IXDF404SIA-16 [IXYS]

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers; 4安培双低侧超快MOSFET驱动器
IXDF404SIA-16
型号: IXDF404SIA-16
厂家: IXYS CORPORATION    IXYS CORPORATION
描述:

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers
4安培双低侧超快MOSFET驱动器

驱动器 MOSFET驱动器 驱动程序和接口 接口集成电路 光电二极管
文件: 总11页 (文件大小:760K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IXDN404 / IXDI404 / IXDF404  
4 Ampere Dual Low-Side Ultrafast MOSFET Drivers  
Features  
General Description  
• Built using the advantages and compatibility  
of CMOS and IXYS HDMOSTM processes  
• Latch-Up Protected up to 0.5A  
• High Peak Output Current: 4A Peak  
• Wide Operating Range: 4.5V to 35V  
• High Capacitive Load  
DriveCapability:1800pFin<15ns  
• Matched Rise And Fall Times  
• Low Propagation Delay Time  
• LowOutputImpedance  
• LowSupplyCurrent  
• TwoDriversinSingleChip  
TheIXDN404/IXDI404/IXDF404iscomprisedoftwo4Ampere  
CMOS high speed MOSFET drivers. Each output can source  
and sink 4A of peak current while producing voltage rise and  
fall times of less than 15ns to drive the latest IXYS MOSFETs  
and IGBT's. The input of the driver is compatible with TTL or  
CMOS and is fully immune to latch up over the entire operating  
range. A patent-pending circuit virtually eliminates CMOS  
power supply cross conduction and current shoot-through.  
Improvedspeedanddrivecapabilitiesarefurtherenhancedby  
very low, matched rise and fall times.  
TheIXDN404isconfiguredasadualnon-invertinggatedriver,  
the IXDI404 is a dual inverting gate driver, and the IXDF404 is a  
dualinverting+non-invertinggatedriver.  
Applications  
• DrivingMOSFETsandIGBTs  
• MotorControls  
TheIXDN404/IXDI404/IXDF404familyareavailableinthe  
standard8pinP-DIP(PI), SOIC-8(SIA)andSOIC-16(SIA-16)  
packages. For enhanced thermal performance, the SOP-8 and  
SOP-16 are also available in a package with an exposed  
grounded metal back as the SI and SI-16 repectively.  
• LineDrivers  
• PulseGenerators  
• Local Power ON/OFF Switch  
• Switch Mode Power Supplies (SMPS)  
• DCtoDCConverters  
• PulseTransformerDriver  
• Class D Switching Amplifiers  
• Limiting di/dt Under Short Circuit  
Ordering Information  
Part Number  
IXDN404PI  
Package Type  
Temp. Range  
Configuration  
8-Pin PDIP  
Dual Non  
Inverting  
-55°C to  
+125°C  
IXDN404SI  
8-Pin SOIC with Grounded Metal Back  
8-Pin SOIC  
16-Pin SOIC with Grounded Metal Back  
IXDN404SIA  
IXDN404SI-16  
IXDN404SIA-16 16-Pin SOIC  
IXDI404PI  
8-Pin PDIP  
Dual Inverting  
-55°C to  
+125°C  
IXDI404SI  
8-Pin SOIC with Grounded Metal Back  
8-Pin SOIC  
IXDI404SIA  
IXDI404SI-16  
IXDI404SIA-16  
IXDF404PI  
16-Pin SOIC with Grounded Metal Back  
16-Pin SOIC  
8-Pin PDIP  
Inverting +  
IXDF404SI  
8-Pin SOIC with Grounded Metal Back  
8-Pin SOIC  
-55°C to  
+125°C  
Non Inverting  
IXDF404SIA  
IXDF404SI-16  
IXDF404SIA-16  
16-Pin SOIC with Grounded Metal Back  
16-Pin SOIC  
NOTE: Mounting or solder tabs on all packages are connected to ground  
DS99018B(08/04)  
Copyright©IXYSCORPORATION2004  
First Release  
IXDN404 / IXDI404 / IXDF404  
Figure 1 - IXDN404 Dual 4A Non-Inverting Gate Driver Functional Block Diagram  
Vcc  
P
N
ANTI-CROSS  
CONDUCTION  
CIRCUIT *  
IN A  
OUT A  
P
N
ANTI-CROSS  
CONDUCTION  
CIRCUIT *  
IN B  
OUT B  
GND  
Figure 2 - IXDI404 Dual Inverting 4A Gate Driver Functional Block Diagram  
Vcc  
P
ANTI-CROSS  
IN A  
OUT A  
CONDUCTION  
CIRCUIT *  
N
P
N
ANTI-CROSS  
CONDUCTION  
CIRCUIT *  
OUT B  
IN B  
GND  
Figure 3 - IXDF404 Inverting + Non-Inverting 4A Gate Driver Functional Block Diagram  
Vcc  
P
ANTI-CROSS  
IN A  
OUT A  
CONDUCTION  
CIRCUIT *  
N
P
N
ANTI-CROSS  
CONDUCTION  
CIRCUIT *  
OUT B  
IN B  
GND  
* Patent Pending  
2
IXDN404 / IXDI404 / IXDF404  
Operating Ratings  
Absolute Maximum Ratings (Note 1)  
Parameter  
Value  
Parameter  
Value  
o
o
C
Operating Temperature Range  
-55 C to 125  
Supply Voltage  
All Other Pins  
40V  
-0.3V to V  
+ 0.3V  
Thermal Resistance (To Ambient)  
8 Pin PDIP (PI) (θJA)  
8 Pin SOIC (SIA)  
CC  
120 K/W  
110 K/W  
110 K/W  
Junction Temperature  
Storage Temperature  
o
150 C  
o
o
-65 C to 150 C  
16 Pin SOIC (SIA-16) (θJA)  
θJA with heat sink **  
Heat sink area of 1 cm2  
8 Pin SOIC  
Soldering Lead Temperature  
o
300 C  
(10 seconds maximum)  
95 K/W  
95 K/W  
Thermal Resistance (Junction to Case) (θJC)  
16 Pin SOIC-CT  
Heat sink area of 3 cm2  
8 Pin SOIC  
8 Pin SOIC (SI)  
10 K/W  
10 K/W  
16 Pin SOIC (SI-16)  
85 K/W  
85 K/W  
16 Pin SOIC-CT  
** Device soldered to metal back pane. Heat sink area is 1 oz.  
Electrical Characteristics  
Unless otherwise noted, TA = 25 oC, 4.5V VCC 35V .  
copper on 1 side of 0.06" thick FR4 PC board.  
All voltage measurements with respect to GND. Device configured as described in Test Conditions. All specifications are for one channel.  
Symbol  
VIH  
VIL  
VIN  
IIN  
Parameter  
Test Conditions  
4.5V VCC 18V  
4.5V VCC 18V  
Min  
2.5  
Typ  
Max  
Units  
V
V
V
µA  
High input voltage  
Low input voltage  
Input voltage range  
Input current  
0.8  
VCC + 0.3  
10  
-5  
-10  
0V VIN VCC  
VOH  
VOL  
ROH  
High output voltage  
Low output voltage  
VCC - 0.025  
V
V
0.025  
2.5  
Output resistance  
VCC = 18V  
VCC = 18V  
VCC = 18V  
2
1.5  
4
@ Output High  
ROL  
IPEAK  
IDC  
Output resistance  
@ Output Low  
2
A
A
Peak output current  
Continuous output  
current  
Rise time  
1
tR  
tF  
tONDLY  
CL=1800pF Vcc=18V  
CL=1800pF Vcc=18V  
CL=1800pF Vcc=18V  
16  
13  
36  
18  
17  
40  
ns  
ns  
ns  
Fall time  
On-time propagation  
delay  
tOFFDLY  
Off-time propagation  
delay  
CL=1800pF Vcc=18V  
35  
39  
ns  
VCC  
ICC  
Power supply voltage  
4.5  
18  
1
0
35  
V
Power supply current  
VIN = 3.5V  
VIN = 0V  
3
mA  
µ
10  
10  
A
VIN = + VCC  
µA  
Specifications Subject To Change Without Notice  
Note 1: Operating the device beyond parameters with listed “Absolute Maximum Ratings” may cause permanent  
damage to the device. Typical values indicate conditions for which the device is intended to be functional, but do not  
guarantee specific performance limits. The guaranteed specifications apply only for the test conditions listed.  
Exposure to absolute maximum rated conditions for extended periods may affect device reliability.  
3
IXDN404 / IXDI404 / IXDF404  
ElectricalCharacteristics  
Unless otherwise noted, temperature over -55oC to 150oC, 4.5V VCC 35V .  
All voltage measurements with respect to GND. Device configured as described in Test Conditions. All specifications are for one channel.  
Symbol  
VIH  
VIL  
VIN  
IIN  
Parameter  
Test Conditions  
4.5V VCC 18V  
4.5V VCC 18V  
Min  
2.4  
Typ  
Max  
Units  
V
V
V
µA  
High input voltage  
Low input voltage  
Input voltage range  
Input current  
0.8  
VCC + 0.3  
10  
-5  
-10  
0V VIN VCC  
VOH  
VOL  
ROH  
High output voltage  
Low output voltage  
VCC - 0.025  
V
V
0.025  
3.4  
Output resistance  
VCC = 18V  
VCC = 18V  
VCC = 18V  
@ Output High  
ROL  
IPEAK  
IDC  
Output resistance  
@ Output Low  
2
A
A
Peak output current  
3.2  
Continuous output  
current  
Rise time  
1
tR  
tF  
tONDLY  
CL=1000pF Vcc=18V  
CL=1000pF Vcc=18V  
CL=1000pF Vcc=18V  
11  
13  
60  
ns  
ns  
ns  
Fall time  
On-time propagation  
delay  
tOFFDLY  
Off-time propagation  
delay  
CL=1000pF Vcc=18V  
59  
ns  
VCC  
ICC  
Power supply voltage  
4.5  
18  
35  
V
Power supply current  
VIN = 3.5V  
VIN = 0V  
1
3
mA  
µ
0
10  
10  
A
VIN = + VCC  
µA  
Specifications Subject To Change Without Notice  
4
IXDN404 / IXDI404 / IXDF404  
Pin Description  
SYMBOL  
FUNCTION  
A Channel Input  
DESCRIPTION  
A Channel Input signal-TTL or CMOS compatible.  
IN A  
The system ground pin. Internally connected to all circuitry, this pin provides  
ground reference for the entire chip. This pin should be connected to a low  
noise analog ground plane for optimum performance.  
GND  
Ground  
IN B  
B Channel Input  
B Channel Input signal-TTL or CMOS compatible.  
B Channel Driver output. For application purposes, this pin is connected via  
a resistor to a gate of a MOSFET/IGBT.  
OUT B  
B Channel Output  
Positive power-supply voltage input. This pin provides power to the entire  
chip. The range for this voltage is from 4.5V to 35V.  
VCC  
Supply Voltage  
A Channel Driver output. For application purposes, this pin is connected via  
a resistor to a gate of a MOSFET/IGBT.  
OUT A  
A Channel Output  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD procedures when  
handling and assembling this component.  
Figure 4 - Characteristics Test Diagram  
Vcc  
1
2
3
4
8
7
6
5
NC  
NC  
In A  
Gnd  
In B  
Out A  
Vcc  
Out B  
10uF  
25V  
Agilent 1147A  
Current Probe  
Agilent 1147A  
Current Probe  
1800 pF  
1800 pF  
5
IXDN404 / IXDI404 / IXDF404  
Typical Performance Characteristics  
Fig. 5  
Fig. 6  
Rise Times vs. Supply Voltage  
Fall Times vs. Supply Voltage  
80  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
10000pF  
6800pF  
10000pF  
6800pF  
4700pF  
1800pF  
4700pF  
1800pF  
1000pF  
1000pF  
200pF  
200pF  
5
10  
15  
20  
25  
30  
35  
5
10  
15  
20  
25  
30  
35  
Supply Voltage (V)  
Supply Voltage (V)  
Fig. 7  
80  
Output Rise Times vs. Load Capacitance  
Fig. 8  
Output Fall Times vs. Load Capacitance  
80  
8V  
8V  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
10V  
12V  
10V  
12V  
18V  
18V  
25V  
35V  
25V  
35V  
0
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000  
0
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000  
LoadCapacitance (pF)  
Load Capacitance (pF)  
Fig. 9  
Rise And Fall Times vs. Temperature  
CL = 1000pF, Vcc = 18V  
Fig. 10  
Max / Min Input vs. Temperature  
CL = 1000pF, Vcc = 18V  
2.5  
2.4  
2.3  
2.2  
2.1  
2
14  
12  
10  
8
tR  
tF  
Min Input High  
Max Input Low  
6
1.9  
1.8  
1.7  
1.6  
4
2
0
1.5  
-60  
-10  
40  
90  
140  
190  
-60  
-10  
40  
90  
140  
190  
Temperature (C)  
Temperature (C)  
6
IXDN404 / IXDI404 / IXDF404  
Supply Current vs. Load Capacitance  
Vcc = 8V  
Supply Current vs. Frequency  
Vcc = 8V  
Fig. 11  
100  
90  
Fig. 12  
1000  
2 MHz  
1 MHz  
10000 pF  
6800 pF  
80  
100  
10  
1
4700 pF  
1800 pF  
70  
1000 pF  
200 pF  
60  
50  
40  
500 kHz  
30  
0.1  
20  
10  
100 kHz  
50 kHz  
10 kHz  
0.01  
1
0
10  
100  
1000  
10000  
100  
1000  
10000  
Load Capacitance (pF)  
Frequency (kHz)  
Supply Current vs. Frequency  
Vcc = 12V  
Supply Current vs. Load Capacitance  
Vcc = 12V  
Fig. 13  
100  
90  
Fig. 14  
1000  
2 MHz  
10000 pF  
1 Mhz  
6800 pF  
4700 pF  
80  
100  
10  
1
1800 pF  
1000 pF  
200 pF  
70  
60  
500 kHz  
50  
40  
30  
20  
0.1  
100 kHz  
50 kHz  
10 kHz  
10  
0
100  
0.01  
1
1000  
10000  
10  
100  
1000  
10000  
Load Capacitance (pF)  
Frequency (kHz)  
Supply Current vs. Load Capacitance  
Vcc = 18V  
Supply Current vs. Frequency  
Vcc = 18V  
Fig. 15  
100  
90  
Fig. 16  
1000  
10000 pF  
6800 pF  
4700 pF  
1800 pF  
1000 pF  
200 pF  
2 MHz  
1 MHz  
500 kHz  
100  
10  
1
80  
70  
60  
50  
40  
30  
0.1  
20  
100 kHz  
50 kHz  
10 kHz  
10  
0.01  
1
0
100  
10  
100  
1000  
10000  
1000  
10000  
Frequency (kHz)  
Load Capacitance (pF)  
7
IXDN404 / IXDI404 / IXDF404  
Supply Current vs. Frequency  
Vcc = 35V  
Fig. 18  
Fig. 17  
Supply Current vs. Load Capacitance  
Vcc = 35V  
1000  
10000 pF  
6800 pF  
4700 pF  
1800 pF  
1000 pF  
200 pF  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
10  
2 MHz  
1
M
Hz  
500 kHz  
1
100 kHz  
0.1  
0.01  
50 kHz  
10 kHz  
1
10  
100  
1000  
10000  
100  
1000  
10000  
Frequency (kHz)  
Load Capacitance (pF)  
Propagation Delay vs. Input Voltage  
CL = 1800pF Vcc = 15V  
Fig. 19  
Propagation Delay vs. Supply Voltage  
Fig. 20  
CL = 1800pF V = 5V@1kHz  
in  
50  
70  
60  
50  
40  
30  
20  
10  
0
45  
40  
35  
30  
25  
20  
tONDLY  
tONDLY  
tOFFDLY  
tOFFDLY  
2
4
6
8
10  
12  
5
10  
15  
20  
25  
30  
35  
Input Voltage (V)  
Supply Voltage (V)  
Fig. 22  
Propagation Delay Times vs. Temperature  
CL = 1000pF, Vcc = 18V  
Fig. 21  
60  
Q uiescent Supply Current vs. Tem perature  
Vcc = 18V, Vin = 5V@ 1kHz, CL = 1000pF  
0.3  
55  
0.25  
0.2  
50  
45  
tONDLY  
0.15  
0.1  
40  
tOFFDLY  
35  
30  
0.05  
0
25  
20  
-60  
-10  
40  
90  
140  
190  
-60  
-10  
40  
90  
140  
190  
Tem perature (C)  
Temperature (C)  
8
IXDN404 / IXDI404 / IXDF404  
Fig. 23  
High State Ouput Resistance vs. Supply Voltage  
Fig. 24  
Low State Output Resistance vs. Supply Voltage  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
5
10  
15  
20  
25  
30  
35  
5
10  
15  
20  
25  
30  
35  
Supply Voltage (V)  
Supply Voltage (V)  
Fig. 25  
Fig. 26  
Vcc vs. N Channel Ouput Current  
Vcc vs. P Channel Output Current  
0
12  
-2  
-4  
10  
8
-6  
6
-8  
4
-10  
-12  
2
0
5
10  
15  
20  
25  
30  
35  
5
10  
15  
20  
25  
30  
35  
Vcc (V)  
Vcc (V)  
P Channel Output Current vs. Temperature  
cc = 18V, CL = 1000pF  
N Channel Output Current vs. Temperature  
Vcc = 18V CL = 1000pF  
Fig. 27  
Fig. 28  
V
6
5
4
3
2
1
0
6
5
4
3
2
1
0
-80  
-30  
20  
70  
120  
170  
-80  
-30  
20  
70  
120  
170  
Temperature (C)  
Temperature (C)  
9
IXDN404 / IXDI404 / IXDF404  
PIN CONFIGURATIONS  
1
2
3
4
NC  
OUT A  
VS  
NC  
8
7
6
5
1
2
3
4
NC  
OUT A  
VS  
NC  
8
7
6
5
1
2
3
4
NC  
OUT A  
VS  
NC  
8
7
6
5
IN A  
GND  
INB  
IN A  
GND  
INB  
IN A  
GND  
INB  
OUT B  
OUT B  
OUT B  
8 Lead PDIP (PI)  
8 Pin SOIC (SI)  
IXDN404  
8 Lead PDIP (PI)  
8 Pin SOIC (SI)  
IXDI404  
8 Lead PDIP (PI)  
8 Pin SOIC (SI)  
IXDF404  
NC  
NC  
1
NC  
OUT A  
OUT A  
VCC  
16  
15  
14  
13  
12  
11  
NC 16  
1
NC  
NC  
OUT A  
OUT A  
VCC  
16  
15  
14  
13  
12  
11  
1
2
3
4
5
6
7
8
OUT A  
15  
14  
13  
12  
11  
2
3
4
5
6
7
8
IN A  
NC  
2
3
4
5
6
7
8
IN A  
NC  
IN A  
NC  
OUT A  
VCC  
GND  
GND  
GND  
GND  
NC  
VCC  
GND  
NC  
VCC  
GND  
NC  
VCC  
OUT B  
OUT B  
OUT B  
IN B  
NC  
IN B  
NC  
OUT B 10  
NC  
OUT B 10  
NC  
IN B  
NC  
OUT B 10  
NC  
9
9
9
16 Pin SOIC  
IXDI404SI-16  
16 Pin SOIC  
IXDF404SI-16  
16 Pin SOIC  
IXDN404SI-16  
Supply Bypassing, Grounding Practices And Output Lead inductance  
GROUNDING  
When designing a circuit to drive a high speed MOSFET  
utilizing the IXDN404/IXDI404/IXDF404, it is very important to  
observe certain design criteria in order to optimize performance  
of the driver. Particular attention needs to be paid to Supply  
Bypassing, Grounding, and minimizing the Output Lead  
Inductance.  
In order for the design to turn the load off properly, the IXDN404  
must be able to drain this 2.5A of current into an adequate  
grounding system. There are three paths for returning current  
that need to be considered: Path #1 is between the IXDN404  
and its load. Path #2 is between the IXDN404 and its power  
supply. Path #3 is between the IXDN404 and whatever logic is  
driving it. All three of these paths should be as low in resistance  
and inductance as possible, and thus as short as practical. In  
addition, every effort should be made to keep these three  
ground paths distinctly separate. Otherwise, the returning  
ground current from the load may develop a voltage that would  
have a detrimental effect on the logic line driving the IXDN404.  
Say, for example, the IXDN404 is being used to charge a  
2500pF capacitive load from 0 to 25 volts in 25ns.  
Using the formula: I= V C / t, where V=25V C=2500pF &  
t=25ns, one can determine that to charge 2500pF to 25 volts  
in 25ns will take a constant current of 2.5A. (In reality, the  
charging current won’t be constant and will peak somewhere  
around 4A).  
OUTPUTLEADINDUCTANCE  
Of equal importance to Supply Bypassing and Grounding are  
issues related to the Output Lead Inductance. Every effort  
should be made to keep the leads between the driver and its  
load as short and wide as possible. If the driver must be placed  
farther than 2” (5mm) from the load, then the output leads  
should be treated as transmission lines. In this case, a twisted-  
pair should be considered, and the return line of each twisted  
pair should be placed as close as possible to the ground pin  
ofthedriver,andconnecteddirectlytothegroundterminal  
of the load.  
SUPPLYBYPASSING  
In order for the design to turn the load on properly, the IXDN404  
must be able to draw this 2.5A of current from the power supply  
in the 25ns. This means that there must be very low impedance  
between the driver and the power supply. The most common  
method of achieving this low impedance is to bypass the power  
supply at the driver with a capacitance value that is a magnitude  
larger than the load capacitance. Usually, this would be  
achievedbyplacingtwodifferenttypesofbypassingcapacitors,  
with complementary impedance curves, very close to the driver  
itself. (These capacitors should be carefully selected, low  
inductance, low resistance, high-pulse current-service  
capacitors). Lead lengths may radiate at high frequency due  
to inductance, so care should be taken to keep the lengths of  
the leads between these bypass capacitors and the IXDN404  
to an absolute minimum.  
10  
IXDN404 / IXDI404 / IXDF404  
Dimenional Outline: IXDD404PI  
Dimenional Outlines: IXDD404SI-CT and IXDD404SIA  
DimenionalOutlines:IXDD404SI-16CTandIXDD404SIA-16  
IXYS Corporation  
3540 Bassett St; Santa Clara, CA 95054  
Tel: 408-982-0700; Fax: 408-496-0670  
e-mail: sales@ixys.net  
IXYS Semiconductor GmbH  
Edisonstrasse15 ; D-68623; Lampertheim  
Tel: +49-6206-503-0; Fax: +49-6206-503627  
e-mail: marcom@ixys.de  
11  

相关型号:

IXDF502

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF502D1

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF502D1T/R

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF502PI

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF502SIA

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF502SIAT/R

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF504

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF504D1

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF504D1T/R

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF504PI

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF504SIA

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF504SIAT/R

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS