IXDI414YI [IXYS]

14 Ampere Low-Side Ultrafast MOSFET Drivers; 14安培低端超快MOSFET驱动器
IXDI414YI
型号: IXDI414YI
厂家: IXYS CORPORATION    IXYS CORPORATION
描述:

14 Ampere Low-Side Ultrafast MOSFET Drivers
14安培低端超快MOSFET驱动器

驱动器
文件: 总10页 (文件大小:243K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IXDN414PI / N414CI / N414CM / N414YI / N414YM  
IXDI414PI / I414CI / I414CM / I414YI / I414YM  
14 Ampere Low-Side Ultrafast MOSFET Drivers  
General Description  
Features  
• Built using the advantages and compatibility  
of CMOS and IXYS HDMOSTM processes  
• Latch-UpProtectedOverEntire  
OperatingRange  
• High Peak Output Current: 14A Peak  
• Wide Operating Range: 4.5V to 25V  
• High Capacitive Load  
Drive Capability: 15nF in <30ns  
• Matched Rise And Fall Times  
• Low Propagation Delay Time  
• LowOutputImpedance  
TheIXDI414/IXDN414isahighspeedhighcurrentgatedriver  
specifically designed to drive the largest MOSFETs and IGBTs  
to their minimum switching time and maximum practical  
frequency limits. The IXDI/N414 can source and sink 14A of  
peak current while producing voltage rise and fall times of less  
than 30ns to drive the latest IXYS MOSFETs & IGBTs. The  
input of the driver is compatible with TTL or CMOS and is fully  
immune to latch up over the entire operating range. Designed  
with small internal delays, a patent-pending circuit virtually  
eliminates transistor cross conduction and current shoot-  
through. Improvedspeedanddrivecapabilitiesarefurther  
enhanced by very low, matched rise and fall times.  
• LowSupplyCurrent  
TheIXDN414isconfiguredasanon-invertinggatedriverand  
theIXDI414isaninvertinggatedriver.  
Applications  
• DrivingMOSFETsandIGBTs  
• MotorControls  
• LineDrivers  
• PulseGenerators  
• Local Power ON/OFF Switch  
• Switch Mode Power Supplies (SMPS)  
• DCtoDCConverters  
• PulseTransformerDriver  
• Class D Switching Amplifiers  
TheIXDN414/IXDI414familyareavailableinstandard8pin  
P-DIP(PI), 5-pinTO-220(CI, CM)andTO-263(YI, YM)  
surface-mountpackages.  
Figure 1 - IXDN414 14A Non-Inverting Gate Driver Functional Block Diagram  
Vcc  
Vcc  
P
ANTI-CROSS  
OUT  
GND  
IN  
CONDUCTION  
CIRCUIT *  
N
GND  
* Patent Pending  
Copyright©IXYSCORPORATION2001  
First Release  
IXDN414PI / N414CI / N414CM / N414YI / N414YM  
IXDI414PI / I414CI / I414CM / I414YI / I414YM  
Figure 2 - IXDI414 Inverting 14A Gate Driver Functional Block Diagram  
Vcc  
Vcc  
P
ANTI-CROSS  
OUT  
GND  
IN  
CONDUCTION  
CIRCUIT *  
N
GND  
Pin Description And Configuration  
SYMBOL  
VCC  
FUNCTION  
Supply Voltage  
Input  
DESCRIPTION  
Positive power-supply voltage input. This pin provides power to the  
entire chip. The range for this voltage is from 4.5V to 25V.  
Input signal-TTL or CMOS compatible.  
IN  
Driver Output. For application purposes, this pin is connected via an  
external resistor to a Gate of a MOSFET/IGBT.  
OUT  
Output  
The system ground pin. Internally connected to all circuitry, this pin  
provides ground reference for the entire chip. This pin should be  
connected to a low noise analog ground plane for optimum  
performance.  
GND  
Ground  
Vcc  
OUT  
GND  
IN  
1
2
3
4
5
1 VCC  
VCC 8  
OUT 7  
OUT 6  
I
X
D
X
4
1
4
2 IN  
3 NC  
4 GND  
NC  
GND  
5
TO220 (CI, CM)  
TO263(YI,YM)  
8 PIN DIP (PI)  
ORDERING INFORMATION  
Part Number Package Type Temp. Range  
Configuration  
IXDN414PI  
IXDN414CI  
8-Pin PDIP  
5-Pin TO-220  
-40°C to +85°C  
IXDN414CM 5-Pin TO-220  
Non Inverting  
-55°C to +125°C  
-40°C to +85°C  
-55°C to +125°C  
IXDN414YI  
IXDN414YM  
IXDI414PI  
IXDI414CI  
IXDI414CM  
IXDI414YI  
IXDI414YM  
5-Pin TO-263  
5-Pin TO-263  
8-Pin PDIP  
5-Pin TO-220  
5-Pin TO-220  
5-Pin TO-263  
5-Pin TO-263  
-40°C to +85°C  
Inverting  
-55°C to +125°C  
-40°C to +85°C  
-55°C to +125°C  
NOTE: Mounting or solder tabs on all packages are connected to ground  
* Patent Pending  
2
IXDN414PI / N414CI / N414CM / N414YI / N414YM  
IXDI414PI / I414CI / I414CM / I414YI / I414YM  
Absolute Maximum Ratings (Note 1)  
Operating Ratings  
Parameter  
Maximum Junction Temperature  
Parameter  
Value  
25V  
Value  
Supply Voltage  
o
150 C  
-0.3V to  
All Other Pins  
Operating Temperature Range  
o
o
-40 C to 85 C  
V
+ 0.3V  
CC  
Thermal Impedance (Junction To Case)  
TO220 (CI, CM),  
Power Dissipation  
o
16W  
16W  
TCASE 85 C: TO220 (CI), TO263 (YI)  
o
0.55 C/W  
TO263 (YI, YM) (θJC)  
o
TCASE 125 C: TO220 (CM), TO263 (YM)  
o
Power Dissipation, TAMBIENT 25 C  
8 Pin PDIP (PI)  
TO220 (CI, CM), TO263 (YI, YM)  
975mW  
2W  
Derating Factors (to Ambient)  
8 Pin PDIP (PI)  
o
7.6mW/ C  
TO220 (CI, CM), TO263 (YI, YM)  
Storage Temperature  
o
0.1W/ C  
o
o
-65 C to 150 C  
Soldering Lead Temperature  
(10 seconds maximum)  
o
300 C  
Electrical Characteristics  
Unless otherwise noted, TA = 25 oC, 4.5V VCC 25V .  
All voltage measurements with respect to GND. Device configured as described in Test Conditions.  
Symbol  
VIH  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
V
High input voltage  
Low input voltage  
Input voltage range  
Input current  
3.5  
VIL  
0.8  
VCC + 0.3  
10  
V
VIN  
-5  
V
IIN  
-10  
0V VIN VCC  
µA  
VOH  
VOL  
ROH  
High output voltage  
Low output voltage  
VCC - 0.025  
V
V
0.025  
1000  
Output resistance  
@ Output high  
Output resistance  
@ Output Low  
IOUT = 10mA, VCC = 18V  
IOUT = 10mA, VCC = 18V  
VCC is 18V  
600  
600  
14  
mΩ  
ROL  
IPEAK  
IDC  
1000  
mΩ  
Peak output current  
A
Continuous output  
current  
8 Pin Dip (PI) (Limited by pkg power dissipation)  
TO220 (CI), TO263 (YI)  
3
4
27  
A
A
ns  
tR  
Rise time (1)  
CL=15nF Vcc=18V  
22  
20  
30  
tF  
Fall time (1)  
CL=15nF Vcc=18V  
CL=15nF Vcc=18V  
25  
33  
ns  
ns  
tONDLY  
On-time propagation  
delay (1)  
tOFFDLY  
Off-time propagation  
delay (1)  
CL=15nF Vcc=18V  
31  
34  
ns  
VCC  
ICC  
Power supply voltage  
4.5  
18  
25  
V
Power supply current  
VIN = 3.5V  
VIN = 0V  
VIN = + VCC  
1
0
3
10  
10  
mA  
µ
A
µA  
(1)  
See Figures 3a and 3b  
Note 1: Operating the device beyond parameters with listed “Absolute Maximum Ratings” may cause permanent damage to the device.  
Typical values indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. The  
guaranteed specifications apply only for the test conditions listed. Exposure to absolute maximum rated conditions for extended periods may  
affect device reliability.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD procedures when handling  
and assembling this component.  
Specifications subject to change without notice  
3
IXDN414PI / N414CI / N414CM / N414YI / N414YM  
IXDI414PI / I414CI / I414CM / I414YI / I414YM  
Figure 3a - Characteristics Test Diagram  
5.0V  
Vcc  
0V  
10uF  
25V  
0V  
0V  
IXDI414  
Vcc  
IXDN414  
15nF  
Agilent 1147A  
Current Probe  
Figure 3b - Timing Diagrams  
Non-Inverting (IXDN414) Timing Diagram  
5V  
90%  
INPUT  
2.5V  
10%  
0V  
PWMIN  
t
OFFDLY  
t
ONDLY  
t
R
t
F
Vcc  
90%  
OUTPUT  
10%  
0V  
Inverting (IXDI414) Timing Diagram  
5V  
90%  
2.5V  
INPUT  
10%  
0V  
PWMIN  
t
ONDLY  
t
OFFDLY  
tF  
tR  
VCC  
90%  
OUTPUT  
10%  
0V  
4
IXDN414PI / N414CI / N414CM / N414YI / N414YM  
IXDI414PI / I414CI / I414CM / I414YI / I414YM  
Typical Performance Characteristics  
Fig. 4  
40  
Fig. 5  
40  
Rise Time vs. Supply Voltage  
Fall Time vs. Supply Voltage  
30  
20  
10  
30  
20  
10  
CL=15,000 pF  
CL=15,000 pF  
7,500 pF  
3,600 pF  
7,500 pF  
3,600 pF  
0
8
0
8
10  
12  
14  
16  
18  
10  
12  
14  
16  
18  
Supply Voltage (V)  
SupplyVoltage(V)  
Rise And Fall Times vs. Case Temperature  
C = 15 nF, V = 18V  
Fig. 6  
Fig. 7  
50  
Rise Time vs. Load Capacitance  
L
cc  
40  
35  
30  
25  
20  
15  
10  
5
8V  
40  
30  
20  
10  
10V  
12V  
tR  
tF  
18V  
16V  
14V  
0
0
0k  
5k  
10k  
15k  
20k  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Load Capacitance (pF)  
Temperature (°C)  
Fall Time vs. Load Capacitance  
Fig. 9  
3.2  
Max / Min Input vs. Case Temperature  
VCC=18V CL=15nF  
Fig. 8  
40  
3.0  
8V  
12V  
14V  
Minimum Input High  
Maximum Input Low  
2.8  
10V  
30  
20  
10  
2.6  
18V  
16V  
2.4  
2.2  
2.0  
1.8  
1.6  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
0
0k  
5k  
10k  
15k  
20k  
Temperature (oC)  
Load Capacitance (pF)  
5
IXDN414PI / N414CI / N414CM / N414YI / N414YM  
IXDI414PI / I414CI / I414CM / I414YI / I414YM  
Fig. 12  
Supply Current vs. Load Capacitance  
Vcc=18V  
SupplyCurrent vs. Frequency  
Vcc=18V  
Fig. 11  
1000  
1000  
CL= 30 nF  
15 nF  
100  
10  
1
2 MHz  
100  
10  
1
1 MHz  
5000 pF  
2000 pF  
500 kHz  
100 kHz  
50 kHz  
0.1  
10  
100  
1000  
10000  
1k  
10k  
100k  
100k  
100k  
Frequency (kHz)  
Load Capacitance (pF)  
Supply Current vs. Load Capacitance  
Vcc=12V  
Fig. 13  
Supply Current vs. Frequency  
Vcc=12V  
Fig. 14  
1000  
1000  
CL = 30 nF  
15 nF  
100  
10  
1
100  
2 MHz  
5000 pF  
2000 pF  
1 MHz  
500 kHz  
10  
100 kHz  
50 kHz  
1
0.1  
10  
100  
1000  
10000  
1k  
10k  
Frequency (kHz)  
Load Capacitance (pF)  
Fig. 15  
Supply Current vs. Load Capacitance  
Vcc=8V  
Supply Current vs. Frequency  
Vcc=8V  
Fig. 16  
1000  
1000  
CL= 30 nF  
15 nF  
100  
10  
1
100  
2 MHz  
5000 pF  
2000 pF  
1 MHz  
10  
1
500 kHz  
100 kHz  
50 kHz  
0.1  
10  
100  
1000  
10000  
1k  
10k  
Frequency (kHz)  
Load Capacitance (pF)  
6
IXDN414PI / N414CI / N414CM / N414YI / N414YM  
IXDI414PI / I414CI / I414CM / I414YI / I414YM  
Propagation Delay vs. Input Voltage  
CL=15nF VCC=15V  
Fig. 17  
Propagation Delay vs. Supply Voltage  
Fig. 18  
CL=15nF V =5V@1kHz  
IN  
50  
50  
tOFFDLY  
40  
30  
20  
10  
40  
30  
20  
10  
0
tONDLY  
tONDLY  
tOFFDLY  
0
2
4
6
8
10  
12  
8
10  
12  
14  
16  
18  
Input Voltage (V)  
Supply Voltage (V)  
Propagation Delay vs. Case Temperature  
Fig. 19  
Fig. 20  
Quiescent Supply Current vs. Case Temperature  
C = 2500pF, VCC = 18V  
VCC=18V V =5V@1kHz  
L
IN  
0.60  
50  
45  
40  
35  
30  
25  
20  
15  
0.58  
0.56  
0.54  
0.52  
0.50  
tONDLY  
tOFFDLY  
10  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
o
Temperature ( C)  
Temperature (°C)  
P Channel Output Current vs. Case Temperature  
Fig. 21  
Fig. 22 N Channel Output Current vs. Case Temperature  
VCC=18V C =.1uF  
L
VCC=18V C =.1uF  
L
16  
17  
16  
15  
14  
15  
14  
13  
12  
-40  
-20  
0
20  
40  
o
60  
80  
100  
-40  
-20  
0
20  
40  
o
60  
80  
100  
Temperature ( C)  
Temperature ( C)  
7
IXDN414PI / N414CI / N414CM / N414YI / N414YM  
IXDI414PI / I414CI / I414CM / I414YI / I414YM  
Fig. 24  
High State Output Resistance  
vs. Supply Voltage  
Enable Threshold vs. Supply Voltage  
Fig. 23  
14  
1.0  
12  
10  
8
0.8  
0.6  
0.4  
0.2  
6
4
2
0.0  
8
0
8
10  
15  
20  
25  
10  
12  
14  
16  
18  
20  
22  
24  
26  
Supply Voltage (V)  
Supply Voltage (V)  
Low-State Output Resistance  
vs. Supply Voltage  
VCC vs. P Channel Output Current  
Fig. 25  
Fig. 26  
CL=.1uF V =0-5V@1kHz  
IN  
1.0  
0
-2  
-4  
0.8  
0.6  
0.4  
0.2  
-6  
-8  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-24  
8
0.0  
8
10  
15  
20  
25  
10  
15  
20  
25  
Supply Voltage (V)  
Vcc  
Fig. 27  
Vcc vs. N Channel Output Current  
C =.1uF V =0-5V@1kHz  
L
IN  
24  
22  
20  
18  
16  
14  
12  
10  
8
6
4
2
0
8
10  
15  
20  
25  
Vcc  
8
IXDN414PI / N414CI / N414CM / N414YI / N414YM  
IXDI414PI / I414CI / I414CM / I414YI / I414YM  
Supply Bypassing, Grounding Practices and Output Lead inductance  
When designing a circuit to drive a high speed  
MOSFETutilizingtheIXDN414/IXDI414,itisvery  
important to observe certain design criteria in  
order to optimize performance of the driver.  
Particular attention needs to be paid to Supply  
Bypassing, Grounding, and minimizing the  
Output Lead Inductance.  
GROUNDING  
Inorderforthedesigntoturntheloadoffproperly,  
the IXDN414 must be able to drain this 5A of  
currentintoanadequategroundingsystem. There  
are three paths for returning current that need to  
beconsidered: Path#1isbetweentheIXDN414  
anditsload. Path#2isbetweentheIXDN414and  
itspowersupply. Path#3isbetweentheIXDN414  
and whatever logic is driving it. All three of these  
paths should be as low in resistance and  
inductance as possible, and thus as short as  
practical. Inaddition,everyeffortshouldbemade  
to keep these three ground paths distinctly  
separate. Otherwise,thereturninggroundcurrent  
from the load may develop a voltage that would  
have a detrimental effect on the logic line driving  
theIXDN414.  
Say, for example, we are using the IXDN414 to  
charge a 5000pF capacitive load from 0 to 25  
voltsin25ns.  
Using the formula: I= V C / t, where V=25V  
C=5000pF & t=25ns we can determine that to  
charge 5000pF to 25 volts in 25ns will take a  
constant current of 5A. (In reality, the charging  
current won’t be constant, and will peak  
somewherearound8A).  
OUTPUT LEAD INDUCTANCE  
SUPPLY BYPASSING  
Of equal importance to Supply Bypassing and  
GroundingareissuesrelatedtotheOutputLead  
Inductance. Everyeffortshouldbemadetokeep  
theleadsbetweenthedriverandit’sloadasshort  
andwideaspossible. Ifthedrivermustbeplaced  
fartherthan2(5mm)fromtheload,thentheoutput  
leadsshouldbetreatedastransmissionlines. In  
this case, a twisted-pair should be considered,  
and the return line of each twisted pair should be  
placed as close as possible to the ground pin of  
the driver, and connected directly to the ground  
terminaloftheload.  
Inorderforourdesigntoturntheloadonproperly,  
the IXDN414 must be able to draw this 5A of  
current from the power supply in the 25ns. This  
means that there must be very low impedance  
between the driver and the power supply. The  
most common method of achieving this low  
impedance is to bypass the power supply at the  
driverwithacapacitancevaluethatisamagnitude  
larger than the load capacitance. Usually, this  
wouldbeachievedbyplacingtwodifferenttypes  
of bypassing capacitors, with complementary  
impedancecurves,veryclosetothedriveritself.  
(These capacitors should be carefully selected,  
lowinductance,lowresistance,high-pulsecurrent-  
servicecapacitors). Leadlengthsmayradiateat  
highfrequencyduetoinductance,socareshould  
betakentokeepthelengthsoftheleadsbetween  
these bypass capacitors and the IXDN414 to an  
absoluteminimum.  
9
IXDN414PI / N414CI / N414CM / N414YI / N414YM  
IXDI414PI / I414CI / I414CM / I414YI / I414YM  
IXYS Corporation  
3540 Bassett St; Santa Clara, CA 95054  
Tel: 408-982-0700; Fax: 408-496-0670  
e-mail: sales@ixys.net  
www.ixys.com  
IXYS Semiconductor GmbH  
Edisonstrasse15 ; D-68623; Lampertheim  
Tel: +49-6206-503-0; Fax: +49-6206-503627  
e-mail: marcom@ixys.de  
Directed Energy, Inc.  
An IXYS Company  
2401 Research Blvd. Ste. 108, Ft. Collins, CO 80526  
Tel: 970-493-1901; Fax: 970-493-1903  
e-mail: deiinfo@directedenergy.com  
www.directedenergy.com  
Doc #9200-0244 R1  
10  

相关型号:

IXDI414YM

14 Ampere Low-Side Ultrafast MOSFET Drivers
IXYS

IXDI430

30 Amp Low-Side Ultrafast MOSFET / IGBT Driver
IXYS

IXDI430CI

30 Amp Low-Side Ultrafast MOSFET / IGBT Driver
IXYS

IXDI430MCI

Buffer/Inverter Based MOSFET Driver, 30A, PSFM5, TO-220, 5 PIN
IXYS

IXDI430MYI

Buffer/Inverter Based MOSFET Driver, 30A, PSSO5, TO-263, D2PAK-5
IXYS

IXDI430YI

30 Amp Low-Side Ultrafast MOSFET / IGBT Driver
IXYS

IXDI502

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDI502D1

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDI502D1T/R

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDI502PI

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDI502SIA

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDI502SIAT/R

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS