUT2  
B
Magnetic Offset  
2–3  
2–3  
–1.0  
–1.25  
–15  
–0.2  
–0.2  
0
1.0  
1.25  
15  
mT  
B = 0 mT, I  
T = 25 °C  
J
= 0 mA  
= 0 mA  
= 0 mA  
offset  
OUT1,2  
OUT1,2  
OUT1,2  
B
offset  
Magnetic Offset over Tempera-  
ture  
mT  
B = 0 mT, I  
B  
T  
/
Magnetic Offset Change due to  
T
A
µT/K  
B = 0 mT, I  
OFFSET  
1)  
BW  
Bandwidth (–3 dB)  
2–3  
2–3  
10  
1
kHz  
%
NL  
Non Linearity of Differential Out-  
put  
0.2  
B = ±40 mT, B = ±60 mT  
dif  
NL  
Non Linearity of Single Ended  
Output  
2, 3  
2
3
%
single  
f
f
Chopper Frequency  
2, 3  
2, 3  
2, 3  
114  
90  
0
147  
147  
0.32  
166  
166  
0.8  
kHz  
kHz  
V
T = 25 °C  
J
CH  
Chopper Frequency over Temp.  
CH  
V
Peak-to-Peak AC Output  
Voltage  
OUTACpp  
n
Magnetic RMS Differential  
Broadband Noise  
2–3  
2–3  
2–3  
2, 3  
2, 3  
0
0
10  
µT  
Hz  
Hz  
BW = 10 Hz to 10 kHz  
B = 0 mT  
meff  
f
f
Corner Frequency  
of 1/f Noise  
10  
Cflicker  
Corner Frequency  
of 1/f Noise  
100  
30  
B = 65 mT  
Cflicker  
R
R
R
Output Resistance  
50  
I
V
v2.5 mA ; T = 25 °C  
= 6.8 V  
OUT  
OUT  
thJSB  
OUT1,2  
J
DD  
Output Resistance  
over Temperature  
30  
150  
200  
I
v2.5 mA  
OUT1,2  
Thermal Resistance Junction to  
Substrate Backside  
150  
K/W  
Fiberglass Substrate  
30 mm x 10 mm x 1.5 mm  
pad size see Fig. 6  
case  
1)  
with external 2 pole filter (f  
= 5 kHz), V  
is reduced to less than 1 mV  
OUTAC  
3db  
6
ITT Semiconductors  
HAL400  
PRELIMINARY DATA SHEET  
Typical output voltages versus  
magnetic flux density  
Typical differential output offset  
voltage versus supply voltage  
Parameter = TA  
V
V
HAL400  
HAL400  
5
0.05  
T
A
= 25 °C  
B = 0 mT  
V
DD  
= 6.8 V  
0.04  
0.03  
0.02  
0.01  
0.00  
V
OUT1  
V
OUT2  
T = –40 °C  
A
V
OFFS  
4
3
2
1
0
T = 25 °C  
A
V
V
OUT2  
OUT1  
T = 125 °C  
A
T = 150 °C  
A
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–150 –100 –50  
0
50  
100 150mT  
2
4
6
8
10  
12  
14 V  
B
V
DD  
Typical magnetic offset of  
differential output versus  
supply voltage  
Typical magnetic offset of  
differential output versus  
ambient temperature  
Parameter = VDD  
Parameter = TA  
mT  
mT  
2.5  
HAL400  
HAL400  
2.5  
T = –40 °C  
A
V
DD  
= 4.8 V  
B = 0 mT  
B = 0 mT  
T = 25 °C  
2.0  
A
2.0  
V
V
= 6.0 V  
= 12 V  
DD  
T = 125 °C  
A
B
OFFS  
B
OFFS  
DD  
1.5  
1.5  
1.0  
T = 150 °C  
A
B
OFFSmax  
B
V
for  
= 6.8V  
OFFSmax  
DD  
1.0  
0.5  
0.5  
0.0  
0.0  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
B
B
for  
OFFSmin  
OFFSmin  
V
DD  
= 6.8 V  
2
4
6
8
10  
12  
14 V  
–50 –25  
0
25 50 75 100 125 150°C  
V
DD  
T
A
ITT Semiconductors  
7
HAL400  
PRELIMINARY DATA SHEET  
Typical differential sensitivity  
Typical differential sensitivity  
versus supply voltage  
Parameter = TA  
versus ambient temperature  
Parameter = VDD  
mV/mT  
mV/mT  
HAL400  
HAL400  
50  
40  
30  
20  
10  
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
B = ±50 mT  
B = ±50 mT  
S
BDiff  
S
BDiff  
V
= 4.8 V  
DD  
V
V
= 6.0 V  
= 12 V  
DD  
T
= –40 °C  
A
T
= 25 °C  
= 125 °C  
= 150 °C  
A
DD  
T
A
T
A
0
3
5
7
9
11  
13 V  
–50 –25  
0
25 50 75 100 125 150°C  
V
DD  
T
A
Typical nonlinearity of  
Typical nonlinearity of  
differential output versus  
magnetic flux density  
Parameter = VDD  
differential output versus  
magnetic flux density  
Parameter = TA  
%
%
HAL400  
HAL400  
= 6.8 V  
1.5  
1.5  
T = 25 °C  
A
V
DD  
1.0  
0.5  
1.0  
0.5  
NL  
NL  
dif  
dif  
0.0  
0.0  
V
= 4.8 V  
–0.5  
–1.0  
–1.5  
–0.5  
–1.0  
–1.5  
DD  
V
V
= 6.0 V  
= 12 V  
DD  
T
A
= –40 °C  
T = 25 °C  
A
DD  
T = 125 °C  
A
T = 150 °C  
A
–80 –60 –40 –20  
0
20 40 60 80 mT  
B
–80 –60 –40 –20  
0
20 40 60 80 mT  
B
8
ITT Semiconductors  
HAL400  
PRELIMINARY DATA SHEET  
Typical single endend  
Typical nonlinearity of single  
nonlinearity versus magnetic  
flux density, Parameter = VDD  
ended output versus magnetic flux  
density, Parameter = TA  
mT  
3
%
HAL400  
HAL400  
3
T = 25 °C  
A
V
DD  
= 6.0 V  
2
1
2
NL  
NL  
dif  
sing  
1
0
0
–1  
–2  
–3  
–1  
–2  
–3  
V
V
= 4.8 V  
DD  
T = –40 °C  
A
= 12 V  
T = 25 °C  
A
DD  
T = 125 °C  
A
T = 150 °C  
A
–80 –60 –40 –20  
0
20 40 60 80 mT  
–80 –60 –40 –20  
0
20 40 60 80 mT  
B
B
Typical chopper frequency  
versus supply voltage  
Parameter = TA  
Typical chopper frequency  
versus ambient temperature  
Parameter = VDD  
kHz  
200  
kHz  
HAL400  
HAL400  
200  
180  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
f
f
CH  
CH  
V
DD  
= 4.8 V  
V
V
= 6.0 V  
= 12 V  
DD  
T = –40 °C  
A
60  
60  
T = 25 °C  
A
DD  
T = 125 °C  
A
40  
40  
T = 150 °C  
A
20  
20  
0
0
3
4
5
6
7
8
9
10 11 12 13 V  
–50 –25  
0
25 50 75 100 125 150°C  
V
DD  
T
A
ITT Semiconductors  
9
HAL400  
PRELIMINARY DATA SHEET  
Typical common mode output  
Typical common mode output  
voltage versus supply voltage  
Parameter = TA  
voltage versus ambient  
temperature Parameter = VDD  
V
V
HAL400  
HAL400  
2.5  
2.26  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
2.25  
2.24  
2.23  
2.22  
2.21  
2.20  
2.19  
2.18  
2.17  
2.16  
2.15  
2.14  
V
CM  
V
CM  
V
= 4.8 V  
= 12 V  
DD  
T = –40 °C  
A
T = 25 °C  
A
V
DD  
T = 150 °C  
A
2
4
6
8
10  
12  
14 V  
–50 –25  
0
25 50 75 100 125 150°C  
V
DD  
T
A
Typical output AC voltage  
versus supply voltage  
Typical output AC voltage versus  
ambient temperature  
Parameter = VDD  
mV  
mV  
PP  
HAL400  
HAL400  
500  
500  
400  
300  
200  
100  
0
T = 25 °C  
A
V
V
V
V
OUT1pp,  
OUT2pp  
OUT1pp,  
OUT2pp  
400  
300  
200  
100  
0
V
= 4.8 V  
DD  
V
V
= 6.0 V  
= 12 V  
DD  
DD  
2
4
6
8
10  
12  
14 V  
–50 –25  
0
25 50 75 100 125 150°C  
V
DD  
T
A
10  
ITT Semiconductors  
HAL400  
PRELIMINARY DATA SHEET  
Typical supply current versus  
Typical supply current versus  
supply voltage  
Parameter = TA  
supply voltage  
Parameter = TA  
mA  
25  
mA  
20  
HAL400  
HAL400  
I
= 0 mA  
I
= 0 mA  
OUT1,2  
OUT1,2  
20  
15  
10  
5
I
I
DD  
DD  
15  
10  
5
0
–5  
T = –40 °C  
A
–10  
T = 25 °C  
A
T = –40 °C  
A
T = 125 °C  
A
–15  
–20  
–25  
T = 25 °C  
A
T = 150 °C  
A
T = 125 °C  
A
T = 150 °C  
A
0
–15 –10  
–5  
0
5
10  
15 V  
2
4
6
8
10  
12  
14 V  
V
DD  
V
DD  
Typical supply current versus  
temperature  
Parameter = TA  
Typical supply current versus  
output current  
Parameter = VDD  
mA  
mA  
25  
HAL400  
HAL400  
20  
15  
10  
5
B = 0 mT  
B = 0 mT  
I
I
DD  
DD  
20  
15  
10  
5
V
= 4.8 V  
DD  
V
= 4.8 V  
DD  
V
DD  
= 12 V  
V
V
= 6.0 V  
= 12 V  
DD  
DD  
0
0
–50 –25  
0
25 50 75 100 125 150°C  
–6  
–4  
–2  
0
2
4
6 mA  
T
A
I
OUT1,2  
ITT Semiconductors  
11  
HAL400  
PRELIMINARY DATA SHEET  
Typical dynamic differential  
Typical magnetic noise spectrum  
output resistance versus  
temperature  
Parameter = TA  
Ǹ
dBT rms ń Hz  
HAL400  
HAL400  
200  
–100  
B = 0 mT  
T
A
= 25 °C  
180  
160  
140  
120  
100  
80  
V
= 4.8 V  
B = 0 mT  
R
n
meff  
DD  
OUT  
–110  
–120  
–130  
–140  
–150  
V
V
= 6.0 V  
= 12 V  
B = 65 mT  
DD  
DD  
60  
40  
Ǹ
83 nT ń Hz  
20  
0
–50 –25  
0
25 50 75 100 125 150°C  
01 1.0 10.0 100.01000.1000001.0000010.000000.0  
Hz  
0.1 1  
10 100 1k 10k 100k 1M  
T
A
f
5.0  
Typical magnetic frequency  
response  
2.0  
dB  
20  
HAL400  
T
A
= 25 °C  
0 dB = 42.5 mV/mT  
2.0  
10  
0
s
B
1.0  
Fig. 6: Recommended pad size SOT-89A  
Dimensions in mm  
–10  
–20  
–30  
–40  
1
10  
100  
1 k  
10 k 100 k  
f
B
12  
ITT Semiconductors  
HAL400  
PRELIMINARY DATA SHEET  
Application Circuits  
The normal integrating characteristics of a voltmeter is  
sufficient for signal filtering.  
Display the difference between channel 1 and channel  
2 to show the Hall voltage. Capacitors 4.7 nF and 330 pF  
for electromagnetic immunity are recommended.  
V
CC  
V
SUP  
1
4.7n  
1
47 n  
330 p  
V
SUP  
V
DD  
Voltage  
Meter  
Oscillo-  
scope  
HAL 400  
OUT1  
HAL 400  
OUT1  
2
3
2
High  
Ch1  
3.3 k  
6.8 n  
3.3 k  
1 k  
1 k  
3
OUT2  
Low  
OUT2  
Ch2  
47 n  
330 p  
GND  
GND  
4
4
Do not connect OUT1 or OUT2 to Ground.  
Do not connect OUT1 or OUT2 to Ground.  
Fig. 7: Flux density measurement with voltmeter  
Fig. 8: Filtering of output signals  
V
CC  
V
SUP  
1.33 C  
4.7n  
1
330 p  
V
DD  
R+R  
HAL 400  
OUT1  
0.75 R  
ADC  
1.5 R  
R
2
0.22 R  
CMOS  
OPV  
+
3
OUT2  
330 p  
4.4 C  
3 C  
R–R  
GND  
4
Do not connect OUT1 or OUT2 to Ground.  
Fig. 9: Differential HAL400 output to single-ended output  
R = 10 k, C = 7.5 nF, R for offset adjustment, BW  
= 1.3 kHz  
–3dB  
ITT Semiconductors  
13  
HAL400  
PRELIMINARY DATA SHEET  
VCCy6 V  
V
SUP  
2.2 n  
4.7 n  
1
330 p  
V
DD  
4.7 k  
HAL 400  
OUT1  
1 n  
2
4.7 k  
4.7 k  
4.7 k  
CMOS  
OPV  
+
3
4.7 k  
3.0 k  
8.2 n  
CMOS  
OPV  
+
OUT2  
OUT  
4.7 k  
330 p  
4.7 n  
GND  
4
Do not connect OUT1 or OUT2 to Ground.  
VEEx*6 V  
Fig. 10: Differential HAL400 output to single-ended output (referenced to ground), filter – BW  
= 14.7 kHz  
–3dB  
14  
ITT Semiconductors  
HAL400  
PRELIMINARY DATA SHEET  
ITT Semiconductors  
15  
HAL400  
PRELIMINARY DATA SHEET  
HAL400 Documentation History  
1. Preliminary data sheet: “HAL400 Linear Hall Effect  
Sensor IC”, March 29, 1994, 6251-346-1PD. First re-  
lease of the preliminary data sheet.  
2. Preliminary data sheet: “HAL400 Linear Hall Effect  
Sensor IC”, Aug. 1, 1995, 6251-346-2PD. Second re-  
lease of the preliminary data sheet.  
Major changes:  
– Marking code  
3. Preliminary data sheet: “HAL400 Linear Hall Effect  
Sensor IC”, Jan. 23, 1997, 6251-346-3PD. Third release  
of the preliminary data sheet.  
Major changes:  
– Electrical and Magnetic Characteristics  
– diagram: Typical output voltages versus magnetic flux  
density  
ITT Semiconductors Group  
World Headquarters  
INTERMETALL  
Hans-Bunte-Strasse 19  
D-79108 Freiburg (Germany)  
P.O. Box 840  
D-79008 Freiburg (Germany)  
Tel. +49-761-517-0  
Reprinting is generally permitted, indicating the source. How-  
ever, our consent must be obtained in all cases. Information  
furnished by ITT is believed to be accurate and reliable. How-  
ever, no responsibility is assumed by ITT for its use; nor for any  
infringements of patents or other rights of third parties which  
may result from its use. No license is granted by implication or  
otherwiseunderanypatentorpatentrightsofITT. Theinforma-  
tion and suggestions are given without obligation and cannot  
give rise to any liability; they do not indicate the availability of  
the components mentioned. Delivery of development samples  
doesnotimplyanyobligationofITTtosupplylargeramountsof  
such units to a fixed term. To this effect, only written confirma-  
tion of orders will be binding.  
Fax +49-761-517-2174  
Printed in Germany  
by Systemdruck+Verlags-GmbH, Freiburg (1/97)  
Order No. 6251-346-3PD  
16  
ITT Semiconductors  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY