IXDI430YI [IXYS]

30 Amp Low-Side Ultrafast MOSFET / IGBT Driver; 30安培低端超快MOSFET / IGBT驱动器
IXDI430YI
型号: IXDI430YI
厂家: IXYS CORPORATION    IXYS CORPORATION
描述:

30 Amp Low-Side Ultrafast MOSFET / IGBT Driver
30安培低端超快MOSFET / IGBT驱动器

驱动器 MOSFET驱动器 驱动程序和接口 接口集成电路 双极性晶体管
文件: 总12页 (文件大小:782K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IXDN430 / IXDI430 / IXDD430 / IXDS430  
30 Amp Low-Side Ultrafast MOSFET / IGBT Driver  
General Description  
Features  
• Built using the advantages and compatibility  
of CMOS and IXYS HDMOSTM processes  
• Latch-UpProtected  
• High Peak Output Current: 30A Peak  
• Wide Operating Range: 8.5V to 35V  
• Under Voltage Lockout Protection  
• Ability to Disable Output under Faults  
• High Capacitive Load  
TheIXDN430/IXDI430/IXDD430/IXDS430arehighspeedhigh  
current gate drivers specifically designed to drive MOSFETs  
and IGBTs to their minimum switching time and maximum  
practical frequency limits. The IXD_430 can source and sink  
30A of peak current while producing voltage rise and fall times  
of less than 30ns. The input of the drivers are compatible with  
TTL or CMOS and are fully immune to latch up over the entire  
operating range. Designed with small internal delays, cross  
conduction/current shoot-through is virtually eliminated in all  
configurations. Their features and wide safety margin in  
operatingvoltageandpowermakethedriversunmatchedin  
performanceandvalue.  
Drive Capability: 5600 pF in <25ns  
• Matched Rise And Fall Times  
• Low Propagation Delay Time  
• LowOutputImpedance  
• LowSupplyCurrent  
The IXD_430 incorporates a unique ability to disable the output  
under fault conditions. The standard undervoltage lockout is at  
12.5V which can also be set to 8.5V in the IXDS430SI. When a  
logical low is forced into the Enable inputs, both final output  
stage MOSFETs (NMOS and PMOS) are turned off. As a  
result, the output of the IXDD430 enters a tristate mode and  
enables a Soft Turn-Off of the MOSFET when a short circuit is  
detected. This helps prevent damage that could occur to the  
MOSFET if it were to be switched off abruptly due to a dv/dt  
over-voltagetransient.  
Applications  
• DrivingMOSFETsandIGBTs  
• MotorControls  
• LineDrivers  
• PulseGenerators  
• Local Power ON / OFF Switch  
• Switch Mode Power Supplies (SMPS)  
• DCtoDCConverters  
• PulseTransformerDriver  
• Limiting di/dt Under Short Circuit  
• Class D Switching Amplifiers  
TheIXDN430isconfiguredasanoninvertinggatedriver, andthe  
IXDI430isaninvertinggatedriver.TheIXDS430canbeconfigured  
eitherasanoninvertingorinvertingdriver.TheIXD_430areavailable  
inthestandard28-pinSIOC(SI-CT),5-pinTO-220(CI),andinthe  
TO-263(YI)surfacemountpackages.CTor'CoolTab'forthe28-  
pin SOIC package refers to the backside metal heatsink tab.  
Ordering Information  
Part Num ber  
IXDD430YI  
IXDD430CI  
IXDI430YI  
Package Type  
5-pin TO -263  
5-pin TO -220  
5-pin TO -263  
5-pin TO -220  
5-pin TO -263  
5-pin TO -220  
Tem p. Range  
Configuration  
Non Inverting with  
Enable  
-55°C to +125°  
-55°C to +125°  
-55°C to +125°  
Inverting  
IXDI430CI  
IXDN430YI  
IXDN430CI  
Non Inverting  
Inverting / Non  
Inverting with Enable  
and UVSEL  
-55°C to +125°  
IXDS430SI  
28-pin SO IC  
Copyright © IXYS CORPORATION 2004  
DS99045B(8/04)  
First Release  
IXDN430 / IXDI430 / IXDD430 / IXDS430  
Figure 1A - IXDD430 (Non Inverting With Enable) Diagram  
Vcc  
Vcc  
400k  
OUT P  
OUT N  
1K  
IN  
EN  
GND  
Vcc  
GND  
Vcc  
Figure1B-IXDN430(Non-Inverting)Diagram  
OUT P  
OUT N  
1K  
IN  
GND  
GND  
Vcc  
Figure 1C - IXDI430 (Inverting) Diagram  
Vcc  
IN  
OUT P  
OUT N  
1K  
GND  
GND  
Figure 1D - IXDS430 (Inverting and Non Inverting with Enable) Diagram  
Vcc  
Vcc  
OUT P  
OUT N  
1K  
IN  
EN  
400K  
400K  
INV  
GND  
GND  
Note: Out P and Out N are connected together in the 5 lead TO-220 and TO-263 packages.  
2
IXDN430 / IXDI430 / IXDD430 / IXDS430  
Operating Ratings  
Absolute Maximum Ratings (Note 1)  
Param eter  
Value  
Parameter  
Value  
Maxim um Junction Tem perature  
Operating Temperature Range  
Therm al Impedance TO220 (CI), TO263 (YI)  
θJC (Junction To Case)  
o
150  
C
Supply Voltage  
All Other Pins  
40 V  
o
o
-0.3 V to V  
+ 0.3 V  
-55 C to 125 C  
CC  
o
Power Dissipation, TAMBIENT 25  
TO220 (CI), TO263 (YI)  
C
o
0.95 C/W  
2W  
o
θJA (Junction To Ambient)  
62.5 C/W  
Derating Factors (to Ambient)  
Therm al Impedance 28 pin SOIC with Heat Slug (SI)  
TO220 (CI), TO263 (YI)  
o
o
θJC (Junction To Case)  
0.016W/ C  
3
C/W  
Storage Temperature  
Lead Temperature (10 sec)  
o
o
-65 C to 150  
C
o
300  
C
Electrical Characteristics  
Unless otherwise noted, TA = 25 oC, 8.5V VCC 35V .  
All voltage measurements with respect to GND. IXDD430 configured as described in Test Conditions.  
Symbol  
VIH  
VIL  
VIN  
IIN  
Parameter  
Test Conditions  
4.5V VCC 18V  
4.5V VCC 18V  
Min  
3.5  
Typ  
Max  
0.8  
VCC + 0.3  
10  
Units  
V
V
V
µA  
High input voltage  
Low input voltage  
Input voltage range  
Input current  
-5  
-10  
0V VIN VCC  
VOH  
VOL  
ROH  
High output voltage  
Low output voltage  
VCC - 0.025  
V
V
0.025  
0.4  
Output resistance  
VCC = 18V  
VCC = 18V  
VCC = 18V  
0.3  
0.2  
30  
@ Output high  
ROL  
IPEAK  
IDC  
Output resistance  
@ Output Low  
0.3  
A
A
Peak output current  
Continuous output  
current  
Enable voltage range  
Limited by package power  
dissipation  
IXDD430 Only  
IXDD430 Only  
IXDD430 Only  
IXDS430 Only  
IXDS430 Only  
IXDS430 Only  
IXDS430 Only  
8
VEN  
- 0.3  
2/3 Vcc  
Vcc + 0.3  
V
V
V
VENH  
VENL  
REN  
VINV  
VINVH  
VINVL  
RINV  
tR  
High En Input Voltage  
Low En Input Voltage  
EN Input Resistance  
INV Voltage Range  
High INV Input Voltage  
Low INV Input Voltage  
INV Input Resistance  
Rise tim e  
1/3 Vcc  
Vcc + 0.3  
1/3 Vcc  
400  
Kohm  
V
V
V
Kohm  
ns  
ns  
- 0.3  
2/3 Vcc  
IXDS430 Only  
400  
18  
16  
CL=5600pF Vcc=18V  
CL=5600pF Vcc=18V  
CL=5600pF Vcc=18V  
20  
18  
45  
tF  
tONDLY  
Fall time  
On-time propagation  
41  
ns  
delay  
tOFFDLY  
tENOH  
Off-time propagation  
delay  
CL=5600pF Vcc=18V  
IXDD430 Only, Vcc=18V  
IXDD430 Only, Vcc=18V  
35  
39  
47  
ns  
ns  
ns  
V
mA  
µA  
µA  
Enable to output high  
delay time  
tDOLD  
Disable to output low  
delay time  
120  
35  
VCC  
ICC  
Power supply voltage  
8.5  
18  
1
0
Power supply current  
VIN = 3.5V  
VIN = 0V  
3
10  
10  
V
IN = + VCC  
Specifications Subject To Change Without Notice  
Note 1: Operating the device beyond parameters with listed “absolute maximum ratings” may cause permanent  
damage to the device. Typical values indicate conditions for which the device is intended to be functional, but do not  
guarantee specific performance limits. The guaranteed specifications apply only for the test conditions listed.  
Exposure to absolute maximum rated conditions for extended periods may affect device reliability.  
3
IXDN430 / IXDI430 / IXDD430 / IXDS430  
ElectricalCharacteristics  
Unless otherwise noted, temperature over -55 oC to +125 oC, 4.5 VCC 35V .  
All voltage measurements with respect to GND. IXDD430 configured as described in Test Conditions.  
Symbol  
VIH  
VIL  
VIN  
ROH  
Parameter  
Test Conditions  
4.5V VCC 18V  
4.5V VCC 18V  
Min  
3.2  
Typ  
Max  
Units  
High input voltage  
Low input voltage  
Input voltage range  
Output resistance  
@ Output high  
Output resistance  
@ Output Low  
Rise time  
V
V
V
1.1  
VCC + 0.3  
0.46  
-5  
VCC = 18V  
VCC = 18V  
ROL  
0.4  
tR  
tF  
tONDLY  
CL=5600pF Vcc=18V  
CL=5600pF Vcc=18V  
CL=5600pF Vcc=18V  
20  
18  
58  
ns  
ns  
ns  
Fall time  
On-time propagation  
delay  
tOFFDLY  
VCC  
Off-time propagation  
delay  
CL=5600pF Vcc=18V  
51  
35  
ns  
V
Power supply voltage  
8.5  
18  
5-lead TO-220 Outline (IXD_430CI)  
5-lead TO-263 Outline (IXD_430YI)  
28-pin SOIC Outline (IXD_430SI)  
NOTE: Mounting tabs, solder tabs, or heat sink metalization on all packages are connected to ground.  
4
IXDN430 / IXDI430 / IXDD430 / IXDS430  
Pin Configurations  
Vcc 1  
28 Vcc  
Vcc 2  
Vcc 3  
27 Vcc  
26 Vcc  
Vcc 4  
25 Vcc  
N/C 5  
28 Pin SOIC  
(SI-CT)  
24 OUT P  
23 OUT P  
22 OUT P  
21 OUT N  
20 OUT N  
19 OUT N  
18 GND  
Vcc  
OUT  
GND  
IN  
1
2
3
4
5
UVSEL 6  
N/C 7  
IN 8  
EN 9  
EN *  
INV 10  
GND 11  
GND 12  
GND 13  
GND 14  
TO220(CI)  
TO263(YI)  
17 GND  
16 GND  
15 GND  
Pin Description  
SYMBOL  
FUNCTION  
DESCRIPTION  
Positive power-supply voltage input. This pin provides power to the  
entire chip. The range for this voltage is from 8.5V to 35V.  
Input signal-TTL or CMOS compatible.  
VCC  
IN  
Supply Voltage  
Input  
The system enable pin. This pin, when driven low, disables the chip,  
forcing high impedance state to the output (IXDD430 Only).  
Forcing INV low causes the IXDS430 to become non-inverted, while  
forcing INV high causes the IXDS430 to become inverted.  
Respective P and N driver outputs. For application purposes this pin  
is connected, through a resistor, to Gate of a MOSFET/IGBT. The P  
and N output pins are connected together in the TO-263 and TO-220  
packages.  
EN *  
Enable  
INV  
Invert  
OUT P  
OUT N  
Output  
The system ground pin. Internally connected to all circuitry, this pin  
provides ground reference for the entire chip. This pin should be  
GND  
Ground  
connected to  
performance.  
a low noise analog ground plane for optimum  
Select Under  
Voltage Level  
With UVSEL connected to Vcc, IXDS430 outputs go low at Vcc <  
8.5V; With UVSEL open, under voltage level is set at Vcc < 12.5V  
UVSEL  
* This pin is used only on the IXDD430, and is N/C (not connected) on the IXDI430 and IXDN430.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD procedures when  
handling and assembling this component.  
Figure 2 - Characteristics Test Diagram  
.
.
Vcc  
OUT  
Vcc  
+
C
BYPASS/  
FILTER  
-
IXDD430  
GND  
CLOAD  
IN  
EN  
+
-
Vin  
5
IXDN430 / IXDI430 / IXDD430 / IXDS430  
Typical Performance Characteristics  
Fig. 3  
35  
Fig. 4  
30  
Rise Times vs. Supply Voltage  
Fall Times vs. Supply Voltage  
30  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
15000 pF  
15000 pF  
10000 pF  
5600 pF  
10000 pF  
5600 pF  
1000 pF  
1000 pF  
0
0
10  
15  
20  
25  
30  
35  
10  
15  
20  
25  
30  
35  
Supply Voltage (V)  
Supply Voltage (V)  
Fig. 6  
30  
Output Fall Times vs. Load Capacitance  
Fig. 5  
Output Rise Times vs. Load Capacitance  
13V  
18V  
35V  
30  
25  
20  
15  
10  
5
35V  
18V  
13V  
25  
20  
15  
10  
5
0
1000  
3000  
5000  
7000  
9000  
11000  
13000  
15000  
1000  
3000  
5000  
7000  
9000  
11000  
13000  
15000  
Load Capacitance (pF)  
Load Capacitance (pF)  
Rise and Fall Times vs. Temperature  
CL = 5600 pF, Vcc = 18V  
Max / Min Input vs. Temperature  
CL = 5600pF, Vcc = 18V  
Fig. 7  
Fig. 8  
25  
4
3.5  
3
Min Input High  
20  
15  
10  
5
tR  
Max Input Low  
2.5  
2
tF  
1.5  
1
0.5  
0
0
-60  
-10  
40  
90  
140  
190  
-60  
-10  
40  
90  
140  
190  
Temperature (C)  
Temperature (C)  
6
IXDN430 / IXDI430 / IXDD430 / IXDS430  
Supply Current vs. Load Capacitance  
Vcc = 13V  
Fig. 9  
Supply Current vs. Frequency  
Vcc = 13V  
Fig. 10  
1000  
300  
15000 pF  
10000 pF  
5600 pF  
1000 pF  
2 MHz  
250  
200  
150  
100  
50  
100  
10  
1
1 MHz  
500 kHz  
100 kHz  
50 kHz  
10 kHz  
0.1  
0
1
10  
100  
1000  
10000  
1000  
10000  
100000  
Frequency (kHz)  
Load Capacitance (pF)  
Supply Current vs. Load Capacitance  
Vcc = 18V  
Fig. 11  
Fig. 12  
Supply Current vs. Frequency  
Vcc = 18V  
300  
15000 pF  
10000 pF  
5600 pF  
1000 pF  
1000  
2 MHz  
1 MHz  
250  
200  
150  
100  
50  
100  
10  
1
500 kHz  
100 kHz  
50 kHz  
10 kHz  
0.1  
1
0
1000  
10  
100  
1000  
10000  
10000  
100000  
Frequency (kHz)  
Load Capacitance (pF)  
Supply Current vs. Frequency  
Vcc = 25V  
Fig. 14  
Fig. 13  
Supply Current vs. Load Capacitance  
Vcc = 25V  
15000 pF  
10000 pF  
5600 pF  
1000 pF  
1000  
400  
350  
300  
250  
200  
150  
100  
50  
2 MHz  
1 MHz  
100  
10  
1
500 kHz  
100 kHz  
50 kHz  
10 kHz  
0
1000  
0.1  
1
10  
100  
1000  
10000  
10000  
100000  
Frequency (kHz)  
Load Capacitance (pF)  
7
IXDN430 / IXDI430 / IXDD430 / IXDS430  
Fig. 15  
Supply Current vs. Load Capacitance  
Vcc = 35V  
Fig. 16  
Supply Current vs. Frequency  
Vcc = 35V  
15000 pF  
10000 pF  
5600 pF  
1000 pF  
400  
1000  
350  
300  
250  
200  
150  
100  
50  
1 MHz  
500 kHz  
100  
10  
100 kHz  
50 kHz  
10 kHz  
1
1
0
1000  
10000  
100000  
10  
100  
1000  
10000  
Load Capacitance (pF)  
Frequency (kHz)  
Propagation Delay vs. Input Voltage  
CL = 5600 pF Vcc = 18V  
Fig. 18  
Propagation Delay vs. Supply Voltage  
CL = 5600 pF Vin = 15V@1kHz  
Fig. 17  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
tONDLY  
tONDLY  
tOFFDLY  
tOFFDLY  
0
5
0
10  
15  
20  
25  
30  
35  
10  
15  
20  
25  
Supply Voltage (V)  
Input Voltage (V)  
Fig. 20  
Quiescent Supply Current vs. Temperature  
Vcc = 18V, Vin = 15V@1kHz, CL = 5600pF  
Fig. 19  
Propagation Delay Times vs. Temperature  
CL = 5600pF, Vcc = 18V  
0.6  
70  
60  
50  
40  
30  
20  
10  
0.5  
0.4  
0.3  
0.2  
0.1  
tONDLY  
tOFFDLY  
0
0
-60  
-10  
40  
90  
140  
190  
-60  
-10  
40  
90  
140  
190  
Temperature (C)  
Temperature (C)  
8
IXDN430 / IXDI430 / IXDD430 / IXDS430  
High State Output Resistance vs. Supply Voltage  
Low State Output Resistance vs. Supply Voltage  
Fig. 22  
Fig. 21  
0.25  
0.2  
0.15  
0.1  
0.05  
0
0.35  
0.3  
0.25  
0.2  
0.15  
0.1  
0.05  
0
10  
15  
20  
25  
30  
35  
40  
10  
15  
20  
25  
30  
35  
40  
Supply Voltage (V)  
Supply Voltage (V)  
Fig. 23  
P Channel Output Current vs. Vcc  
N Channel Output Current vs. Vcc  
Fig. 24  
0
70  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
60  
50  
40  
30  
20  
10  
-80  
10  
0
15  
20  
25  
30  
35  
40  
10  
15  
20  
25  
30  
35  
40  
Vcc (V)  
Vcc (V)  
P Channel Output Current vs. Temperature  
Vcc = 18V  
N Channel Output Current vs. Temperature  
Vcc = 18V  
Fig. 25  
Fig. 26  
45  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
0
0
-60  
-10  
40  
90  
140  
190  
-60  
-10  
40  
90  
140  
190  
Temperature (C)  
Temperature (C)  
9
IXDN430 / IXDI430 / IXDD430 / IXDS430  
Figure 27 - Typical circuit to decrease di/dt during turn-off  
Figure 28 - IXDD430 Application Test Diagram  
+
VB  
Ld  
10uH  
-
Rd  
0.1ohm  
IXDD430  
VCC  
Rg  
VCCA  
High_Power  
OUT  
VMO580-02F  
Rs  
IN  
1ohm  
Rsh  
EN  
1.5k ohm  
+
-
+
-
VCC  
VIN  
GND  
SUB  
Low_Power  
2N7002/PLP  
Ls  
R+  
10kohm  
20nH  
One ShotCircuit  
0
Rcomp  
5kohm  
Comp  
LM339  
+
V+  
NAND  
NOT2  
C+  
100pF  
NOT1  
CD4011A  
CD4049A  
V-  
-
CD4049A  
Ccomp  
1pF  
Ros  
+
-
R
1Mohm  
REF  
Cos  
1pF  
Q
NOT3  
NOR1  
S
CD4049A  
CD4001A  
EN  
NOR2  
CD4001A  
SR Flip-Flop  
10  
IXDN430 / IXDI430 / IXDD430 / IXDS430  
APPLICATIONS INFORMATION  
Short Circuit di/dt Limit  
A short circuit in a high-power MOSFET module such as the  
VM0580-02F, (580A, 200V), as shown in Figure 27, can cause  
the current through the module to flow in excess of 1500A for  
10µs or more prior to self-destruction due to thermal runaway.  
For this reason, some protection circuitry is needed to turn off  
the MOSFET module. However, if the module is switched off  
too fast, there is a danger of voltage transients occuring on the  
drain due to Ldi/dt, (where L represents total inductance in  
series with drain). If these voltage transients exceed the  
MOSFET's voltage rating, this can cause an avalanche break-  
down.  
In this way, the high-power MOSFET module is softly turned off  
by the IXDD430, preventing its destruction.  
Supply Bypassing and Grounding Practices,  
Output Lead inductance  
When designing a circuit to drive a high speed MOSFET  
utilizing the IXDD430/IXDI430/IXDN430, it is very important to  
keep certain design criteria in mind, in order to optimize  
performance of the driver. Particular attention needs to be paid  
to Supply Bypassing, Grounding, and minimizing the Output  
Lead Inductance.  
TheIXDD430hastheuniquecapabilitytosoftlyswitchoffthe  
high-power MOSFET module, significantly reducing these  
Ldi/dttransients.  
Say, for example, we are using the IXDD430 to charge a 15nF  
capacitive load from 0 to 25 volts in 25ns.  
Thus, the IXDD430 helps to prevent device destruction from  
both dangers; over-current, and avalanche breakdown due to  
di/dt induced over-voltage transients.  
Using the formula: I= C V / t, where V=25V C=15nF &  
t=25ns we can determine that to charge 15nF to 25 volts in  
25ns will takeaconstantcurrent of 15A. (Inreality,thecharging  
current won’t be constant, and will peak somewhere around  
30A).  
The IXDD430 is designed to not only provide ±30A under  
normal conditions, but also to allow it's output to go into a high  
impedance state. This permits the IXDD430 output to control  
a separate weak pull-down circuit during detected overcurrent  
shutdown conditions to limit and separately control dVGS/dt gate  
turnoff. This circuit is shown in Figure 28.  
SUPPLYBYPASSING  
In order for our design to turn the load on properly, the IXDD430  
must be able to draw this 5A of current from the power supply  
in the 25ns. This means that there must be very low impedance  
between the driver and the power supply. The most common  
method of achieving this low impedance is to bypass the power  
supply at the driver with a capacitance value that is a magnitude  
larger than the load capacitance. Usually, this would be  
achievedbyplacingtwodifferenttypesofbypassingcapacitors,  
with complementary impedance curves, very close to the driver  
itself. (These capacitors should be carefully selected, low  
inductance, low resistance, high-pulse current-service  
capacitors). Lead lengths may radiate at high frequency due  
to inductance, so care should be taken to keep the lengths of  
the leads between these bypass capacitors and the IXDD430  
to an absolute minimum.  
Referring to Figure 28, the protection circuitry should include  
a comparator, whose positive input is connected to the source  
of the VM0580-02. A low pass filter should be added to the input  
of the comparator to eliminate any glitches in voltage caused  
by the inductance of the wire connecting the source resistor to  
ground. (Those glitches might cause false triggering of the  
comparator).  
The comparator's output should be connected to a SRFF(Set  
Reset Flip Flop). The flip-flop controls both the Enable signal,  
and the low power MOSFET gate. Please note that CMOS  
4000-series devices operate with a VCC range from 3 to 15 VDC,  
(with 18 VDC being the maximum allowable limit).  
GROUNDING  
A low power MOSFET, such as the 2N7000, in series with a  
resistor, will enable the VMO580-02F gate voltage to drop  
gradually. The resistor should be chosen so that the RC time  
constant will be 100us, where "C" is the Miller capacitance of  
theVMO580-02F.  
In order for the design to turn the load off properly, the IXDD430  
must be able to drain this 5A of current into an adequate  
grounding system. There are three paths for returning current  
that need to be considered: Path #1 is between the IXDD430  
and it’s load. Path #2 is between the IXDD430 and it’s power  
supply. Path #3 is between the IXDD430 and whatever logic is  
driving it. All three of these paths should be as low in resistance  
and inductance as possible, and thus as short as practical. In  
addition, every effort should be made to keep these three  
ground paths distinctly separate. Otherwise, (for instance), the  
returning ground current from the load may develop a voltage  
that would have a detrimental effect on the logic line driving the  
IXDD430.  
For resuming normal operation, a Reset signal is needed at  
the SRFF's input to enable the IXDD430 again. This Reset can  
be generated by connecting a One Shot circuit between the  
IXDD430InputsignalandtheSRFFrestartinput. TheOneShot  
will create a pulse on the rise of the IXDD430 input, and this  
pulse will reset the SRFF outputs to normal operation.  
When a short circuit occurs, the voltage drop across the low-  
value, current-sensing resistor, (Rs=0.005 Ohm), connected  
between the MOSFET Source and ground, increases. This  
triggers the comparator at a preset level. The SRFF drives a  
low input into the Enable pin disabling the IXDD430 output. The  
SRFF also turns on the low power MOSFET, (2N7000).  
11  
IXDN430 / IXDI430 / IXDD430 / IXDS430  
OUTPUTLEADINDUCTANCE  
Of equal importance to Supply Bypassing and Grounding are  
issues related to the Output Lead Inductance. Every effort  
should be made to keep the leads between the driver and it’s  
load as short and wide as possible. If the driver must be placed  
farther than 2” from the load, then the output leads should be  
treated as transmission lines. In this case, a twisted-pair  
should be considered, and the return line of each twisted pair  
should be placed as close as possible to the ground pin of the  
driver, and connect directly to the ground terminal of the load.  
A TTL or 5V CMOS logic low, V  
=~<0.8V, input applied to the  
Q1 emitter will drive it on. ThisTcTLaLuOWses the level translator  
output, the Q1 collector output to settle to VCESATQ1  
+
V
TTLLOW=<~2V, which is sufficiently low to be correctly interpreted  
as a high voltage CMOS logic low (<1/3VCC=5V for VCC =15V given  
in the IXDD430 data sheet.)  
A TTL high, VTTLHIGH=>~2.4V, or a 5V CMOS high,  
V5VCMOSHIGH=~>3.5V, applied to the EN input of the circuit in  
Figure 29 will cause Q1 to be biased off. This results in Q1  
collector being pulled up by R3 to V =15V, and provides a  
high voltage CMOS logic high outpuCt.C The high voltage CMOS  
logical EN output applied to the IXDD430 EN input will enable  
it, allowing the gate driver to fully function as an 30 Amp  
output driver.  
TTL to High Voltage CMOS Level Translation  
(IXDD430 Only)  
The enable (EN) input to the IXDD430 is a high voltage  
CMOS logic level input where the EN input threshold is ½  
V , and may not be compatible with 5V CMOS or TTL input  
leCvCels. The IXDD430 EN input was intentionally designed  
for enhanced noise immunity with the high voltage CMOS  
logic levels. In a typical gate driver application, V =15V  
and the EN input threshold at 7.5V, a 5V CMOS lCoCgical high  
input applied to this typical IXDD430 application’s EN input  
will be misinterpreted as a logical low, and may cause  
undesirable or unexpected results. The note below is for  
optional adaptation of TTL or 5V CMOS levels.  
The total component cost of the circuit in Figure 29 is less  
than $0.10 if purchased in quantities >1K pieces. It is  
recommended that the physical placement of the level  
translator circuit be placed close to the source of the TTL or  
CMOS logic circuits to maximize noise rejection.  
The circuit in Figure 29 alleviates this potential logic level  
misinterpretation by translating a TTL or 5V CMOS logic  
input to high voltage CMOS logic levels needed by the  
IXDD430 EN input. From the figure, VCC is the gate driver  
power supply, typically set between 8V to 20V, and VDD is  
the logic power supply, typically between 3.3V to 5.5V.  
Resistors R1 and R2 form a voltage divider network so  
that the Q1 base is positioned at the midpoint of the  
expected TTL logic transition levels.  
Figure 29 - TTL to High Voltage CMOS Level Translator  
(From gate driver  
power supply)  
Vcc  
Vdd  
(From logic  
power supply)  
R3  
10K  
R1  
10K  
High Voltage  
CMOS EN output  
(To IXDD430 EN input)  
Q1  
2N3904  
R2  
10K  
5V CMOS or TTL input  
EN  
IXYS Corporation  
IXYS Semiconductor GmbH  
3540 Bassett St; Santa Clara, CA 95054  
Tel: 408-982-0700; Fax: 408-496-0670  
www.ixys.com  
Edisonstrasse15 ; D-68623; Lampertheim  
Tel: +49-6206-503-0; Fax: +49-6206-503627  
e-mail: marcom@ixys.de  
e-mail: sales@ixys.net  
12  

相关型号:

IXDI502

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDI502D1

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDI502D1T/R

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDI502PI

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDI502SIA

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDI502SIAT/R

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDI504

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDI504D1

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDI504D1T/R

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDI504PI

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDI504SIA

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDI504SIAT/R

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS