R500CH20C2G3 [IXYS]

Silicon Controlled Rectifier, 4980A I(T)RMS, 2000V V(DRM), 600V V(RRM), 1 Element, 101A281, 3 PIN;
R500CH20C2G3
型号: R500CH20C2G3
厂家: IXYS CORPORATION    IXYS CORPORATION
描述:

Silicon Controlled Rectifier, 4980A I(T)RMS, 2000V V(DRM), 600V V(RRM), 1 Element, 101A281, 3 PIN

文件: 总13页 (文件大小:357K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Date:- 11 Jan, 2000  
Data Sheet Issue:- 1  
WESTCODE  
Distributed Gate Thyristor  
Types R500CH20 to R500CH28  
Absolute Maximum Ratings  
MAXIMUM  
LIMITS  
2000-2800  
2000-2800  
2000-2800  
2100-2900  
VOLTAGE RATINGS  
UNITS  
VDRM  
VDSM  
VRRM  
VRSM  
Repetitive peak off-state voltage, (note 1)  
Non-repetitive peak off-state voltage, (note 1)  
Repetitive peak reverse voltage, (note 1)  
Non-repetitive peak reverse voltage, (note 1)  
V
V
V
V
MAXIMUM  
LIMITS  
2475  
OTHER RATINGS  
UNITS  
IT(AV)  
IT(AV)  
IT(AV)  
IT(RMS)  
IT(d.c.)  
ITSM  
ITSM2  
I2t  
Mean on-state current, Tsink=55°C, (note 2)  
Mean on-state current. Tsink=85°C, (note 2)  
Mean on-state current. Tsink=85°C, (note 3)  
Nominal RMS on-state current, 25°C, (note 2)  
D.C. on-state current, 25°C, (note 4)  
A
A
A
A
A
kA  
kA  
A2s  
A2s  
A/µs  
A/µs  
V
W
W
V
°C  
°C  
1645  
950  
4980  
4100  
31.0  
34.1  
Peak non-repetitive surge tp=10ms, VRM=0.6VRRM, (note 5)  
Peak non-repetitive surge tp=10ms, VRM 10V, (note 5)  
I2t capacity for fusing tp=10ms, VRM=0.6VRRM, (note 5)  
4.81×106  
5.81×106  
1000  
1500  
5
5
50  
I2t  
I2t capacity for fusing tp=10ms, VRM 10V, (note 5)  
Maximum rate of rise of on-state current (repetitive), (Note 6)  
Maximum rate of rise of on-state current (non-repetitive), (Note 6)  
Peak reverse gate voltage  
Mean forward gate power  
Peak forward gate power  
Non-trigger gate voltage, (Note 7)  
Operating temperature range  
Storage temperature range  
diT/dt  
VRGM  
PG(AV)  
PGM  
VGD  
THS  
Tstg  
0.25  
-40 to +125  
-40 to +150  
Notes:-  
1) De-rating factor of 0.13% per °C is applicable for Tj below 25°C.  
2) Double side cooled, single phase; 50Hz, 180° half-sinewave.  
3) Single side cooled, single phase; 50Hz, 180° half-sinewave.  
4) Double side cooled.  
5) Half-sinewave, 125°C Tj initial.  
6) VD=67% VDRM, IFG=2A, tr 0.5µs, Tcase=125°C.  
7) Rated VDRM  
.
Provisional Data Sheet. Types R500CH20 to R500CH28 Issue 1  
Page 1 of 13  
January, 2000  
WESTCODE Positive development in power electronics  
R500CH20 to R500CH28  
Characteristics  
UNIT  
PARAMETER  
MIN.  
TYP. MAX. TEST CONDITIONS  
(Note 1)  
S
VTM  
Maximum peak on-state voltage  
Threshold voltage  
-
-
-
-
-
-
2.55 ITM=5700A  
1.504  
V
V
V0  
rS  
Slope resistance  
0.174  
m
Critical rate of rise of off-state  
voltage  
dv/dt  
-
-
200 VD=80% VDRM  
µ
V/ s  
IDRM  
IRRM  
VGT  
IGT  
Peak off-state current  
Peak reverse current  
Gate trigger voltage  
Gate trigger current  
Holding current  
-
-
-
-
-
-
-
-
-
-
300 Rated VDRM  
300 Rated VRRM  
mA  
mA  
V
3.0  
Tj=25°C  
300 Tj=25°C  
1000 Tj=25°C  
VD=10V, IT=3A  
mA  
mA  
IH  
I
TM=4000A, tp=2000µs, di/dt=60A/µs,  
VR=100V  
TM=4000A, tp=2000µs, di/dt=60A/µs,  
VR=100V, VDR=67%VDRM, dVDR/dt=200V/µs  
QRA  
tq  
Recovered charge, 50% Chord  
Turn-off time  
-
-
1450  
-
-
µC  
µs  
I
100  
-
-
-
-
0.011 Double side cooled  
K/W  
K/W  
kN  
Thermal resistance, junction to  
heatsink  
R
θ
0.022 Single side cooled  
F
Mounting force  
Weight  
27  
-
-
47  
-
Wt  
1.7  
kg  
Notes:-  
1) Unless otherwise indicated Tj=125°C.  
Provisional Data Sheet. Types R500CH20 to R500CH28 Issue 1  
Page 2 of 13  
January, 2000  
WESTCODE Positive development in power electronics  
Notes on Ratings and Characteristics  
1.0 Voltage Grade Table  
R500CH20 to R500CH28  
V
DRM VDSM VRRM  
VRSM  
V
VD VR  
DC V  
1250  
1350  
1450  
1550  
1650  
Voltage Grade 'H'  
V
20  
22  
24  
26  
28  
2000  
2200  
2400  
2600  
2800  
2100  
2300  
2500  
2700  
2900  
2.0 Extension of Voltage Grades  
This report is applicable to other and higher voltage grades when supply has been agreed by  
Sales/Production.  
3.0 Extension of Turn-off Time  
This Report is applicable to other tq/re-applied dv/dt combinations when supply has been agreed by  
Sales/Production.  
4.0 Repetitive dv/dt  
Higher dv/dt selections are available up to 1000V/µs on request.  
5.0 De-rating Factor  
A blocking voltage de-rating factor of 0.13%/°C is applicable to this device for Tj below 25oC.  
6.0 Rate of rise of on-state current  
The maximum un-primed rate of rise of on-state current must not exceed 600A/µs at any time during turn-  
on on a non-repetitive basis. For repetitive performance the on-state rate of rise of current must not  
exceed 300 A/µs at any time during turn-on. Note that these values of rate of rise of current apply to the  
total device current including that from any local snubber network.  
7.0 Square wave ratings  
These ratings are given for load component rate of rise of forward current of 100 and 500 A/µs.  
8.0 Duty cycle lines  
The 100% duty cycle is represented on all the ratings by a straight line. Other duties can be included as  
parallel to the first.  
9.0 Maximum Operating Frequency  
The maximum operating frequency is set by the on-state duty, the time required for the thyristor to turn off  
(tq) and for the off-state voltage to reach full value (tv), i.e.  
1
max =  
f
tpulse +tq +tv  
Provisional Data Sheet. Types R500CH20 to R500CH28 Issue 1  
Page 3 of 13  
January, 2000  
WESTCODE Positive development in power electronics  
R500CH20 to R500CH28  
10.0 On-State Energy per Pulse Characteristics  
These curves enable rapid estimation of device dissipation to be obtained for conditions not covered by  
the frequency ratings.  
Let Ep be the Energy per pulse for a given current and pulse width, in joules  
Let Rth(J-Hs) be the steady-state d.c. thermal resistance (junction to sink)  
and TSINK be the heat sink temperature.  
Then the average dissipation will be:  
= ⋅  
=
(
)
WAV EP f and TSINK (max.) 125 WAV Rth  
(
J Hs  
)
11.0 Reverse recovery ratings  
(i) QRA is based on 50% IRM chord as shown in Fig. 1 below.  
Fig. 1  
µ
(ii) QRR is based on a 150 s integration time.  
150µs  
QRR = iRR .dt  
i.e.  
0
t1  
t2  
K Factor =  
(iii)  
12.0 Reverse Recovery Loss  
12.1 Determination by Measurement  
From waveforms of recovery current obtained from a high frequency shunt (see Note 1, Page 5) and  
reverse voltage present during recovery, an instantaneous reverse recovery loss waveform must be  
constructed. Let the area under this waveform be E joules per pulse. A new heat sink temperature can  
then be evaluated from:  
=
− ⋅  
(
+ ⋅  
)
TSINK (new) TSINK (original) E k f Rth  
(
J Hs  
)
where k = 0.227 (°C/W)/s  
E = Area under reverse loss waveform per pulse in joules (W.s.)  
f = rated frequency Hz at the original heat sink temperature.  
Rth(J-Hs) = d.c. thermal resistance (°C/W).  
Provisional Data Sheet. Types R500CH20 to R500CH28 Issue 1  
Page 4 of 13  
January, 2000  
WESTCODE Positive development in power electronics  
R500CH20 to R500CH28  
The total dissipation is now given by:  
=
+ ⋅  
E f  
W(TOT) W(original)  
12.2 Determination without Measurement  
In circumstances where it is not possible to measure voltage and current conditions, or for design  
purposes, the additional losses E in joules may be estimated as follows.  
Let E be the value of energy per reverse cycle in joules (curves in Figure 9).  
Let f be the operating frequency in Hz  
TSINK  
=
TSINK  
(
)
(
E Rth f  
⋅ ⋅  
)
(
new  
)
original  
where TSINK (new) is the required maximum heat sink temperature and  
TSINK (original) is the heat sink temperature given with the frequency ratings.  
A suitable R-C snubber network is connected across the thyristor to restrict the transient reverse voltage  
waveform to a peak value (VRM) of 67% of the maximum grade. If a different grade is being used or VRM is  
other than 67% of Grade, the reverse loss may be approximated by a pro rata adjustment of the maximum  
value obtained from the curves.  
NOTE 1  
- Reverse Recovery Loss by Measurement  
This thyristor has a low reverse recovered charge and peak reverse recovery current. When measuring  
the charge care must be taken to ensure that:  
(a) a.c. coupled devices such as current transformers are not affected by prior passage of high  
amplitude forward current.  
(b) A suitable, polarised, clipping circuit must be connected to the input of the measuring oscilloscope  
to avoid overloading the internal amplifiers by the relatively high amplitude forward current signal  
(c) Measurement of reverse recovery waveform should be carried out with an appropriate critically  
damped snubber, connected across diode anode to cathode. The formula used for the calculation  
of this snubber is shown below:  
VR  
di  
CS ⋅  
dt  
R2 = 4⋅  
Where: VR = Commutating source voltage  
CS = Snubber capacitance  
R
= Snubber resistance  
13.0 Gate Drive  
The recommended pulse gate drive is 20V, 10 with a short-circuit current rise time of not more than  
0.5µs. This gate drive must be applied when using the full di/dt capability of the device.  
The duration of pulse may need to be configured with respect to the application but should be no shorter  
than 20µs, otherwise an increase in pulse current could be needed to supply the resulting increase in  
charge to trigger.  
Provisional Data Sheet. Types R500CH20 to R500CH28 Issue 1  
Page 5 of 13  
January, 2000  
WESTCODE Positive development in power electronics  
14.0 Computer Modelling Parameters  
14.1 Calculating VT using ABCD Coefficients  
R500CH20 to R500CH28  
The on-state characteristic IT vs VT, on page 11 is represented in two ways; (i) the well established Vo and  
rs tangent used for rating purposes and (ii) a set of constants A, B, C, D, forming the coefficients of the  
representative equation for VT in terms of IT given below:  
= + ⋅ ( )  
+
( )  
+
VT A B ln IT C. IT D. IT  
The constants, derived by curve fitting software, are given in this report for hot characteristics where  
possible. The resulting values for VT agree with the true device characteristic over a current range which is  
limited to that plotted.  
25°C Coefficients  
125°C Coefficients  
A
B
C
D
2.55370235  
9.282949×10-3  
1.261395×10-4  
-0.01063571  
A
B
C
D
1.91935125  
-2.537837×10-3  
2.602254×10-4  
-0.01168784  
14.2 D.C. Thermal Impedance Calculation  
τ p  
t
=
p n  
r = r 1e  
t
p
=
p 1  
Where p = 1 to n, n is the number of terms in the series.  
t = Duration of heating pulse in seconds.  
rt  
= Thermal resistance at time t.  
rp = Amplitude of pth term.  
τp  
= Time Constant of rth term.  
D.C. Double Side Cooled  
3
Term  
rp  
τp  
1
2
4
5
3.9923×10-3  
3.78878×10-3  
1.350742×10-3  
1.378728×10-3  
4.276688×10-4  
6.863691×10-3  
1.046993  
0.3853506  
0.1243419  
0.01277299  
D.C. Single Side Cooled  
2
Term  
rp  
τp  
1
3
4
0.01254722  
10.41272  
4.466491×10-3  
3.518626×10-3  
1.791548×10-3  
9.884119×10-3  
1.051407  
0.1929561  
Provisional Data Sheet. Types R500CH20 to R500CH28 Issue 1  
Page 6 of 13  
January, 2000  
WESTCODE Positive development in power electronics  
R500CH20 to R500CH28  
14.3 Recovery parameter estimation  
Maximum recovery parameters may be calculated, using the polynomial expression:  
p  
= −  
p n 1  
di  
R
y =  
k ⋅  
p
dt  
=
p 0  
Where: y = recovery parameter (QRR, QRA, IRM or tRR  
)
kp = coefficient found in the relevant table below,  
n
p
= number of terms in the series,  
= term number  
Total Recovered Charge QRR (Valid di/dt range 20 to 300A/µs)  
Values of kp for QRR  
p
4
3
2
1
0
500A  
1000A  
2000A  
3000A  
-7.2790483×10-7  
5.2077175×10-7  
-0.13827272  
-1.16345461×10-6  
8.33067976×10-4  
-0.22188849  
-1.37421077×10-6  
9.8408007×10-4  
-0.26287038  
-1.5324566×10-6  
1.0972418×10-3  
-0.293044667  
47.25775122  
1165.616731  
21.27674696  
669.4412215  
34.8165641  
991.28909752  
42.38417424  
1048.4893025  
Recovered Charge QRA, 50% chord (Valid di/dt range 20 to 300A/µs)  
Values of kp for QRA  
p
4
3
2
1
0
500A  
1000A  
2000A  
3000A  
-3.7814578×10-7  
2.7542681×10-4  
-0.075394944  
12.50200437  
320.8890665  
-5.4862473×10-7  
4.0216244×10-4  
-0.111920413  
20.1880681  
-6.3898585×10-7  
4.7008097×10-4  
-0.132492106  
26.18025723  
370.1345301  
-6.8739022×10-7  
5.0793771×10-4  
-0.144884397  
30.8603883  
382.338885  
360.67474  
Peak reverse recovery current IRM (Valid di/dt range 20 to 300A/µs)  
Values of kp for IRM  
p
4
3
2
1
0
500A  
1000A  
2000A  
3000A  
-8.7116617×10-8  
6.4820363×10-5  
-0.018819084  
4.491855194  
40.98577734  
-9.8322233×10-8  
7.3315506×10-5  
-0.021431025  
5.424942762  
43.80097467  
-1.0380561×10-7  
7.7287542×10-5  
-0.022611803  
6.016380324  
43.08144722  
-1.1523353×10-7  
8.6147079×10-5  
-0.025303236  
6.530380888  
51.33697121  
Reverse recovery time tRR (Valid di/dt range 20 to 300A/µs)  
Values of kp for tRR  
p
4
3
2
1
0
500A  
1000A  
2000A  
3000A  
4.3559656×10-9  
-3.0811453×10-6  
7.8578776×10-4  
-0.097953134  
11.0906485  
4.8471865×10-9  
-3.4281044×10-6  
8.7397553×10-4  
-0.108876127  
13.30064257  
4.8247815×10-9  
-3.4119193×10-6  
8.6979932×10-4  
-0.10835501  
4.6950142×10-9  
-3.3193891×10-6  
8.4584224×10-4  
-0.105294524  
14.61543672  
14.08565971  
Provisional Data Sheet. Types R500CH20 to R500CH28 Issue 1  
Page 7 of 13  
January, 2000  
WESTCODE Positive development in power electronics  
R500CH20 to R500CH28  
Curves  
Figure 1 - On-state characteristics of Limit device  
Figure 2 - Transient thermal impedance  
10000  
0.1  
SSC 0.022K/W  
DSC 0.011K/W  
0.01  
Tj = 125°C  
Tj = 25°C  
1000  
0.001  
0.0001  
R500CH20-28  
Issue 1  
R500CH20-28  
Issue 1  
100  
0.00001  
0.0001  
1
1.5  
2
2.5  
3
3.5  
0.001  
0.01  
0.1  
1
10  
100  
Instantaneous on-state voltage - VT (V)  
Time (s)  
Figure 3 - Gate characteristics - Trigger limits  
Figure 4 - Gate characteristics - Power curves  
20  
7
R500CH20-28  
Issue 1  
R500CH20-28  
Issue 1  
Tj=25°C  
Tj=25°C  
18  
6
16  
5
14  
12  
10  
8
Max VG dc  
Max VG dc  
4
IGT, VGT  
3
2
1
PG Max 30W dc  
6
4
PG 5W dc  
2
IGD, VGD  
Min VG dc  
Min VG dc  
8
0
0
0
2
4
6
10  
0
0.2  
0.4  
0.6  
0.8  
1
Gate Trigger Current - IGT (A)  
Gate Trigger Current - IGT (A)  
Provisional Data Sheet. Types R500CH20 to R500CH28 Issue 1  
Page 8 of 13  
January, 2000  
WESTCODE Positive development in power electronics  
R500CH20 to R500CH28  
Figure 5 - Total recovered charge, QRR  
Figure 6 - Recovered charge, QRA (50% chord)  
10000  
10000  
1000  
100  
4000A  
2000A  
4000A  
2000A  
1000A  
1000A  
500A  
500A  
Tj = 125°C  
Tj = 125°C  
R500CH20-28  
Issue 1  
R500CH20-28  
Issue 1  
1000  
10  
100  
Commutation rate - di/dt (A/µs)  
1000  
10  
100  
Commutation rate - di/dt (A/µs)  
1000  
Figure 7 - Peak reverse recovery current, IRM  
Figure 8 - Maximum recovery time, tRR (50% chord)  
100  
10000  
4000A  
2000A  
1000A  
10  
1000  
4000A  
2000A  
1000A  
500A  
500A  
Tj = 125°C  
Tj = 125°C  
R500CH20-28  
Issue 1  
R500CH20-28  
Issue 1  
1
100  
10  
100  
1000  
10  
100  
Commutation rate - di/dt (A/µs)  
1000  
Commutation rate - di/dt (A/µs)  
Provisional Data Sheet. Types R500CH20 to R500CH28 Issue 1  
Page 9 of 13  
January, 2000  
WESTCODE Positive development in power electronics  
R500CH20 to R500CH28  
Figure 9 - Reverse recovery energy per pulse  
Figure 10 - Sine wave energy per pulse  
1.00E+03  
1.00E+02  
1.00E+01  
1.00E+00  
1.00E-01  
1.00E-02  
10  
R500CH20-28  
Issue 1  
Tj=125°C  
4000A  
2000A  
1000A  
10kA  
8kA  
500A  
6kA  
4kA  
1
2kA  
Measured  
without  
snubber  
1kA  
Tj = 125°C  
R = 400V  
V
500A  
R500CH20-28  
Issue 1  
0.1  
1.00E-05  
1.00E-04  
1.00E-03  
1.00E-02  
10  
100  
Commutation rate - di/dt (A/µs)  
1000  
Pulse width (s)  
Figure 11 - Sine wave frequency ratings  
Figure 12 - Sine wave frequency ratings  
1.00E+05  
1.00E+05  
R500CH20-28  
Issue 1  
THs=55°C  
1kA  
100% Duty Cycle  
2kA  
4kA  
100% Duty Cycle  
1.00E+04  
1.00E+03  
1.00E+02  
1.00E+01  
1.00E+00  
2kA  
1.00E+04  
1.00E+03  
1.00E+02  
1.00E+01  
4kA  
6kA  
6kA  
8kA  
8kA  
10kA  
10kA  
THs=85°C  
R500CH20-28  
Issue 1  
1.00E-05  
1.00E-04  
1.00E-03  
1.00E-02  
1.00E-05  
1.00E-04  
1.00E-03  
1.00E-02  
Pulse Width (s)  
Pulse width (s)  
Provisional Data Sheet. Types R500CH20 to R500CH28 Issue 1  
Page 10 of 13  
January, 2000  
WESTCODE Positive development in power electronics  
R500CH20 to R500CH28  
Figure 13 - Square wave frequency ratings  
Figure 14 - Square wave frequency ratings  
1.00E+05  
1.00E+05  
1.00E+04  
1.00E+03  
1.00E+02  
1.00E+01  
1.00E+00  
1kA  
2kA  
2kA  
100% Duty Cycle  
100% Duty Cycle  
1.00E+04  
4kA  
4kA  
6kA  
6kA  
8kA  
1.00E+03  
1.00E+02  
1.00E+01  
1.00E+00  
10kA  
8kA  
10kA  
THs=55°C  
THs=55°C  
di/dt=100A/µs  
di/dt=500A/µs  
R500CH20-28  
Issue 1  
R500CH20-28  
Issue 1  
1.00E-05  
1.00E-04  
1.00E-03  
1.00E-02  
1.00E-05  
1.00E-04  
1.00E-03  
1.00E-02  
Pulse width (s)  
Pulse width (s)  
Figure 15 - Square wave frequency ratings  
Figure 16 - Square wave frequency ratings  
1.00E+05  
1.00E+05  
500A  
1kA  
1kA  
100% Duty Cycle  
1.00E+04  
100% Duty Cycle  
2kA  
1.00E+04  
1.00E+03  
1.00E+02  
1.00E+01  
2kA  
4kA  
1.00E+03  
4kA  
6kA  
8kA  
6kA  
8kA  
10kA  
10kA  
1.00E+02  
1.00E+01  
THs=85°C  
THs=85°C  
di/dt=500A/µs  
di/dt=100A/µs  
R500CH20-28  
Issue 1  
R500CH20-28  
Issue 1  
1.00E+00  
1.00E-05  
1.00E-04  
1.00E-03  
1.00E-02  
1.00E-05  
1.00E-04  
1.00E-03  
1.00E-02  
Pulse width (s)  
Pulse width (s)  
Provisional Data Sheet. Types R500CH20 to R500CH28 Issue 1  
Page 11 of 13  
January, 2000  
WESTCODE Positive development in power electronics  
R500CH20 to R500CH28  
Figure 17 - Square wave energy per pulse  
Figure 18 - Square wave energy per pulse  
1.00E+03  
1.00E+03  
1.00E+02  
1.00E+01  
1.00E+00  
1.00E-01  
1.00E-02  
R500CH20-28  
Issue 1  
R500CH20-28  
Issue 1  
di/dt=100A/µs  
Tj=125°C  
di/dt=500A/µs  
Tj=125°C  
1.00E+02  
1.00E+01  
10kA  
10kA  
8kA  
8kA  
6kA  
6kA  
4kA  
1.00E+00  
4kA  
2kA  
2kA  
1kA  
1.00E-01  
1.00E-02  
1kA  
500A  
500A  
1.00E-05  
1.00E-04  
1.00E-03  
1.00E-02  
1.00E-05  
1.00E-04  
1.00E-03  
1.00E-02  
Pulse width (s)  
Pulse width (s)  
Figure 19 - Maximum surge and I2t Ratings  
Gate may temporarily lose control of conduction angle  
100000  
10000  
1000  
1.00E+08  
I2t: VRRM10V  
I2t: 60% VRRM  
ITSM: VRRM10V  
1.00E+07  
ITSM: 60% VRRM  
Tj (initial) = 125°C  
R500CH20-28  
Issue 1  
1.00E+06  
1
3
5
10  
1
5
10  
50 100  
Duration of surge (ms)  
Duration of surge (cycles @ 50Hz)  
Provisional Data Sheet. Types R500CH20 to R500CH28 Issue 1  
Page 12 of 13  
January, 2000  
WESTCODE Positive development in power electronics  
R500CH20 to R500CH28  
Outline Drawing & Ordering Information  
101A281  
ORDERING INFORMATION  
(Please quote 11 or 12 digit code as below)  
R500  
Fixed  
Type  
Code  
CH  
Fixed  
Outline  
Code  
♦ ♦  
()  
Off-state Voltage Code  
VDRM/100  
dv/dt Code  
tq Code  
VRRM code  
See note 1  
below  
C=20V/µs, D=50V/µs,  
E=100V/µs, F=200V/µs  
F=50µs, Y=55µs, 2H=60µs, W=65µs,  
2G=70µs, E=75µs, D=100µs  
20-32  
Note 1.: A single digit represents VRRM in 10% increments of the selected VDRM  
.
A zero in this position indicates that VRRM=100% VDRM. The examples shown below are for 80% and 100% respectively.  
Typical order code : R500CH28E2G8 – 2.8kV VDRM, 2.24kV VRRM, 100V/µs dv/dt, 70µs tq, 27.7mm clamp height capsule.  
Typical order code : R500CH28E2G0 – 2.8kV VDRM, 2.8kV VRRM, 100V/µs dv/dt, 70µs tq, 27.7mm clamp height capsule.  
UK: Westcode Semiconductors Ltd.  
P.O. Box 57, Chippenham, Wiltshire, England. SN15 1JL.  
Tel: +44 (0) 1249 444524 Fax: +44 (0) 1249 659448  
WESTCODE  
E-Mail: WSL.sales@westcode.com  
USA: Westcode Semiconductors Inc.  
3270 Cherry Avenue, Long Beach, California 90807  
Tel: 562 595 6971 Fax: 562 595 8182  
E-Mail: WSI.sales@westcode.com  
Internet: http://www.westcode.com  
The information contained herein is confidential and is protected by Copyright. The information may not be used or  
disclosed except with the written permission of and in the manner permitted by the proprietors Westcode Semiconductors  
Ltd.  
Westcode Semiconductors Ltd.  
©
In the interest of product improvement, Westcode reserves the right to change specifications at any time without prior  
notice.  
Devices with a suffix code (2-letter or letter/digit/letter combination) added to their generic code are not necessarily subject  
to the conditions and limits contained in this report.  
Provisional Data Sheet. Types R500CH20 to R500CH28 Issue 1  
Page 13 of 13  
January, 2000  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY