Z86C3616PEC [IXYS]

Microcontroller, 8-Bit, MROM, Z8 CPU, 16MHz, CMOS, PDIP28,;
Z86C3616PEC
型号: Z86C3616PEC
厂家: IXYS CORPORATION    IXYS CORPORATION
描述:

Microcontroller, 8-Bit, MROM, Z8 CPU, 16MHz, CMOS, PDIP28,

时钟 微控制器 光电二极管 外围集成电路
文件: 总70页 (文件大小:2256K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY PRODUCT SPECIFICATION  
Z86C34/C35/C36  
Z86C44/C45/C46  
®
CMOS Z8 MCUS WITH ASCI UART  
OFFER EFFICIENT, COST-EFFECTIVE  
DESIGN FLEXIBILITY  
FEATURES  
Expanded Register File (ERF)  
Full-Duplex UART (ASCI)  
Dedicated 16-Bit Baud Rate Generator  
ROM  
(KB)  
RAM*  
(Bytes)  
Speed  
(MHz)  
Device  
Z86C34  
Z86C35  
Z86C36  
Z86C44  
Z86C45  
Z86C46  
16  
32  
64  
16  
32  
64  
237  
237  
237  
236  
236  
236  
16  
16  
16  
16  
16  
16  
32 Input/Output Lines (C44/C45/C46)  
24 Input/Output Lines (C34/C35/C36)  
Vectored, Prioritized Interrupts with Programmable Po-  
larity  
Note: *General-Purpose.  
Two Analog Comparators  
Two Programmable 8-Bit Counter/Timers, Each with  
Two 6-Bit Programmable Prescaler  
28-Pin DIP, 28-Pin SOIC and PLCC Packages (C34,  
C35, C36)  
Watch-Dog Timer (WDT)/Power-On Reset (POR)  
LQFP Packages (C44,  
40-Pin DIP, 44-Pin PLCC and
On-Chip Oscillator that Accepts a Crystal, Ceramic Res-  
C45, C46)  
onator, LC, RC, or External Clock  
3.0- to 5.5-Volt Operating Range  
Clock Free Watch-Dog Timer (WDT) Reset  
RAM and ROM Protect  
Optional 32-kHz Oscillator  
Operating Temperature Ranges:  
Standard: 0 °C to 70 °C  
Extended: –40 °C to +105 °C  
GENERAL DESCRIPTION  
ZiLOG’s Z8® MCU single-chip family now includes the  
Z86C34/C35/C36/C44/C45/C46productline,featuringen-  
hanced wake-up circuitry, programmable Watch-Dog Tim-  
ers (WDT), and low-noise/EMI options. Each of the new en-  
hancements to the Z8 offer a more efficient, cost-effective  
designandprovidetheuserwithincreaseddesignflexibility  
over the standard Z8 microcontroller core. The low-power  
consumption CMOS microcontroller offers fast execution,  
efficient use of memory, sophisticated interrupts, input/out-  
put bit manipulation capabilities, and easy hardware/soft-  
ware system expansion.  
The Z8 subfamily features an Expanded Register File (ERF)  
to allow access to register-mapped peripheral and I/O cir-  
cuits. Four basic address spaces are available to support this  
wide range of configurations: Program Memory, Register  
File, DataMemory, and ERF. TheRegisterFileiscomposed  
of 236/237 bytes of general-purpose registers, four I/O port  
registers, and 15 control and status registers. The ERF con-  
sists of twelve control registers.  
For applications demanding powerful I/O capabilities, the  
Z86C34/C35/C36 offers 24 pins, and the Z86C44/C45/C46  
offers 32 pins dedicated to input and output. These lines are  
DS007601-Z8X0499  
1
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
GENERAL DESCRIPTION (Continued)  
configurable under software control to provide timing, sta-  
tus signals, parallel I/O with or without handshake, and ad-  
dress/data bus for interfacing external memory.  
Note: All signals with an overline are active Low. For exam-  
ple, B/W, for which WORD is active Low, and B/W, for  
which BYTE is active Low.  
To unburden the system from coping with real-time tasks  
such as counting/timing and data communication, the Z8  
offer two on-chip counter/timers with a large number of  
user-selectable modes.  
Power connections follow these conventional descriptions:  
Connection  
Power  
Circuit  
Device  
With ROM/ROMless selectivity, the Z86C44/C45/C46  
provide both external memory and preprogrammed ROM,  
which enables this Z8® MCU to be used in high-volume ap-  
plications, or where code flexibility is required.  
V
V
V
CC  
DD  
SS  
Ground  
GND  
(C44/C45/C46 Only)  
Output Input  
V
GND  
CC  
XTAL AS DS R/W RESET  
Machine  
Timing & Inst.  
Control  
Port 3  
RESET  
WDT, POR  
Counter/  
Timers (2)  
ALU  
Interrupt  
Control  
FLAG  
Program  
Memory  
Two Analog  
Comparators  
Register  
Pointer  
Program  
Counter  
Full-Duplex  
UART  
Register File  
16-Bit Baud  
Rate Generator  
Port 2  
Port 0  
Port 1  
8
4
4
I/O  
Address or I/O  
(Nibble Programmable)  
(Bit Programmable)  
Address/Data or I/O  
(Byte Programmable)  
(C44/C45/C46 Only)  
Figure 1. Functional Block Diagram  
2
P R E L I M I N A R Y  
DS007601-Z8X0499  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
PIN DESCRIPTION  
1
P25  
P26  
P27  
P04  
P05  
P06  
P07  
28  
P24  
P23  
P22  
P21  
P20  
P03  
GND  
P02  
P01  
P00  
P30  
P36  
P37  
P35  
4
26  
25  
1
P21  
P20  
P03  
GND  
P02  
P01  
P00  
P05  
P06  
P07  
5
Z86C34/C35/C36  
Z86C34/C35/C36  
V
CC  
V
CC  
XTAL2  
XTAL1  
P31  
XTAL2  
XTAL1  
P31  
11  
19  
18  
12  
P32  
P33  
P34  
14  
15  
Figure 2. 28-Pin DIP/SOIC Pin Configuration  
Figure 3. 28-Pin PLCC Pin Configuration  
Table 1. 28-Pin DIP/SOIC/PLCC Pin Identification  
Pin #  
Symbol  
Function  
Direction  
1–3  
4–7  
8
P25–27  
P04–07  
Port 2, Bits 5,6,7  
Port 0, Bits 4,5,6,7  
Power Supply  
In/Output  
In/Output  
V
CC  
9
XTAL2  
XTAL1  
P31–33  
P34–35  
P37  
Crystal Oscillator  
Crystal Oscillator  
Port 3, Bits 1,2,3  
Port 3, Bits 4,5  
Port 3, Bit 7  
Output  
10  
Input  
11–13  
14–15  
16  
Fixed Input  
Fixed Output  
Fixed Output  
Fixed Output  
Fixed Input  
In/Output  
17  
P36  
Port 3, Bit 6  
18  
P30  
Port 3, Bit 0  
19–21  
22  
P00–02  
GND  
Port 0, Bits 0,1,2  
Ground  
23  
P03  
Port 0, Bit 3  
In/Output  
In/Output  
24–28  
P20–24  
Port 2, Bits 0,1,2,3,4  
DS007601-Z8X0499  
P R E L I M I N A R Y  
3
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
PIN DESCRIPTION (Continued)  
1
R/W  
P25  
P26  
P27  
P04  
P05  
P06  
P14  
P15  
P07  
40  
DS  
P24  
P23  
P22  
P21  
P20  
P03  
P13  
P12  
GND  
P02  
P11  
P10  
P01  
P00  
P30  
P36  
P37  
P35  
RESET  
Z86C44/C45/C46  
V
CC  
P16  
P17  
XTAL2  
XTAL1  
P31  
P32  
P33  
P34  
AS  
20  
21  
Figure 4. 40-Pin DIP Configuration  
Table 2. 40-Pin Dual-In-Line Package Pin Identification  
Table 2. 40-Pin Dual-In-Line Package Pin Identification  
Pin # Symbol Function  
Direction  
Pin # Symbol Function  
Direction  
1
R/W  
READ/WRITE  
Port 2, Bits 5,6,7  
Port 0, Bits 4,5,6  
Port 1, Bits 4,5  
Port 0, Bit 7  
Output  
21  
22  
23  
24  
25  
RESET  
P35  
Reset  
Input  
2–4  
5–7  
8–9  
10  
P25–27  
P04–06  
P14–15  
P07  
In/Output  
In/Output  
In/Output  
In/Output  
Port 3, Bit 5  
Port 3, Bit 7  
Port 3, Bit 6  
Port 3, Bit 0  
Port 0, Bit 0,1  
Port 1, Bit 0,1  
Port 0, Bit 2  
Ground  
Output  
Output  
Output  
Input  
P37  
P36  
P30  
11  
V
Power Supply  
26–27 P00–01  
28–29 P10–11  
In/Output  
In/Output  
In/Output  
CC  
12–13 P16–17  
Port 1, Bits 6,7  
Crystal Oscillator  
Crystal Oscillator  
Port 3, Bits 1,2,3  
Port 3, Bit 4  
In/Output  
Output  
Input  
30  
31  
P02  
14  
15  
XTAL2  
XTAL1  
GND  
32–33 P12–13  
34 P03  
35–39 P20–24  
40 DS  
Port 1, Bit 2,3  
Port 0, Bit 3  
Port 2, Bit 0,1,2,3,4  
Data Strobe  
In/Output  
In/Output  
In/Output  
Output  
16–18 P31–33  
Input  
19  
20  
P34  
AS  
Output  
Output  
Address Strobe  
4
P R E L I M I N A R Y  
DS007601-Z8X0499  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
6
1
40  
39  
7
P21  
P22  
P23  
P24  
DS  
P30  
P36  
P37  
P35  
RESET  
R/RL  
AS  
P34  
P33  
P32  
P31  
Z86C44/C45/C46  
NC  
R/W  
P25  
P26  
P27  
P04  
17  
29  
28  
18  
Figure 5. 44-Pin PLCC Pin Configuration  
Table 3. 44-Pin PLCC Pin Identification  
Table 3. 44-Pin PLCC Pin Identification  
Pin #  
Symbol Function  
Direction  
Pin #  
Symbol Function  
Direction  
1–2  
3–4  
5
GND  
P12–13  
P03  
Ground  
27  
28  
XTAL2  
XTAL1  
Crystal Oscillator  
Output  
Input  
Port 1, Bits 2,3  
Port 0, Bit 3  
In/Output  
In/Output  
In/Output  
Output  
Crystal Oscillator  
Port 3, Bits 1,2,3  
Port 3, Bit 4  
29–31 P31–33  
Input  
6–10  
11  
P20–24  
DS  
Port 2, Bits 0,1,2,3,4  
Data Strobe  
32  
33  
34  
35  
36  
37  
38  
39  
P34  
Output  
Output  
AS  
Address Strobe  
12  
NC  
Not Connected  
READ/WRITE  
Port 2, Bits 5,6,7  
Port 0, Bits 4,5,6  
Port 1, Bits 4,5  
Port 0, Bit 7  
R/RL  
RESET  
P35  
ROM/ROMless Control Input  
13  
R/W  
Output  
Reset  
Input  
14–16 P25–27  
17–19 P04–06  
20–21 P14–15  
In/Output  
In/Output  
In/Output  
In/Output  
Port 3, Bit 5  
Port 3, Bit 7  
Port 3, Bit 6  
Port 3, Bit 0  
Port 0, Bits 0,1  
Port 1, Bits 0,1  
Port 0, Bit 2  
Output  
Output  
Output  
Input  
P37  
P36  
22  
P07  
P30  
23–24  
V
Power Supply  
40–41 P00–01  
42–43 P10–11  
In/Output  
In/Output  
In/Output  
CC  
25–26 P16–17  
Port 1, Bits 6,7  
In/Output  
44  
P02  
DS007601-Z8X0499  
P R E L I M I N A R Y  
5
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
PIN DESCRIPTION (Continued)  
33  
34  
23  
22  
P21  
P22  
P23  
P24  
DS  
P30  
P36  
P37  
P35  
RESET  
R/RL  
AS  
P34  
P33  
P32  
P31  
NC  
Z86C44/C45/C46  
R/W  
P25  
P26  
P27  
P04  
44  
1
12  
11  
Figure 6. 44-Pin LQFP Pin Configuration  
Table 4. 44-Pin LQFP Pin Identification  
Table 4. 44-Pin LQFP Pin Identification  
Pin # Symbol Function Direction  
Pin # Symbol Function  
Direction  
1–2  
3–4  
5
P05–06  
P14–15  
P07  
Port 0, Bits 5,6  
Port 1, Bits 4,5  
Port 0, Bit 7  
In/Output  
In/Output  
In/Output  
21  
22  
P36  
P30  
Port 3, Bit 6  
Output  
Port 3, Bit 0  
Input  
23–24 P00–01  
25–26 P10–11  
Port 0, Bits 0,1  
Port 1, Bits 0,1  
Port 0, Bit 2  
In/Output  
In/Output  
In/Output  
6–7  
V
Power Supply  
CC  
27  
P02  
8–9  
10  
P16–17  
XTAL2  
XTAL1  
Port 1 Bits 6,7  
In/Output  
Output  
Input  
28–29 GND  
Ground  
Crystal Oscillator  
Crystal Oscillator  
Port 3, Bits 1,2,3  
Port 3, Bit 4  
30–31 P12–13  
Port 1, Bits 2,3  
Port 0, Bit 3  
In/Output  
In/Output  
In/Output  
Output  
11  
32  
P03  
12–14 P31–33  
Input  
33–37 P20–24  
Port 2, Bits 0,1,2,3,4  
Data Strobe  
Not Connected  
READ/WRITE  
15  
16  
17  
18  
19  
20  
P34  
Output  
Output  
38  
39  
40  
DS  
AS  
Address Strobe  
NC  
R/RL  
RESET  
P35  
ROM/ROMless Control Input  
R/W  
Output  
Reset  
Input  
Port 3, Bit 5  
Port 3, Bit 7  
Output  
Output  
P37  
6
P R E L I M I N A R Y  
DS007601-Z8X0499  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Min  
Max  
Units  
Notes  
Ambient Temperature under Bias  
Storage Temperature  
–40  
–65  
–0.6  
+105  
+150  
+7  
C
C
V
Voltage on any Pin with Respect to V  
1
2
SS  
Voltage on V Pin with Respect to V  
–0.3  
–0.6  
+7  
V
V
DD  
SS  
Voltage on XTAL1 and RESET Pins with Respect to V  
Total Power Dissipation  
V
+1  
SS  
DD  
1.21  
220  
W
Maximum Allowable Current out of V  
mA  
SS  
Maximum Allowable Current into V  
180  
mA  
DD  
Maximum Allowable Current into an Input Pin  
–600  
–600  
+600  
+600  
25  
µA  
µA  
3
4
Maximum Allowable Current into an Open-Drain Pin  
Maximum Allowable Output Current Sunk by Any I/O Pin  
Maximum Allowable Output Current Sourced by Any I/O Pin  
mA  
mA  
25  
Notes:  
1. Applies to all pins except XTAL pins and where otherwise noted.  
2. There is no input protection diode from pin to V  
3. Excludes XTAL pins.  
and current into pin is limited to 600 µA.  
DD  
4. Device pin is not at an output Low state.  
Stresses greater than those listed under Absolute Maximum  
Ratings may cause permanent damage to the device. This  
rating is a stress rating only. Functional operation of the de-  
vice at any condition above those indicated in the opera-  
tional sections of these specifications is not implied. Expo-  
suretoabsolutemaximumratingconditionsforanextended  
period may affect device reliability.  
Total power dissipation should not exceed 1.21 W for the  
package. Power dissipation is calculated as follows:  
Total Power Dissipation = V x [I – (sum of I ),  
DD  
DD  
OH  
+ sum of [(V – V ) x I ]  
OH  
DD  
OH  
+ sum of (V x I  
)
OL  
OL  
DS007601-Z8X0499  
P R E L I M I N A R Y  
7
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
STANDARD TEST CONDITIONS  
The characteristics listed in following pages apply for stan-  
dard test conditions as noted. All voltages are referenced  
to GND. Positive current flows into the referenced pin (see  
Figure 7.)  
From Output  
Under Test  
150 pF  
Figure 7. Test Load Diagram  
CAPACITANCE  
TA = 25ºC, VCC = GND = 0V, f = 1.0 MHz, unmeasured pins to GND  
Parameter  
Min  
Max  
Input capacitance  
Output capacitance  
I/O capacitance  
0
0
0
12 pF  
12 pF  
12 pF  
8
P R E L I M I N A R Y  
DS007601-Z8X0499  
 
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
DC ELECTRICAL CHARACTERISTICS  
Table 5. DC Characteristics  
T =  
T =  
A
A
0°C to +70°C  
–40°C to +105°C  
2
Typical  
1
V
Sym  
Parameter  
Min  
Max  
Min  
Max  
@25°C Units Conditions  
Notes  
CC  
V
Clock Input 3.0V  
High  
Voltage  
0.7 V  
V
V
+0.3 0.7 V  
V
V
+0.3  
1.8  
2.6  
1.2  
2.1  
V
V
V
V
Driven by  
External Clock  
Generator  
CH  
CC  
CC  
CC  
CC  
5.5V  
0.7 V  
+0.3 0.7 V  
+0.3  
Driven by  
External Clock  
Generator  
CC  
CC  
CC  
CC  
V
Clock Input 3.0V GND–0.3 0.2 V  
Low  
Voltage  
GND–0.3 0.2 V  
GND–0.3 0.2 V  
Driven by  
External Clock  
Generator  
CL  
CC  
CC  
5.5V GND–0.3 0.2 V  
Driven by  
CC  
CC  
External Clock  
Generator  
V
V
V
Input High  
Voltage  
3.0V  
5.5V  
0.7 V  
0.7 V  
V
V
+0.3 0.7 V  
+0.3 0.7 V  
V
V
+0.3  
+0.3  
1.8  
2.6  
1.1  
1.6  
3.1  
4.8  
V
V
V
V
V
V
IH  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
Input Low  
Voltage  
3.0V GND–0.3 0.2 V  
5.5V GND–0.3 0.2 V  
GND–0.3 0.2 V  
GND–0.3 0.2 V  
IL  
CC  
CC  
CC  
CC  
Output  
High  
Voltage  
(Low-EMI  
Mode)  
3.0V  
5.0V  
V
V
–0.4  
–0.4  
V
V
–0.4  
–0.4  
I
I
= –0.5 mA  
= –0.5 mA  
OH  
CC  
CC  
CC  
CC  
OH  
OH  
V
V
Output  
High  
Voltage  
3.0V  
5.5V  
V
V
–0.4  
–0.4  
V
V
–0.4  
–0.4  
3.1  
4.8  
V
V
I
I
= –2.0 mA  
= –2.0 mA  
3
3
OH1  
OL  
CC  
CC  
CC  
OH  
OH  
CC  
Output Low 3.0V  
Voltage  
(Low-EMI  
0.6  
0.6  
0.2  
0.1  
V
V
I
I
= 1.0 mA  
= 1.0 mA  
OL  
OL  
5.0V  
0.4  
0.4  
Mode)  
V
Output Low 3.0V  
0.6  
0.4  
0.6  
0.4  
0.2  
0.1  
V
V
I
I
= +4.0 mA  
= +4.0 mA  
3
3
OL1  
OL  
OL  
Voltage  
5.5V  
Notes:  
1. The V voltage specification of 3.0V guarantees 3.3V 0.3V with typicals at V = 3.3V, and the V voltage  
CC  
CC  
CC  
specification of 5.5V guarantees 5.0V 0.5V with typicals at V = 5.0V.  
CC  
2. Typicals are at V = 5.0V and 3.3V.  
CC  
3. Standard Mode (not Low EMI).  
4. Not applicable to devices in 28-pin packages.  
5. For analog comparator, inputs when analog comparators are enabled.  
6. All outputs unloaded, I/O pins floating, inputs at rail.  
7. Same as note 6, except inputs at V  
.
CC  
8. Clock must be forced Low, when XTAL 1 is clock-driven and XTAL2 is floating.  
9. 0ºC to 70ºC (standard temperature).  
10. Auto Latch (Mask Option) selected.  
11. The V voltage increases as the temperature decreases and overlaps lower V operating region.  
LV  
CC  
12. –40˚C to 150˚C (extended temperature).  
DS007601-Z8X0499  
P R E L I M I N A R Y  
9
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
DC ELECTRICAL CHARACTERISTICS (Continued)  
Table 5. DC Characteristics (Continued)  
T =  
T =  
A
A
0°C to +70°C  
–40°C to +105°C  
2
Typical  
@25°C Units Conditions  
1
V
Sym  
Parameter  
Min  
Max  
Min  
Max  
1.2  
Notes  
CC  
V
Output Low 3.0V  
1.2  
1.2  
0.3  
0.4  
1.8  
2.6  
V
V
V
V
I
I
= +6 mA  
3
3
4
4
OL2  
OL  
OL  
Voltage  
5.5V  
1.2  
= +12 mA  
V
Reset Input 3.0V  
.8 V  
V
.8 V  
V
V
RH  
CC  
CC  
CC  
CC  
CC  
CC  
High  
Voltage  
5.5V  
.8 V  
V
.8 V  
CC  
CC  
V
V
V
Reset Input 3.0V GND–0.3 0.2 V  
GND–0.3 0.2 V  
GND–0.3 0.2 V  
1.1  
1.6  
V
V
4
4
Rl  
CC  
CC  
Low  
5.5V GND–0.3 0.2 V  
Voltage  
CC  
CC  
Reset  
Output Low  
Voltage  
3.0V  
5.5V  
0.6  
0.6  
0.6  
0.3  
0.3  
V
V
I
I
= +1.0 mA  
= +1.0 mA  
4
4
OLR  
OL  
OL  
0.6  
Comparator 3.0V  
25  
25  
25  
25  
10  
10  
mV  
mV  
5
5
OFFSET  
Input Offset  
5.5V  
Voltage  
I
I
Input  
Leakage  
3.0V  
5.5V  
3.0V  
5.5V  
–1  
–1  
–1  
–1  
2
2
1
1
–1  
–1  
–1  
–1  
2
2
2
2
0.004  
0.004  
0.004  
0.004  
µA  
µA  
µA  
µA  
V
V
V
V
= 0V, V  
= 0V, V  
= 0V, V  
= 0V, V  
IL  
IN  
IN  
IN  
IN  
CC  
CC  
CC  
CC  
Output  
Leakage  
OL  
IIR  
Reset Input 3.0V  
–20  
–20  
–130  
–180  
20  
–18  
–18  
–130  
–180  
20  
–60  
–85  
7
µA  
µA  
Current  
5.5V  
I
Supply  
Current  
3.0V  
5.5V  
3.0V  
5.5V  
mA @ 16 MHz  
mA @ 16 MHz  
mA @ 12 MHz  
mA @ 12 MHz  
6
6
6
6
CC  
25  
25  
20  
5
15  
15  
20  
20  
15  
Notes:  
1. The V voltage specification of 3.0V guarantees 3.3V 0.3V with typicals at V = 3.3V, and the V voltage  
CC  
CC  
CC  
specification of 5.5V guarantees 5.0V 0.5V with typicals at V = 5.0V.  
CC  
2. Typicals are at V = 5.0V and 3.3V.  
CC  
3. Standard Mode (not Low EMI).  
4. Not applicable to devices in 28-pin packages.  
5. For analog comparator, inputs when analog comparators are enabled.  
6. All outputs unloaded, I/O pins floating, inputs at rail.  
7. Same as note 6, except inputs at V  
.
CC  
8. Clock must be forced Low, when XTAL 1 is clock-driven and XTAL2 is floating.  
9. 0ºC to 70ºC (standard temperature).  
10. Auto Latch (Mask Option) selected.  
11. The V voltage increases as the temperature decreases and overlaps lower V operating region.  
LV  
CC  
12. –40˚C to 150˚C (extended temperature).  
10  
P R E L I M I N A R Y  
DS007601-Z8X0499  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
Table 5. DC Characteristics (Continued)  
T =  
T =  
A
A
0°C to +70°C  
–40°C to +105°C  
2
Typical  
1
V
Sym  
Parameter  
Min  
Max  
Min  
Max  
@25°C Units Conditions  
Notes  
CC  
I
Standby  
Current  
(HALT  
3.0V  
5.5V  
3.0V  
4.5  
4.5  
2.0  
3.7  
1.5  
mA V = 0V, V  
6
CC1  
IN  
CC  
@ 16 MHz  
8
8
mA V = 0V, V  
6
6
IN  
CC  
Mode)  
@ 16 MHz  
3.4  
3.4  
mA Clock Divide-  
by-16 @ 16  
MHz  
5.5V  
3.0V  
7.0  
8
7.0  
8
2.9  
2
mA Clock Divide-  
by-16 @ 16  
MHz  
6
I
Standby  
Current  
(STOP  
µA  
µA  
µA  
µA  
V
= 0V, V  
CC  
7,8  
CC2  
IN  
WDT is not  
Running  
Mode)  
5.5V  
3.0V  
5.5V  
10  
10  
4
V
= 0V, V  
7,8  
IN  
CC  
WDT is not  
Running  
500  
800  
600  
310  
600  
V
= 0V, V  
7,8,9  
7,8,9  
IN  
CC  
WDT is  
Running  
1000  
V
= 0V, V  
IN  
CC  
WDT is  
Running  
V
Input  
Common  
Mode  
3.0V  
5.5V  
0
0
V
V
–1.0V  
0
0
V
V
–1.5V  
V
V
5
5
ICR  
CC  
CC  
CC  
–1.0V  
–1.5V  
CC  
Voltage  
Range  
I
I
Auto Latch  
Low  
Current  
3.0V  
5.5V  
0.7  
1.4  
8
0.7  
1.4  
10  
20  
3
5
µA 0V < V < V  
10  
10  
ALL  
IN  
CC  
15  
µA 0V < V < V  
IN  
CC  
Auto Latch  
High  
Current  
3.0V  
5.5V  
–0.6  
–1.0  
–5  
–8  
–0.6  
–1.0  
–7  
–3  
–6  
µA 0V < V < V  
10  
10  
ALH  
IN  
CC  
–10  
µA 0V < V < V  
IN  
CC  
Notes:  
1. The V voltage specification of 3.0V guarantees 3.3V 0.3V with typicals at V = 3.3V, and the V voltage  
CC  
CC  
CC  
specification of 5.5V guarantees 5.0V 0.5V with typicals at V = 5.0V.  
CC  
2. Typicals are at V = 5.0V and 3.3V.  
CC  
3. Standard Mode (not Low EMI).  
4. Not applicable to devices in 28-pin packages.  
5. For analog comparator, inputs when analog comparators are enabled.  
6. All outputs unloaded, I/O pins floating, inputs at rail.  
7. Same as note 6, except inputs at V  
.
CC  
8. Clock must be forced Low, when XTAL 1 is clock-driven and XTAL2 is floating.  
9. 0ºC to 70ºC (standard temperature).  
10. Auto Latch (Mask Option) selected.  
11. The V voltage increases as the temperature decreases and overlaps lower V operating region.  
LV  
CC  
12. –40˚C to 150˚C (extended temperature).  
DS007601-Z8X0499  
P R E L I M I N A R Y  
11  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
DC ELECTRICAL CHARACTERISTICS (Continued)  
Table 5. DC Characteristics (Continued)  
T =  
T =  
A
A
0°C to +70°C  
–40°C to +105°C  
2
Typical  
@25°C Units Conditions  
1
V
Sym  
Parameter  
Low  
Min  
Max  
Min  
Max  
Notes  
CC  
V
V
2.0  
3.3  
2.8  
V
4 MHz max  
11,12  
LV  
CC  
Int. CLK Freq.  
Voltage  
Protection  
Voltage  
2.2  
3.1  
2.8  
6 MHz max  
Int. CLK Freq.  
9,11  
Notes:  
1. The V voltage specification of 3.0V guarantees 3.3V 0.3V with typicals at V = 3.3V, and the V voltage  
CC  
CC  
CC  
specification of 5.5V guarantees 5.0V 0.5V with typicals at V = 5.0V.  
CC  
2. Typicals are at V = 5.0V and 3.3V.  
CC  
3. Standard Mode (not Low EMI).  
4. Not applicable to devices in 28-pin packages.  
5. For analog comparator, inputs when analog comparators are enabled.  
6. All outputs unloaded, I/O pins floating, inputs at rail.  
7. Same as note 6, except inputs at V  
.
CC  
8. Clock must be forced Low, when XTAL 1 is clock-driven and XTAL2 is floating.  
9. 0ºC to 70ºC (standard temperature).  
10. Auto Latch (Mask Option) selected.  
11. The V voltage increases as the temperature decreases and overlaps lower V operating region.  
LV  
CC  
12. –40˚C to 150˚C (extended temperature).  
12  
P R E L I M I N A R Y  
DS007601-Z8X0499  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
AC ELECTRICAL CHARACTERISTICS  
External I/O or Memory READ and WRITE Timing  
R/W  
13  
19  
12  
Port 0, DM  
16  
20  
3
18  
1
Port 1  
AS  
D7–D0 IN  
A7–A0  
2
9
8
11  
4
5
6
DS  
(Read)  
17  
10  
Port1  
A7–A0  
D7–D0 OUT  
14  
15  
7
DS  
(Write)  
Figure 8. External I/O or Memory READ and WRITE Timing  
DS007601-Z8X0499  
P R E L I M I N A R Y  
13  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
AC ELECTRICAL CHARACTERISTICS (Continued)  
Table 6. External I/O or Memory READ and WRITE Timing (C44/C45/C46 Only)  
(SCLK/TCLK = XTAL/2)  
T = –0ºC to 70ºC  
T = –40ºC to +105ºC  
A
A
12 MHz  
16 MHz  
12 MHz  
16 MHz  
1
V
No Symbol  
Parameter  
Min Max Min Max Min Max Min Max Units Notes  
CC  
1
2
3
4
5
6
7
8
9
TdA(AS)  
TdAS(A)  
TdAS(DR)  
TwAS  
Address Valid to AS  
Rise Delay  
3.0  
5.5  
3.0  
5.5  
3.0  
5.5  
3.0  
5.5  
3.0  
5.5  
3.0  
5.5  
3.0  
5.5  
35  
35  
45  
45  
25  
25  
35  
35  
35  
35  
45  
45  
25  
25  
35  
35  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
2
AS Rise to Address  
Float Delay  
2
2
AS Rise to Read  
Data Req’d Valid  
250  
250  
180  
180  
250  
250  
180  
180  
2,3  
2
AS Low Width  
55  
55  
40  
40  
0
55  
55  
40  
40  
0
2
2
TdAS(DS)  
TwDSR  
Address Float to DS  
Fall  
0
0
0
0
0
0
DS (Read) Low  
Width  
200  
200  
110  
110  
135  
135  
80  
80  
200  
200  
110  
110  
135  
135  
80  
80  
2,3  
2,3  
2,3  
2,3  
2,3  
2,3  
2
TwDSW  
DS (WRITE) Low  
Width  
TdDSR(DR) DS Fall to Read Data 3.0  
150  
150  
75  
75  
150  
150  
75  
75  
Req’d Valid  
5.5  
ThDR(DS)  
Read Data to DS  
Rise Hold Time  
3.0  
5.5  
3.0  
5.5  
3.0  
5.5  
0
0
0
0
0
0
0
0
2
10 TdDS(A)  
DS Rise to Address  
Active Delay  
45  
55  
30  
45  
45  
45  
45  
45  
55  
55  
50  
50  
35  
35  
25  
25  
35  
35  
25  
25  
45  
55  
30  
45  
45  
45  
45  
45  
55  
55  
50  
50  
35  
55  
25  
25  
35  
35  
25  
25  
2
2
11 TdDS(AS)  
DS Rise to AS Fall  
Delay  
2
2
12 TdR/W(AS) R/W Valid to AS Rise 3.0  
2
Delay  
5.5  
2
13 TdDS(R/W) DS Rise to R/W Not  
Valid  
3.0  
5.5  
2
2
14 TdDW(DSW) WRITE Data Valid to 3.0  
2
DS Fall (WRITE)  
Delay  
5.5  
2
15 TdDS(DW) DS Rise to WRITE  
Data Not Valid Delay  
3.0  
5.5  
3.0  
5.5  
45  
45  
35  
35  
45  
45  
35  
35  
ns  
ns  
ns  
ns  
2
2
16 TdA(DR)  
Address Valid to  
Read Data Req’d  
Valid  
310  
310  
230  
230  
310  
310  
230  
230  
2,3  
2,3  
Notes:  
1. The V voltage specification of 3.0V guarantees 3.3V 0.3V, and the V voltage specification of 5.5V guarantees 5.0V  
CC  
CC  
0.5V.  
2. Timing numbers provided are for minimum TpC.  
3. When using extended memory timing add 2 TpC.  
14  
P R E L I M I N A R Y  
DS007601-Z8X0499  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
Table 6. External I/O or Memory READ and WRITE Timing (C44/C45/C46 Only)  
(SCLK/TCLK = XTAL/2) (Continued)  
T = –0ºC to 70ºC  
T = –40ºC to +105ºC  
A
A
12 MHz  
16 MHz  
12 MHz  
16 MHz  
1
V
No Symbol  
Parameter  
Min Max Min Max Min Max Min Max Units Notes  
CC  
17 TdAS(DS)  
AS Rise to DS Fall  
Delay  
3.0  
5.5  
3.0  
5.5  
65  
65  
35  
35  
45  
45  
30  
30  
65  
65  
35  
35  
45  
45  
30  
30  
ns  
ns  
ns  
ns  
2
2
2
2
18 TdDM(AS) DM Valid to AS Fall  
Delay  
19 TdDs(DM)  
20 ThDS(AS)  
Notes:  
DS Rise to DM Valid 3.0  
45  
45  
35  
35  
45  
45  
35  
35  
ns  
ns  
2
2
Delay  
5.5  
DS Valid to Address  
Valid Hold Time  
3.0  
5.5  
45  
45  
35  
35  
45  
45  
35  
35  
ns  
ns  
2
2
1. The V voltage specification of 3.0V guarantees 3.3V 0.3V, and the V voltage specification of 5.5V guarantees 5.0V  
CC  
CC  
0.5V.  
2. Timing numbers provided are for minimum TpC.  
3. When using extended memory timing add 2 TpC.  
DS007601-Z8X0499  
P R E L I M I N A R Y  
15  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
AC ELECTRICAL CHARACTERISTICS (Continued)  
Additional Timing Diagram  
3
1
Clock  
2
2
3
7
7
TIN  
4
5
6
IRQN  
8
9
Clock  
Setup  
11  
Stop  
Mode  
Recovery  
Source  
10  
Figure 9. Additional Timing  
16  
P R E L I M I N A R Y  
DS007601-Z8X0499  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
Table 7. Additional Timing (SCLK/TCLK = XTAL/2)  
T = 0ºC to +70ºC T = –40ºC to +105ºC  
A
A
12 MHz  
16 MHz  
12 MHz  
16 MHz  
1
No Symbol Parameter  
Min Max Min Max Min Max Min Max Units Notes D1,D0  
V
CC  
1
TpC  
Input Clock  
Period  
3.0V  
5.5V  
83  
83  
DC  
DC  
DC  
DC  
15  
62.5  
62.5  
250  
250  
DC  
DC  
DC  
DC  
15  
83  
83  
DC  
DC  
DC  
DC  
15  
62.5  
62.5  
250  
250  
DC  
DC  
DC  
DC  
15  
ns  
ns  
ns  
ns  
ns  
ns  
2,3,4  
2,3,4  
2,3  
3.0V 250  
5.5V 250  
3.0V  
250  
250  
2,3  
2
3
TrC,TfC Clock Input  
Rise & Fall  
2,3  
5.5V  
15  
15  
15  
15  
2,3  
Times  
TwC  
Input Clock  
Width  
3.0V  
5.5V  
41  
41  
31  
31  
41  
41  
31  
31  
ns  
ns  
ns  
ns  
ns  
ns  
2,3,4  
2,3,4  
2,3  
2,3  
2,3  
2,3  
2,3  
2,3  
2,3  
2,3  
2,3  
2,3  
3.0V 125  
5.5V 125  
3.0V 100  
125  
125  
125  
125  
125  
125  
4
5
6
7
TwTinL  
Timer Input  
Low Width  
100  
100  
100  
5.5V  
70  
70  
70  
70  
TwTinH Timer Input  
High Width  
3.0V 5TpC  
5.5V 5TpC  
3.0V 8TpC  
5.5V 8TpC  
3.0V  
5TpC  
5TpC  
8TpC  
8TpC  
5TpC  
5TpC  
8TpC  
8TpC  
5TpC  
5TpC  
8TpC  
8TpC  
TpTin  
Timer Input  
Period  
TrTin,  
TfTin  
Timer Input  
Rise & Fall  
Timer  
100  
100  
100  
100  
100  
100  
100  
100  
ns  
ns  
5.5V  
8A TwIL  
8B TwIL  
Int. Request  
Low Time  
3.0V 100  
100  
70  
100  
70  
100  
70  
ns  
ns  
2,3,5  
2,3,5  
2,3,6  
2,3,6  
2,3,5  
2,3,5  
5.5V  
70  
Int. Request  
Low Time  
3.0V 5TpC  
5.5V 5TpC  
3.0V 5TpC  
5.5V 5TpC  
5TpC  
5TpC  
5TpC  
5TpC  
5TpC  
5TpC  
5TpC  
5TpC  
5TpC  
5TpC  
5TpC  
5TpC  
9
TwIH  
Int. Request  
Input High  
Time  
10 Twsm  
Stop-Mode  
Recovery  
Width Spec  
3.0V  
5.5V  
12  
12  
12  
12  
12  
12  
12  
12  
ns  
ns  
7
7
11 Tost  
Oscillator  
Startup Time  
3.0V  
5.5V  
5TpC  
5TpC  
5TpC  
5TpC  
5TpC  
5TpC  
5TpC  
5TpC  
7,8  
7,8  
Notes:  
1. The V voltage specification of 3.0V guarantees 3.3V 0.3V, and the V voltage specification of 5.5V guarantees 5.0V  
CC  
CC  
0.5V.  
2. Timing Reference uses 0.7 V for a logic 1and 0.2 V for a logic 0.  
CC  
CC  
3. SMR D1 = 0.  
4. Maximum frequency for external XTAL clock is 4 MHz when using low-EMI Oscillator mode PCON Reg.D7 = 0.  
5. Interrupt request via Port 3 (P31–P33).  
6. Interrupt request via Port 3 (P30).  
7. SMR–D5 = 1, POR STOP Mode Delay is on.  
8. For RC and LC oscillator, and for oscillator driven by clock driver.  
9. Register WDTMR.  
DS007601-Z8X0499  
P R E L I M I N A R Y  
17  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
AC ELECTRICAL CHARACTERISTICS (Continued)  
Table 7. Additional Timing (SCLK/TCLK = XTAL/2) (Continued)  
T = 0ºC to +70ºC T = –40ºC to +105ºC  
A
A
12 MHz  
16 MHz  
12 MHz  
16 MHz  
1
No Symbol Parameter  
Min Max Min Max Min Max Min Max Units Notes D1,D0  
V
CC  
12 Twdt  
Watch-Dog  
Timer Delay  
Timer before  
time-out  
3.0V  
5.5V  
3.0V  
5.5V  
3.0V  
5.5V  
7
3.5  
14  
7
7
3.5  
14  
7
7
3.5  
14  
7
7
3.5  
14  
7
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
9
9
9
9
9
9
9
9
0,0  
0,0  
0,1  
0,1  
1,0  
1,0  
1,1  
1,1  
28  
14  
28  
14  
112  
56  
3
28  
14  
112  
56  
3
28  
14  
112  
56  
3
3.0V 112  
5.5V  
3.0V  
5.5V  
56  
3
13 TPOR  
Power-On  
Reset Delay  
24  
13  
24  
13  
25  
14  
25  
14  
1.5  
1.5  
1
1
Notes:  
1. The V voltage specification of 3.0V guarantees 3.3V 0.3V, and the V voltage specification of 5.5V guarantees 5.0V  
CC  
CC  
0.5V.  
2. Timing Reference uses 0.7 V for a logic 1and 0.2 V for a logic 0.  
CC  
CC  
3. SMR D1 = 0.  
4. Maximum frequency for external XTAL clock is 4 MHz when using low-EMI Oscillator mode PCON Reg.D7 = 0.  
5. Interrupt request via Port 3 (P31–P33).  
6. Interrupt request via Port 3 (P30).  
7. SMR–D5 = 1, POR STOP Mode Delay is on.  
8. For RC and LC oscillator, and for oscillator driven by clock driver.  
9. Register WDTMR.  
18  
P R E L I M I N A R Y  
DS007601-Z8X0499  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
Table 8. Additional Timing  
(Divide-By-One Mode, SCLK/TCLK = XTAL)  
T = 0ºC to  
T = 40ºC to  
A
A
+70ºC  
+105ºC  
1
V
8 MHz  
8 MHz  
CC  
No Symbol Parameter  
Min  
Max  
Min  
Max  
Units Notes  
1
TpC  
Input Clock Period  
3.0V  
5.5V  
3.0V  
5.5V  
3.0V  
5.5V  
3.0V  
5.5V  
3.0V  
5.5V  
3.0V  
5.5V  
3.0V  
5.5V  
3.0V  
5.5V  
3.0V  
5.5V  
3.0V  
5.5V  
3.0V  
5.5V  
3.0V  
5.5V  
3.0V  
5.5V  
3.0V  
5.5V  
250  
250  
125  
125  
DC  
DC  
DC  
DC  
25  
250  
250  
125  
125  
DC  
DC  
DC  
DC  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2,3,4  
2,3,4  
2,3  
2,3  
2
3
TrC,TfC Clock Input Rise  
& Fall Times  
2,3  
25  
25  
2,3  
TwC  
Input Clock Width  
125  
125  
125  
125  
2,3,4  
2,3,4  
2,3  
62  
62  
62  
62  
2,3  
4
5
6
7
TwTinL Timer Input Low Width  
TwTinH Timer Input High Width  
100  
100  
2,3  
70  
70  
2,3  
3TpC  
3TpC  
4TpC  
4TpC  
3TpC  
3TpC  
4TpC  
4TpC  
2,3  
2,3  
TpTin  
Timer Input Period  
2,3  
2,3  
TrTin,  
TfTin  
Timer Input Rise  
& Fall Timer  
100  
100  
100  
100  
ns  
ns  
ns  
ns  
2,3  
2,3  
8A TwIL  
Int. Request Low Time  
100  
70  
100  
70  
2,3,5  
2,3,5  
2,3,6  
2,3,6  
2,3,5  
2,3,5  
7
8B TwIL  
Int. Request Low Time  
3TpC  
3TpC  
3TpC  
3TpC  
12  
3TpC  
3TpC  
3TpC  
2TpC  
12  
9
TwIH  
Int. Request Input  
High Time  
10 Twsm  
11 Tost  
Notes:  
Stop-Mode Recovery  
Width Spec  
ns  
ns  
12  
12  
7
Oscillator Startup Time  
5TpC  
5TpC  
5TpC  
5TpC  
7,8  
7,8  
1. The V voltage specification of 3.0V guarantees 3.3V 0.3V, and the V voltage specification of 5.5V guarantees 5.0V  
CC  
CC  
0.5V.  
2. Timing Reference uses 0.7 V for a logic “1” and 0.2 V for a logic “0”.  
CC  
CC  
3. SMR D1 = 0.  
4. Maximum frequency for external XTAL clock is 4 MHz when using low-EMI Oscillator mode PCON Reg.D7 = 0.  
5. Interrupt request via Port 3 (P31–P33).  
6. Interrupt request via Port 3 (P30).  
7. SMR–D5 = 1, POR STOP Mode Delay is on.  
8. For RC and LC oscillator, and for oscillator driven by clock driver.  
DS007601-Z8X0499  
P R E L I M I N A R Y  
19  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
AC ELECTRICAL CHARACTERISTICS (Continued)  
Handshake Timing Diagrams  
Data In  
Data In Valid  
Next Data In Valid  
2
1
3
Delayed DAV  
DAV  
(Input)  
6
5
4
RDY  
(Output)  
Delayed RDY  
Figure 10. Input Handshake Timing  
Data Out  
Data Out Valid  
Next Data Out Valid  
7
DAV  
(Output)  
Delayed DAV  
9
11  
8
10  
RDY  
(Input)  
Delayed RDY  
Figure 11. Output Handshake Timing  
20  
P R E L I M I N A R Y  
DS007601-Z8X0499  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
1
Table 9. Handshake Timing  
T = 0°C to +70°C  
T = –40°C to +105°C  
A
A
12 MHz  
16 MHz  
12 MHz  
16 MHz  
Data  
2
V
No Symbol  
Parameter  
Min Max Min Max Min Max Min Max Direction  
CC  
1
2
3
4
5
6
7
8
9
TsDI(DAV)  
ThDI(RDY)  
TwDAV  
Data In Setup Time  
3.0V  
5.5V  
3.0V  
5.5V  
3.0V  
5.5V  
3.0V  
5.5V  
3.0V  
5.5V  
3.0V  
5.5V  
3.0V  
5.5V  
3.0V  
5.5V  
3.0V  
5.5V  
0
0
0
0
0
0
0
0
IN  
IN  
Data In Hold Time  
0
0
0
0
IN  
0
0
0
0
IN  
Data Available Width  
155  
110  
155  
110  
155  
110  
155  
110  
IN  
IN  
TdDAVI(RDY) DAV Fall to RDY Fall  
Delay  
0
0
0
0
0
0
0
IN  
0
IN  
TdDAVId(RDY) DAV Out to DAV Fall  
Delay  
120  
80  
120  
80  
120  
80  
120  
80  
IN  
IN  
RDY0d(DAV)  
RDY Rise to DAV Fall  
Delay  
0
0
0
0
0
0
0
0
IN  
IN  
TdD0(DAV)  
Data Out to DAV Fall  
Delay  
42  
42  
0
31  
31  
0
42  
42  
0
31  
31  
0
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
TdDAV0(RDY) DAV Fall to RDY Fall  
Delay  
0
0
0
0
TdRDY0(DAV) RDY Fall to DAV Rise  
Delay  
160  
115  
160  
115  
160  
115  
160  
115  
10 TwRDY  
RDY Width  
3.0V 110  
110  
80  
110  
80  
110  
80  
5.5V  
3.0V  
5.5V  
80  
11 TdRDY0d(DAV) RDY Rise to DAV Fall  
Delay  
110  
80  
110  
80  
110  
80  
110  
80  
Note:  
1. Timing Reference uses 0.7 V for a logic 1and 0.2 V for a logic 0.  
CC  
CC  
2. The V voltage specification of 3.0V guarantees 3.3V 0.3V. The V voltage specification of 5.5V guarantees 5.0V 0.5V.  
CC  
CC  
DS007601-Z8X0499  
P R E L I M I N A R Y  
21  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
PIN FUNCTIONS  
R/RL (input, active Low). The ROM/ROMless pin, when  
connected to GND, disables the internal ROM and forces  
the device to function as a ROMless Z8. (Not available for  
devices in the 28-pin package.)  
AS (output, active Low). Address Strobe is pulsed one  
time at the beginning of each machine cycle for external  
memory transfer. Address output is from Port 0/Port 1 for  
all external programs. Memory address transfers are valid  
at the trailing edge of AS. Under program control, AS is  
placed in the high-impedance state along with Ports 0 and  
1, Data Strobe, and READ/WRITE. (Not available for de-  
vices in the 28-pin package.)  
Notes: When left unconnected or pulled High to VCC, the  
device functions normally as a Z8 ROM version.  
When using in ROM Mode in a high-EMI (noisy)  
environment, the ROMless pins should be connected  
XTAL1 Crystal 1 (time-based input). This pin connects a  
parallel-resonant crystal, ceramic resonator, LC, or RC net-  
work, or an external single-phase clock to the on-chip os-  
cillator input.  
directly to V  
.
CC  
DS (output, active Low). Data Strobe is activated one  
time for each external memory transfer. For a READ oper-  
ation, data must be available prior to the trailing edge of DS.  
For WRITE operations, the falling edge of DS indicates that  
output data is valid. (Not available for devices in the 28-  
pin package.)  
XTAL2 Crystal 2 (time-based output). This pin connects  
a parallel-resonant crystal, ceramic resonant, LC, or RC net-  
work to the on-chip oscillator output.  
R/W (output, WRITE Low). The READ/WRITE signal is  
Low when the Z8 is writing to the external program or data  
memory. (Not available for devices in the 28-pin package.)  
22  
P R E L I M I N A R Y  
DS007601-Z8X0499  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
Port 0 (P00–P07). Port 0 is an 8-bit, bidirectional, CMOS-  
compatible port. These eight I/O lines are configured under  
software control as a nibble I/O port (P03–P00 input/output  
and P07–P04 input/output), or as an address port for inter-  
facingexternalmemory. TheinputbuffersareSchmitt-trig-  
gered and nibble-programmed as outputs and can be glo-  
bally programmed as either push-pull or open-drain. Low-  
EMIoutputbufferscanbegloballyprogrammedbythesoft-  
ware. Port 0 is placed under handshake control. In this con-  
figuration, Port 3, lines P32 and P35 are used as the hand-  
shake control DAV0 and RDY0. Handshake signal direction  
is dictated by the I/O direction (input or output) of Port 0  
of the upper nibble P04–P07. The lower nibble must indi-  
cate the same direction as the upper nibble.  
nibble) depending on the required address space. If the ad-  
dress range requires 12 bits or less, the upper nibble of Port  
0 can be programmed independently as I/O while the lower  
nibble is used for addressing. If one or both nibbles are re-  
quired for I/O operation, they are configured by writing to  
the Port 0 mode register.  
In ROMless mode, after a hardware RESET, Port 0 is con-  
figured as address lines A15–A8, and extended timing is set  
to accommodate slow memory access. The initialization  
routine can include reconfiguration to eliminate this ex-  
tended timing mode. (In ROM mode, Port 0 is defined as  
input after RESET.)  
Port 0 can be placed in a high-impedance state along with  
Port 1, AS, DS and R/W, allowing the Z8 to share common re-  
sources in multiprocessor and DMA applications (Figure 12).  
For external memory references, Port 0 provides address  
bits A11–A8 (lower nibble) or A15–A8 (lower and upper  
4
Port 0  
(I/O or A15–A8)  
4
Z8  
Handshake Controls  
DAV0 and RDY0  
(P32 and P35)  
Open-Drain  
OE  
Pull-Up  
Transistor Enable  
(Mask Option)  
PAD  
Out  
In  
1.5  
2.3 Hysteresis @ VCC = 5.0V  
Auto Latch  
(mask option)  
R 500KΩ  
Figure 12. Port 0 Configuration  
DS007601-Z8X0499  
P R E L I M I N A R Y  
23  
 
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
PIN FUNCTIONS (Continued)  
Port 1 (P17–P10). Port 1 is an 8-bit, bidirectional, CMOS-  
compatible port (Figure 13), with multiplexed Address  
(A7–A0) and Data (D7–D0) ports. For the ROM device,  
these eight I/O lines are programmed as inputs or outputs,  
or can be configured under software control as an Ad-  
dress/Data port for interfacing external memory. The input  
buffers are Schmitt-triggered and byte-programmed as out-  
puts and can be globally programmed as either push-pull  
oropen-drain.Low-EMIoutputbufferscanbegloballypro-  
grammed by the software.  
Port 1 may be placed under handshake control. In this con-  
figuration, Port 3, lines P33 and P34 are used as the hand-  
shake controls RDY1 and DAV1 (Ready and Data Avail-  
able). Memory locations greater than the internal ROM  
address are referenced through Port 1, except for Z86C46.  
To interface external memory, Port 1 must be programmed  
for the multiplexed Address/Data mode. If more than 256  
externallocationsarerequired, Port0outputstheadditional  
lines.  
Port 1 can be placed in the high-impedance state along with  
Port 0, AS, DS, and R/W, allowing the Z8 to share common  
resources in multiprocessor and DMA applications.  
Note: Port 1 is not available on the devices in the 28-pin pack-  
age, and P01M Register must set Bit D4,D3 as 00. Low-  
EMI mode is not supported on the emulator for Port1.  
PCON register D4 must be 1.  
Port 1  
(I/O or AD7–AD0)  
8
Z8  
Handshake Controls  
DAV1 and RDY1  
(P33 and P34)  
Open Drain  
OE  
Pull-Up  
Transistor Enable  
(Mask Option)  
PAD  
Out  
1.5  
2.3 Hysteresis @ VCC = 5.0V  
In  
Auto Latch  
(mask option)  
R 500 KΩ  
Figure 13. Port 1 Configuration  
24  
P R E L I M I N A R Y  
DS007601-Z8X0499  
 
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
Port 2 (P27–P20). Port 2 is an 8-bit, bidirectional, CMOS-  
compatible I/O port. These eight I/O lines are configured  
under software control as an input or output, independently.  
Port 2 is always available for I/O operation. The input buff-  
ers are Schmitt-triggered. Bits programmed as outputs may  
be globally programmed as either push-pull or open-drain.  
Low-EMI output buffers can be globally programmed by  
the software.  
Port 2 may be placed under handshake control. In this Hand-  
shake Mode, Port 3 lines P31 and P36 are used as the hand-  
shake controls lines DAV2 and RDY2. The handshake signal  
assignment for Port 3 lines P31 and P36 is dictated by the di-  
rection (input or output) assigned to Bit 7, Port 2 (Figure 14).  
Port 2 (I/O)  
Z8  
Handshake Controls  
DAV2 and RDY2  
(P31 and P36)  
Open Drain  
OE  
Pull-Up  
Transistor Enable  
(Mask Option)  
PAD  
Out  
1.5  
2.3 Hysteresis @ VCC  
= 5.0V.  
In  
Auto Latch  
(mask option)  
R 500 KΩ  
Figure 14. Port 2 Configuration  
DS007601-Z8X0499  
P R E L I M I N A R Y  
25  
 
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
PIN FUNCTIONS (Continued)  
Port 3 (P37–P30). Port 3 is an 8-bit, CMOS-compatible  
port, with four fixed inputs (P33–P30) and four fixed out-  
puts (P34–P37). It is configured under software control for  
Input/Output, Counter/Timers, interrupt, port handshake,  
and Data Memory functions. Port 3, bit 0input is Schmitt-  
triggered, and pins P31, P32, and P33 are standard CMOS  
inputs (no Auto Latches). Pins P34, P35, P36, P37are push-  
pull output lines. Low-EMI output buffers can be globally  
programmed by the software.  
(TOUT). Handshake lines for Ports 0, 1, and 2 are available  
on P31 through P36.  
Port 3 also provides the following control functions: hand-  
shake for Ports 0, 1, and 2 (DAV and RDY); four external  
interrupt request signals (IRQ3–IRQ0); timer input and out-  
put signals (TIN and TOUT); Data Memory Select (DM, see  
Table 10 and Figure 15).  
P34 output can be software-programmed to function as a  
Data Memory Select (DM). The Port 3 mode register (P3M)  
Bit D3,D4 selects this function. When accessing external  
Data Memory, the P34 goes active Low; when accessing  
external Program Memory, the P34 goes High.  
Two onboard comparators can process analog signals on  
P31 and P32 with reference to the voltage on P33. The an-  
alog function is enabled by programming Port 3 Mode Reg-  
ister (P3M bit 1). For Interrupt functions, Port 3, bit 0and  
pin 3 are falling edge interrupt inputs. P31 and P32 are pro-  
grammable as rising, falling, or both edge triggered inter-  
rupts (IRQ register Bits 6and 7). P33 is the comparator ref-  
erence voltage input when in Analog mode. Access to  
An onboard UART (ASCI) can be enabled by software by  
setting the RE and TE bits of the ASCI Control Register A  
(CNTLA). When enabled, P30 is the receive input and P37  
is the transmit output.  
Counter/Timers 1 is made through P31 (T ) and P36  
IN  
Table 10. Port 3 Pin Assignments  
Analog Int. P0 HS P1 HS  
Pin  
I/O  
CTC1  
P2 HS  
Ext  
UART  
P30  
P31  
IN  
IN  
IRQ3  
IRQ2  
RX  
T
AN1  
D/R  
IN  
P32  
P33  
P34  
P35  
P36  
IN  
AN2  
REF  
IRQ0  
IRQ1  
D/R  
R/D  
IN  
D/R  
R/D  
OUT  
OUT  
OUT  
AN1–OUT  
DM  
T
R/D  
OUT  
P37  
OUT  
AN2–OUT  
TX  
Notes:  
HS = Handshake Signals  
D = DAV  
R = RDY  
Comparator Inputs and Outputs. Port 3, pins P31 and  
P32 each feature a comparator front end. The comparator  
reference voltage, pin P33, is common to both comparators.  
In analog mode, the P31 and P32 are the positive inputs to  
the comparators and P33 is the reference voltage supplied  
to both comparators. In digital mode, pin P33 can be used  
as a P33 register input or IRQ1 source. P34 and P37 outputs  
the comparator outputs by software-programming the  
PCON Register Bit D0 to 1(see Figure 16).  
Note: The user must add a two-NOP delay after selecting the  
P3M bit D1 to 1before the comparator output is valid.  
IRQ0, IRQ1, and IRQ2 should be cleared in the IRQ reg-  
ister when the comparator is enabled or disabled.  
26  
P R E L I M I N A R Y  
DS007601-Z8X0499  
 
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
P30  
P31  
P32  
P33  
Port 3  
(I/O or Control)  
Z8  
P34  
P35  
P36  
P37  
Auto Latch  
(mask option)  
R 500KΩ  
P30 Data  
Latch IRQ3  
P30  
R247 = P3M  
1 = Analog  
0 = Digital  
D1  
DIG.  
AN.  
P31 (AN1)  
IRQ2,T , P31 Data Latch  
IN  
+
P32 (AN2)  
P33 (REF)  
IRQ0, P32 Data Latch  
IRQ1, P33 Data Latch  
+
From Stop-Mode  
Recovery Source  
Figure 15. Port 3 Configuration  
DS007601-Z8X0499  
P R E L I M I N A R Y  
27  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
PIN FUNCTIONS (Continued)  
P34  
P34 OUT  
PAD  
P31  
+
REF (P33)  
P37  
P37 OUT  
PAD  
P32  
+
REF (P33)  
PCON  
0 P34, P37 Standard Output  
1 P34, P37 Comparator Output  
D0  
Figure 16. Port 3 Configuration  
Auto Latch. The Auto Latch places valid CMOS levels on  
all CMOS inputs (except P33–P31) that are not externally  
driven. Whether this level is 0or 1cannot be determined.  
A valid CMOS level, rather than a floating node, reduces  
excessive supply current flow in the input buffer. Auto  
Latches are available on Port 0, Port 1, Port 2, and P30.  
There are no Auto Latches on P31, P32, and P33.  
ditions. RESET depends on oscillator operation to achieve  
full reset conditions, except for conditions wherein a WDT  
resetispermanentlyenabled.Pull-upisprovidedinternally.  
Note: The RESET pin is not available on devices in the 28-pin  
package.  
After the POR time, RESET is a Schmitt-triggered input.  
During the RESET cycle, DS is held active Low while AS  
Note: Deletion of all Port Auto Latches is available as a ROM  
Mask option. The Auto Latch Delete option is selected  
by the customer when the ROM code is submitted.  
cycles at a rate of T C/2. Program execution begins at lo-  
P
cation 000Ch, after the RESET is released. For Power-On  
Reset, the reset output time is TPOR ms.  
RESET (input, active Low). Initializes the MCU. Reset is  
accomplished either through Power-On Reset, Watch-Dog  
Timerreset, Stop-ModeRecovery, orexternalreset. During  
Power-On Reset and Watch-Dog Reset, the internally-gen-  
erated reset is driving the RESET pin Low for the POR time.  
Any devices driving the RESET line must be open-drain to  
avoid damage from a possible conflict during RESET con-  
When program execution begins, AS and DS toggles only  
for external memory accesses. The Z8 does not reset  
WDTMR, SMR, P2M, PCON, and P3M registers on a Stop-  
ModeRecoveryoperationorfroma WDTresetoutof STOP  
mode.  
28  
P R E L I M I N A R Y  
DS007601-Z8X0499  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
FUNCTIONAL DESCRIPTION  
The Z8 MCU incorporates the following special functions  
®
toenhancethestandardZ8 architecturetoprovidetheuser  
with increased design flexibility.  
65535  
External/Internal  
ROM and RAM  
RESET. The device is reset in one of the following condi-  
tions:  
16383/32767  
16382/32766  
Power-On Reset  
Location of  
On-Chip  
ROM  
First Byte of  
Instruction  
Executed  
Watch-Dog Timer  
Stop-Mode Recovery Source  
External Reset  
12  
11  
10  
9
After RESET  
IRQ5  
IRQ5  
IRQ4  
IRQ4  
IRQ3  
IRQ3  
IRQ2  
IRQ2  
IRQ1  
IRQ1  
IRQ0  
IRQ0  
Low Voltage Recovery  
Auto Power-On Reset circuitry is built into the Z8, elimi-  
nating the requirement for an external reset circuit to reset  
upon power-up. The internal pull-up resistor is on the Reset  
pin, so a pull-up resistor is not required; however, in a high-  
EMI (noisy) environment, it is recommended that a small  
value pull-up resistor be used.  
8
7
Interrupt  
Vector  
(Lower Byte)  
6
Note: The RESET pin is not available on devices in the 28-pin  
5
package.  
4
Interrupt  
Vector  
(Upper Byte)  
Program Memory. The first 12 bytes of program memory  
are reserved for the interrupt vectors. These locations con-  
tain six 16-bit vectors that correspond to the six available  
interrupts. For ROM mode, address 12 to address 65535  
(C36/C46)/32767(C35/C45)/16383(C34/C44) consists  
of on-chip mask-programmed ROM. The Z86C44/C45 can  
access external program and data memory from addresses  
16384/32768 to 65535.  
3
2
1
0
Figure 17. Program Memory Map  
for Z86C34/35/44/45  
The 65535 (C36/C46)/32767 (C35/C45)/16383  
(C34/C44) program memory is mask programmable. A  
ROM protect feature prevents dumping of the ROM con-  
tents by inhibiting execution of LDC, LDCI, LDE, and LDEI  
instructions to Program Memory in external program  
mode. ROM look-up tables can be used with this feature.  
Data Memory (DM). The ROMless version can address up  
to 64 KB of external data memory. External data memory  
may be included with, or separated from, the external pro-  
gram memory space. DM, an optional I/O function that can  
be programmed to appear on pin P34, is used to distinguish  
between data and program memory space (Figure 18). The  
stateoftheDMsignaliscontrolledbythetypeofinstruction  
being executed. An LDC Op Code references PROGRAM  
(DM inactive) memory, and an LDE instruction references  
data (DM active Low) memory. The user must configure  
Port 3 Mode Register (P3M) bits D3 and D4 for this mode.  
This feature is not usable for devices in 28-pin package.  
When used in ROM mode, the Z86C46 cannot access any  
external data memory. The Z86C44/C45 can access exter-  
The ROM Protect option is mask-programmable, to be se-  
lected by the customer when the ROM code is submitted.  
DS007601-Z8X0499  
P R E L I M I N A R Y  
29  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
FUNCTIONAL DESCRIPTION (Continued)  
nal program and data memory from addresses  
16384/32768to 65535.  
knownastheExpandedRegisterFile(ERF).Bits74ofreg-  
ister RP select the working register group. Bits 3–0 of reg-  
ister RP select the expanded register group. Three system  
configuration registers reside in the Expanded Register File  
at Bank F (PCON, SMR, WDTMR). The rest of the Expand-  
ed Register is not physically implemented, and is open for  
future expansion.  
Expanded Register File (ERF). The Z8 register file is ex-  
panded to allow for additional system control registers, and  
for mapping of additional peripheral devices along with I/O  
ports into the register address area. The Z8 register address  
space R0 through R15 is implemented as 16 groups of 16  
registers per group (Figure 19). These register groups are  
65535  
65535  
External  
Data  
Memory  
External  
Data  
Memory  
16384/32768  
16383/32767  
NotAddressable  
0
0
ROM Mode  
ROMless Mode  
Figure 18. Data Memory Map  
30  
P R E L I M I N A R Y  
DS007601-Z8X0499  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
Z8® STANDARD CONTROL REGISTERS  
RESET CONDITION  
D7 D6 D5 D4 D3 D2 D1 D0  
REGISTER  
% FF  
SPL  
0
0
0
0
0
0
0
0
0
0
0
REGISTER POINTER  
0
0
0
0
0
% FE  
% FD  
% FC  
% FB  
% FA  
% F9  
SPH  
RP  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
FLAGS  
IMR  
IRQ  
U
0
U
U
0
U
U
0
U
U
0
U
U
0
U
U
0
U
U
0
U
U
0
orkingRegister  
ExpandedRegister  
Group Pointer  
W
Group Pointer  
0
IPR  
U
0
U
1
U
0
U
0
U
1
U
1
U
0
U
1
% F8  
P01M  
P3M  
P2M  
0
0
0
0
0
0
0
0
% F7  
*
*
% F6  
1
1
1
1
1
1
1
1
% F5  
PRE0  
U
U
U
U
0
U
U
U
U
0
U
U
U
U
0
U
U
U
U
0
U
U
U
U
0
U
U
U
U
0
U
U
0
0
% F4  
T0  
U
0
Z8 Reg. File  
% F3  
PRE1  
T1  
%FF  
%FO  
% F2  
U
0
U
0
% F1  
TMR  
Reserved  
% F0  
EXPANDED REG. GROUP (F)  
REGISTER  
RESET CONDITION  
% (F) 0F  
% (F) 0E  
% (F) 0D  
WDTMR  
U
U
U
0
1
1
0
0
1
0
*
*
Reserved  
U
U
U
U
U
U
SMR2  
%7F  
Reserved  
SMR  
% (F) 0C  
% (F) 0B  
**  
0
0
1
0
0
0
0
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
PCON  
% (F) 0A  
% (F) 09  
% (F) 08  
% (F) 07  
Reserved  
% (F) 06  
% (F) 05  
% (F) 04  
%0F  
%00  
% (F) 03  
% (F) 02  
% (F) 01  
% (F) 00  
*
*
1
1
1
1
1
1
1
0
EXPANDED REG. GROUP(0)  
REGISTER  
Notes:  
RESET CONDITION  
U = Unknown  
For ROMless Reset condition: “10110110”.  
*Will not be reset with a STOP-Mode Recovery.  
**Will not be reset with a STOP-Mode Recovery, except bit D0.  
XNot available on 28-pin packages.  
1
1
1
1
U
U
U
U
U
U
U
U
% (0) 03  
% (0) 02  
% (0) 01  
P3  
P2  
P1  
P0  
*
U
U
U
U
X
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
% (0) 00  
Figure 19. Expanded Register File Architecture  
Register File. TheregisterfileconsistsoffourI/Oportreg-  
isters, 236 general-purpose registers and 15 control and sta-  
tusregisters(R0–R3, R4–R239andR240–R255, respective-  
ly), plus three system configuration registers in the  
expanded register group. The instructions access registers  
directly or indirectly through an 8-bit address field. As a re-  
sult, a short, 4-bit register address can use the Register  
Pointer (Figure 20). In the 4-bit mode, the register file is  
divided into 16 working register groups, each occupying 16  
DS007601-Z8X0499  
P R E L I M I N A R Y  
31  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
FUNCTIONAL DESCRIPTION (Continued)  
continuous locations. The Register Pointer addresses the  
starting location of the active working register group.  
R253 RP  
D7 D6 D5 D4 D3 D2 D1 D0  
Expanded Register Group  
Working Register Group  
Default setting after RESET = 00000000  
Figure 20. Register Pointer  
r7 r6 r5 r4  
r3 r2 r1 r0  
R253  
(Register Pointer)  
The upper nibble of the register file address  
provided by the register pointer specifies  
the active working-register group.  
FF  
F0  
R15 to R0  
Register Group F  
7F  
70  
6F  
60  
5F  
50  
4F  
The lower nibble  
of the register  
file address  
provided by the  
instruction points  
to the specified  
register  
40  
3F  
Specified Working  
Register Group  
30  
2F  
20  
1F  
Register Group 1  
R15 to R0  
10  
0F  
Register Group 0  
I/O Ports  
R15 to R4  
R3 to R0  
00  
Figure 21. Register Pointer—Detail  
32  
P R E L I M I N A R Y  
DS007601-Z8X0499  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
General-Purpose Registers (GPR). These registers are  
undefinedafterthedeviceispoweredup. Theregisterskeep  
their most recent value after any RESET, as long as the RE-  
Note: R254 and R255 are set to 00hafter any RESET or Stop-  
Mode Recovery.  
SET occurs in the V voltage-specified operating range.  
CC  
These do not keep their most recent state from a Low Volt-  
Counter/Timers. There are two 8-bit programmable  
counter/timers (T0–T1), each driven by its own 6-bit pro-  
grammable prescaler. The T1 prescaler is driven by internal  
or external clock sources; however, the T0 prescaler is driv-  
en by the internal clock only (Figure 22).  
age Protection (V ) RESET if the VCC drops below 1.8V.  
LV  
Note: Register Bank E0–EF is only accessed through working  
register and indirect addressing modes.  
The 6-bit prescalers can divide the input frequency of the  
clocksourcebyanyintegernumberfrom1to64. Eachpres-  
caler drives its counter, which decrements the value (1to  
256) that is loaded into the counter. When the counter  
reaches the end of the count, a timer interrupt request, IRQ4  
(T0) or IRQ5 (T1), is generated.  
RAM Protect. The upper portion of the RAM’s address  
spaces %80Fto %EF(excluding the control registers) are  
protected from writing. The RAM Protect bit option is  
mask-programmable and is selected by the customer when  
the ROM code is submitted. After the mask option is se-  
lected, the user activates this feature from the internal ROM  
code to turn off/on the RAM Protect by loading either a 0  
or 1into the IMR register, bit D6. A 1in D6 enables RAM  
Protect.  
The counters can be programmed to START, STOP, restart  
toCONTINUE,orrestartfromtheinitialvalue.Thecounters  
can also be programmed to STOP upon reaching 0(single  
pass mode) or to automatically reload the initial value and  
continue counting (modulo–n continuous mode).  
Stack. TheZ8internalregisterfileisusedforthestack. The  
16-bit Stack Pointer (R254–R255) is used for the external  
stack, which can reside anywhere in the data memory for  
ROMless mode. An 8-bit Stack Pointer (R255) is used for  
the internal stack that resides within the 236 general-pur-  
pose registers (R4–R239). Stack Pointer High (SPH) is used  
as a general-purpose register when using internal stack  
only. The devices in 28-pin packages use the 8-bit stack  
pointer (R255) for internal stack only.  
The counters, but not the prescalers, are read at any time  
without disturbing their value or count mode. The clock  
source for T1 is user-definable and is either the internal mi-  
croprocessor clock divide-by-four, or an external signal in-  
put through Port 3. The Timer Mode register configures the  
external timer input (P31) as an external clock, a trigger in-  
putthatcanberetriggerableornonretriggerable, orasagate  
input for the internal clock. The counter/timers can be cas-  
caded by connecting the T0 output to the input of T1. T  
Mode is enabled by setting R243 PRE1 bit D1 to 0.  
IN  
DS007601-Z8X0499  
P R E L I M I N A R Y  
33  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
FUNCTIONAL DESCRIPTION (Continued)  
OSC  
Internal Data Bus  
Write  
D1 (SMR)  
Write  
Read  
2
PRE0  
T0  
T0  
Initial Value  
Register  
Initial Value  
Register  
Current Value  
Register  
D0 (SMR)  
6-Bit  
Down  
8-bit  
Down  
16  
÷4  
Counter  
Counter  
IRQ4  
Internal  
Clock  
TOUT  
P36  
÷2  
External Clock  
Clock  
Logic  
6-Bit  
Down  
Counter  
8-Bit  
Down  
Counter  
IRQ5  
÷4  
Internal Clock  
Gated Clock  
Triggered Clock  
PRE1  
Initial Value  
Register  
T1  
T1  
Initial Value  
Register  
Current Value  
Register  
TIN P31  
Write  
Write  
Read  
Internal Data Bus  
Figure 22. Counter/Timer Block Diagram  
Interrupts. TheZ8featuressixdifferentinterruptsfromsix  
differentsources. Theseinterruptsaremaskable, prioritized  
(Figure 23) and the six sources are divided as follows: four  
sources are claimed by Port 3 lines P33–P30, and two in  
counter/timers(Table11). TheInterruptMaskRegisterglo-  
bally or individually enables or disables the six interrupt re-  
quests.  
34  
P R E L I M I N A R Y  
DS007601-Z8X0499  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
IRQ0 IRQ2  
IRQ1, 3, 4, 5  
Interrupt  
Edge  
IRQ (D6, D7)  
Select  
IRQ  
IMR  
IPR  
6
Global  
Interrupt  
Enable  
Interrupt  
Request  
PRIORITY  
LOGIC  
Vector Select  
Figure 23. Interrupt Block Diagram  
Table 11. Interrupt Types, Sources, and Vectors  
Vector  
Name  
Source  
Location  
Comments  
IRQ0  
IRQ1,  
IRQ2  
DAV0, IRQ0  
IRQ1  
0, 1  
2, 3  
4, 5  
External (P32), Rise Fall Edge Triggered  
External (P33), Fall Edge Triggered  
External (P31), Rise Fall Edge Triggered  
DAV2, IRQ2, T  
IN  
IRQ3  
IRQ4  
IRQ5  
UART (ASCI)  
6, 7  
External (P30), Fall Edge Triggered  
T0  
T1  
8, 9  
Internal  
Internal  
10, 11  
When more than one interrupt is pending, priorities are re-  
solved by a programmable priority encoder that is con-  
trolled by the Interrupt Priority register. An interrupt ma-  
chine cycle activates when an interrupt request is granted.  
Thisactiondisablesallsubsequentinterrupts,savesthePro-  
gram Counter and Status Flags, and then branches to the  
programmemoryvectorlocationreservedforthatinterrupt.  
All Z8 interrupts are vectored through locations in the pro-  
grammemory. Thismemorylocationandthenextbytecon-  
tain the 16-bit address of the interrupt service routine for  
thatparticularinterruptrequest. Toaccommodatepolledin-  
terrupt systems, interrupt inputs are masked and the Inter-  
rupt Request register is polled to determine which of the in-  
terrupt requests require service.  
DS007601-Z8X0499  
P R E L I M I N A R Y  
35  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
FUNCTIONAL DESCRIPTION (Continued)  
Clock. The Z8 on-chip oscillator features a high-gain, par-  
allel-resonant amplifier for connection to a crystal, LC, RC,  
ceramic resonator, or any suitable external clock source  
(XTAL1 = INPUT, XTAL2 = OUTPUT). The crystal should  
be AT-cut, 16 MHz maximum, with a series resistance (RS)  
of less than or equal to 100 Ohms when counting from  
1 MHz to 16 MHz.  
An interrupt resulting from AN1 maps to IRQ2, and an in-  
terrupt from AN2 maps to IRQ0. Interrupts IRQ2 and IRQ0  
may be rising, falling, or both edge-triggered, and are pro-  
grammable by the user. The software may poll to identify  
the state of the pin. When in analog mode, the IRQ1 gener-  
ates by the Stop-Mode Recovery source selected by SMR  
Reg. bits D4, D3, D2, or SMR2 D1 or D0.  
The crystal should be connected across XTAL1 and XTAL2  
using the vendor’s recommended capacitor values from  
eachpindirectlytothedeviceGroundpintoreduceground-  
noise injection into the oscillator. The RC oscillator option  
is mask-programmable on the Z8 and is selected by the cus-  
tomer at the time when the ROM code is submitted.  
Programming bits for the Interrupt Edge Select are located  
in the IRQ register (R250), bits D7 and D6. The configura-  
tion is indicated in Table 12.  
Table 12. IRQ Register  
IRQ  
Interrupt Edge  
P31 P32  
D7  
0
D6  
0
Notes: The RC option is available up to 8 MHz. The RC  
oscillator configuration must be an external resistor  
connected from XTAL1 to XTAL2, with a frequency-  
setting capacitor from XTAL1 to Ground (Figure 24).  
F
F
0
1
F
R
R
F
1
0
1
1
R/F  
R/F  
For better noise immunity, the capacitors should be tied  
Notes:  
F = Falling Edge  
R = Rising Edge  
directly to the device Ground pin (VSS).  
36  
P R E L I M I N A R Y  
DS007601-Z8X0499  
 
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
XTAL1  
XTAL2  
XTAL1  
XTAL2  
XTAL1  
XTAL2  
XTAL1  
XTAL2  
C1  
VSS**  
C1  
C1  
VSS**  
VSS**  
L
R
C2  
VSS**  
C2  
VSS**  
Ceramic Resonator or  
Crystal  
LC  
RC  
External Clock  
C1, C2 = 22 pF  
@ 5V VCC (TYP)  
C1, C2 = 47 pF TYP *  
f = 8 MHz  
L = 130 uH *  
f = 3 MHz *  
C1 = 33 pF *  
R = 1K *  
f = 6 MHz *  
*Preliminary value including pin parasitics  
**Device ground pin  
Figure 24. Oscillator Configuration  
Power-On-Reset (POR). A timer circuit clocked by a ded-  
icated on-board RC oscillator is used for the Power-On Re-  
set (POR) timer function. The POR time allows VCC and the  
oscillator circuit to stabilize before instruction execution  
begins.  
aNOP(OpCode=FFH)immediatelybeforetheappropriate  
sleep instruction. For example:  
FF  
6F  
NOP  
STOP  
; clear the pipeline  
; enter STOP mode  
or  
The POR timer circuit is a one-shot timer triggered by one  
of three conditions:  
FF  
7F  
NOP  
HALT  
; clear the pipeline  
; enter HALT Mode  
1. Power fail to Power OK status.  
2. Stop-Mode Recovery (if D5 of SMR = 1).  
3. WDT time-out.  
STOP. This instruction turns off the internal clock and ex-  
ternal crystal oscillation. It also reduces the standby current  
to 10 µA or less. The STOP mode is terminated by a RESET  
only, either by WDT time-out, POR, SMR recovery, or ex-  
ternal reset. As a result, the processor restarts the applica-  
tion program at address 000Ch. A WDT time-out in STOP  
mode affects all registers the same as if a Stop-Mode Re-  
covery occurred via a selected Stop-Mode Recovery source  
except that the POR delay is enabled even if the delay is se-  
lected for disable.  
The POR time is specified as TPOR. Bit 5of the Stop-Mode  
Register determines whether the POR timer is bypassed af-  
ter Stop-Mode Recovery (typical for external clock, RC/LC  
oscillators).  
HALT. HALT turns off the internal CPU clock, but not the  
XTAL oscillation. The counter/timers and external inter-  
rupts IRQ0, IRQ1, IRQ2, and IRQ3 remain active. The de-  
vices are recovered by interrupts and are either externally  
or internally generated. An interrupt request must be en-  
abled and executed to exit HALT mode. After the interrupt  
service routine, the program continues from the instruction  
after the HALT.  
Note: If a permanent WDT is selected, the WDT runs in all  
modes and cannot be stopped or disabled if the onboard  
RC oscillator is selected to drive the WDT.  
In order to enter STOP (or HALT) mode, it is necessary to  
first flush the instruction pipeline to avoid suspending ex-  
ecutioninmid-instruction.Therefore,theusermustexecute  
Port Configuration Register (PCON). The PCON regis-  
ter configures the ports individually; comparator output on  
Port 3, open-drain on Port 0 and Port 1, low EMI on Ports  
DS007601-Z8X0499  
P R E L I M I N A R Y  
37  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
FUNCTIONAL DESCRIPTION (Continued)  
0, 1, 2, and 3, and low-EMI oscillator. The PCON register  
is located in the expanded register file at Bank F, location  
00h(Figure 25).  
Note: For emulator, this bit must be set to 1.  
Low-EMI Port 2 (D5). Port 2 can be configured as a low-  
EMI port by resetting this bit (D5 = 0) or configured as a  
Standard Port by setting this bit (D5 = 1). The default value  
is 1.  
PCON (FH) 00H  
D7 D6 D5 D4 D3 D2 D1 D0  
Low-EMI Port 3 (D6). Port 3 can be configured as a low-  
EMI port by resetting this bit (D6 = 0) or configured as a  
Standard Port by setting this bit (D6 = 1). The default value  
is 1.  
Comparator Output Port 3  
0 P34, P37 Standard Output*  
1 P34, P37 Comparator Output  
0 Port 1 Open Drain  
1 Port 1 Push-pull Active*†  
0 Port 0 Open Drain  
1 Port 0 Push-pull Active*  
Low-EMI OSC (D7). This bit of the PCON Register con-  
trols the low-EMI noise oscillator. A 1in this location con-  
figures the oscillator, DS, AS and R/W with standard drive,  
while a 0configures the oscillator, DS, AS and R/W with  
low noise drive. The low-EMI mode reduces the drive of  
the oscillator (OSC). The default value is 1.  
0
1
Port 0 Low EMI  
Port 0 Standard*†  
0 Port 1 Low EMI  
1 Port 1 Standard*  
0
1
Port 2 Low EMI  
Port 2 Standard*  
0
1
Port 3 Low EMI  
Port 3 Standard*  
LowEMI Oscillator  
Note: Maximum external clock frequency of 4 MHz when run-  
0
1
Low EMI  
Standard*  
ning in the low-EMI oscillator mode.  
*Default Setting After Reset  
Must be set to one for devices  
in 28-pin packages  
Low-EMI Emission. TheZ8canbeprogrammedtooperate  
in a low-EMI emission mode in the PCON register. The os-  
cillator and all I/O ports can be programmed as low-EMI  
emissionmodeindependently. Useofthisfeatureresultsin:  
Figure 25. Port Configuration Register (PCON)  
(WRITE ONLY)  
The pre-drivers slew rate reduced to 10 ns (typical)  
Comparator Output Port 3 (D0). Bit 0controls the com-  
parator use in Port 3. A 1in this location brings the com-  
parator outputs to P34 and P37, and a 0releases the Port to  
its standard I/O configuration. The default value is 0.  
Low-EMI output drivers exhibit resistance of 200 Ohms  
(typical)  
Low-EMI Oscillator  
Port 1 Open-Drain (D1). Port 1 can be configured as an  
open-drain by resetting this bit (D1 = 0) or configured as  
push-pull active by setting this bit (D1 = 1). The default val-  
ue is 1. The user must set D1 = 1 for devices in 28-pin pack-  
ages.  
Internal SCLK/TCLK = XTAL operation limited to a  
maximum of 4 MHz–250 ns cycle time, when LOW  
EMI OSCILLATOR is selected and system clock (SCLK  
= XTAL, SMR REGISTER BIT D1 = 1)  
Stop-Mode Recovery Register (SMR). This register se-  
lects the clock divide value and determines the mode of  
Stop-Mode Recovery (Figures 26 and 27). All bits are  
WRITE ONLY, except bit 7, which is READ ONLY. Bit 7  
is a flag bit that is hardware set on the condition of STOP  
recovery and RESET by a power-on cycle. Bit 6controls  
whether a low level or a high level is required from the re-  
covery source. Bit 5controls the reset delay after recovery.  
Bits 2, 3, and 4, or the SMR register, specify the source of  
the Stop-Mode Recovery signal. Bits 0and 1determine the  
time-out period of the WDT. The SMR is located in Bank  
F of the Expanded Register Group at address 0BH.  
Port 0 Open-Drain (D2). Port 0 can be configured as an  
open-drain by resetting this bit (D2 = 0) or configured as  
push-pull active by setting this bit (D2 = 1). The default val-  
ue is 1.  
Low-EMI Port 0 (D3). Port 0 can be configured as a low-  
EMI port by resetting this bit (D3 = 0) or configured as a  
Standard Port by setting this bit (D3 = 1). The default value  
is 1.  
Low-EMI Port 1 (D4). Port 1 can be configured as a low-  
EMI port by resetting this bit (D4 = 0) or configured as a  
Standard Port by setting this bit (D4 = 1). The default value  
is1.TheusermustsetD4=1fordevicesin28-pinpackages.  
38  
P R E L I M I N A R Y  
DS007601-Z8X0499  
 
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
SCLK/TCLK Divide-by-16 Select (D0). D0 of the SMR  
controls a divide-by-16 prescaler of SCLK/TCLK. The pur-  
pose of this control is to selectively reduce device power  
consumption during normal processor execution (SCLK  
control) and/or HALT mode (where TCLK sources  
counter/timers and interrupt logic). This bit is reset to D0  
= 0 after a Stop-Mode Recovery.  
SMR (FH) 0B  
D7 D6 D5 D4 D3 D2 D1 D0  
SCLK/TCLK Divide-by-16  
0
1
OFF * *  
ON  
External Clock Divide by 2  
0
1
SCLK/TCLK =XTAL/2*  
SCLK/TCLK =XTAL  
External Clock Divide-by-Two (D1). This bit can elimi-  
nate the oscillator divide-by-two circuitry. When this bit is  
0, the System Clock (SCLK) and Timer Clock (TCLK) are  
equal to the external clock frequency divided by 2. The  
SCLK/TCLK is equal to the external clock frequency when  
this bit is set (D1 = 1). Using this bit together with D7 of  
PCON further helps lower EMI (that is, D7 (PCON) = 0, D1  
(SMR) = 1). The default setting is 0. Maximum external  
clock frequency is 4 MHz when SMR BIT D1 = 1 where  
SCLK/TCLK = XTAL.  
STOP-Mode Recovery Source  
000 POR Only and/or External Reset*  
001 P30  
010 P31  
011 P32  
100 P33  
101 P27  
110 P2 NOR 0-3  
111 P2 NOR 0-7  
Stop Delay  
0
1
OFF  
ON*  
Stop Recovery Level  
0
1
Low*  
High  
Stop Flag (Read only)  
0
1
POR*  
Stop Recovery  
Stop-Mode Recovery Source (D2, D3, and D4). These  
three bits of the SMR specify the wake-up source of the  
STOP recovery (Figure 28 and Table 13). When the Stop-  
Mode Recovery Sources are selected in this register, then  
SMR2 register bits D0,D1 must be set to 0.  
Note: Not used in conjunction with SMR2 Source  
* Default setting after RESET.  
* * Default setting after RESET and STOP-Mode Recovery.  
Figure 26. Stop-Mode Recovery Register  
(WRITE ONLY Except Bit D7, Which Is READ ONLY)  
Note: If the Port 2 pin is configured as an output, this output  
level is read by the SMR circuitry.  
SMR2 (0F) DH  
D7 D6 D5 D4 D3 D2 D1 D0  
Stop-Mode Recovery Source 2  
00 POR only*  
01 AND P20,P21,P22,P23  
10 AND P20,P21,P22,P23,P24,  
P25,P26,P27  
Reserved (Must be 0)  
Note: Not used in conjunction with SMR Source  
Figure 27. Stop-Mode Recovery Register 2  
(0F) DH: WRITE ONLY  
DS007601-Z8X0499  
P R E L I M I N A R Y  
39  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
FUNCTIONAL DESCRIPTION (Continued)  
SMR2 D1 D0  
0
0
VDD  
SMR2 D1 D0  
SMR2 D1 D0  
1
1
1
1
P20  
P23  
P20  
P27  
SMR D4 D3 D2  
0
0
0
VDD  
SMR D4 D3 D2 SMR D4 D3 D2 SMR D4 D3 D2  
SMR D4 D3 D2  
SMR D4 D3 D2  
0
0
0
0
1
1
1
0
1
1
0
0
1
0
1
1
1
0
1
1
1
P20  
P20  
P30  
P31  
P32  
P33  
P27  
P23  
P27  
To POR  
RESET  
Stop-Mode Recovery Edge  
Select (SMR)  
To P33 Data  
Latch and IRQ1  
MUX  
P33 From Pads  
Digital/Analog Mode  
Select (P3M)  
Figure 28. Stop-Mode Recovery Source  
Table 13. Stop-Mode Recovery Source  
wake up is selected, the Stop-Mode Recovery source must  
be kept active for at least 5 TpC.  
SMR:432  
D4 D3 D2  
Operation  
Description of Action  
Stop-Mode Recovery Edge Select (D6). A 1 in this bit  
position indicates that a high level on any one of the recov-  
ery sources wakes the Z8 from STOP mode. A 0indicates  
low-level recovery. The default is 0on POR (Figure 28).  
This bit is used for either SMR or SMR2.  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
POR and/or external reset recovery  
P30 transition  
P31 transition (not in Analog Mode)  
P32 transition (not in Analog Mode)  
P33 transition (not in Analog Mode)  
P27 transition  
Cold or Warm Start (D7). This bit is set by the device  
upon entering STOP mode. A 0in this bit (cold) indicates  
that the device resets by POR/WDT RESET. A 1in this bit  
(warm) indicates that the device awakens by a Stop-Mode  
Recovery source.  
Logical NOR of P20 through P23  
Logical NOR of P20 through P27  
Note: If the Port 2 pin is configured as an output, this output  
level is read by the SMR2 circuitry.  
Stop-Mode Recovery Delay Select (D5). This bit, if  
High, enables the T RESET delay after Stop-Mode Re-  
POR  
covery. The default configuration of this bit is 1. If the fast  
40  
P R E L I M I N A R Y  
DS007601-Z8X0499  
 
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
Stop-Mode Recovery Register 2 (SMR2). This register  
contains additional Stop-Mode Recovery sources. When  
the Stop-Mode Recovery sources are selected in this reg-  
ister then SMR Register. Bits D2, D3, and D4 must be 0.  
es its terminal count. The WDT is initially enabled by exe-  
cutingtheWDTinstructionandrefreshedonsubsequentex-  
ecutions of the WDT instruction. The WDT circuit is driven  
by an onboard RC oscillator or external oscillator from the  
XTAL1 pin. The POR clock source is selected with bit 4of  
the WDT register (Figure 29).  
Table 14. Stop-Mode Recovery Source  
WDTinstructionaffectstheZ(Zero),S(Sign),andV(Over-  
flow) flags. The WDTMR must be written to within 64 in-  
ternalsystemclocks.Afterthat,the WDTMRisWRITE-pro-  
tected.  
SMR:10  
D1 D0  
Operation  
Description of Action  
0
0
1
0
1
0
POR and/or external reset recovery  
Logical AND of P20 through P23  
Logical AND of P20 through P27  
Note: WDT time-out while in STOP mode does not reset SMR,  
PCON, WDTMR, P2M, P3M, Ports 2 & 3 Data Registers,  
but the POR delay counter is still enabled even though  
the SMR stop delay is disabled.  
Watch-Dog Timer Mode Register (WDTMR). The WDT  
isaretriggerableone-shottimerthatresetstheZ8ifitreach-  
WDTMR (F) 0F  
D7 D6 D5 D4 D3 D2 D1 D0  
WDT TAP INT RC OSC External Clock  
00  
01*  
10  
3.5 ms  
7 ms  
14 ms  
56 ms  
128 TpC  
256 TpC  
512 TpC  
2048 TpC  
11  
WDT During HALT  
0
1
OFF  
ON*  
WDT During STOP  
0
1
OFF  
ON*  
XTAL1/INT RC Select for WDT  
0
1
On-Board RC*  
XTAL  
Reserved (must be 0)  
*Default setting after RESET  
Figure 29. Watch-Dog Timer Mode Register (WRITE ONLY)  
Table 15. WDT Time Select  
WDT Time Select. (D0,D1). Selects the WDT time period  
and is configured as indicated in Table 15.  
Timeout of  
Timeout of  
D1  
D0  
Internal RC OSC  
System Clock  
0
0
1
0
1
3.5 ms min  
7 ms min  
128 SCLK  
256 SCLK  
512 SCLK  
2048 SCLK  
0
1
1
14 ms min  
56 ms min  
Notes:  
SCLK = system bus clock cycle.  
The default on RESET is 7 ms.  
Values provided are for V = 5.0V.  
CC  
DS007601-Z8X0499  
P R E L I M I N A R Y  
41  
 
 
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
FUNCTIONAL DESCRIPTION (Continued)  
WDTMR During HALT (D2). This bit determines whether  
or not the WDT is active during HALT mode. A 1indicates  
active during HALT. The default is 1.  
WDTMR Register Accessibility. The WDTMR register is  
accessible only during the first 60 internal system clock cy-  
cles from the execution of the first instruction after Power-  
On Reset, Watch-Dog Reset, or Stop-Mode Recovery. Af-  
ter this point, the register cannot be modified by any means,  
intentional or otherwise. The WDTMR cannot be read and  
is located in bank F of the Expanded Register Group at ad-  
dress location 0FH(Figure 30).  
WDTMR During STOP (D3). This bit determines whether  
ornottheWDTisactiveduring STOPmode. Because XTAL  
clock is stopped during STOP mode, the on-board RC must  
be selected as the clock source to the POR counter. A 1in-  
dicates active during STOP. The default is 1.  
Note: The WDT can be permanently enabled (automatically  
enabled after RESET) through a mask programming op-  
tion. The option is selected by the customer at the time  
of ROM code submission. In this mode, WDT is always  
activated when the device comes out of RESET. Execu-  
tion of the WDT instruction serves to refresh the WDT  
time-out period. WDT operation in the HALT and STOP  
Modes is controlled by WDTMR programming. If this  
mask option is not selected at the time of ROM code sub-  
mission, the WDT must be activated by the user through  
the WDT instruction and is always disabled by any reset  
to the device.  
Note: If permanent WDT is selected, the WDT runs in all  
modes and can not be stopped or disabled if the on board  
RC oscillator is selected as the clock source for WDT.  
Clock Source for WDT (D4). This bit determines which  
oscillator source is used to clock the internal POR and WDT  
counter chain. If the bit is a 1, the internal RC oscillator is  
bypassedandthe PORandWDTclocksourceisdrivenfrom  
the external pin, XTAL1. The default configuration of this  
bit is 0which selects the internal RC oscillator.  
42  
P R E L I M I N A R Y  
DS007601-Z8X0499  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
Reset  
4 Clock  
Filter  
Clear  
CLK  
18 Clock RESET  
Generator  
RESET  
Internal  
RESET  
WDT Select  
(WDTMR)  
WDT TAP SELECT  
CLK Source  
Select  
(WDTMR)  
15ms 25ms 100ms  
5ms  
5ms POR  
CK  
XTAL  
M
U
X
WDT/POR Counter Chain  
CLR  
Internal  
RC OSC.  
2V Operating  
Voltage Det.  
VDD  
VLV  
+
WDT  
From Stop  
Mode  
Recovery  
Source  
Stop Delay  
Select (SMR)  
Figure 30. Resets and WDT  
Low Voltage Protection. An onboard Voltage Compara-  
tor checks that VCC is at the required level to ensure correct  
operation of the device. RESET is globally driven if VCC is  
below the specified voltage (Low Voltage Protection). The  
minimumoperatingvoltageisvaryingwiththetemperature  
and operating frequency, while the Low Voltage Protection  
Note: The internal clock frequency relationship to the XTAL  
clock is dependent on SMR BIT 0 1 setting.  
The device functions normally at or above 3.0V under all  
conditions. Below 3.0V, the device functions normally until  
the Low Voltage Protection trip point (VLV) is reached, for  
(V ) varies with temperature only.  
LV  
the temperatures and operating frequencies in Case 1 and  
Case2,above.Thedeviceisguaranteedtofunctionnormally  
at supply voltages above the Low Voltage Protection trip  
point. TheactualLowVoltageProtectiontrippointisafunc-  
tion of temperature and process parameters (Figure 36).  
The Low Voltage Protection trip voltage (V ) is less than  
3V and more than 1.4V under the following conditions.  
LV  
Table 16. Maximum (V ) Conditions:  
LV  
Case 1:  
Case 2:  
T = –40ºC, +105ºC, Internal Clock  
A
Frequency equal or less than 4 MHz  
T = –40ºC, +85ºC, Internal Clock  
A
Frequency equal or less than 6 MHz  
DS007601-Z8X0499  
P R E L I M I N A R Y  
43  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
ASYNCHRONOUS SERIAL COMMUNICATIONS INTERFACE (ASCI)  
Key features of the ASCI include:  
ceive Data Register Full Flag also goes active during this  
time. If there is no space in the FIFO at the time that the  
RSRattemptstotransferthereceiveddataintoit, anoverrun  
error occurs.  
Full-duplex operation  
Programmable data format  
7 or 8 data bits with optional ninth bit for multiprocessor  
Receive Data FIFO. When a complete incoming data byte  
is assembled in the RSR, it is automatically transferred to  
the 4-byte FIFO, which serves to reduce the incidence of  
overrun errors. The top (oldest) character in the FIFO (if  
any) can be read via the Receive Data Register (RDR).  
communication  
P30 and P37 can be used as general-purpose I/O as long  
as the ASCI channels are disabled  
One or two STOP bits  
Odd, even or no parity  
The next incoming data byte can be shifted into the RSR  
while the FIFO is full, thus providing an additional level of  
buffering. However, an overrun occurs if the receive FIFO  
is still full when the receiver completes assembly of that  
character and is ready to transfer it to the FIFO. If this sit-  
uation occurs, the overrun error bit associated with the pre-  
viousbyteintheFIFOisset. Thelatestdatabyteisnottrans-  
ferred from the shift register to the FIFO in this case, and  
is lost. When an overrun occurs, the receiver does not place  
any further data in the FIFO until the most recent good byte  
received arrives at the top of the FIFO and sets the Overrun  
latch, and software then clears the Overrun latch by a  
WRITE of 0to the EFR bit. Assembly of bytes continues in  
the shift register, but this data is ignored until the byte with  
the overrun error reaches the top of the FIFO and the status  
is cleared.  
Programmable interrupt conditions  
Four level data/status FIFOs for the receiver  
Receive parity, framing and overrun error detection  
Break detection and generation  
Transmit Data Register. Data written to the ASCI Trans-  
mit Data Register (TDR) is transferred to the Transmit Shift  
Register(TSR) as soon as the TSR is empty. Data can be  
written while the TSR is shifting out the previous byte of  
data, providing double buffering for the transmit data. The  
TDR is READ- and WRITE-accessible. Reading from the  
TDR does not affect the ASCI data transmit operation cur-  
rently in progress.  
When a break occurs (defined as a framing error with the  
data equal to all zeros), the all-zero byte with its associated  
error bits are transferred to the FIFO if it is not full and the  
Break Detect bit in the ASEXT register is set. If the FIFO  
is full, an overrun is generated, but the break, framing error  
and data are not transferred to the FIFO. Any time a break  
isdetected, thereceiverdoesnotreceiveanymoredatauntil  
the RX pin returns to a high state.  
Transmit Shift Register. When the ASCI Transmit Shift  
Register (TSR) receives data from the ASCI Transmit Data  
Register, the data is shifted out to the TX (P37) pin. When  
transmission is completed, the next byte (if available) is au-  
tomatically loaded from the TDR into the TSR and the next  
transmission starts. If no data is available for transmission,  
the TSR idles at a continuous High level. This register is  
not program-accessible.  
If the channel is set in multiprocessor mode and the MPE  
bit of the CNTLA register is set to 1,then break, errors and  
data are ignored unless the MP bit in the received character  
isa 1. Thetwoconditionslistedabovecouldcausethemiss-  
ing of a break condition if the FIFO is full and the break  
occurs or if the MP bit in the transmission is not a one with  
the conditions specified above.  
Receive Shift Register. When the RE bit is set in the  
CNTLA register, the RX (P30) pin is monitored for a Low.  
One-half bit-time after a Low is sensed at RX, the ASCI  
samples RX again. If RX goes back to High, the ASCI  
ignores the previous Low and resumes looking for a new  
Low, but if RX is still Low, it considers RX a START bit  
and proceeds to clock in the data based upon the selected  
baud rate. The number of data bits, parity, multiprocessor  
and STOP bits are selected by the MOD2, MOD1, MOD0  
and multiprocessor mode (MP) bits in the CNTLA and  
CNTLB registers.  
ASCI Status FIFO/Registers. This FIFO contains Parity  
Error, Framing Error, RX Overrun, and Break status bits as-  
sociated with each character in the receive data FIFO. The  
status of the oldest character (if any) can be read from the  
ASCI status register, which also provides several other,  
non-FIFOed status conditions.  
After the data is received, the appropriate MP, parity and  
one STOP bit are checked. Data and any errors are clocked  
into the receive data and status FIFO during the STOP bit  
if there is an empty position available. Interrupts and Re-  
The outputs of the error FIFO go to the set inputs of soft-  
ware-accessible error latches in the status register. Writing  
44  
P R E L I M I N A R Y  
DS007601-Z8X0499  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
a 0to the EFR bit in CNTLA is the only way to clear these  
latches. In other words, when an error bit reaches the top  
of the FIFO, it sets an error latch. If the FIFO contains more  
data and the software reads the next byte out of the FIFO,  
the error latch remains set until the software writes a 0to  
the EFR bit. The error bits are cumulative, so if additional  
errorsareintheFIFOtheysetanyunseterrorlatchesasthey  
reach the top.  
main processor clock frequency. The BRG can also be dis-  
abled in favor of the SCLK.  
The Receiver and Transmitter subsequently divide the out-  
put of the Baud rate Generator (or the signal from the CLK  
pin) by 1, 16 or 64 under the control of the DR bit in the  
CNTLB register and the X1 bit in the ASCI Extension Con-  
trol Register (ASEXT).  
RESET. During RESET, the ASCI is forced to the following  
conditions:  
Baud Rate Generator. The baud rate generator features  
two modes. The first provides a dual set of fixed clock di-  
vide ratios as defined in CNTLB. In the second mode, the  
BRGisconfiguredasasixteen-bitdowncounterthatdivides  
the processor clock by the value in a software accessible,  
sixteen-bit, time-constant register. As a result, virtually any  
frequency can be created by appropriately selecting the  
FIFO Empty  
All Error Bits Cleared (including those in the FIFO)  
Receive Enable Cleared (CNTLA BIT 6 = 0)  
Transmit Enable Cleared (CNTLA BIT 5 = 0)  
Internal Address/Data Bus  
ASCI Transmit Data Register  
TDR (Bank:Ah,Addr :01h)  
IRQ3  
Interrupt Request  
**  
**  
ASCI Transmit Shift Register  
TSR  
(P37) TX  
(P30) RX  
ASCI Receive Data FIFO  
RDR (Bank:Ah,Addr:02h)  
ASCI Receive Shift Register  
RSR  
ASCI  
ASCI Control Register A  
CNTLA (Bank:Ah,Addr:03h)  
Accessible  
Control  
ASCI Control Register B  
CNTLB (Bank:Ah,Addr:04h)  
ASCI Status FIFO/Register  
STAT (Bank:Ah,Addr:08h)  
ASCI Extension Control Reg.  
ASEXT (Bank:Ah,Addr:05h)  
ASCI Time Constant High  
ASTCH (Bank:Ah,Addr:07h)  
ASCI Time Constant Low  
ASTCL (Bank:Ah,Add:06h)r  
SCLK  
Baud Rate Generator  
Note: **Not Program  
Figure 31. ASCI Interface Diagram  
DS007601-Z8X0499  
P R E L I M I N A R Y  
45  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
INTERRUPTS  
The ASCI channel generates one interrupt (IRQ3) from two  
sources of interrupts: a receiver and a transmitter. In addi-  
tion, there are several conditions that may cause these in-  
terrupts to trigger. Figure 32 illustrates the different condi-  
tions for each interrupt source enabled under program  
control.  
FIFO full  
Overrun error  
Framing Error  
Parity Error  
Start Bit  
Receiver  
Interrupt  
Sources  
ASCI  
Interrupt  
(IRQ3)  
Transmitter  
Interrupt  
Sources  
Buffer Empty  
Figure 32. ASCI Interrupt Conditions and Sources  
46  
P R E L I M I N A R Y  
DS007601-Z8X0499  
 
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
EXPANDED REGISTER GROUP (A)  
B7 B6 B5 B4 B3 B2 B1 B0  
%(A)0F  
%(A)0E  
%(A)0D  
%(A)0C  
%(A)0B  
%(A)0A  
%(A)09  
%(A)08  
%(A)07  
%(A)06  
%(A)05  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
GEN PURPOSE  
STAT  
u
0
1
1
0
0
0
u
u
u
0
1
1
0
0
0
u
u
u
0
1
1
0
0
0
u
u
u
0
1
1
0
0
1
u
u
u
0
1
1
0
0
0
u
u
u
0
1
1
0
1
0
u
u
u
1
1
1
0
1
0
u
u
u
0
1
1
0
1
0
u
u
*
*
*
*
*
*
*
*
ASTCH  
ASTCL  
ASEXT  
%(A)04  
CNTLB  
%(A)03  
%(A)02  
CNTLA  
RDR  
%(A)01  
%(A)00  
TDR  
RESERVED  
* Not reset with a STOP-Mode Recovery.  
Figure 33. Expanded Register Group (A) Registers  
DS007601-Z8X0499  
P R E L I M I N A R Y  
47  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
ASCI TRANSMIT DATA REGISTER (TDR)  
(%(A)01H: READ/WRITE)  
Table 17. TDR Register Bit Functions  
Bit  
R
7
6
5
4
3
2
1
0
Transmit Data  
W
Reset  
U
U
U
U
U
U
U
U
Data written to the ASCI Transmit Data Register (TDR) is  
transferred to the Transmit Shift Register (TSR) as soon as  
the TSR is empty. The TSR is not not software-accessible.  
The ASCI transmitter is double-buffered so data can be  
writtentothe TDRwhilethe TSRisshiftingouttheprevious  
byte.Datacanbewrittenintoandreadoutofthe TDR.When  
the TDR is read, the data transmit operation is not affected.  
ASCI RECEIVE DATA REGISTER (RDR)  
(%(A)02H: READ/WRITE)  
Table 18. RDR Register Bit Functions  
Bit  
R
7
6
5
4
3
2
1
0
Receive Data  
W
Reset  
U
U
U
U
U
U
U
U
When a complete incoming data byte is assembled in the  
ReceiveShiftRegister(RSR),itisautomaticallytransferred  
to the highest available location in the Receive Data FIFO.  
The Receive Data Register (RDR) is the highest location in  
the Receive Data FIFO. The RDRF bit in the STAT register  
is set when one or more bytes is available from the FIFO.  
The FIFO status for the character in the RDR is available  
in the STAT register via bits 6, 5and 4. STAT should be  
read before reading the RDR. The data in both FIFO loca-  
tions is popped when the character is read from the RDR.  
ASCI CONTROL REGISTER A (CNTLA)  
(%(A)03H: READ/WRITE)  
Table 19. CNTLA Register Bit Functions  
Bit  
R
7
6
5
4
Reserved  
1
3
2
1
0
Multiprocessor  
Bit Received  
(MPBR)  
MOD2 MOD1 MOD0  
Multiprocessor  
Enable  
Receiver  
Enable  
(RE)  
Transmitter  
Enable  
(TE)  
Mode Select  
Error Flag  
Receive  
(EFR)  
(MPE)  
W
Reset  
0
0
0
0
0
0
0
48  
P R E L I M I N A R Y  
DS007601-Z8X0499  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
Bit 7 is the Multiprocessor Enable  
Bit 4 is Reserved  
The ASCI features a multiprocessor communication mode  
that utilizes an extra data bit for selective communication  
when a number of processors share a common serial bus.  
Multiprocessor data format is selected when the MP bit in  
the corresponding register is set to 1. If multiprocessor  
modeisnotselected(MPbitinCNTLB = 0), multiprocessor  
enable (MPE) has no effect. If multiprocessor mode is se-  
lected (MP bit in CNTLB = 1), MPE enables or disables the  
wake-up feature as follows. If MPE is set to 1, only received  
bytes in which the multiprocessor bit (MPB) = 1 are treated  
as valid data characters and loaded into the receiver FIFO  
with corresponding error flags in the status FIFO. Bytes  
with MPB = 0 are ignored by the ASCI. If MPE is reset to  
0, all bytes are received by the ASCI, regardless of the state  
of the MPB data bit.  
Bit 3 is the Multiprocessor Bit Receive  
(Read only)  
When multiprocessor mode is enabled (MP in CNTLB = 1),  
this bit, when read, contains the value of the MPB bit for  
the data byte currently available at the Receive Data Reg-  
ister (the top of the receiver FIFO).  
Bit 3 is the Error Flag Reset (WRITE ONLY)  
When written to 0, the error flags (OVRN, FE; PE in STAT  
and BRK in ASEXT) are cleared to 0. This command self-  
resets, and as a result, writing EFR to a 1is not required.  
Bits 2–0 are the ASCI Data Format Mode 2,1,0  
These bits program the ASCI data format.  
Bit 6 is the Receiver Enable  
Table 20. Format Mode Control Bits  
When Receiver Enable(RE) is set to 1,the ASCI receiver is  
enabled. When RE is reset to 0, the receiver is disabled and  
any receive operation in progress is aborted. However, the  
previous contents of the receiver data and status FIFO are  
not affected.  
Bit Name Function  
Bit = 0 Bit = 1  
2
1
MOD2 Number of Data Bits  
MOD1 Parity Enabled  
7
8
No  
With  
Parity  
Parity  
0
MOD0 Number of Stop Bits  
1
2
Bit 5 is the Transmitter Enable  
When Transmitter Enable(TE) is set to 1,the ASCI trans-  
mitter is enabled. When TE is reset to 0, the transmitter is  
disabled and any transmit operation in progress is aborted.  
However, the previous contents of the transmitter data reg-  
ister and the TDRE flag are not affected.  
If MOD1 = 1, parity is checked on received data and a parity  
bit is appended to the data bits in the transmitted data. Parity  
Even/Odd (PEO) in CNTLB selects even or odd parity.  
The ASCI serial data format is illustrated in Figure 34.  
7 or 8 bits Data Field  
1 or 2  
Stop Bit(s)  
Start  
Bit  
it  
Parity  
Bit  
Figure 34. ASCI Serial Data Format  
DS007601-Z8X0499  
P R E L I M I N A R Y  
49  
 
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
ASCI CONTROL REGISTER B (CNTLB)  
(%(A)04H: READ/WRITE)  
Table 21. CNTLB Register Bit Functions  
Bit  
R
7
6
5
4
3
2
1
0
SS2  
SS1  
SS0  
Multiprocessor  
Bit  
Transmitter  
(MPBT)  
Multiprocessor  
Mode  
Parity  
Even/Odd  
(PEO)  
Divide Ratio  
(DR)  
Clock Source  
and Speed  
Prescale  
(PR)  
(MP)  
W
Reset  
0
0
0
0
0
1
1
1
position whose value is specified in MPBT immediately af-  
ter the specified number of data bits and preceding the spec-  
ified number of STOP bits.  
BIT 7 is the Multiprocessor Bit Transmit  
When multiprocessor format is selected (MP BIT = 1), Mul-  
tiprocessorBitTransmit(MPBT)isusedtospecifythe MPB  
databitfortransmission.IfMPBT=1,thena1istransmitted  
in the MPB bit position. If MPBT = 0, a 0is transmitted.  
Note: The multiprocessor format does not provide parity. The  
serial data format while in MP mode is illustrated in Fig-  
ure 35.  
BIT 6 is the Multiprocessor Mode  
When Multiprocessor Mode (MP) is set to 1, the serial data  
format is configured for multiprocessor mode, adding a bit  
7 or 8 bits Data Field  
Start Bit  
MPB  
1 or 2  
Stop Bit(s)  
Figure 35. MP Mode Serial Data Format  
If MP = 0, the data format is based on MOD2–0 in CNTLA  
and may include parity.  
Bit 4 is the Parity Even/Odd  
Parity Even/Odd (PEO) controls the parity bit transmitted  
on the serial output and the parity check on the serial input.  
IfPEOisclearedto0,evenparityistransmittedandchecked  
If PEO is set to 1, odd parity is transmitted and checked.  
Bit 5 is the BRG Prescaler  
The Prescale bit specifies the baud rate generator prescale  
factor when using the SS20 bits to define the ASCI baud  
rate (BRG MODE = 0). Writing a 0to this bit sets the BRG  
Prescaler to divide by 10. Setting this bit to a 1sets the BRG  
Prescaler to divide by 30. See the Baud Rate Generation  
Summary for more information on setting the ASCI baud  
rate.  
Bit 3 is the Divide Ratio  
The Divide Ratio bit specifies the divider used to obtain the  
baud rate from the data sampling clock when using the  
SS2–0 bits to define the ASCI baud rate (BRG MODE = 0).  
If DR is 0, then DIVIDE-BY-16 is used. If DR is set to a 1,  
then DIVIDE-BY-64 is used. See the Baud Rate Generation  
Summary for more information on setting the ASCI baud  
rate.  
50  
P R E L I M I N A R Y  
DS007601-Z8X0499  
 
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
Table 22. Clock Source and Speed Bits  
DR  
Sampling Clock  
0
1
Divide by 16  
Divide by 64  
SS2  
SS1  
SS0  
Divider (DIV)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
÷1  
÷2  
÷4  
Bit 2,1 are the Clock Source and Speed Select  
÷8  
When the BRG mode bit in the ASEXT register is set to 0,  
these 3 bits, along with DR and PR in this register define  
the ASCI baud rate. Bits 2, 1and 0specify a power-of-two  
divider of the SCLK as defined in Table 22. These bits  
should never be set to all 1s or erratic results may occur.  
See the Baud Rate Generation Summary for more informa-  
tion on setting the ASCI baud rate.  
÷16  
÷32  
÷64  
Reserved  
DS007601-Z8X0499  
P R E L I M I N A R Y  
51  
 
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
ASCI EXTENSION CONTROL REGISTER (ASEXT)  
(%(A)05H: READ/WRITE)  
Table 23. ASEXT Register Bit Functions  
Bit  
R
7
6
Reserved  
0
5
Reserved  
0
4
3
2
1
0
Break  
Detect  
(BD)  
RX State  
(RX)  
RX  
Reserved BRG Mode Interrupton  
(must be 0) (BRGM)  
Send Break  
(SB)  
Start Bit  
(RIS)  
W
Reset  
P30  
0
0
0
0
0
on RX. Such a receive interrupt is always followed by the  
settingofRDRFinthemiddleoftheSTOPbit.Thisinterrupt  
request must be cleared by writing this bit back to a 0. Writ-  
ing a 1to this bit has no effect. One function of this feature  
is to wake the part from Sleep mode when a character ar-  
rives, so that the ASCI receives clocking with which to pro-  
cess the character. Another function is to ensure that the as-  
sociated interrupt service routine is activated in time to  
sense the setting of RDRF in the status register, and to start  
a timer for baud rate measurement at that time.  
BIT 7 is the RX State (READ ONLY)  
Providestherealtimestateof RX,thechannel’sreceivedata  
input pin—P30.  
BIT 6 is Reserved  
When read, this bit reflects the default value 0. When  
WRITE, this bit is ignored.  
Bit 5 is Reserved  
When read, this bit reflects the default value 0. When  
WRITE, this bit is ignored.  
Bit 1 is the Break Detect (READ ONLY)  
This status bit is set to a 1when a Break is detected, defined  
as a framing error with the data bits all equal to 0. The all-  
zero byte with its associated error bits are transferred to the  
FIFO if it is not full. If the FIFO is full, an overrun is gen-  
erated, but the break, framing error and data are not trans-  
ferredtotheFIFO.Anytimeabreakisdetected,thereceiver  
do not receive any more data until the RX pin returns to a  
High state. When set, this bit remains set until it is cleared  
by writing a 0to the EFR bit in the CNTLA register.  
Bit 4 is the X1 Bit Clock  
Reserved—must be set to 0or erratic results may occur.  
Bit 3 is the BRG Mode  
When this bit is set to a 1, the ASCI’s baud rate is set by  
the 16-bit programmable divider programmed in ASCI  
TimeConstantHigh(ASTH)andASCITimeConstantLow  
(ASTL). If this bit is set to a 0, the baud rate is defined by  
the PR bit, the DR bit, and the SS2–0 bits in the CNTLB reg-  
ister. In either case, the source for the baud rate generator  
is the SCLK. See the Baud Rate Generation Summary for  
more information on setting the ASCI baud rate.  
Bit 0 is the Send Break  
Setting this bit to a 1forces the channel’s transmitter data  
output pin, TX, to a Low for as long as it remains set. Before  
starting the break, any character(s) in the TSR and in the  
TDRarecompletelytransmitted. Ifacharacterisloadedinto  
the TDR while a break is being generated, that character is  
held until the break is terminated and transmitted.  
Bit 2 is the Rx Interrupt on Start  
If software sets this bit to 1,a receive interrupt is requested  
(in a combinatorial fashion) when a START bit is detected  
52  
P R E L I M I N A R Y  
DS007601-Z8X0499  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
ASCI TIME CONSTANT REGISTER (ASTL)  
(%(A)06H: READ/WRITE)  
Table 24. ASTL Register Bit Functions  
Bit  
R
7
1
6
1
5
4
3
2
1
1
1
0
1
ASCI Time Constant Low  
W
Reset  
1
1
1
ASCI TIME CONSTANT REGISTER (ASTH)  
(%(A)07H: READ/WRITE)  
Table 25. ASTH Register Bit Functions  
Bit  
R
7
6
5
4
3
2
1
1
1
0
1
ASCI Time Constant High  
W
Reset  
1
1
1
1
1
The ASTL and ASTH registers are only used when the BRG  
mode bit in the ASEXT register is set to a 1. These two 8-  
bit registers form a 16-bit counter with a flip-flop logic cir-  
cuit (DIVIDE-BY-2) on the output so that the final BRG out-  
put is symmetrical. The values written to these registers de-  
termine the time constant from which the baud rate is  
generated.  
DS007601-Z8X0499  
P R E L I M I N A R Y  
53  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
ASCI STATUS REGISTER (STAT)  
(%(A)08H: READ/WRITE)  
Table 26. ASCI Status Register (STAT)  
Bit  
R
7
6
5
4
3
2
Reserved  
0
1
0
Receive  
Data  
Register  
Full  
Transmit  
Data  
Register  
Empty  
TDRE)  
Overrun  
Error  
(OE)  
Framing  
Error  
Parity Error  
(PE)  
(FE)  
Receiver  
Interrupt  
Enable  
(RIE)  
Transmitter  
Interrupt  
Enable  
(RDRF)  
(TIE)  
W
Reset  
0
0
0
0
0
0
0
BIT 7 is the Receive Data Register Full  
Bit 5 is the Parity Error  
RDRFissetto1whenthereceivertransfersacharacterfrom  
the RSR into an empty Rx FIFO.  
Aparityerrorisdetectedwhenparitygenerationandcheck-  
ing is enabled by the MOD1 bit in the CNTLA register and  
a character has been assembled in which the parity does not  
match that specified by the PEO bit in CNTLB.  
Note: If a framing or parity error occurs, RDRF is still set and  
the receive data (which generated the error) is still load-  
ed into the FIFO.  
Note: PE is FIFOed and the error bit is not actually set until the  
associated data becomes available for reading in the  
RDR.  
WhenthereismorethanonecharacterintheFIFO, andsoft-  
warereadsacharacter, RDRFeitherremainssetoriscleared  
and immediately set again. RDRF is cleared to 0when the  
FIFO becomes empty after reading the RDR and during  
Power-On Reset.  
When set, the bit remains set until it is cleared by writing  
a 0to the EFT bit in the CNTLA register. The bit is cleared  
at Power-On Reset.  
Bit 6 is the Overrun Error  
Bit 4 is the Framing Error  
An overrun occurs if the receive FIFO is still full when the  
receiver completes assembly of a character and is ready to  
transfer it to the FIFO. If this situation occurs, the overrun  
error bit associated with the previous byte in the FIFO is  
set. In this case, the latest data byte is not transferred from  
the shift register to the FIFO and is lost.  
Aframingerrorisdetectedwhenthe STOPbitofacharacter  
is sampled as a 0(space). Like PE, FE is FIFOed and the  
error bit is not actually set until the associated data becomes  
available for reading in the RDR. When set, the bit remains  
set until it is cleared by writing a 0to the EFR bit in the  
CNTLA register. The bit is cleared at Power-On Reset.  
When an overrun occurs, the receiver does not place any  
further data in the FIFO until the most recent good byte  
received (the byte with the associated overrun error bit set)  
moves to the top of the FIFO and sets the Overrun latch,  
and software then clears the Overrun latch. Assembly of  
bytes continues in the shift register, but this data is ignored  
until the byte with the overrun error reaches the top of the  
FIFO and the status is cleared. When set, the bit remains  
set until it is cleared by writing a 0to the EFR bit in the  
CNTLA register. The bit is also cleared during Power-On  
Reset.  
Bit 3 is the Receiver Interrupt Enable  
RIE should be set to a 1to enable ASCI receive interrupt  
requests. An interrupt (IRQ3) is generated when RDRF (bit  
7of the STAT register) is a 1. A receive interrupt is also  
generated if this bit is set to a 1, bit 2of the ASEXT register  
(RX interrupt on the START bit) is set to a 1, and a START  
bit is detected by the receiver.  
54  
P R E L I M I N A R Y  
DS007601-Z8X0499  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
Bit 2 is Reserved  
SCLK  
Baud Rate =  
When read, this bit reflects the default value 0. When  
WRITE, this bit is ignored.  
(10 + 20 x PS) x DIV x Divide Ratio  
Bit 1 is the Transmit Data Register Empty  
Where:  
TDRE = 1 indicates that the Transmit Data Register (TDR)  
is empty and that the next data byte to be transmitted can  
be written into the TDR. TDRE is cleared to 0after the byte  
is written to TDR, until the ASCI transfers the byte from the  
TDR to the Transmit Shift Register (TSR), and then TDRE  
is again set to 1. TDRE is set to 1at Power-On Reset.  
1. SCLK is the system clock.  
2. PS = 1or 0 and is bit 5of CNTLB.  
3. DIV = 1, 2, 4, 8, 16, 32or 64as reflected by SS2–0 in  
CNTLB.  
4. DIVIDE RATIO = 16 or 64, as defined by DR in  
CNTLB.  
Bit 0 is the Transmit Interrupt Enable  
If BRG mode = 1:  
TIE should be set to a 1to enable ASCI transmit interrupt  
requests. An interrupt (IRQ3) is generated when TDRE (bit  
1of the STAT register) is a 1. TIE is cleared to 0at Power-  
On Reset.  
SCLK  
Baud Rate =  
(2 x (TC + 2) x Divide Ratio  
An anomaly exists that requires setting of the RIE bit to al-  
low the generation of transmit interrupts. If RIE is not set,  
transmit interrupts are not generated, even if TIE is set. See  
Precautions.  
or  
SCLK  
TC =  
– 2  
2 x Baud Rate x Divide Ratio  
Baud Rate Generation Summary  
The application can select between one of two baud rate  
generatorsfortheASCI. IftheBRGModebitintheASEXT  
register is set to a 0, the SS2,1,0 bits, the DR, bit and the  
PRbitinCNTLBareusedtoselectthebaudrate. IftheBRG  
Mode bit is set to a 1, the ASTL and ASTH registers are  
used to select the baud rate.  
Where:  
1. SCLK is the system clock.  
2. TC is the 16-bit value programmed into ASTL and  
ASTH.  
3. DIVIDE RATIO = 16 or 64, as defined by DR in  
CNTLB.  
The following formulas are used to calculate the baud rate  
from the two baud rate generators:  
4. Baud Rate is the desired baud rate.  
If BRG mode = 0:  
DS007601-Z8X0499  
P R E L I M I N A R Y  
55  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
ASCI STATUS REGISTER (STAT) (Continued)  
Table 27. Baud Rate List (BRG Mode = 0)  
Sampling  
Rate  
Prescaler  
Divide  
Baud Rate  
Example Baud Rate (bps)  
SCLK = SCLK = SCLK =  
Divide  
Ratio  
General  
Divide Ratio  
6.144  
MHz  
4.608  
MHz  
3.072  
MHz  
PS  
Ratio  
DR  
Rate  
SS2  
SS1  
SS0  
0
0
0
0
1
1
1
0
0
0
0
1
1
1
0
0
0
0
1
1
1
0
0
0
0
1
1
1
0
0
÷1  
÷2  
SCLK ÷ 160  
SCLK ÷ 320  
38400  
19200  
9600  
4800  
2400  
1200  
600  
19200  
9600  
4800  
2400  
1200  
600  
0
1
1
0
0
1
0
0
1
1
0
0
1
0
0
1
1
0
0
1
0
0
1
1
0
0
1
1
0
1
0
1
0
0
1
0
1
0
1
0
0
1
0
1
0
1
0
0
1
0
1
0
1
0
÷4  
SCLK ÷ 640  
0
16  
64  
16  
64  
÷8  
SCLK ÷ 1280  
SCLK ÷ 2560  
SCLK ÷ 5120  
SCLK ÷ 10240  
SCLK ÷ 640  
÷16  
÷32  
÷64  
÷1  
300  
SCLK  
÷ 10  
0
9600  
4800  
2400  
1200  
600  
4800  
2400  
1200  
600  
÷2  
SCLK ÷ 1280  
SCLK ÷ 2560  
SCLK ÷ 5120  
SCLK ÷ 10240  
SCLK ÷ 20480  
SCLK ÷ 40960  
SCLK ÷ 480  
÷4  
1
0
1
÷8  
÷16  
÷32  
÷64  
÷1  
300  
300  
150  
150  
75  
4800  
2400  
1200  
600  
300  
150  
75  
÷2  
SCLK ÷ 960  
÷4  
SCLK ÷ 1920  
SCLK ÷ 3840  
SCLK ÷ 7680  
SCLK ÷ 15360  
SCLK ÷ 30720  
SCLK ÷ 1920  
SCLK ÷ 3840  
SCLK ÷ 7680  
SCLK ÷ 15360  
SCLK ÷ 30720  
SCLK ÷ 61440  
SCLK ÷ 122880  
÷8  
÷16  
÷32  
÷64  
÷1  
SCLK  
÷ 30  
1
2400  
1200  
600  
300  
150  
75  
÷2  
÷4  
÷8  
÷16  
÷32  
÷64  
37.5  
56  
P R E L I M I N A R Y  
DS007601-Z8X0499  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
LOW VOLTAGE PROTECTION  
VCC  
(Volts)  
3.80  
3.60  
3.40  
3.20  
3.00  
2.80  
2.60  
2.40  
A
B
RUN/HALT Mode  
STOP Mode  
V
(Typical)  
LV  
B
A
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
Temperature (ºC)  
Figure 36. Typical Low Voltage Protection vs. Temperature  
DS007601-Z8X0499  
P R E L I M I N A R Y  
57  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
MASK OPTIONS  
Below is an example of the ROM mask bit option selection  
for this product.  
Options  
Option Selections  
Enable ROM Protect  
ROM Protect  
Disable ROM Protect  
Disable RAM Protect  
RC Oscillator Enable  
RAM Protect  
Enable RAM Protect  
System Clock Source  
Oscillator Operational Mode  
Crystal/Other Clock Source  
Normal High-Frequency Operation  
Enabled  
32-kHz Crystal Operation Enabled  
(Limits High-Frequency Operation)  
WDT Mode  
WDT Enabled by Software Only  
WDT Enabled Automatically After  
RESET  
Auto Latch Mode  
Port 0 Pull-Ups  
Port 1 Pull-Ups  
Port 2 Pull-Ups  
Disable Auto Latches  
Disable Pull-Ups  
Disable Pull-Ups  
Disable Pull-Ups  
Enable Auto Latches  
Enable Pull-Ups  
Enable Pull-Ups  
Enable Pull-Ups  
ROM Protect. SelectingtheDISABLEROMPROTECTop-  
tion READs the software program that is in the program  
memory using ZiLOG’s internal factory test mode. How-  
ever, none of the standard methods for reading or verifying  
the code in the microcontroller uses an EPROM program-  
mer. With this option disabled, ZiLOG is able to fully test  
the ROM memory and provides its standard warranty for  
the part. Selecting the ENABLE ROM PROTECT option ne-  
gates the possibility of reading the code out of the part using  
atester, programmer, oranyotherstandardmethod. ZiLOG  
will be unable to test the ROM memory at any time prior  
to customer delivery.  
allows protection (under software control) of a portion of  
the RAM’s address space from being read or written.  
System Clock Source. Selecting the RC OSCILLATOR  
ENABLE option, configures the oscillator circuit on the mi-  
crocontroller to work with an external RC circuit. Selecting  
the CRYSTAL/OTHER CLOCK SOURCE option configures  
the oscillator circuit to work with an external crystal, ce-  
ramic resonator, or LC oscillator.  
Oscillator Operational Mode. Selecting the NORMAL  
HIGH FREQUENCY OPERATION ENABLED option en-  
ables the part to operate using a standard crystal or resona-  
tor, but it does not operate using a 32-kHz crystal. Selecting  
the 32-KHZ OPERATION ENABLED option enables the mi-  
crocontroller to work with a 32-kHz crystal and an external  
feedback resistor—these must be supplied between the  
XTAL1 and XTAL2 pins. (If RC OSCILLATOR ENABLED  
is selected in the SYSTEM CLOCK SOURCE option, this  
option defaults to the NORMAL HIGH FREQUENCY OP-  
ERATION ENABLED bit.)  
The ROM PROTECT option bit only affects the ability to  
read the code and does not affect the operation of the part  
in an application. If the ROM PROTECT option is disabled,  
ZiLOG tests the part for ROM fallout and parts which fail  
are not shipped to the customer. When the ROM PROTECT  
option is enabled, ZiLOG cannot perform these tests on the  
ROM. When ROM PROTECT is enabled, except for the im-  
proper transfer of the code by ZiLOG, all ROM memory  
software errors shall be the responsibility of the Buyer and  
ZiLOG shall have no obligation to repair or replace product  
containing software errors. Selecting the ENABLE ROM  
PROTECT option waives all warranties of ZiLOG, ex-  
pressed or implied, on microcontrollers containing ROM  
failures including, but not limited to, the implied warranty  
of merchantability and fitness for a particular purpose.  
WDT Mode. Selecting the WDT ENABLED BY SOFT-  
WAREONLYoptionoperatestheWatchDogTimer(WDT)  
when turned on under software control. Selecting the WDT  
ENABLEDAUTOMATICALLYAFTERRESEToptionstarts  
the WDT automatically at RESET.There is no way to dis-  
able or stop this mode, making it necessary in the code to  
periodically clear the WDT to prevent it from resetting the  
microcontroller. If the WDT ENABLED AUTOMATICAL-  
LY AFTER RESET option and the WDT DRIVEN BY SYS-  
TEM CLOCK option (if offered) are selected, the WDT nev-  
RAM Protect. Selecting the DISABLE RAM PROTECT op-  
tion does not affect the RAM memory. RAM memory op-  
eratesasdefinedinthisProductSpecificationforalladdress  
locations. Selecting the ENABLE RAM PROTECT option,  
58  
P R E L I M I N A R Y  
DS007601-Z8X0499  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
er operates in STOP mode, and cannot be enabled, by any  
means, to operate in STOP mode.  
Port 0 pins. This option bit does not affect any of the other  
port pins on the part.  
Auto Latch Mode. Selecting the DISABLE AUTOLATCH-  
ES option disables the autolatches on the Port pins. These  
pins will float rather than be pulled to a valid CMOS level  
when they are inputs and not connected to an external sig-  
nal. SelectingtheENABLEAUTOLATCHESoptionenables  
the autolatches on the Port pins and pulls the pins to a valid  
CMOSlevelwhentheyarenotconnectedtoanexternalsig-  
nal.  
Port 1 Pull-Ups. Selecting DISABLE PULL-UPS disables  
the input pull-up circuitry on all Port 1 pins. Selecting EN-  
ABLE PULL-UPS enables the input pull-up circuitry on all  
Port 1 pins. This option bit does not affect any of the other  
port pins on the part.  
Port 2 Pull-Ups. Selecting DISABLE PULL-UPS disables  
the input pull-up circuitry on all Port 2 pins. Selecting EN-  
ABLE PULL-UPS enables the input pull-up circuitry on all  
Port 2 pins. This option bit does not affect any of the other  
port pins on the part.  
Port 0 Pull-Ups. Selecting DISABLE PULL-UPS disables  
the input pull-up circuitry on all Port 0 pins. Selecting EN-  
ABLE PULL-UPS enables the input pull-up circuitry on all  
DS007601-Z8X0499  
P R E L I M I N A R Y  
59  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
EXPANDED REGISTER FILE CONTROL REGISTERS  
WDTMR (F) 0F  
D7 D6 D5 D4 D3 D2 D1 D0  
SMR (FH) 0B  
D7 D6 D5 D4 D3 D2 D1 D0  
SCLK/TCLK Divide-by-16  
WDT TAP INT RC OSC System Clock  
0
1
OFF * *  
ON  
00  
01  
10  
11  
3.5 ms  
10 ms  
14 ms  
56 ms  
128 SCLK  
256 SCLK  
512 SCLK  
2048 SCLK  
*
External Clock Divide by 2  
0
1
SCLK/TCLK =XTAL/2*  
SCLK/TCLK =XTAL  
WDT During HALT  
0
1
OFF  
ON *  
STOP-Mode Recovery Source  
000 POR Only and/or External Reset*  
001 P30  
010 P31  
011 P32  
WDT During STOP  
0
1
OFF  
ON  
*
100 P33  
101 P27  
110 P2 NOR 0-3  
111 P2 NOR 0-7  
XTAL1/INT RC Select for WDT  
0
1
On-Board RC  
XTAL  
*
Reserved (Must be 0)  
Stop Delay  
0
1
OFF  
ON*  
* Default setting after RESET  
Stop Recovery Level  
0
1
Low*  
High  
Figure 39. Watch-Dog Timer Mode Register  
(WRITE ONLY)  
Stop Flag (Read only)  
0
1
POR*  
Stop Recovery  
Note: Not used in conjunction with SMR2 Source  
* Default setting after RESET.  
* * Default setting after RESET and STOP-Mode Recovery.  
Figure 37. Stop-Mode Recovery Register  
(WRITE ONLY, except Bit D7, which is READ ONLY)  
SMR2 (0F) DH  
D7 D6 D5 D4 D3 D2 D1 D0  
Stop-Mode Recovery Source 2  
00 POR only*  
01 AND P20,P21,P22,P23  
10 AND P20,P21,P22,P23,P24,  
P25,P26,P27  
Reserved (Must be 0)  
Note: Not used in conjunction with SMR Source  
Figure 38. Stop-Mode Recovery Register2  
60  
P R E L I M I N A R Y  
DS007601-Z8X0499  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
Z8 CONTROL REGISTERS  
R242 T1  
D7 D6 D5 D4 D3 D2 D1 D0  
PCON (FH) 00H  
D7 D6 D5 D4 D3 D2 D1 D0  
Comparator Output Port 3  
0 P34, P37 Standard Output*  
1 P34, P37 Comparator Output  
T
1
Initial Value  
(When Written)  
(Range: 1-256 Decimal  
01-00 HEX)  
Current Value  
(When Read)  
0 Port 1 Open Drain  
T
1 Port 1 Push-pull Active*†  
1
0 Port 0 Open Drain  
1 Port 0 Push-pull Active*  
0
1
Port 0 Low EMI  
Figure 42. Counter/Timer 1 Register  
(F2 : READ/WRITE)  
Port 0 Standard*†  
H
0 Port 1 Low EMI  
1 Port 1 Standard*  
0
1
Port 2 Low EMI  
Port 2 Standard*  
0
1
Port 3 Low EMI  
Port 3 Standard*  
R243 PRE1  
D7 D6 D5 D4 D3 D2 D1 D0  
LowEMI Oscillator  
0
1
Low EMI  
Standard*  
*Default Setting After Reset  
Must be set to one for devices  
in 28-pin packages  
Count Mode  
0
1
T1 Single Pass  
T1 Modulo N  
Figure 40. Port Configuration Register (PCON)  
(WRITE ONLY)  
Clock Source  
1
0
T1Internal  
T1External Timing Input  
(TIN) Mode  
Prescaler Modulo  
(Range: 1-64 Decimal  
01-00 HEX)  
R241 TMR  
D7 D6 D5 D4 D3 D2 D1 D0  
Figure 43. Prescaler 1 Register  
(F3 : WRITE ONLY)  
H
0
1
No Function  
Load T0  
0
1
Disable T0 Count  
Enable T0 Count  
R244 T0  
D7 D6 D5 D4 D3 D2 D1 D0  
0
1
No Function  
Load T1  
0
1
Disable T1 Count  
Enable T1 Count  
T0 Initial Value  
(When Written)  
(Range: 1-256 Decimal  
01-00 HEX)  
T0 Current Value  
(When Read)  
TIN Modes  
00 External Clock Input  
01 Gate Input  
10 Trigger Input  
(Non-retriggerable)  
11 Trigger Input  
(Retriggerable)  
Figure 44. Counter/Timer 0 Register  
(F4 : READ/WRITE)  
TOUT Modes  
00 Not Used  
01 T0 Out  
H
10 T1 Out  
11 Internal Clock Out  
Figure 41. Timer Mode Register  
(F1 : READ/WRITE)  
H
DS007601-Z8X0499  
P R E L I M I N A R Y  
61  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
Z8 CONTROL REGISTERS (Continued)  
R245 PRE0  
R248 P01M  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
P00–P03 Mode  
00 Output  
01 Input  
Count Mode  
0
1
T0 Single Pass  
T0 Modulo N  
1X A11–A8  
Stack Selection  
Reserved (Must be 0)  
0
1
External  
Internal†  
Prescaler Modulo  
(Range: 1-64 Decimal  
01-00 HEX)  
P10 - P17 Mode  
00 Byte Output†  
01 Byte Input  
10 AD7 -AD0  
Figure 45. Prescaler 0 Register  
(F5 : WRITE ONLY)  
11 High-Impedance AD7–AD0,  
AS, DS, R/W, A11–A8,  
A15–A12, If Selected  
H
External Memory Timing  
0
1
Normal  
Extended  
R246 P2M  
D7 D6 D5 D4 D3 D2 D1 D0  
P04–P07 Mode  
00 Output  
01 Input  
For 28 pin device, the user must set:  
D2=1  
D3=0  
D4=0  
1X A15–A12  
P20 - P27 I/O Definition  
0
1
Defines Bit as Output  
Defines Bit as Input  
Figure 48. Port 0 and 1 Mode Register  
(F8 : WRITE ONLY)  
H
Figure 46. Port 2 Mode Register  
(F6 : WRITE ONLY)  
H
R249 IPR  
D7 D6 D5 D4 D3 D2 D1 D0  
R247 P3M  
D7 D6 D5 D4 D3 D2 D1 D0  
Interrupt Group Priority  
000 Reserved  
001 C > A > B  
010 A > B > C  
011 A > C > B  
100 B > C > A  
101 C > B > A  
110 B > A > C  
111 Reserved  
0 Port 2 Pull-Ups Open Drain  
1 Port 2 Push-Pull Active  
0 P31, P32 Digital Mode  
1 P31, P32Analog Mode  
0 P32 = Input  
P35 = Output  
1 P32 = DAV0/RDY0  
P35 = RDY0/DAV0  
IRQ1, IRQ4 Priority (Group C)  
0
1
IRQ1 > IRQ4  
IRQ4 > IRQ1  
00 P33 = Input  
P34 = Output  
IRQ0, IRQ2 Priority (Group B)  
0
1
IRQ2 > IRQ0  
IRQ0 > IRQ2  
01 P33 = Input  
10 P34 = DM  
IRQ3, IRQ5 Priority (GroupA)  
11 P33 = DAV0/RDY0  
P34 = RDY1/DAV1  
0
1
IRQ5 > IRQ3  
IRQ3 > IRQ5  
0 P31 = Input (T  
)
IN  
Reserved (Must be 0)  
P36 = Output (T )  
OUT  
1 P31 = DAV2/RDY2  
P36 = RDY2/DAV2  
0 P30 = Input  
P37 = Output  
Figure 49. Interrupt Priority Register  
(F9 : WRITE ONLY)  
¬
H
Reserved (must be 0)  
Figure 47. Port 3 Mode Register  
(F7 : WRITE ONLY)  
H
62  
P R E L I M I N A R Y  
DS007601-Z8X0499  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
R250 IRQ  
R253 RP  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
IRQ0 = P32 Input  
IRQ1 = P33 Input  
IRQ2 = P31 Input  
IRQ3 = P30 Input  
IRQ4 = T0  
Expanded Register File  
Working Register Pointer  
IRQ5 = T1  
Figure 53. Register Pointer  
(FD : READ/WRITE)  
Inter Edge  
H
P31 P32 = 00  
P31 P32 = 01  
P31 P32 = 10  
P31 P32 = 11  
R254 SPH  
D7 D6 D5 D4 D3 D2 D1 D0  
Figure 50. Interrupt Request Register  
(FA : READ/WRITE)  
H
Stack Pointer Upper  
Byte (SP8 - SP15)  
R251 IMR  
D7 D6 D5 D4 D3 D2 D1 D0  
Figure 54. Stack Pointer High  
(FE : READ/WRITE)  
H
1
Enables IRQ0-IRQ5  
(D0 = IRQ0)  
1
1
Enables RAM Protect *  
Enables Interrupts  
R255 SPL  
D7 D6 D5 D4 D3 D2 D1 D0  
* This option must be selected when ROM code is  
submitted for ROM Masking, otherwise this control bit  
is disabled permanently.  
Stack Pointer Lower  
Byte (SP0 - SP7)  
Figure 51. Interrupt Mask Register  
(FB : READ/WRITE)  
H
Figure 55. Stack Pointer Low  
(FF : READ/WRITE)  
H
R252 FLAGS  
D7 D6 D5 D4 D3 D2 D1 D0  
User Flag F1 *  
User Flag F2 *  
Half Carry Flag  
Decimal Adjust Flag  
Overflow Flag  
Sign Flag  
Zero Flag  
Carry Flag  
* Not affected by reset  
Figure 52. Flag Register  
(FC : READ/WRITE)  
H
DS007601-Z8X0499  
P R E L I M I N A R Y  
63  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
PACKAGE INFORMATION  
Figure 56. 28-Pin DIP Package Diagram  
Figure 57. 28-Pin SOIC Package Diagram  
64  
P R E L I M I N A R Y  
DS007601-Z8X0499  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
Figure 58. 28-Pin PLCC Package Diagram  
Figure 59. 40-Pin DIP Package Diagram  
DS007601-Z8X0499  
P R E L I M I N A R Y  
65  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
Figure 60. 44-Pin PLCC Package Diagram  
Figure 61. 44-Pin LQFP Package Diagram  
66  
P R E L I M I N A R Y  
DS007601-Z8X0499  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
ORDERING INFORMATION  
Z86C34  
Standard Temperature  
Extended Temperature  
28-Pin DIP  
28-Pin SOIC  
28-Pin PLCC  
28-Pin DIP  
28-Pin SOIC  
28-Pin PLCC  
Z86C3416PSC  
Z86C3416SSC  
Z86C3416VSC  
Z86C3416PEC  
Z86C3416SEC  
Z86C3416VEC  
Z86C35  
Standard Temperature  
Extended Temperature  
28-Pin DIP  
Z86C3516PSC  
28-Pin SOIC  
Z86C3516SSC  
28-Pin PLCC  
Z86C3516VSC  
28-Pin DIP  
Z86C3516PEC  
28-Pin SOIC  
Z86C3516SEC  
28-Pin PLCC  
Z86C3516VEC  
Z86C36  
Standard Temperature  
Extended Temperature  
28-Pin DIP  
Z86C3616PSC  
28-Pin SOIC  
Z86C3616SSC  
28-Pin PLCC  
Z86C3616VSC  
28-Pin DIP  
Z86C3616PEC  
28-Pin SOIC  
Z86C3616SEC  
28-Pin PLCC  
Z86C3616VEC  
Z86C44  
Standard Temperature  
Extended Temperature  
40-Pin DIP  
Z86C4416PSC  
44-Pin PLCC  
Z86C4416VSC  
Z86C4416FSC  
40-Pin DIP  
Z86C4416PEC  
44-Pin PLCC  
Z86C4416VEC  
Z86C4416FEC  
44-Pin LQFP  
44-Pin LQFP  
Z86C45  
Standard Temperature  
Extended Temperature  
40-Pin DIP  
Z86C4516PSC  
44-Pin PLCC  
Z86C4516VSC  
44-Pin QFP  
Z86C4516FSC  
40-Pin DIP  
Z86C4516PEC  
44-Pin PLCC  
Z86C4516VEC  
44-Pin QFP  
Z86C4516FEC  
44-Pin LQFP  
44-Pin LQFP  
Z86C46  
Standard Temperature  
Extended Temperature  
40-Pin DIP  
Z86C4616PSC  
44-Pin PLCC  
Z86C4616VSC  
44-Pin QFP  
Z86C4616FSC  
40-Pin DIP  
Z86C4616PEC  
44-Pin PLCC  
Z86C4616VEC  
Z86C4616FEC  
44-Pin LQFP  
44-Pin LQFP  
For fast results, contact your local ZiLOG sales office for  
assistance in ordering the part required.  
DS007601-Z8X0499  
P R E L I M I N A R Y  
67  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
PRECAUTIONS (Continued)  
PRECAUTIONS  
1. Enabling the transmit interrupt (bit 0 in the ASCI  
STAT register) does not make the device ready for  
transmitter-related interrupts. The receiver interrupt  
(bit 3in the ASCI STAT register) must also be enabled.  
terrupt may be lost. This situation occurs when an in-  
terrupt is generated by one side (either the transmitter  
or receiver) and, before the interrupt is serviced, an-  
other interrupt is generated by the other side. The sec-  
ond interrupt may be lost.  
Workaround: For transmit interrupts to be generated,  
the RIE bit must also be set. When IRQ3 is generated,  
the software should check the STAT register for  
details on the interrupt source.  
Workaround: The only workaround is not to use  
transmitter interrupts when using the ASCI in full-  
duplex mode. Use the transmitter in polled mode and  
the receiver in interrupt mode for full duplex  
operation. In half-duplex operation, this anomaly does  
not create a problem.  
2. When using the device in full-duplex mode under in-  
terrupts (both transmit and receive interrupts enabled),  
a small window exists where a transmit or receive in-  
68  
P R E L I M I N A R Y  
DS007601-Z8X0499  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
CODES  
For fast results, contact your local ZiLOG sales office for  
assistance in ordering the part required.  
Preferred Package  
Longer Lead Time  
P = Plastic DIP  
V = Plastic Chip Carrier  
F = Plastic Quad Flat Pack  
S = Small Outline  
Integrated Chip  
Preferred Temperature  
Longer Lead Time  
Speed  
S = 0°C to +70°C  
E = –40°C to +105°C  
16 = 16 MHz  
Environmental  
C = Plastic Standard  
Example:  
The Z86C36 is a 16-MHz PLCC, 0ºC to 70ºC, with Plastic  
Standard Flow.  
Z
ZiLOG Prefix  
Product Number  
Speed  
86C36  
16  
P
Package  
S
C
Temperature  
Environmental Flow  
Pre-Characterization Product  
The product represented by this document is newly introduced  
and ZiLOG has not completed the full characterization of the  
product. The document states what ZiLOG knows about this  
product at this time, but additional features or nonconformance  
with some aspects of the document may be found, either by  
ZiLOG or its customers in the course of further application and  
characterization work. In addition, ZiLOG cautions that delivery  
may be uncertain at times, due to start-up yield issues.  
DS007601-Z8X0499  
P R E L I M I N A R Y  
69  
Z86C34/C35/C36/C44/C45/C46  
CMOS Z8® MCUs with ASCI UART  
ZiLOG  
Customer Support  
For answers to technical questions about the product, documentation, or any other issues with Zilog’s offerings,  
please visit Zilog’s Knowledge Base at http://www.zilog.com/kb.  
For any comments, detail technical questions, or reporting problems, please visit Zilog’s Technical Support at  
http://support.zilog.com.  
70  
P R E L I M I N A R Y  
DS007601-Z8X0499  

相关型号:

Z86C3616PSC

Microcontroller, 8-Bit, MROM, Z8 CPU, 16MHz, CMOS, PDIP28, PLASTIC, DIP-28

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IXYS

Z86C3616PSG

IC 8-BIT, MROM, 16 MHz, MICROCONTROLLER, PDIP28, PLASTIC, DIP-28, Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZILOG

Z86C3616PSG

Microcontroller, 8-Bit, MROM, 16MHz, CMOS, PDIP28, PLASTIC, DIP-28

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IXYS

Z86C3616SEC

Microcontroller, 8-Bit, MROM, Z8 CPU, 16MHz, CMOS, PDSO28,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IXYS

Z86C3616SSG

IC 8-BIT, MROM, 16 MHz, MICROCONTROLLER, PDSO28, SOIC-28, Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZILOG

Z86C3616VEC

Microcontroller, 8-Bit, MROM, Z8 CPU, 16MHz, CMOS, PQCC28,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IXYS

Z86C3616VSC

Microcontroller, 8-Bit, MROM, Z8 CPU, 16MHz, CMOS, PQCC28,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IXYS

Z86C40

CMOS Z8 CONSUMER CONTROLLER PROCESSOR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZILOG

Z86C40-08FEC

Microcontroller, 8-Bit, MROM, Z8 CPU, 4MHz, CMOS, PQFP44,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IXYS

Z86C40-08PEC

Microcontroller, 8-Bit, MROM, Z8 CPU, 4MHz, CMOS, PDIP40,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IXYS

Z86C40-08VSC

Microcontroller, 8-Bit, MROM, Z8 CPU, 4MHz, CMOS, PQCC44,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IXYS

Z86C40-12FSC

Microcontroller, 8-Bit, MROM, Z8 CPU, 6MHz, CMOS, PQFP44,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
IXYS