IXDD414CI [IXYS]

14 Amp Low-Side Ultrafast MOSFET Driver; 14安培低端超快MOSFET驱动器
IXDD414CI
型号: IXDD414CI
厂家: IXYS CORPORATION    IXYS CORPORATION
描述:

14 Amp Low-Side Ultrafast MOSFET Driver
14安培低端超快MOSFET驱动器

驱动器
文件: 总10页 (文件大小:246K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IXDD414PI / 414YI / 414CI  
14 Amp Low-Side Ultrafast MOSFET Driver  
General Description  
Features  
• Built using the advantages and compatibility  
of CMOS and IXYS HDMOSTM processes.  
• Latch-UpProtected  
• High Peak Output Current: 14A Peak  
• Wide Operating Range: 4.5V to 25V  
• Ability to Disable Output under Faults  
• High Capacitive Load  
Drive Capability: 15nF in <30ns  
• Matched Rise And Fall Times  
• Low Propagation Delay Time  
• LowOutputImpedance  
TheIXDD414isahighspeedhighcurrentgatedriver  
specifically designed to drive the largest MOSFETs and  
IGBTs to their minimum switching time and maximum  
practical frequency limits. The IXDD414 can source and  
sink 14A of peak current while producing voltage rise and  
fall times of less than 30ns. The input of the driver is  
compatible with TTL or CMOS and is fully immune to  
latch up over the entire operating range. Designed with  
small internal delays, cross conduction/current shoot-  
through is virtually eliminated in the IXDD414. Its features  
and wide safety margin in operating voltage and power  
maketheIXDD414unmatchedinperformanceandvalue.  
• LowSupplyCurrent  
The IXDD414 incorporates a unique ability to disable the  
output under fault conditions. When a logical low is  
forced into the Enable input, both final output stage  
MOSFETs (NMOS and PMOS) are turned off. As a  
result, the output of the IXDD414 enters a tristate mode  
andachievesaSoftTurn-OffoftheMOSFET/IGBTwhen  
a short circuit is detected. This helps prevent damage  
that could occur to the MOSFET/IGBT if it were to be  
switchedoffabruptlyduetoadv/dtover-voltagetran-  
sient.  
Applications  
• DrivingMOSFETsandIGBTs  
• Limiting di/dt under Short Circuit  
• MotorControls  
• LineDrivers  
• PulseGenerators  
• Local Power ON/OFF Switch  
• Switch Mode Power Supplies (SMPS)  
• DCtoDCConverters  
• PulseTransformerDriver  
• Class D Switching Amplifiers  
TheIXDD414isavailableinthestandard8-pinP-DIP(PI),  
5-pin TO-220 (CI) and in the TO-263 (YI) surface-mount  
package.  
Figure 1 - Functional Diagram  
200 k  
Copyright © IXYS CORPORATION 2001 Patent Pending  
First Release  
IXDD414PI/414YI/414CI  
Absolute Maximum Ratings (Note 1)  
Operating Ratings  
Parameter  
Value  
Parameter  
Value  
Supply Voltage  
All Other Pins  
25 V  
-0.3 V to V  
Maximum Junction Temperature  
o
150 C  
+ 0.3 V  
CC  
Operating Temperature Range  
o
o
-40 C to 85 C  
o
Power Dissipation, TAMBIENT 25 C  
Thermal Impedance (Junction To Case)  
8 Pin PDIP (PI)  
975mW  
12W  
o
TO220 (CI), TO263 (YI) (θJC)  
0.55 C/W  
TO220 (CI), TO263 (YI)  
Derating Factors (to Ambient)  
8 Pin PDIP (PI)  
o
7.6mW/ C  
TO220 (CI), TO263 (YI)  
Storage Temperature  
o
0.1W/ C  
o
o
-65 C to 150 C  
Lead Temperature (10 sec)  
o
300 C  
Electrical Characteristics  
Unless otherwise noted, TA = 25 oC, 4.5V VCC 25V .  
All voltage measurements with respect to GND. IXDD414 configured as described in Test Conditions.  
Symbol  
VIH  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
V
High input voltage  
Low input voltage  
Input voltage range  
Input current  
3.5  
VIL  
0.8  
VCC + 0.3  
10  
V
VIN  
-5  
V
IIN  
-10  
0V VIN VCC  
µA  
VOH  
VOL  
ROH  
High output voltage  
Low output voltage  
VCC - 0.025  
V
V
0.025  
1000  
Output resistance  
@ Output high  
Output resistance  
@ Output Low  
IOUT = 10mA, VCC = 18V  
IOUT = 10mA, VCC = 18V  
VCC is 18V  
600  
600  
14  
mΩ  
ROL  
IPEAK  
IDC  
1000  
mΩ  
Peak output current  
A
Continuous output  
current  
Enable voltage range  
8 Pin Dip (PI) (Limited by pkg power dissipation)  
3
4
A
A
V
TO220 (CI), TO263 (YI)  
VEN  
VENH  
VENL  
tR  
- 0.3  
Vcc + 0.3  
High En Input Voltage  
Low En Input Voltage  
Rise time  
2/3 Vcc  
V
V
1/3 Vcc  
29  
CL=15nF Vcc=18V  
CL=15nF Vcc=18V  
CL=15nF Vcc=18V  
23  
21  
29  
25  
22  
30  
ns  
ns  
ns  
tF  
Fall time  
26  
tONDLY  
On-time propagation  
delay  
33  
tOFFDLY  
tENOH  
tDOLD  
Off-time propagation  
delay  
Enable to output high  
delay time  
Disable to output low  
disable delay time  
Power supply voltage  
CL=15nF Vcc=18V  
Vcc=18V  
29  
31  
34  
40  
30  
25  
ns  
ns  
ns  
V
Vcc=18V  
VCC  
ICC  
4.5  
18  
Power supply current  
VIN = 3.5V  
VIN = 0V  
VIN = + VCC  
1
0
3
10  
10  
mA  
µA  
µA  
kΩ  
REN  
Enable Pull-up Resistor  
200  
Specifications Subject To Change Without Notice  
2
IXDD414PI/414YI/414CI  
Pin Configurations  
1 VCC  
VCC 8  
OUT 7  
OUT 6  
I
Vc c  
OUT  
GND  
IN  
1
2
3
4
5
X
D
D
4
1
4
2 IN  
3 EN  
4 GND  
EN  
GND  
5
TO220(CI)  
TO263(YI)  
8 PIN DIP (PI)  
Pin Description  
SYMBOL  
VCC  
IN  
FUNCTION  
DESCRIPTION  
Positive power-supply voltage input. This pin provides power to the  
entire chip. The range for this voltage is from 4.5V to 25V.  
Input signal-TTL or CMOS compatible.  
Supply Voltage  
Input  
The system enable pin. This pin, when driven low, disables the chip,  
forcing high impedance state to the output.  
EN  
Enable  
Driver Output. For application purposes, this pin is connected,  
through a resistor, to Gate of a MOSFET/IGBT.  
The system ground pin. Internally connected to all circuitry, this pin  
provides ground reference for the entire chip. This pin should be  
connected to a low noise analog ground plane for optimum  
performance.  
OUT  
GND  
Output  
Ground  
Note 1: Operating the device beyond parameters with listed “absolute maximum ratings” may cause permanent  
damage to the device. Typical values indicate conditions for which the device is intended to be functional, but do not  
guarantee specific performance limits. The guaranteed specifications apply only for the test conditions listed.  
Exposure to absolute maximum rated conditions for extended periods may affect device reliability.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD procedures  
when handling and assembling this component.  
Figure 2 - Characteristics Test Diagram  
V
IN  
3
IXDD414PI/414YI/414CI  
Typical Performance Characteristics  
Fig. 3  
40  
Fig. 4  
Rise Time vs. Supply Voltage  
Fall Time vs. Supply Voltage  
40  
30  
20  
10  
0
30  
20  
10  
CL=15,000 pF  
7,500 pF  
CL=15,000 pF  
7,500 pF  
3,600 pF  
3,600 pF  
0
8
8
10  
12  
14  
16  
18  
10  
12  
14  
16  
18  
Supply Voltage (V)  
Supply Voltage (V)  
Fig. 5  
40  
Rise And Fall Times vs. Junction Temperature  
C = 15 nF, V = 18V  
Fig. 6  
Rise Time vs. Load Capacitance  
L
cc  
50  
35  
8V  
40  
30  
20  
10  
0
10V  
12V  
30  
tR  
tF  
25  
18V  
16V  
14V  
20  
15  
10  
5
0
0k  
5k  
10k  
15k  
20k  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Load Capacitance (pF)  
Temperature (°C)  
Fig. 8 Max / Min Input vs. Junction Temperature  
V =18V C =15nF  
Fig. 7  
40  
Fall Time vs. Load Capacitance  
L
CC  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
8V  
12V  
14V  
Minimum Input High  
Maximum Input Low  
10V  
30  
20  
10  
18V  
16V  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
0
0k  
5k  
10k  
15k  
20k  
Temperature (oC)  
Load Capacitance (pF)  
4
IXDD414PI/414YI/414CI  
Fig. 9  
Supply Current vs. Load Capacitance  
Vcc=18V  
Fig. 10  
Supply Current vs. Frequency  
Vcc=18V  
1000  
1000  
CL= 30 nF  
15 nF  
100  
10  
1
2 MHz  
100  
10  
1
1 MHz  
5000 pF  
2000 pF  
500 kHz  
100 kHz  
50 kHz  
0.1  
10  
100  
1000  
10000  
1k  
10k  
100k  
Frequency (kHz)  
Load Capacitance (pF)  
Fig. 11  
1000  
Supply Current vs. Load Capacitance  
Vcc=12V  
Fig. 12  
Supply Current vs. Frequency  
Vcc=12V  
1000  
CL = 30 nF  
15 nF  
100  
10  
1
100  
2 MHz  
5000 pF  
2000 pF  
1 MHz  
500 kHz  
10  
100 kHz  
50 kHz  
1
0.1  
10  
100  
1000  
10000  
1k  
10k  
100k  
Frequency (kHz)  
Load Capacitance (pF)  
Fig. 14  
Supply Current vs. Frequency  
Vcc=8V  
Fig. 13  
1000  
Supply Current vs. Load Capacitance  
Vcc=8V  
1000  
CL= 30 nF  
15 nF  
100  
10  
1
100  
2 MHz  
5000 pF  
2000 pF  
1 MHz  
10  
1
500 kHz  
100 kHz  
50 kHz  
0.1  
10  
100  
1000  
10000  
1k  
10k  
100k  
Frequency (kHz)  
Load Capacitance (pF)  
5
IXDD414PI/414YI/414CI  
Propagation Delay vs. Input Voltage  
CL=15nF VCC=15V  
Propagation Delay vs. Supply Voltage  
Fig. 16  
Fig. 15  
CL=15nF V =5V@1kHz  
IN  
50  
50  
tOFFDLY  
40  
30  
20  
10  
40  
30  
20  
10  
tONDLY  
tONDLY  
tOFFDLY  
0
2
0
8
4
6
8
10  
12  
10  
12  
14  
16  
18  
Input Voltage (V)  
Supply Voltage (V)  
Propagation Delay Times vs. Junction Temperature  
Fig. 17  
Quiescent Supply Current vs. Junction Temperature  
Fig. 18  
C = 2500pF, VCC = 18V  
VCC=18V V =5V@1kHz  
L
IN  
0.60  
50  
45  
40  
35  
30  
25  
20  
15  
0.58  
0.56  
0.54  
0.52  
0.50  
tONDLY  
tOFFDLY  
10  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
o
Temperature ( C)  
Temperature (°C)  
Fig. 19  
P Channel Peak Output Current vs. Case Temperature  
N Channel Peak Output Current vs. Case Temperature  
Fig. 20  
CI and YI Packages, VCC=18V C =.1uF  
L
CI and YI Packages, VCC=18V C =.1uF  
L
16  
17  
16  
15  
14  
15  
14  
13  
12  
-40  
-20  
0
20  
40  
o
60  
80  
100  
-40  
-20  
0
20  
40  
o
60  
80  
100  
Temperature ( C)  
Temperature ( C)  
6
IXDD414PI/414YI/414CI  
Fig. 22  
High State Output Resistance  
vs. Supply Voltage  
Fig. 21  
Enable Threshold vs. Supply Voltage  
1.0  
14  
12  
10  
8
0.8  
0.6  
0.4  
0.2  
6
4
2
0
8
0.0  
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
10  
15  
20  
25  
Supply Voltage (V)  
Supply Voltage (V)  
Fig. 23  
Low-State Output Resistance  
vs. Supply Voltage  
VCC vs. P Channel Output Current  
C =.1uF V =0-5V@1kHz  
Fig. 24  
L
IN  
1.0  
0
-2  
-4  
0.8  
0.6  
0.4  
0.2  
-6  
-8  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-24  
8
0.0  
8
10  
15  
20  
25  
10  
15  
20  
25  
Supply Voltage (V)  
Vcc  
Fig. 25  
Vcc vs. N Channel Output Current  
C =.1uF V =0-5V@1kHz  
Figure 26 - Typical Application Short Circuit di/dt Limit  
L
IN  
24  
22  
20  
18  
16  
14  
12  
10  
8
6
4
2
0
8
10  
15  
20  
25  
Vcc  
7
IXDD414PI/414YI/414CI  
APPLICATIONS INFORMATION  
Short Circuit di/dt Limit  
ground. (Those glitches might cause false triggering of the  
comparator).  
A short circuit in a high-power MOSFET module such as the  
VM0580-02F, (580A, 200V), as shown in Figure 26, can cause  
the current through the module to flow in excess of 1500A for  
10µs or more prior to self-destruction due to thermal runaway.  
For this reason, some protection circuitry is needed to turn off  
the MOSFET module. However, if the module is switched off  
too fast, there is a danger of voltage transients occuring on the  
drain due to Ldi/dt, (where L represents total inductance in  
series with drain). If these voltage transients exceed the  
MOSFET's voltage rating, this can cause an avalanche break-  
down.  
The comparator's output should be connected to a SRFF(Set  
Reset Flip Flop). The flip-flop controls both the Enable signal,  
andthelowpowerMOSFETgate. PleasenotethatCMOS4000-  
series devices operate with a VCC range from 3 to 15 VDC, (with  
18 VDC being the maximum allowable limit).  
A low power MOSFET, such as the 2N7000, in series with a  
resistor, will enable the VMO580-02F gate voltage to drop  
gradually. The resistor should be chosen so that the RC time  
constant will be 100us, where "C" is the Miller capacitance of  
theVMO580-02F.  
TheIXDD414hastheuniquecapabilitytosoftlyswitchoffthe  
high-power MOSFET module, significantly reducing these  
Ldi/dttransients.  
For resuming normal operation, a Reset signal is needed at  
the SRFF's input to enable the IXDD414 again. This Reset can  
be generated by connecting a One Shot circuit between the  
IXDD414 Input signal and the SRFF restart input. The One Shot  
will create a pulse on the rise of the IXDD414 input, and this  
pulse will reset the SRFF outputs to normal operation.  
Thus, the IXDD414 helps to prevent device destruction from  
both dangers; over-current, and avalanche breakdown due to  
di/dt induced over-voltage transients.  
The IXDD414 is designed to not only provide ±14A under  
normal conditions, but also to allow it's output to go into a high  
impedance state. This permits the IXDD414 output to control  
a separate weak pull-down circuit during detected overcurrent  
shutdown conditions to limit and separately control dVGS/dt gate  
turnoff. This circuit is shown in Figure 27.  
When a short circuit occurs, the voltage drop across the low-  
value, current-sensing resistor, (Rs=0.005 Ohm), connected  
between the MOSFET Source and ground, increases. This  
triggers the comparator at a preset level. The SRFF drives a low  
input into the Enable pin disabling the IXDD408 output. The  
SRFF also turns on the low power MOSFET, (2N7000).  
Referring to Figure 27, the protection circuitry should include  
a comparator, whose positive input is connected to the source  
of the VM0580-02. A low pass filter should be added to the input  
of the comparator to eliminate any glitches in voltage caused  
by the inductance of the wire connecting the source resistor to  
In this way, the high-power MOSFET module is softly turned off  
by the IXDD414, preventing its destruction.  
Figure 27 - Application Test Diagram  
+
VB  
Ld  
-
10uH  
Rd  
IXDD414  
0.1ohm  
VCC  
VCCA  
Rg  
High_Power  
VMO580-02F  
OUT  
IN  
EN  
1ohm  
Rsh  
1600ohm  
+
-
+
-
VCC  
VIN  
GND  
SUB  
Rs  
Low_Power  
2N7002/PLP  
Ls  
R+  
10kohm  
20nH  
One ShotCircuit  
0
Rcomp  
Comp  
LM339  
5kohm  
+
V+  
NAND  
CD4011A  
NOT2  
CD4049A  
C+  
NOT1  
CD4049A  
V-  
-
100pF  
Ccomp  
1pF  
Ros  
+
-
R
1Mohm  
REF  
Cos  
1pF  
Q
NOT3  
CD4049A  
NOR1  
CD4001A  
S
EN  
NOR2  
CD4001A  
SR Flip-Flop  
8
IXDD414PI/414YI/414CI  
Supply Bypassing and Grounding Practices,  
Output Lead inductance  
TTL to High Voltage CMOS Level Translation  
The enable (EN) input to the IXDD414 is a high voltage  
CMOS logic level input where the EN input threshold is ½ VCC,  
and may not be compatible with 5V CMOS or TTL input levels.  
The IXDD414 EN input was intentionally designed for  
enhanced noise immunity with the high voltage CMOS logic  
levels. In a typical gate driver application, VCC =15V and the  
EN input threshold at 7.5V, a 5V CMOS logical high input  
applied to this typical IXDD414 application’s EN input will be  
misinterpreted as a logical low, and may cause undesirable  
or unexpected results. The note below is for optional  
adaptation of TTL or 5V CMOS levels.  
When designing a circuit to drive a high speed MOSFET  
utilizing the IXDD414, it is very important to keep certain design  
criteria in mind, in order to optimize performance of the driver.  
Particular attention needs to be paid to Supply Bypassing,  
Grounding, and minimizing the Output Lead Inductance.  
Say, for example, we are using the IXDD414 to charge a  
5000pF capacitive load from 0 to 25 volts in 25ns.  
Using the formula: I= V C / t, where V=25V C=5000pF &  
t=25ns we can determine that to charge 5000pF to 25 volts  
in25nswilltakeaconstantcurrentof5A. (Inreality,thecharging  
current won’t be constant, and will peak somewhere around  
8A).  
The circuit in Figure 28 alleviates this potential logic level  
misinterpretation by translating a TTL or 5V CMOS logic input  
to high voltage CMOS logic levels needed by the IXDD414 EN  
input. From the figure, VCC is the gate driver power supply,  
typically set between 8V to 20V, and VDD is the logic power  
supply, typically between 3.3V to 5.5V. Resistors R1 and R2  
form a voltage divider network so that the Q1 base is  
positioned at the midpoint of the expected TTL logic transition  
levels.  
SUPPLYBYPASSING  
In order for our design to turn the load on properly, the IXDD414  
must be able to draw this 5A of current from the power supply  
in the 25ns. This means that there must be very low impedance  
between the driver and the power supply. The most common  
method of achieving this low impedance is to bypass the  
power supply at the driver with a capacitance value that is a  
magnitude larger than the load capacitance. Usually, this  
would be achieved by placing two different types of bypassing  
capacitors, with complementary impedance curves, very close  
to the driver itself. (These capacitors should be carefully  
selected, low inductance, low resistance, high-pulse current-  
servicecapacitors). Leadlengthsmayradiateathighfrequency  
due to inductance, so care should be taken to keep the lengths  
oftheleadsbetweenthesebypasscapacitorsandtheIXDD414  
to an absolute minimum.  
A TTL or 5V CMOS logic low, VTTLLOW=~<0.8V, input applied to  
the Q1 emitter will drive it on. This causes the level translator  
output, the Q1 collector output to settle to VCESATQ1  
+
VTTLLOW=<~2V, which is sufficiently low to be correctly  
interpreted as a high voltage CMOS logic low (<1/3VCC=5V for  
VCC =15V given in the IXDD414 data sheet.)  
A TTL high, VTTLHIGH=>~2.4V, or a 5V CMOS high,  
V5VCMOSHIGH=~>3.5V, applied to the EN input of the circuit in  
Figure 28 will cause Q1 to be biased off. This results in Q1  
collector being pulled up by R3 to VCC=15V, and provides a  
high voltage CMOS logic high output. The high voltage CMOS  
logical EN output applied to the IXDD414 EN input will enable  
it, allowing the gate driver to fully function as an 8 Amp output  
driver.  
GROUNDING  
In order for the design to turn the load off properly, the IXDD414  
must be able to drain this 5A of current into an adequate  
grounding system. There are three paths for returning current  
that need to be considered: Path #1 is between the IXDD414  
and it’s load. Path #2 is between the IXDD414 and it’s power  
supply. Path #3 is between the IXDD414 and whatever logic  
is driving it. All three of these paths should be as low in  
resistance and inductance as possible, and thus as short as  
practical. Inaddition, everyeffortshouldbemadetokeepthese  
three ground paths distinctly separate. Otherwise, (for  
instance), the returning ground current from the load may  
develop a voltage that would have a detrimental effect on the  
logic line driving the IXDD414.  
The total component cost of the circuit in Figure 28 is less  
than $0.10 if purchased in quantities >1K pieces. It is  
recommended that the physical placement of the level  
translator circuit be placed close to the source of the TTL or  
CMOS logic circuits to maximize noise rejection.  
Figure 28 - TTL to High Voltage CMOS Level Translator  
C C  
OUTPUTLEADINDUCTANCE  
(Fro m G a te Drive r  
R3  
10K  
Of equal importance to Supply Bypassing and Grounding are  
issues related to the Output Lead Inductance. Every effort  
should be made to keep the leads between the driver and it’s  
load as short and wide as possible. If the driver must be placed  
farther than 2” from the load, then the output leads should be  
treated as transmission lines. In this case, a twisted-pair  
should be considered, and the return line of each twisted pair  
should be placed as close as possible to the ground pin of the  
driver, and connect directly to the ground terminal of the load.  
Po we r Sup p ly)  
Hig h Vo lta g e  
V
DD  
EN  
C MOS  
3.3K  
(Fro m Lo g ic  
Po we r Sup p ly)  
R1  
O utp ut  
Q 1  
2N3904  
(To IXDD414  
EN Inp ut)  
3.3K R2  
o r  
TTL  
Inp ut)  
9
IXDD414PI/414YI/414CI  
Ordering Information  
Part Number Package Type  
Temp. Range  
-40 C to +85 C  
Grade  
IXDD414PI  
IXDD414YI  
IXDD414CI  
8-Pin PDIP  
5-Pin TO-263  
5-Pin TO-220  
Industrial  
Industrial  
Industrial  
°
°
-40 C to +85 C  
°
°
-40 C to +85 C  
°
°
NOTE: Mounting or solder tabs on all  
packages are connected to ground  
IXYS Corporation  
3540 Bassett St; Santa Clara, CA 95054  
Tel: 408-982-0700; Fax: 408-496-0670  
e-mail: sales@ixys.net  
IXYS Semiconductor GmbH  
Edisonstrasse15 ; D-68623; Lampertheim  
Tel: +49-6206-503-0; Fax: +49-6206-503627  
e-mail: marcom@ixys.de  
Directed Energy, Inc.  
An IXYS Company  
2401 Research Blvd. Ste. 108, Ft. Collins, CO 80526  
Tel: 970-493-1901; Fax: 970-493-1903  
e-mail: deiinfo@directedenergy.com  
Doc #9200-0228 R6  
10  

相关型号:

IXDD414PI

14 Amp Low-Side Ultrafast MOSFET Driver
IXYS

IXDD414YI

14 Amp Low-Side Ultrafast MOSFET Driver
IXYS

IXDD415

Dual 15 Ampere Low-Side Ultrafast MOSFET Driver
IXYS

IXDD415SI

Dual 15 Ampere Low-Side Ultrafast MOSFET Driver
IXYS

IXDD430

30 Amp Low-Side Ultrafast MOSFET / IGBT Driver
IXYS

IXDD430CI

30 Amp Low-Side Ultrafast MOSFET / IGBT Driver
IXYS

IXDD430MCI

Buffer/Inverter Based MOSFET Driver, 30A, PSFM5, TO-220, 5 PIN
IXYS

IXDD430YI

30 Amp Low-Side Ultrafast MOSFET / IGBT Driver
IXYS

IXDD504

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers with Enable for fast, controlled shutdown
IXYS

IXDD504D2

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers with Enable for fast, controlled shutdown
IXYS

IXDD504D2R

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers with Enable for fast, controlled shutdown
IXYS

IXDD504D2T

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers with Enable for fast, controlled shutdown
IXYS