Z86L987PZ008SC [IXYS]

Microcontroller, 8-Bit, MROM, 8MHz, CMOS, PDIP40, PLASTIC, DIP-40;
Z86L987PZ008SC
型号: Z86L987PZ008SC
厂家: IXYS CORPORATION    IXYS CORPORATION
描述:

Microcontroller, 8-Bit, MROM, 8MHz, CMOS, PDIP40, PLASTIC, DIP-40

时钟 微控制器 光电二极管 外围集成电路
文件: 总95页 (文件大小:1538K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage  
Infrared Microcontrollers  
Product Specification  
PS015904-1102  
ZiLOG Worldwide Headquarters • 532 Race Street • San Jose, CA 95126-3432  
Telephone: 408.558.8500 • Fax: 408.558.8300 • www.ZiLOG.com  
This publication is subject to replacement by a later edition. To determine whether a later edition  
exists, or to request copies of publications, contact:  
ZiLOG Worldwide Headquarters  
532 Race Street  
San Jose, CA 95126-3432  
Telephone: 408.558.8500  
Fax: 408.558.8300  
www.ZiLOG.com  
ZiLOG is a registered trademark of ZiLOG Inc. in the United States and in other countries. All other products and/or  
service names mentioned herein may be trademarks of the companies with which they are associated.  
Document Disclaimer  
©2002 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices, applications, or  
technology described is intended to suggest possible uses and may be superseded. ZiLOG, INC. DOES NOT  
ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES,  
OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZiLOG ALSO DOES NOT ASSUME LIABILITY FOR  
INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES,  
OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Devices sold by ZiLOG, Inc. are covered by warranty  
and limitation of liability provisions appearing in the ZiLOG, Inc. Terms and Conditions of Sale. ZiLOG, Inc. makes no  
warranty of merchantability or fitness for any purpose. Except with the express written approval of ZiLOG, use of  
information, devices, or technology as critical components of life support systems is not authorized. No licenses are  
conveyed, implicitly or otherwise, by this document under any intellectual property rights.  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
iii  
Table of Contents  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Standard Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
DS (Output, Active Low) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
AS (Output, Active Low) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
XTAL1 Crystal 1 (Time-Based Input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
XTAL2 Crystal 2 (Time-Based Output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
R/W Read/Write (Output, Write Low) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
R/RL (Input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Port 0 (P07–P00) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Port 1 (P17–P10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Port 2 (P27–P20) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Port 3 (P37–P31) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
RESET (Input, Active Low) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Program Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Expanded Register File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Register File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Counter/Timer Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Expanded Register File Control Registers (0D) . . . . . . . . . . . . . . . . . . . . . . . . 70  
Expanded Register File Control Registers (0F) . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Z86L87/89/73 Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Z86L987 Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
iv  
List of Figures  
Figure 1. Counter/Timers Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 2. Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 3. 40-Pin DIP Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Figure 4. 44-Pin QFP Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 5. 44-Pin PLCC Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 6. 48-Pin SSOP Assignment (Z86L87/89/73) . . . . . . . . . . . . . . . . . . . . 8  
Figure 7. 48-Pin SSOP Assignment (Z86L987) . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 8. Test Load Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 9. External I/O or Memory Read/Write Timing . . . . . . . . . . . . . . . . . . . 15  
Figure 10. Additional Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 11. Port 0 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 12. Port 1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 13. Port 2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 14. Port 3 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 15. Port 3 Counter/Timer Output Configuration . . . . . . . . . . . . . . . . . . . 27  
Figure 16. Program Memory Map (32K ROM) . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 17. Expanded Register File Architecture . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 18. Register Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 19. Register Pointer—Detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 20. Glitch Filter Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 21. Transmit Mode Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 22. 8-Bit Counter/Timer Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 23. T8_OUT in Single-Pass Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 24. T8_OUT in Modulo-N Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 25. Demodulation Mode Count Capture Flowchart . . . . . . . . . . . . . . . . 49  
Figure 26. Demodulation Mode Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 27. 16-Bit Counter/Timer Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 28. T16_OUT in Single-Pass Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 29. T16_OUT in Modulo-N Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 30. Ping-Pong Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 31. Output Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 32. Interrupt Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 33. Oscillator Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 34. Port Configuration Register (PCON) (Write Only) . . . . . . . . . . . . . . 60  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
v
Figure 35. Stop-Mode Recovery Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Figure 36. SCLK Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Figure 37. Stop-Mode Recovery Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Figure 38. Stop-Mode Recovery Register 2 ((0F) DH:D2–D4,  
D6 Write Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Figure 39. Watch-Dog Timer Mode Register (Write Only) . . . . . . . . . . . . . . . . 66  
Figure 40. Resets and WDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Figure 41. T8 Control Register ((0D) OH: Read/Write  
Except Where Noted) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 42. T8 and T16 Common Control Functions ((0D) 1h: Read/Write) . . . 71  
Figure 43. T16 Control Register ((0D) 2h: Read/Write  
Except Where Noted) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Figure 44. Low-Voltage Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Figure 45. Stop-Mode Recovery Register ((0F) 0Bh: D6–D0=Write Only,  
D7=Read Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 46. Stop-Mode Recovery Register 2 ((0F) 0Dh:D2–D4,  
D6 Write Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Figure 47. Watch-Dog Timer Register ((0F) 0Fh: Write Only) . . . . . . . . . . . . . 76  
Figure 48. Port Configuration Register (PCON) ((0F) 0h: Write Only) . . . . . . . 77  
Figure 49. Port 2 Mode Register (F6h: Write Only) . . . . . . . . . . . . . . . . . . . . . 77  
Figure 50. Port 3 Mode Register (F7h: Write Only) . . . . . . . . . . . . . . . . . . . . . 78  
Figure 51. Port 0 and 1 Mode Register (F8h: Write Only) . . . . . . . . . . . . . . . . 79  
Figure 52. Interrupt Priority Register (F9h: Write Only) . . . . . . . . . . . . . . . . . . 80  
Figure 53. Interrupt Request Register (FAh: Read/Write) . . . . . . . . . . . . . . . . . 81  
Figure 54. Interrupt Mask Register (FBh: Read/Write) . . . . . . . . . . . . . . . . . . . 81  
Figure 55. Flag Register (FCh: Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Figure 56. Register Pointer (FDh: Read/Write) . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Figure 57. Stack Pointer High (FEh: Read/Write) . . . . . . . . . . . . . . . . . . . . . . . 83  
Figure 58. Stack Pointer Low (FFh: Read/Write) . . . . . . . . . . . . . . . . . . . . . . . 83  
Figure 59. 40-Pin DIP Package Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Figure 60. 44-Pin PLCC Package Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Figure 61. 44-Pin QFP Package Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Figure 62. 48-Pin SSOP Package Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Figure 63. Z86L87/89/73 Ordering Codes Example . . . . . . . . . . . . . . . . . . . . . 88  
Figure 64. Z86L987 Ordering Codes Example . . . . . . . . . . . . . . . . . . . . . . . . . 89  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
vi  
List of Tables  
Table 1. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Table 2. Power Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Table 3. Pin Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Table 4. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Table 5. Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Table 6. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 7. External I/O or Memory Read and Write Timing (Preliminary) . . . . 16  
Table 8. Additional Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 9. Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 10. Expanded Register Group D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 11. CTR0 (D)00 Counter/Timer8 Control Register . . . . . . . . . . . . . . . . 37  
Table 12. CTR(D)01h T8 and T16 Common Functions . . . . . . . . . . . . . . . . . 39  
Table 13. CTR2 (D)02h: Counter/Timer16 Control Register . . . . . . . . . . . . . . 41  
Table 14. SMR2(F)0Dh: Stop-Mode Recovery Register 2* . . . . . . . . . . . . . . . 43  
Table 15. Interrupt Types, Sources, and Vectors . . . . . . . . . . . . . . . . . . . . . . 57  
Table 16. IRQ Register* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Table 17. Stop-Mode Recovery Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Table 18. WDT Time Select* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Table 19. Mask Selectable Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Table 20. Z86L87/89/73 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . 87  
Table 21. Z86L987 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
1
Features  
Table 1 shows the features of the Z86L87/89/73/987.  
Table 1. Features  
Device  
ROM (KB) RAM* (Bytes) I/O Lines Voltage Range  
Z86L87  
Z86L89  
Z86L73  
16  
24  
32  
236  
236  
236  
236  
31  
31  
31  
31  
2.0 V–3.6 V  
2.0 V–3.6 V  
2.0 V–3.6 V  
2.0 V–3.6 V  
Z86L987 64  
Note: *General purpose  
Low power consumption–40 mW (typical)  
Three standby modes  
Stop—2 µA (typical)  
Halt—0.8 mA (typical)  
Low voltage  
Special architecture to automate both generation and reception of complex  
pulses or signals:  
One programmable 8-bit counter/timer with two capture registers and two  
load registers  
One programmable 16-bit counter/timer with one 16-bit capture register  
pair and one 16-bit load register pair  
Programmable input glitch filter for pulse reception  
Six priority interrupts  
Three external  
Two assigned to counter/timers  
One low-voltage detection interrupt  
Low-voltage detection with flag  
Programmable watch-dog/power-on reset circuits  
Two independent comparators with programmable interrupt polarity  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
2
Mask selectable pull-up transistors on ports 0, 1, 2, 3  
Programmable mask options  
Oscillator selection: RC oscillator versus crystal or other clock source  
Oscillator operational mode: normal high-frequency operation enabled or  
32-KHz operation enabled  
Port 0: 0–3 pull-ups  
Port 0: 4–7 pull-ups  
Port 1: 0–3 pull-ups  
Port 1: 4–7 pull-ups  
Port 2: 0–7 pull-ups  
Port 3: pull-ups  
Port 0: 0–3 mouse mode: normal mode (.5V input threshold) versus  
DD  
mouse mode (.4V input threshold)  
DD  
Note:  
The mask option pull-up transistor has a typical equivalent  
resistance of 200 K±50% at V =3 V and 450 K±50% at  
CC  
V
=2 V.  
CC  
General Description  
The Z86L87/89/73/987 are ROM-based members of the MCU family of IR (infra-  
red) microcontrollers. With 237 bytes of general-purpose RAM and 16/24/32/64  
KB of ROM, ZiLOG’s CMOS microcontrollers offer fast executing, efficient use of  
memory, sophisticated interrupts, input/output bit manipulation capabilities, auto-  
mated pulse generation/reception, and internal key-scan pull-up transistors.  
The Z86L87/89/73/987 architecture is based on ZiLOG’s 8-bit microcontroller core  
with an Expanded Register File to allow access to register-mapped peripherals,  
input/output (I/O) circuits, and powerful counter/timer circuitry. The Z8 offers a  
flexible I/O scheme, an efficient register and address space structure, and a num-  
ber of ancillary features that are useful in many consumer, automotive, computer  
peripheral, and battery-operated hand-held applications.  
There are four basic address spaces available to support a wide range of configu-  
rations: Program Memory, Register File, Expanded Register File, and External  
Memory. The register file is composed of 256 bytes of RAM. It includes 4 I/O port  
registers, 16 control and status registers, and 236 general-purpose registers.  
Register FEh(SPH) can be used as a general-purpose register. The Expanded  
Register File consists of two additional register groups (F and D).  
To unburden the program from coping with such real-time problems as generating  
complex waveforms or receiving and demodulating complex waveform/pulses, the  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
3
Z86L87/89/73/987 offers a new intelligent counter/timer architecture with 8-bit and  
16-bit counter/timers (see Figure 1, Figure 2, and Table 3). Also included are a  
large number of user-selectable modes and two on-board comparators to process  
analog signals with separate reference voltages (see Figure 2).  
Note: All signals with an overline, “ ”, are active Low. For example,  
B/W, in which WORD is active Low, and B/W, in which BYTE is  
active Low.  
Power connections use the conventional descriptions listed in Table 2.  
Table 2. Power Connections  
Connection  
Power  
Circuit  
VCC  
Device  
VDD  
Ground  
GND  
VSS  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
4
HI16  
8
LO16  
8
16-Bit  
T16  
Timer 16  
16  
2 4 8  
1
8
8
SCLK  
Clock  
Divider  
TC16H  
TC16L  
And/Or  
Logic  
Timer 8/16  
HI8  
8
LO8  
8
Edge  
Detect  
Circuit  
Input  
Glitch  
Filter  
8-Bit  
T8  
Timer 8  
8
8
TC8H  
TC8L  
Figure 1. Counter/Timers Diagram  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
5
Figure 2. Functional Block Diagram  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
6
Pin Description  
The pins are shown in Figure 3, Figure 4, Figure 5, Figure 6, and Figure 7. The  
pins are described in Table 3.  
1
R/W  
P25  
P26  
P27  
P04  
P05  
P06  
P14  
P15  
P07  
VDD  
P16  
P17  
XTAL2  
XTAL1  
P31  
P32  
P33  
P34  
AS  
40  
DS  
P24  
P23  
P22  
P21  
P20  
P03  
P13  
P12  
VSS  
P02  
P11  
P10  
P01  
P00  
Pref1  
P36  
P37  
P35  
RESET  
Z86L87/89/73/987  
DIP  
20  
21  
Figure 3. 40-Pin DIP Pin Assignment  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
7
33  
23  
22  
P21  
P22  
P23  
P24  
DS  
N/C  
R/W  
P25  
P26  
P27  
P04  
34  
Pref1  
P36  
P37  
P35  
RESET  
VSS  
Z86L87/89/73  
QFP  
AS  
P34  
P33  
P32  
P31  
12  
11  
44  
1
Figure 4. 44-Pin QFP Pin Assignment  
6
1
40  
39  
7
P21  
P22  
P23  
P24  
DS  
N/C  
R/W  
P25  
P26  
P27  
P04  
Pref1  
P36  
P37  
P35  
RESET  
VSS  
AS  
P34  
P33  
P32  
P31  
Z86L87/89/73  
PLCC  
17  
29  
28  
18  
Figure 5. 44-Pin PLCC Assignment  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
8
1
R/W  
P25  
P26  
P27  
P04  
N/C  
P05  
P06  
P14  
P15  
P07  
VDD  
VDD  
N/C  
P16  
P17  
XTAL2  
XTAL1  
P31  
P32  
P33  
P34  
AS  
48  
N/C  
DS  
P24  
P23  
P22  
P21  
P20  
P03  
P13  
P12  
VSS  
VSS  
N/C  
P02  
P11  
P10  
P01  
P00  
N/C  
PREF1  
P36  
P37  
P35  
RESET  
Z86L87/89/73  
SSOP  
24  
25  
VSS  
Figure 6. 48-Pin SSOP Assignment (Z86L87/89/73)  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
9
1
R/W  
P25  
P26  
P27  
P04  
N/C  
48  
ROM/ROMLESS  
DS  
P24  
P23  
P22  
P21  
P05  
P06  
P14  
P15  
P07  
VDD  
VDD  
N/C  
P20  
P03  
P13  
P12  
VSS  
VSS  
N/C  
Z86L987  
SSOP  
P02  
P16  
P17  
XTAL2  
XTAL1  
P31  
P32  
P33  
P34  
AS  
P11  
P10  
P01  
P00  
N/C  
PREF1  
P36  
P37  
P35  
24  
25  
VSS  
RESET  
Figure 7. 48-Pin SSOP Assignment (Z86L987)  
Table 3. Pin Identification  
40-Pin DIP #  
44-Pin PLCC #  
44-Pin QFP #  
48-Pin SSOP #  
Symbol  
P00  
26  
27  
30  
34  
5
40  
41  
44  
5
23  
24  
27  
32  
44  
1
31  
32  
35  
41  
5
P01  
P02  
P03  
17  
18  
19  
22  
42  
P04  
6
7
P05  
7
2
8
P06  
10  
28  
5
11  
33  
P07  
25  
P10  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
10  
Table 3. Pin Identification (Continued)  
40-Pin DIP #  
44-Pin PLCC #  
44-Pin QFP #  
48-Pin SSOP #  
Symbol  
P11  
29  
32  
33  
8
43  
3
26  
30  
31  
3
34  
39  
40  
9
P12  
P13  
P14  
P15  
P16  
P17  
P20  
P21  
P22  
P23  
P24  
P25  
P26  
P27  
P31  
P32  
P33  
P34  
P35  
P36  
P37  
AS  
4
20  
21  
25  
26  
6
9
4
10  
15  
16  
42  
43  
44  
45  
46  
2
12  
13  
35  
36  
37  
38  
39  
2
8
9
33  
34  
35  
36  
37  
41  
42  
43  
12  
13  
14  
15  
19  
21  
20  
16  
38  
40  
18  
11  
10  
6, 7  
7
8
9
10  
14  
15  
16  
29  
30  
31  
32  
36  
38  
37  
33  
11  
13  
35  
28  
27  
23, 24  
3
3
4
4
16  
17  
18  
19  
22  
24  
23  
20  
40  
1
19  
20  
21  
22  
26  
28  
27  
23  
47  
1
DS  
R/W  
RESET  
XTAL1  
XTAL2  
VDD  
21  
15  
14  
11  
25  
18  
17  
12, 13  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
11  
Table 3. Pin Identification (Continued)  
40-Pin DIP #  
44-Pin PLCC #  
1, 2, 34  
44-Pin QFP #  
17, 28, 29  
22  
48-Pin SSOP #  
Symbol  
VSS  
31  
25  
24, 37, 38  
39  
29  
48  
Pref1  
R/RL (only in  
Z86L987)  
Absolute Maximum Ratings  
Stresses greater than those listed in Table 4 might cause permanent damage to  
the device. This rating is a stress rating only. Functional operation of the device at  
any condition above those indicated in the operational sections of these specifica-  
tions is not implied. Exposure to absolute maximum rating conditions for an  
extended period might affect device reliability.  
Table 4. Absolute Maximum Ratings  
Symbol  
VCC  
Description  
Min  
–0.3  
–65°  
Max  
+7.0  
Units  
Supply Voltage (*)  
V
C
C
TSTG  
TA  
Storage Temperature  
Oper. Ambient Temperature.  
+150°  
Notes:  
*
Voltage on all pins with respect to GND.  
See Ordering Information on page 87.  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
12  
Standard Test Conditions  
The characteristics listed in this product specification apply for standard test con-  
ditions as noted. All voltages are referenced to GND. Positive current flows into  
the referenced pin (see Figure 8).  
Figure 8. Test Load Diagram  
Capacitance  
The capacitances are listed in Table 5.  
Table 5. Capacitance  
Parameter  
Max  
Input capacitance  
Output capacitance  
I/O capacitance  
12 pF  
12 pF  
12 pF  
Note: TA = 25 °C, VCC = GND = 0 V, f = 1.0 MHz, unmeasured pins returned to GND  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
13  
DC Characteristics  
Table 6 lists the DC characteristics.  
Table 6. DC Characteristics  
TA = 0°C to +70°C  
VCC  
2.0 V  
3.6 V  
Sym  
Parameter  
Min  
Max  
Units Conditions  
Notes  
Max Input Voltage  
7
7
V
V
V
I
I
<250 µA  
IN  
IN <250 µA  
VCH  
Clock Input High Voltage 2.0 V  
0.8 VCC  
0.8 VCC  
VCC+0.3  
Driven by External  
Clock Generator  
3.6 V  
Clock Input Low Voltage 2.0 V  
3.6 V  
VCC+0.3  
V
V
V
Driven by External  
Clock Generator  
VCL  
V
V
–0.3  
–0.3  
0.2 V  
Driven by External  
Clock Generator  
SS  
CC  
0.2 VCC  
Driven by External  
Clock Generator  
SS  
VIH  
Input High Voltage  
Input Low Voltage  
Output High Voltage  
2.0 V  
3.6 V  
2.0 V  
3.6 V  
2.0 V  
3.6 V  
2.0 V  
0.7 VCC  
0.7 VCC  
VSS–0.3  
VSS–0.3  
VCC–0.4  
VCC–0.4  
VCC–0.8  
VCC+0.3  
VCC+0.3  
0.2 VCC  
0.2 VCC  
V
V
V
V
V
V
V
VIL  
VOH1  
IOH = –0.5 mA  
IOH = –0.5 mA  
IOH = –7 mA  
VOH2  
Output High Voltage  
(P36, P37, P00, P01)  
3.6 V  
VCC–0.8  
V
IOH = –7 mA  
VOL1  
VOL2*  
VOL2  
Output Low Voltage  
Output Low Voltage  
2.0 V  
3.6 V  
2.0 V  
3.6 V  
2.0 V  
3.6 V  
2.0 V  
0.4  
0.4  
0.8  
0.8  
0.8  
0.8  
25  
V
V
IOL = 1.0 mA  
IOL = 4.0 mA  
IOL = 5.0 mA  
IOL = 7.0 mA  
IOL = 10 mA  
V
V
Output Low Voltage  
(P00, P01, P36, P37)  
V
V
IOL = 10 mA  
VOFFSET Comparator Input  
Offset Voltage  
mV  
mV  
µA  
3.6 V  
2.0 V  
25  
1
I
Input Leakage  
–1  
–1  
V
V
= 0 V, V  
= 0 V, V  
IL  
IN  
IN  
CC  
CC  
3.6 V  
1
µA  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
14  
Table 6. DC Characteristics (Continued)  
TA = 0°C to +70°C  
VCC  
2.0 V  
3.6 V  
2.0 V  
Sym  
Parameter  
Min  
–1  
Max  
1
Units Conditions  
Notes  
I
Output Leakage  
V
V
= 0 V, V  
= 0 V, V  
µA  
µA  
OL  
IN  
IN  
CC  
CC  
–1  
1
I
Supply Current  
10  
mA at 8.0 MHz  
mA at 8.0 MHz  
1, 2  
CC  
3.6 V  
2.0 V  
3.6 V  
2.0 V  
15  
250  
850  
3
1, 2  
1, 2, 3  
1, 2, 3  
1, 2  
at 32 kHz  
at 32 kHz  
µA  
µA  
ICC1  
Standby Current (HALT  
Mode)  
mA VIN = 0 V, V  
8.0 MHz  
at  
CC  
3.6 V  
2.0 V  
5
2
mA Same as above  
1, 2  
mA Clock Divide-by-16 1, 2  
at 8.0 MHz  
3.6 V  
2.0 V  
4
8
mA Same as above  
1, 2  
ICC2  
Standby Current (STOP  
Mode)  
V
= 0 V, V  
4, 5, 8  
µA  
IN  
CC  
WDT is not  
Running  
3.6 V  
2.0 V  
10  
Same as above  
VIN = 0 V, VCC  
4, 5, 8  
4, 5, 8  
µA  
µA  
500  
WDT is Running  
Same as above  
3.6 V  
2.0 V  
3.6 V  
800  
75  
4, 5, 8  
µA  
ms  
TPOR  
VBO  
Power-On Reset  
12  
5
20  
ms  
V
VCC Low Voltage  
Protection  
2.0  
8 MHz max  
7
Ext. CLK Freq.  
VLVD  
Vcc Low Voltage  
Detection  
2.55  
V
Notes:  
1. All outputs unloaded, inputs at rail.  
2. CL1 = CL2 = 100 pF.  
3. 32-kHz clock driver input.  
4. Same as note 1, except inputs at VCC  
5. Oscillator stopped.  
.
6. Not applicable  
7. The VBO is measured at room temperature and typically is 1.6 V. V  
8. WDT, Comparators, Low Voltage Detection, and ADC (if applicable) are disabled. The IC might draw more cur-  
rent if any of the above peripherals is enabled.  
increases as the temperature decreases.  
BO  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
15  
AC Characteristics  
Figure 10 and Table 8 describe the external I/O or memory read and write timing.  
Figure 9. External I/O or Memory Read/Write Timing  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
16  
Table 7. External I/O or Memory Read and Write Timing (Preliminary)  
TA = 0 °C to +70 °C 8.0  
MHz*  
No Symbol  
Parameter  
VCC  
Min  
Max  
Units  
Notes  
1
2
3
4
5
6
7
8
9
TdA(AS)  
TdAS(A)  
TdAS(DR)  
TwAS  
Address Valid to  
AS Rising Delay  
2.0 V  
3.6 V  
55  
55  
ns  
ns  
2
AS Rising to Address  
Float Delay  
2.0 V  
3.6 V  
70  
70  
ns  
ns  
2
2
AS Rising to Read  
Data Required Valid  
2.0 V  
3.6 V  
400  
400  
ns  
ns  
1, 2  
AS Low Width  
2.0 V  
3.6 V  
80  
80  
ns  
ns  
2
Td  
Address Float to  
DS Falling  
2.0 V  
3.6 V  
0
0
ns  
ns  
TwDSR  
TwDSW  
TdDSR(DR)  
ThDR(DS)  
DS (Read) Low Width  
2.0 V  
3.6 V  
300  
300  
ns  
ns  
1, 2  
1, 2  
1, 2  
2
DS (Write) Low Width  
2.0 V  
3.6 V  
165  
165  
ns  
ns  
DS Falling to Read  
Data Required Valid  
2.0 V  
3.6 V  
260  
260  
ns  
ns  
Read Data to DS Rising 2.0 V  
Hold Time  
0
0
ns  
ns  
3.6 V  
10 TdDS(A)  
DS Rising to Address  
Active Delay  
2.0 V  
3.6 V  
85  
95  
ns  
ns  
2
11 TdDS(AS)  
12 TdR/W(AS)  
13 TdDS(R/W)  
DS Rising to AS  
Falling Delay  
2.0 V  
3.6 V  
60  
70  
ns  
ns  
2
R/W Valid to AS  
Rising Delay  
2.0 V  
3.6 V  
70  
70  
ns  
ns  
2
DS Rising to  
R/W Not Valid  
2.0 V  
3.6 V  
70  
70  
ns  
ns  
2
14 TdDW(DSW) Write Data Valid to DS 2.0 V  
80  
80  
ns  
ns  
2
Falling (Write) Delay  
3.6 V  
15 TdDS(DW)  
16 TdA(DR)  
DS Rising to Write  
Data Not Valid Delay  
2.0 V  
3.6 V  
70  
80  
ns  
ns  
2
Address Valid to Read 2.0 V  
Data Required Valid 3.6 V  
475  
475  
ns  
ns  
1, 2  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
17  
Table 7. External I/O or Memory Read and Write Timing (Preliminary) (Continued)  
TA = 0 °C to +70 °C 8.0  
MHz*  
No Symbol  
Parameter  
VCC  
Min  
Max  
Units  
Notes  
17 TdAS(DS)  
AS Rising to  
DS Falling Delay  
2.0 V  
3.6 V  
100  
100  
ns  
ns  
2
18 TdDM(AS)  
19 TdDS(DM)  
20 ThDS(A)  
Notes:  
DM Valid to AS  
Falling Delay  
2.0 V  
3.6 V  
55  
55  
ns  
ns  
2
DS Rise to  
DM Valid Delay  
2.0 V  
3.6 V  
70  
70  
ns  
ns  
DS Rise to Address  
Valid Hold Time  
2.0 V  
3.6 V  
70  
70  
ns  
1.When using extended memory timing, add 2 TpC.  
2. Timing numbers given are for minimum TpC.  
* Standard Test Load: All timing references use 0.9 VCC for a logic 1 and 0.1 VCC for a logic 0.  
Figure 10 and Table 8 describe additional timing characteristics.  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
18  
1
3
Clock  
2
2
3
7
4
7
T
IN  
5
6
IRQ  
N
8
9
Clock  
Setup  
11  
Stop  
Mode  
Recovery  
Source  
10  
Figure 10. Additional Timing  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
19  
Table 8. Additional Timing  
TA = 0 °C to +70 °C  
Stop-Mode  
8.0 MHz  
Recovery  
No Sym  
Parameter  
VCC  
Min  
121  
121  
Max  
DC  
DC  
25  
Units Notes (D1, D0)  
1
2
3
4
5
6
7
TpC  
Input Clock Period  
2.0 V  
3.6 V  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
1
TrC,TfC  
TwC  
Clock Input Rise and 2.0 V  
Fall Times  
1
3.6 V  
25  
1
Input Clock Width  
2.0 V  
3.6 V  
2.0 V  
3.6 V  
2.0 V  
3.6 V  
2.0 V  
3.6 V  
37  
1
37  
1
TwTinL  
TwTinH  
TpTin  
Timer Input  
Low Width  
100  
1
70  
1
Timer Input High  
Width  
3TpC  
3TpC  
8TpC  
8TpC  
1
1
Timer Input Period  
1
1
TrTin,TfTin Timer Input Rise and 2.0 V  
100  
100  
ns  
ns  
ns  
ns  
1
Fall Timers  
3.6 V  
1
8A TwIL  
8B TwIL  
Interrupt Request  
Low Time  
2.0 V  
3.6 V  
2.0 V  
3.6 V  
2.0 V  
3.6 V  
2.0 V  
3.6 V  
100  
1, 2  
1, 2  
1, 3  
1, 3  
1, 2  
1, 2  
70  
Interrupt Request  
Low Time  
5TpC  
5TpC  
5TpC  
5TpC  
12  
9
TwIH  
Interrupt Request  
Input High Time  
10 Twsm  
11 Tost  
Stop-Mode  
Recovery Width  
Spec  
ns  
ns  
12  
Oscillator  
Start-Up Time  
2.0 V  
3.6 V  
5TpC  
5TpC  
4
4
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
20  
Table 8. Additional Timing (Continued)  
TA = 0 °C to +70 °C  
8.0 MHz  
Stop-Mode  
Recovery  
No Sym  
Parameter  
VCC  
Min  
12  
5
Max  
Units Notes (D1, D0)  
12 Twdt  
Watch-Dog Timer  
Delay Time  
2.0 V  
3.6 V  
2.0 V  
3.6 V  
2.0 V  
3.6 V  
2.0 V  
3.6 V  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
5
5
5
5
5
5
5
5
0, 0  
0, 1  
1, 0  
1, 1  
25  
10  
50  
20  
200  
80  
Notes:  
1. Timing Reference uses 0.9 VCC for a logic 1 and 0.1 VCC for a logic 0.  
2. Interrupt request through Port 3 (P33–P31).  
3. Interrupt request through Port 3 (P30).  
4. SMR – D5 = 0.  
5. For internal RC oscillator.  
Pin Functions  
DS (Output, Active Low)  
The Data Strobe is activated one time for each external memory transfer. For a  
READ operation, data must be available prior to the trailing edge of DS. For  
WRITE operations, the falling edge of DS indicates that output data is valid.  
AS (Output, Active Low)  
Address Strobe is pulsed one time at the beginning of each machine cycle.  
Address output is through Port 0/Port 1 for all external programs. Memory address  
transfers are valid at the trailing edge of AS. Under program control, AS is placed  
in the high-impedance state along with Ports 0 and 1, Data Strobe, and Read/  
Write.  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
21  
XTAL1 Crystal 1 (Time-Based Input)  
This pin connects a parallel-resonant crystal, ceramic resonator, LC, or RC net-  
work to the on-chip oscillator input. Additionally, an optional external single-phase  
clock can be coded to the on-chip oscillator input.  
XTAL2 Crystal 2 (Time-Based Output)  
This pin connects a parallel-resonant, crystal, ceramic resonant, LC, or RC net-  
work to the on-chip oscillator output.  
R/W Read/Write (Output, Write Low)  
The R/W signal is Low when the CCP is writing to the external program or data  
memory.  
R/RL (Input)  
This pin, when connected to GND, disables the internal ROM and forces the  
device to function as a ROMless Z8.  
Note:  
When left unconnected or pulled high to V , the part functions  
CC  
normally as a Z8 ROM version.  
Port 0 (P07–P00)  
Port 0 is an 8-bit, bidirectional, CMOS-compatible port. These eight I/O lines are  
configured under software control as a nibble I/O port or as an address port for  
interfacing external memory. The output drivers are push-pull or open-drain con-  
trolled by bit D2 in the PCON register.  
For external memory references, Port 0 can provide address bits A11–A8 (lower  
nibble) or A15–A8 (lower and upper nibble), depending on the required address  
space. If the address range requires 12 bits or less, the upper nibble of Port 0 can  
be programmed independently as I/O while the lower nibble is used for address-  
ing. If one or both nibbles are needed for I/O operation, they must be configured  
by writing to the Port 0 mode register. After a hardware reset, Port 0 is configured  
as an input port.  
Port 0 is set in the high-impedance mode (if selected as an address output), along  
with Port 1 and the control signals AS, DS, and R/W through P3M bits D4 and D3  
(see Figure 11).  
A ROM mask option is available to program 0.4 V CMOS trip inputs on P00–  
DD  
P03. This option allows direct interface to mouse/trackball IR sensors.  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
22  
An optional pull-up transistor is available as a mask option on all Port 0 bits with  
nibble select.  
Note: Internal pull-ups are disabled on any given pin or group of port  
pins when programmed into output mode.  
4
Port 0 (I/O or A15–A8)  
Z86L87/89/73/987  
4
MCU  
V
CC  
Mask  
Open-Drain  
I/O  
Option  
Resistive  
transistor  
pull-up  
Pad  
Out  
In  
In  
*Mask Selectable  
0.4 VDD  
Trip Point Buffer  
(P00 to P03 only)  
Figure 11. Port 0 Configuration  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
23  
Port 1 (P17–P10)  
Port 1 (see Figure 12) is a multiplexed Address (A7–A0) and Data (D7–D0),  
®
CMOS-compatible port. Port 1 is dedicated to the ZiLOG ZBus -compatible mem-  
ory interface. The operations of Port 1 are supported by the Address Strobe (AS)  
and Data Strobe (DS) lines and by the Read/Write (R/W) and Data Memory (DM)  
control lines. Data memory read/write operations are done through this port. If  
more than 256 external locations are required, Port 0 outputs the additional lines.  
Port 1 can be placed in the high-impedance state along with Port 0, AS, DS, and  
R/W, allowing the Z86L87/89/73/987 to share common resources in multiproces-  
sor and DMA applications. Port 1 can also be configured for standard port output  
mode. After POR, Port 1 is configured as an input port. The output drivers are  
either push-pull or open-drain and are controlled by bit D1 in the PCON register.  
Z86L87/89/73/987  
8
Port 1 (I/O or AD7–AD0)  
MCU  
V
CC  
Mask  
Open-Drain  
OEN  
Option  
Resistive  
transistor  
pull-up  
Pad  
Out  
In  
Figure 12. Port 1 Configuration  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
24  
Port 2 (P27–P20)  
Port 2 is an 8-bit, bidirectional, CMOS-compatible I/O port (see Figure 13). These  
eight I/O lines can be independently configured under software control as inputs  
or outputs. Port 2 is always available for I/O operation. A mask option is available  
to connect eight pull-up transistors on this port. Bits programmed as outputs are  
globally programmed as either push-pull or open-drain. The POR resets with the  
eight bits of Port 2 configured as inputs.  
Port 2 also has an 8-bit input OR and AND gate, which can be used to wake up  
the part. P20 can be programmed to access the edge-detection circuitry in  
demodulation mode.  
Port 2 (I/O)  
Z86L87/89/73/987  
MCU  
V
CC  
Resistive  
Mask  
Option  
Open-Drain  
I/O  
transistor  
pull-up  
Pad  
Out  
In  
Figure 13. Port 2 Configuration  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
25  
Port 3 (P37–P31)  
Port 3 is a 7-bit, CMOS-compatible fixed I/O port (see Figure 14). Port 3 consists  
of three fixed input (P33–P31) and four fixed output (P37–P34), which can be con-  
figured under software control for interrupt and as output from the counter/timers.  
P31, P32, and P33 are standard CMOS inputs; P34, P35, P36, and P37 are push-  
pull outputs.  
Pref1  
P31  
P32  
Z86L87/89/73/987  
P33  
MCU  
Port 3 (I/O)  
P34  
P35  
P36  
P37  
R247 = P3M  
1 = Analog  
0 = Digital  
D1  
Dig.  
P31 (AN1)  
Pref  
IRQ2, P31 Data Latch  
Comp1  
+
An.  
-
P32 (AN2)  
IRQ0, P32 Data Latch  
IRQ1, P33 Data Latch  
Comp2  
+
-
P33 (REF2)  
From Stop-Mode Recovery Source of SMR  
Figure 14. Port 3 Configuration  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
26  
Two on-board comparators process analog signals on P31 and P32, with refer-  
ence to the voltage on Pref1 and P33. The analog function is enabled by program-  
ming the Port 3 Mode Register (bit 1). P31 and P32 are programmable as rising,  
falling, or both edge triggered interrupts (IRQ register bits 6 and 7). Pref1 and P33  
are the comparator reference voltage inputs. Access to the Counter Timer edge-  
detection circuit is through P31 or P20 (see “CTR1(D)01h” on page 39). Other  
edge detect and IRQ modes are described in Table 9.  
Note:  
Comparators are powered down by entering STOP Mode. For  
P31–P33 to be used in a Stop-Mode Recovery (SMR) source,  
these inputs must be placed into digital mode.  
2
Table 9. Pin Assignments  
Pin  
I/O  
C/T  
Comp.  
Int.  
Pref1  
P31  
P32  
P33  
P34  
P35  
P36  
P37  
P20  
RF1  
AN1  
AN2  
RF2  
AO1  
IN  
IN  
IRQ2  
IRQ0  
IRQ1  
IN  
IN  
OUT  
OUT  
OUT  
OUT  
I/O  
T8  
T16  
T8/16  
AO2  
IN  
Port 3 also provides output for each of the counter/timers and the AND/OR Logic  
(see Figure 15). Control is performed by programming bits D5–D4 of CTR1, bit 0  
of CTR0, and bit 0 of CTR2.  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
27  
CTR0, D0  
MU  
PCON, D0  
P34 data  
T8_Out  
V
DD  
MUX  
Pad  
P34  
P31  
Pref  
+
-
1
Comp  
1
CTR2, D0  
MUX  
V
DD  
Out 35  
T16_Out  
Pad  
P35  
CTR1, D6  
MUX  
V
DD  
Out 36  
T8/T16_Out  
Pad  
P36  
PCON, D0  
MUX  
V
DD  
P37 data  
Pad  
P37  
P32  
Pref  
+
-
2
Comp  
2
Figure 15. Port 3 Counter/Timer Output Configuration  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
28  
Comparator Inputs  
In analog mode, P31 and P32 have a comparator front end. The comparator refer-  
ence is supplied to P33 and Pref1. In this mode, the P33 internal data latch and its  
corresponding IRQ1 are diverted to the SMR sources (excluding P31, P32, and  
P33) as indicated in Figure 14 on page 25. In digital mode, P33 is used as D3 of  
the Port 3 input register, which then generates IRQ1.  
Note: Comparators are powered down by entering Stop Mode. For  
P31–P33 to be used in a Stop-Mode Recovery source, these  
inputs must be placed into digital mode.  
Comparator Outputs  
These channels can be programmed to be output on P34 and P37 through the  
PCON register.  
RESET (Input, Active Low)  
Reset initializes the MCU and is accomplished either through Power-On, Watch-  
Dog Timer, Stop-Mode Recovery, Low-Voltage detection, or external reset. During  
Power-On Reset and Watch-Dog Timer Reset, the internally generated reset  
drives the reset pin Low for the POR time. Any devices driving the external reset  
line need to be open-drain in order to avoid damage from a possible conflict dur-  
ing reset conditions. Pull-up is provided internally.  
Functional Description  
The Z86L87/89/73/987 incorporates special functions to enhance the Z8’s func-  
tionality in consumer and battery-operated applications.  
Program Memory  
The Z86L87/89/73/987 family addresses 16/24/32/64 KB of internal program  
memory. The first 12 bytes are reserved for interrupt vectors. These locations con-  
tain the five 16-bit vectors that correspond to the five available interrupts. Only the  
Z86L987 supports external memory in ROMless mode. Please refer to the Z8  
user manual for details.  
RAM  
The Z86L87/89/73/987 device features 256 bytes of RAM. See Figure 16.  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
29  
Not Accessible  
Location of  
first byte of  
instruction  
executed  
32768  
On-Chip  
ROM  
after RESET  
Reset Start Address  
IRQ5  
12  
11  
IRQ5  
IRQ4  
IRQ4  
10  
9
8
7
IRQ3  
IRQ3  
Interrupt Vector  
(Lower Byte)  
6
5
4
IRQ2  
IRQ2  
IRQ1  
Interrupt Vector  
(Upper Byte)  
3
2
1
IRQ1  
IRQ0  
IRQ0  
0
Figure 16. Program Memory Map (32K ROM)  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
30  
Expanded Register File  
The register file has been expanded to allow for additional system control regis-  
ters and for mapping of additional peripheral devices into the register address  
area. The Z8 register address space (R0 through R15) has been implemented as  
16 banks, with 16 registers per bank. These register groups are known as the  
ERF (Expanded Register File). Bits 7–4 of register RP select the working register  
group. Bits 3–0 of register RP select the expanded register file bank.  
Note: An expanded register bank is also referred to as an expanded  
register group (see Figure 17).  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
31  
®
Reset Condition  
D7 D6 D5 D4 D3 D2 D1 D0  
Z8 Standard Control Registers  
Register* *  
FF SPL  
U
U
0
U
U
0
U
U
0
U
U
0
U
U
0
U
U
0
U
U
0
U
U
0
FE SPH  
FD RP  
Register Pointer  
FC FLAGS  
FB IMR  
U
0
U
U
0
U
U
0
U
U
0
U
U
0
U
U
0
U
U
0
U
U
0
7
6
5
4
3
2
1
0
FA IRQ  
0
Working Register  
Group Pointer  
Expanded Register  
Bank Pointer  
F9 IPR  
U
0
U
1
U
0
U
0
U
1
U
1
U
0
U
1
F8 P01M  
F7 P3M  
0
0
0
0
0
0
0
1
*
F6 P2M  
1
1
1
1
1
1
1
1
F5 Reserved  
F4 Reserved  
F3 Reserved  
F2 Reserved  
F1 Reserved  
F0 Reserved  
U
U
U
U
0
U
U
U
U
0
U
U
U
U
0
U
U
U
U
0
U
U
U
U
0
U
U
U
U
0
U
U
U
U
0
U
U
U
U
0
Z8 Register File (Bank 0) * *  
FF  
F0  
0
U
U
0
0
0
0
0
Expanded Reg. Bank/Group (F)  
Register* *  
Reset Condition  
(F) 0F WDTMR  
(F) 0E Reserved  
(F) 0D SMR2  
0
0
0
0
0
1
1
0
1
*
U
U
0
0
0
U
U
(F) 0C Reserved  
(F) 0B SMR  
0
0
1
0
0
0
U
0
7F  
(F) 0A Reserved  
(F) 09 Reserved  
(F) 08 Reserved  
(F) 07 Reserved  
(F) 06 Reserved  
(F) 05 Reserved  
(F) 04 Reserved  
(F) 03 Reserved  
(F) 02 Reserved  
(F) 01 Reserved  
(F) 00 PCON  
Reserved  
Reserved  
0F  
00  
*
1
1
1
1
1
1
1
0
Expanded Reg. Bank/Group (D)  
Register* *  
Reset Condition  
Expanded Reg. Bank/Group (0)  
Register* *  
(D) 0C LVD  
(D) 0B HI8  
0
0
0
0
0
0
0
0
Reset  
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
(0) 03 P3  
0
U
U
U
0
U
U
U
0
U
U
U
0
U
U
U
U
U
U
U
U
U
U
U
U
U
*
*
(D) 0A LO8  
(D) 09 HI16  
(D) 08 LO16  
(D) 07 TC16H  
(D) 06 TC16L  
(D) 05 TC8H  
(D) 04 TC8L  
(D) 03 Reserved  
(D) 02 CTR2  
(D) 01 CTR1  
(D) 00 CTR0  
(0) 02 P2  
U
U
U
U
U
U
(0) 01 P1  
(0) 00 P0  
U = Unknown  
* Is not reset with a Stop-Mode Recovery  
** All addresses are in hexadecimal  
Is not reset with a Stop-Mode Recovery,  
except Bit 0  
0
U
U
U
U
U
U
0
0
0
0
U
U
U
U
U
U
U
U
U
U
U
0
U
Figure 17. Expanded Register File Architecture  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
32  
The upper nibble of the register pointer (see Figure 18) selects which working reg-  
ister group, of 16 bytes in the register file, is accessed out of the possible 256. The  
lower nibble selects the expanded register file bank and, in the case of the  
Z86L87/89/73/987 family, banks 0, F, and D are implemented. A 0hin the lower  
nibble allows the normal register file (bank 0) to be addressed. Any other value  
from 1hto Fhexchanges the lower 16 registers to an expanded register bank.  
R253 RP  
D7 D6 D5 D4 D3 D2 D1 D0  
Expanded Register  
File Pointer  
Working Register  
Pointer  
Default Setting After Reset = 0000 0000  
Figure 18. Register Pointer  
Example: Z86L87/89/73/987: (See Figure 17 on page 31)  
R253 RP = 00h  
R0 = Port 0  
R1 = Port 1  
R2 = Port 2  
R3 = Port 3  
But if:  
R253 RP = 0Dh  
R0 = CTRL0  
R1 = CTRL1  
R2 = CTRL2  
R3 = Reserved  
The counter/timers are mapped into ERF group D. Access is easily performed  
using the following:  
LD  
RP, #0Dh  
; Select ERF D for access to bank D  
; (working register group 0)  
; load CTRL0  
; load CTRL1  
; CTRL2CTRL1  
LD  
LD  
LD  
R0,#xx  
1, #xx  
R1, 2  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
33  
LD  
LD  
RP, #0Dh  
RP, #7Dh  
; Select ERF D for access to bank D  
; (working register group 0)  
; Select expanded register bank D and working  
; register group 7 of bank 0 for access.  
; CTRL2register 71h  
LD  
LD  
71h, 2  
R1, 2  
; CTRL2register 71h  
Register File  
The register file (bank 0) consists of 4 I/O port registers, 237 general-purpose reg-  
isters, 16 control and status registers (R0–R3, R4–R239, and R240–R255,  
respectively), and two expanded registers groups in Banks D (see Table 10) and  
F. Instructions can access registers directly or indirectly through an 8-bit address  
field, thereby allowing a short, 4-bit register address to use the Register Pointer  
(Figure 19). In the 4-bit mode, the register file is divided into 16 working register  
groups, each occupying 16 continuous locations. The Register Pointer addresses  
the starting location of the active working register group.  
Note:  
Working register group E0–EF can only be accessed through  
working registers and indirect addressing modes.  
R253  
r
r
r
r
r
r
r
r
1 0  
7
6
5
4
3
2
The upper nibble of the register file address  
provided by the register pointer specifies the  
active working-register group.  
7F  
{
{
{
{
{
{
{
{
70  
6F  
60  
5F  
50  
4F  
The lower nibble of the  
40  
3F  
Specified Working  
Register Group  
register file address provided  
by the instruction points to  
the specified register.  
30  
2F  
20  
1F  
Register Group 1  
R15 to R0  
10  
0F  
Register Group 0  
I/O Ports  
R15 to R4 *  
R3 to R0 *  
00  
* RP = 00: Selects Register Group 0, Working Register 0  
Figure 19. Register Pointer—Detail  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
34  
Stack  
The Z86L87/89/73/987 internal register file is used for the stack. An 8-bit Stack  
Pointer (R255) is used for the internal stack that resides in the general-purpose  
registers (R4–R239). SPH is used as a general-purpose register only when using  
internal stacks.  
Note:  
When SPH is used as a general-purpose register and Port 0 is  
in address mode, the contents of SPH are loaded into Port 0  
whenever the internal stack is accessed  
Table 10.Expanded Register Group D  
(D)0Ch  
(D)0Bh  
(D)0Ah  
(D)09h  
(D)08h  
(D)07h  
(D)06h  
(D)05h  
(D)04h  
(D)03h  
(D)02h  
(D)01h  
(D)00h  
LVD  
HI8  
LO8  
HI16  
LO16  
TC16H  
TC16L  
TC8H  
TC8L  
Reserved  
CTR2  
CTR1  
CTR0  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
35  
Register Description  
LVD(D)0Ch Low-Voltage Detection Register  
Note:  
The LVD flag will be valid after enabling the detection for 20 µS (design  
estimation, not tested in production). LVD does not work at STOP mode. It  
must be disabled during STOP mode in order to reduce current.  
Field  
Bit Position  
Description  
LVD  
765432--  
Reserved  
No Effect  
------1-  
-------0  
R
1
0*  
LV flag set  
LV flag reset  
R/W  
1
0*  
Enable LVD  
Disable LVD  
*Default after POR  
Note:  
Do not modify register P01M while checking a low-voltage condition.  
Switching noise of both ports 0 and 1 together might trigger the LVD flag.  
HI8(D)0Bh  
This register holds the captured data from the output of the 8-bit Counter/Timer0.  
Typically, this register is used to hold the number of counts when the input signal  
is 1.  
Field  
Bit Position  
Description  
T8_Capture_HI 76543210  
R
W
Captured Data  
No Effect  
L08(D)0Ah  
This register holds the captured data from the output of the 8-bit Counter/Timer0.  
Typically, this register is used to hold the number of counts when the input signal  
is 0.  
Field  
Bit Position  
Description  
T8_Capture_L0 76543210  
R
W
Captured Data  
No Effect  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
36  
HI16(D)09h  
This register holds the captured data from the output of the 16-bit Counter/  
Timer16. This register holds the MS-Byte of the data.  
Field  
Bit Position  
Description  
T16_Capture_HI 76543210  
R
W
Captured Data  
No Effect  
L016(D)08h  
This register holds the captured data from the output of the 16-bit Counter/  
Timer16. this register holds the LS-Byte of the data.  
Field  
Bit Position  
Description  
T16_Capture_LO 76543210  
R
W
Captured Data  
No Effect  
TC16H(D)07h Counter/Timer2 MS-Byte Hold Register  
Field  
Bit Position  
Description  
R/W Data  
T16_Data_HI  
76543210  
TC16L(D)06h Counter/Timer2 LS-Byte Hold Register  
Field  
Bit Position  
Description  
R/W Data  
T16_Data_LO  
76543210  
TC8H(D)05h Counter/Timer8 High Hold Register  
Field  
Bit Position  
Description  
R/W Data  
T8_Level_HI  
76543210  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
37  
TC8L(D)04h Counter/Timer8 Low Hold Register  
Field  
Bit Position  
Description  
R/W Data  
T8_Level_LO  
76543210  
CTR0 Counter/Timer8 Control Register  
Table 11 lists and briefly describes the fields for this register.  
Table 11. CTR0 (D)00 Counter/Timer8 Control Register  
Field  
Bit Position  
Value  
0*  
Description  
T8_Enable  
7-------  
R
Counter Disabled  
Counter Enabled  
Stop Counter  
1
0
1
W
Enable Counter  
Single/Modulo-N  
Time_Out  
-6-------  
--5------  
R/W  
0
1
Modulo-N  
Single Pass  
R
0
1
0
1
No Counter Time-Out  
Counter Time-Out Occurred  
No Effect  
W
Reset Flag to 0  
T8 _Clock  
---43---  
R/W  
0 0  
0 1  
1 0  
1 1  
SCLK  
SCLK/2  
SCLK/4  
SCLK/8  
Capture_INT_MASK  
Counter_INT_Mask  
P34_Out  
-----2--  
------1-  
-------0  
R/W  
R/W  
R/W  
0
1
Disable Data Capture Int.  
Enable Data Capture Int.  
0
1
Disable Time-Out Int.  
Enable Time-Out Int.  
0*  
1
P34 as Port Output  
T8 Output on P34  
Note:  
*Indicates the value upon Power-On Reset.  
T8 Enable  
This field enables T8 when set (written) to 1.  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
38  
Single/Modulo-N  
When set to 0 (modulo-n), the counter reloads the initial value when the terminal  
count is reached. When set to 1 (single pass), the counter stops when the terminal  
count is reached.  
Timeout  
This bit is set when T8 times out (terminal count reached). To reset this bit, a 1  
should be written to its location.  
Caution: Writing a 1 is the only way to reset the Terminal Count status condition.  
Therefore, reset this bit before using/enabling the counter/timers.  
The first clock of T8 might not have complete clock width and can  
occur any time when enabled.  
Note: Care must be taken when using the OR or AND commands to manipulate  
CTR0, bit 5 and CTR1, bits 0 and 1 (Demodulation Mode). These  
instructions use a Read-Modify-Write sequence in which the current status  
from the CTR0 and CTR1 registers is ORed or ANDed with the designated  
value and then written back into the registers.  
Example  
When the status of bit 5 is 1, a timer reset condition occurs.  
T8 Clock  
This bit defines the frequency of the input signal to T8.  
Capture_INT_Mask  
Set this bit to allow an interrupt when data is captured into either LO8 or HI8 upon  
a positive or negative edge detection in demodulation mode.  
Counter_INT_Mask  
Set this bit to allow an interrupt when T8 has a timeout.  
P34_Out  
This bit defines whether P34 is used as a normal output pin or the T8 output.  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
39  
CTR1(D)01h  
This register controls the functions in common with the T8 and T16.  
Table 12 lists and briefly describes the fields for this register.  
Table 12.CTR(D)01h T8 and T16 Common Functions  
Field  
Bit Position  
Value  
Description  
Mode  
7-------  
R/W  
R/W  
0*  
Transmit Mode  
Demodulation Mode  
P36_Out/  
Demodulator_Input  
-6------  
Transmit Mode  
Port Output  
T8/T16 Output  
Demodulation Mode  
P31  
0*  
1
0
1
P20  
T8/T16_Logic/  
Edge _Detect  
--54----  
R/W  
Transmit Mode  
AND  
OR  
NOR  
NAND  
00  
01  
10  
11  
Demodulation Mode  
Falling Edge  
Rising Edge  
Both Edges  
Reserved  
00  
01  
10  
11  
Transmit_Submode/  
Glitch_Filter  
----32--  
R/W  
Transmit Mode  
Normal Operation  
Ping-Pong Mode  
T16_Out = 0  
00  
01  
10  
11  
T16_Out = 1  
Demodulation Mode  
No Filter  
4 SCLK Cycle  
8 SCLK Cycle  
Reserved  
00  
01  
10  
11  
Initial_T8_Out/  
Rising Edge  
------1-  
Transmit Mode  
T8_OUT is 0 Initially  
T8_OUT is 1 Initially  
Demodulation Mode  
No Rising Edge  
Rising Edge Detected  
No Effect  
Reset Flag to 0  
R/W  
0
1
R
0
1
0
1
W
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
40  
Table 12.CTR(D)01h T8 and T16 Common Functions (Continued)  
Field  
Bit Position  
Value  
Description  
Initial_T16_Out/  
Falling_Edge  
-------0  
Transmit Mode  
R/W  
0
1
T16_OUT is 0 Initially  
T16_OUT is 1 Initially  
Demodulation Mode  
No Falling Edge  
Falling Edge Detected  
No Effect  
R
0
1
0
1
W
Reset Flag to 0  
Note:  
*Default upon Power-On Reset  
Mode  
If the result is 0, the counter/timers are in the transmit mode; otherwise, they are in  
the demodulation mode.  
P36_Out/Demodulator_Input  
In Transmit Mode, this bit defines whether P36 is used as a normal output pin or  
the combined output of T8 and T16.  
In Demodulation Mode, this bit defines whether the input signal to the Counter/  
Timers is from P20 or P31.  
T8/T16_Logic/Edge _Detect  
In Transmit Mode, this field defines how the outputs of T8 and T16 are combined  
(AND, OR, NOR, NAND).  
In Demodulation Mode, this field defines which edge should be detected by the  
edge detector.  
Transmit_Submode/Glitch Filter  
In Transmit Mode, this field defines whether T8 and T16 are in the Ping-Pong  
mode or in independent normal operation mode. Setting this field to “Normal  
Operation Mode” terminates the “Ping-Pong Mode” operation. When set to 10,  
T16 is immediately forced to a 0; a setting of 11 forces T16 to output a 1.  
In Demodulation Mode, this field defines the width of the glitch that must be fil-  
tered out.  
Initial_T8_Out/Rising_Edge  
In Transmit Mode, if 0, the output of T8 is set to 0 when it starts to count. If 1, the  
output of T8 is set to 1 when it starts to count. When the counter is not enabled  
and this bit is set to 1 or 0, T8_OUT is set to the opposite state of this bit. This  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
41  
ensures that when the clock is enabled, a transition occurs to the initial state set  
by CTR1, D1.  
In Demodulation Mode, this bit is set to 1 when a rising edge is detected in the  
input signal. In order to reset the mode, a 1 should be written to this location.  
Initial_T16 Out/Falling _Edge  
In Transmit Mode, if it is 0, the output of T16 is set to 0 when it starts to count. If it  
is 1, the output of T16 is set to 1 when it starts to count. This bit is effective only in  
Normal or Ping-Pong Mode (CTR1, D3; D2). When the counter is not enabled and  
this bit is set, T16_OUT is set to the opposite state of this bit. This ensures that  
when the clock is enabled, a transition occurs to the initial state set by CTR1, D0.  
In Demodulation Mode, this bit is set to 1 when a falling edge is detected in the  
input signal. In order to reset it, a 1 should be written to this location.  
Note: Modifying CTR1 (D1 or D0) while the counters are enabled  
causes unpredictable output from T8/16_OUT.  
CTR2 Counter/Timer 16 Control Register  
Table 13 lists and briefly describes the fields for this register.  
Table 13.CTR2 (D)02h: Counter/Timer16 Control Register  
Field  
Bit Position  
Value  
Description  
T16_Enable  
7-------  
R
0*  
1
0
Counter Disabled  
Counter Enabled  
Stop Counter  
W
1
Enable Counter  
Single/Modulo-N  
-6------  
--5-----  
R/W  
Transmit Mode  
Modulo-N  
Single Pass  
Demodulation Mode  
T16 Recognizes Edge  
T16 Does Not  
0
1
0
1
Recognize Edge  
Time_Out  
R
0
1
No Counter Timeout  
Counter Timeout  
Occurred  
W
0
1
No Effect  
Reset Flag to 0  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
42  
Table 13.CTR2 (D)02h: Counter/Timer16 Control Register (Continued)  
Field  
Bit Position  
Value  
Description  
T16 _Clock  
---43---  
R/W  
R/W  
00  
01  
10  
11  
SCLK  
SCLK/2  
SCLK/4  
SCLK/8  
Capture_INT_Mask  
-----2--  
0
1
Disable Data Capture  
Int.  
Enable Data Capture  
Int.  
Counter_INT_Mask  
P35_Out  
------1-  
-------0  
R/W  
R/W  
0
Disable Timeout Int.  
Enable Timeout Int.  
0*  
1
P35 as Port Output  
T16 Output on P35  
Note:  
*Indicates the value upon Power-On Reset.  
T16_Enable  
This field enables T16 when set to 1.  
Single/Modulo-N  
In Transmit Mode, when set to 0, the counter reloads the initial value when the ter-  
minal count is reached. When set to 1, the counter stops when the terminal count  
is reached.  
In Demodulation Mode, when set to 0, T16 captures and reloads on detection of  
all the edges. When set to 1, T16 captures and detects on the first edge but  
ignores the subsequent edges. For details, see the description of T16 Demodula-  
tion Mode on page 52.  
Time_Out  
This bit is set when T16 times out (terminal count reached). To reset the bit, write  
a 1 to this location.  
T16_Clock  
This bit defines the frequency of the input signal to Counter/Timer16.  
Capture_INT_Mask  
This bit is set to allow an interrupt when data is captured into LO16 and HI16.  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
43  
Counter_INT_Mask  
Set this bit to allow an interrupt when T16 times out.  
P35_Out  
This bit defines whether P35 is used as a normal output pin or T16 output.  
SMR2 Stop-Mode Recovery Register 2  
Table 14 lists and briefly describes the fields for this register.  
Table 14.SMR2(F)0Dh: Stop-Mode Recovery Register 2*  
Field  
Bit Position  
7-------  
-6------  
Value  
Description  
Reserved  
Recovery Level  
0
0†  
1
Reserved (Must be 0)  
W
W
Low  
High  
Reserved  
Source  
--5-----  
---432--  
0
Reserved (Must be 0)  
000†  
001  
010  
011  
100  
101  
110  
111  
A. POR Only  
B. NAND of P23–P20  
C. NAND of P27–P20  
D. NOR of P33–P31  
E. NAND of P33–P31  
F. NOR of P33–P31, P00, P07  
G. NAND of P33–P31, P00, P07  
H. NAND of P33–P31, P22–P20  
Reserved  
------10  
00  
Reserved (Must be 0)  
Notes:  
* Port pins configured as outputs are ignored as a SMR recovery source.  
Indicates the value upon Power-On Reset  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
44  
Counter/Timer Functional Blocks  
Input Circuit  
The edge detector monitors the input signal on P31 or P20. Based on CTR1 D5–  
D4, a pulse is generated at the Pos Edge or Neg Edge line when an edge is  
detected. Glitches in the input signal that have a width less than specified (CTR1  
D3, D2) are filtered out (see Figure 20).  
CTR1 D5,D4  
Pos Edge  
Neg Edge  
P31  
P20  
MUX  
Glitch Filter  
Edge Detector  
CTR1 D6  
CTR1 D3,D2  
Figure 20. Glitch Filter Circuitry  
T8 Transmit Mode  
Before T8 is enabled, the output of T8 depends on CTR1, D1. If it is 0, T8_OUT is  
1; if it is 1, T8_OUT is 0. See Figure 21.  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
45  
T8 (8-Bit)  
Transmit Mode  
No  
T8_Enable Bit Set  
CTR0, D7  
Yes  
Reset T8_Enable Bit  
1
0
CTR1, D1  
Value  
Load TC8H  
Set T8_OUT  
Load TC8L  
Reset T8_OUT  
Set Timeout Status Bit  
(CTR0 D5) and Generate  
Timeout_Int if Enabled  
Enable T8  
No  
T8_Timeout  
Yes  
Single Pass  
Single  
Pass?  
Modulo-N  
T8_OUT Value  
1
0
Load TC8L  
Reset T8_OUT  
Load TC8H  
Set T8_OUT  
Enable T8  
Set Timeout Status Bit  
(CTR0 D5) and Generate  
Timeout_Int if Enabled  
No  
T8_Timeout  
Yes  
Figure 21. Transmit Mode Flowchart  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
46  
When T8 is enabled, the output T8_OUT switches to the initial value (CTR1, D1).  
If the initial value (CTR1, D1) is 0, TC8L is loaded; otherwise, TC8H is loaded into  
the counter. In Single-Pass Mode (CTR0, D6), T8 counts down to 0 and stops,  
T8_OUT toggles, the timeout status bit (CTR0, D5) is set, and a timeout interrupt  
can be generated if it is enabled (CTR0, D1). In Modulo-N Mode, upon reaching  
terminal count, T8_OUT is toggled, but no interrupt is generated. From that point,  
T8 loads a new count (if the T8_OUT level now is 0), TC8L is loaded; if it is 1,  
TC8H is loaded. T8 counts down to 0, toggles T8_OUT, and sets the timeout sta-  
tus bit (CTR0, D5), thereby generating an interrupt if enabled (CTR0, D1). One  
cycle is thus completed. T8 then loads from TC8H or TC8L according to the  
T8_OUT level and repeats the cycle. See Figure 22.  
CTR0 D2  
Z8 Data Bus  
Positive Edge  
Negative Edge  
IRQ4  
HI8  
LO8  
CTR0 D1  
CTR0 D4, D3  
SCLK  
Clock  
Clock  
Select  
8-Bit  
Counter T8  
T8_OUT  
TC8H  
TC8L  
Z8 Data Bus  
Figure 22. 8-Bit Counter/Timer Circuits  
You can modify the values in TC8H or TC8L at any time. The new values take  
effect when they are loaded.  
Caution: Do not write these registers at the time the values are to be loaded into  
the counter/timer to ensure known operation. An initial count of 1 is not  
allowed (a non-function occurs). An initial count of 0 causes TC8 to count  
from 0 to FFhto FEh.  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
47  
Note: The letter his used for hexadecimal values.  
Transition from 0 to FFhis not a timeout condition.  
Caution: Using the same instructions for stopping the counter/timers and setting  
the status bits is not recommended.  
Two successive commands are necessary. First, the counter/timers must be  
stopped. Second, the status bits must be reset. These commands are required  
because it takes one counter/timer clock interval for the initiated event to actually  
occur. See Figure 23 and Figure 24.  
TC8H  
Count  
Counter Enable  
T8_OUT Toggles;  
Timeout Interrupt  
Command; T8_OUT  
Switches to Its Initial  
Value (CTR1 D1)  
Figure 23. T8_OUT in Single-Pass Mode  
T8_OUT Toggles  
. . .  
T8_OUT  
TC8L  
TC8H  
TC8L  
TC8H  
TC8L  
Counter Enable  
Command; T8_OUT  
Switches to Its  
Timeout  
Interrupt  
Timeout  
Interrupt  
Initial Value (CTR1 D1)  
Figure 24. T8_OUT in Modulo-N Mode  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
48  
T8 Demodulation Mode  
Program TC8L and TC8H to FFh. After T8 is enabled, when the first edge (rising,  
falling, or both depending on CTR1, D5; D4) is detected, it starts to count down.  
When a subsequent edge (rising, falling, or both depending on CTR1, D5; D4) is  
detected during counting, the current value of T8 is complemented and put into  
one of the capture registers. If it is a positive edge, data is put into LO8; if it is a  
negative edge, data is put into HI8. From that point, one of the edge detect status  
bits (CTR1, D1; D0) is set, and an interrupt can be generated if enabled (CTR0,  
D2). Meanwhile, T8 is loaded with FFhand starts counting again. If T8 reaches 0,  
the timeout status bit (CTR0, D5) is set, and an interrupt can be generated if  
enabled (CTR0, D1). T8 then continues counting from FFh(see Figure 25 and  
Figure 26).  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
49  
T8 (8-Bit)  
Count Capture  
T8 Enable  
(Set by User)  
No  
Yes  
Edge Present  
No  
Yes  
What Kind  
of Edge  
Positive  
Negative  
T8 LO8  
T8 HI8  
FFhT8  
Figure 25. Demodulation Mode Count Capture Flowchart  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
50  
T8 (8-Bit)  
Demodulation Mode  
T8 Enable  
CTR0, D7  
No  
Yes  
FFhTC8  
First  
Edge Present  
No  
Yes  
Enable TC8  
Disable TC8  
T8_Enable  
Bit Set  
No  
Yes  
No  
Edge Present  
Yes  
No  
T8 Timeout  
Yes  
Set Edge Present Status  
Bit and Trigger Data  
Capture Int. If Enabled  
Set Timeout Status  
Bit and Trigger  
Timeout Int. If Enabled  
Continue Counting  
Figure 26. Demodulation Mode Flowchart  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
51  
T16 Transmit Mode  
In Normal or Ping-Pong Mode, the output of T16 when not enabled, is dependent  
on CTR1, D0. If it is a 0, T16_OUT is a 1; if it is a 1, T16_OUT is 0. You can force  
the output of T16 to either a 0 or 1 whether it is enabled or not by programming  
CTR1 D3; D2 to a 10 or 11.  
When T16 is enabled, TC16H * 256 + TC16L is loaded, and T16_OUT is switched  
to its initial value (CTR1, D0). When T16 counts down to 0, T16_OUT is toggled  
(in Normal or Ping-Pong Mode), an interrupt (CTR2, D1) is generated (if enabled),  
and a status bit (CTR2, D5) is set. See Figure 27.  
CTR2 D2  
Z8 Data Bus  
Positive Edge  
Negative Edge  
IRQ3  
HI16  
LO16  
CTR2 D1  
CTR2 D4, D3  
SCLK  
Clock  
Clock  
Select  
16-Bit  
Counter T16  
T16_OUT  
TC16H  
TC16L  
Z8 Data Bus  
Figure 27. 16-Bit Counter/Timer Circuits  
Note: Global interrupts override this function as described in “Interrupts” on  
page 55.  
If T16 is in Single-Pass Mode, it is stopped at this point (see Figure 28). If it is in  
Modulo-N Mode, it is loaded with TC16H * 256 + TC16L, and the counting contin-  
ues (see Figure 29).  
You can modify the values in TC16H and TC16L at any time. The new values take  
effect when they are loaded.  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
52  
Caution: Do not load these registers at the time the values are to be  
loaded into the counter/timer to ensure known operation.  
An initial count of 1 is not allowed. An initial count of 0  
causes T16 to count from 0 to FFFFhto FFFEh. Transition  
from 0 to FFFFhis not a timeout condition.  
TC16H*256+TC16L Counts  
“Counter Enable” Command  
T16_OUT Switches to Its  
Initial Value (CTR1 D0)  
T16_OUT Toggles,  
Timeout Interrupt  
Figure 28. T16_OUT in Single-Pass Mode  
TC16H*256+TC16L  
TC16H*256+TC16L  
. . .  
TC16_OUT  
TC16H*256+TC16  
“Counter Enable” Command,  
T16_OUT Switches to Its  
Initial Value (CTR1 D0)  
T16_OUT Toggles,  
Timeout Interrupt  
T16_OUT Toggles,  
Timeout Interrupt  
Figure 29. T16_OUT in Modulo-N Mode  
T16 Demodulation Mode  
Program TC16L and TC16H to FFh. After T16 is enabled, and the first edge (ris-  
ing, falling, or both depending on CTR1 D5; D4) is detected, T16 captures HI16  
and LO16, reloads, and begins counting.  
If D6 of CTR2 Is 0  
When a subsequent edge (rising, falling, or both depending on CTR1, D5; D4) is  
detected during counting, the current count in T16 is complemented and put into  
HI16 and LO16. When data is captured, one of the edge detect status bits (CTR1,  
D1; D0) is set, and an interrupt is generated if enabled (CTR2, D2). T16 is loaded  
with FFFFhand starts again.  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
53  
This T16 mode is generally used to measure space time, the length of time  
between bursts of carrier signal (marks).  
If D6 of CTR2 Is 1  
T16 ignores the subsequent edges in the input signal and continues counting  
down. A timeout of T8 causes T16 to capture its current value and generate an  
interrupt if enabled (CTR2, D2). In this case, T16 does not reload and continues  
counting. If the D6 bit of CTR2 is toggled (by writing a 0 then a 1 to it), T16 cap-  
tures and reloads on the next edge (rising, falling, or both depending on CTR1,  
D5; D4), continuing to ignore subsequent edges.  
This T16 mode is generally used to measure mark time, the length of an active  
carrier signal burst.  
If T16 reaches 0, T16 continues counting from FFFFh. Meanwhile, a status bit  
(CTR2 D5) is set, and an interrupt timeout can be generated if enabled (CTR2  
D1).  
Ping-Pong Mode  
This operation mode is only valid in Transmit Mode. T8 and T16 must be pro-  
grammed in Single-Pass Mode (CTR0, D6; CTR2, D6), and Ping-Pong Mode  
must be programmed in CTR1, D3; D2. The user can begin the operation by  
enabling either T8 or T16 (CTR0, D7 or CTR2, D7). For example, if T8 is enabled,  
T8_OUT is set to this initial value (CTR1, D1). According to T8_OUT's level,  
TC8H or TC8L is loaded into T8. After the terminal count is reached, T8 is dis-  
abled, and T16 is enabled. T16_OUT then switches to its initial value (CTR1, D0),  
data from TC16H and TC16L is loaded, and T16 starts to count. After T16 reaches  
the terminal count, it stops, T8 is enabled again, repeating the entire cycle. Inter-  
rupts can be allowed when T8 or T16 reaches terminal control (CTR0, D1; CTR2,  
D1). To stop the Ping-Pong operation, write 00 to bits D3 and D2 of CTR1. See  
Figure 30.  
Note: Enabling Ping-Pong operation while the counter/timers are  
running might cause intermittent counter/timer function. Disable  
the counter/timers and then reset the status flags before  
instituting this operation.  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
54  
Enable  
Enable  
TC8  
Timeout  
Ping-Pong  
CTR1 D3,D2  
TC16  
Timeout  
Figure 30. Ping-Pong Mode  
Initiating Ping-Pong Mode  
First, make sure both counter/timers are not running. Set T8 into Single-Pass  
Mode (CTR0, D6), set T16 into Single-Pass Mode (CTR2, D6), and set the Ping-  
Pong Mode (CTR1, D2; D3). These instructions do not have to be in any particular  
order. Finally, start Ping-Pong Mode by enabling either T8 (CTR0, D7) or T16  
(CTR2, D7). See Figure 31.  
P34_INTERNAL  
MUX  
P34  
CTR0 D0  
MUX  
P36_INTERNAL  
P35_INTERNAL  
T8_OUT  
MUX  
P36  
P35  
AND/OR/NOR/NAND  
Logic  
T16_OUT  
CTR1, D2  
CTR1 D6  
MUX  
CTR1 D5, D4  
CTR1 D3  
CTR2 D0  
Figure 31. Output Circuit  
The initial value of T8 or T16 must not be 1. If you stop the timer and start the  
timer again, reload the initial value to avoid an unknown previous value.  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
55  
During Ping-Pong Mode  
The enable bits of T8 and T16 (CTR0, D7; CTR2, D7) are set and cleared alter-  
nately by hardware. The timeout bits (CTR0, D5; CTR2, D5) are set every time the  
counter/timers reach the terminal count.  
Interrupts  
The Z86L87/89/73/987 feature six different interrupts (Table 15). The interrupts  
are maskable and prioritized (Figure 32). The six sources are divided as follows:  
three sources are claimed by Port 3 lines P33–P31 and two by the counter/timers  
(Table 15). The Interrupt Mask Register (globally or individually) enables or dis-  
ables the five interrupt requests.  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
56  
P31  
P32  
P33  
Low-  
Voltage  
Detection  
Interrupt  
Edge  
Select  
IRQ Register  
D6, D7  
Timer 8  
Timer 16  
IRQ2  
IRQ0  
IRQ1  
IRQ3  
IRQ4  
IRQ5  
IRQ  
IMR  
IPR  
5
Global  
Interrupt  
Enable  
Interrupt  
Request  
Priority  
Logic  
Vector Select  
Figure 32. Interrupt Block Diagram  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
57  
Table 15.Interrupt Types, Sources, and Vectors  
Name  
Source Vector Location Comments  
IRQ0  
IRQ1  
IRQ2  
P32  
P33  
0,1  
2,3  
External (P32), Rising Falling Edge Triggered  
External (P33), Falling Edge Triggered  
P31, TIN 4,5  
External (P31), Rising Falling Edge Triggered  
IRQ3  
IRQ4  
IRQ5  
T16  
T8  
6,7  
Internal  
Internal  
Internal  
8,9  
LVD  
10,11  
When more than one interrupt is pending, priorities are resolved by a programma-  
ble priority encoder controlled by the Interrupt Priority Register. An interrupt  
machine cycle is activated when an interrupt request is granted. As a result, all  
subsequent interrupts are disabled, and the Program Counter and Status Flags  
are saved. The cycle then branches to the program memory vector location  
reserved for that interrupt. All Z86L87/89/73/987 interrupts are vectored through  
locations in the program memory. This memory location and the next byte contain  
the 16-bit address of the interrupt service routine for that particular interrupt  
request. To accommodate polled interrupt systems, interrupt inputs are masked,  
and the Interrupt Request register is polled to determine which of the interrupt  
requests require service.  
An interrupt resulting from AN1 is mapped into IRQ2, and an interrupt from AN2 is  
mapped into IRQ0. Interrupts IRQ2 and IRQ0 can be rising, falling, or both edge  
triggered. These interrupts are programmable by the user. The software can poll  
to identify the state of the pin.  
Programming bits for the Interrupt Edge Select are located in the IRQ Register  
(R250), bits D7 and D6. The configuration is indicated in Table 16.  
Table 16.IRQ Register*  
IRQ  
Interrupt Edge  
D7  
D6  
IRQ2 (P31)  
IRQ0 (P32)  
0
0
1
1
0
1
0
1
F
F
F
R
R
F
R/F  
R/F  
Notes: F = Falling Edge; R = Rising Edge  
In stop mode, the comparators are turned off.  
*
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
58  
Clock  
The Z86L87/89/73/987 on-chip oscillator has a high-gain, parallel-resonant ampli-  
fier, for connection to a crystal, LC, ceramic resonator, or any suitable external  
clock source (XTAL1 = Input, XTAL2 = Output). The crystal must be AT cut, 1 MHz  
to 8 MHz maximum, with a series resistance (RS) less than or equal to 100 . The  
Z86L87/89/73/987 on-chip oscillator can be driven with a low-cost RC network or  
other suitable external clock source.  
For 32-kHz crystal operation, an external feedback (Rf) and a serial resistor (Rd)  
are required. See Figure 33.  
The crystal must be connected across XTAL1 and XTAL2 using the recommended  
capacitors (capacitance greater than or equal to 22 pF) from each pin to ground.  
The RC oscillator configuration is an external resistor connected from XTAL1 to  
XTAL2, with a frequency-setting capacitor from XTAL1 to ground (Figure 33).  
XTAL1  
XTAL2  
XTAL1  
XTAL2  
XTAL1  
XTAL2  
C1  
C2  
C1  
C1  
R
L
C2  
Ceramic Resonator or Crystal  
C1, C2 = 47 pF TYP *  
f = 8 MHz  
LC  
RC  
C1, C2 = 22 pF  
L = 130 µH *  
f = 3 MHz *  
@ 3V VCC (TYP)  
C1 = 33 pF *  
R = 1K *  
XTAL1  
XTAL1  
C1  
C2  
Rf  
XTAL2  
XTAL2  
Rd  
32 kHz XTAL  
External Clock  
C1 = 20 pF, C = 33 pF  
Rd = 56 - 470K  
Rf = 10 M  
* Preliminary value including pin parasitics  
Figure 33. Oscillator Configuration  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
59  
Power-On Reset (POR)  
A timer circuit clocked by a dedicated on-board RC oscillator is used for the  
Power-On Reset (POR) timer function. The POR time allows V and the oscilla-  
CC  
tor circuit to stabilize before instruction execution begins.  
The POR timer circuit is a one-shot timer triggered by one of three conditions:  
Power Fail to Power OK status, including Waking up from V Standby  
BO  
Stop-Mode Recovery (if D5 of SMR = 1)  
WDT Timeout  
The POR timer is a nominal 5 ms. Bit 5 of the Stop-Mode Register determines  
whether the POR timer is bypassed after Stop-Mode Recovery (typical for external  
clock, RC and LC oscillators).  
HALT  
HALT turns off the internal CPU clock, but not the XTAL oscillation. The counter/  
timers and external interrupts IRQ0, IRQ1, IRQ2, IRQ3, IRQ4, and IRQ5 remain  
active. The devices are recovered by interrupts, either externally or internally gen-  
erated. An interrupt request must be executed (enabled) to exit HALT Mode. After  
the interrupt service routine, the program continues from the instruction after the  
HALT.  
STOP  
This instruction turns off the internal clock and external crystal oscillation, thereby  
reducing the standby current to 10 µA or less. STOP Mode is terminated only by a  
reset, such as WDT timeout, POR, SMR, or external reset. This condition causes  
the processor to restart the application program at address 000Ch. In order to  
enter STOP (or HALT) mode, first flush the instruction pipeline to avoid suspend-  
ing execution in mid-instruction. Execute a NOP (Op Code = FFh) immediately  
before the appropriate sleep instruction, as follows:  
FF  
6F  
NOP  
STOP  
; clear the pipeline  
; enter STOP Mode  
or  
FF  
7F  
NOP  
HALT  
; clear the pipeline  
; enter HALT Mode  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
60  
Port Configuration Register (PCON)  
The PCON register (Figure 34) configures the comparator output on Port 3. It is  
located in the expanded register 2 at Bank F, location 00.  
PCON (FH) 00H  
D7 D6 D5 D4 D3 D2 D1 D0  
Comparator Output Port 3  
0 P34, P37 Standard Output*  
1 P34, P37 Comparator Output  
Port 1  
0: Open-Drain  
1: Push-Pull*  
Port 0  
0: Open-Drain  
1: Push-Pull*  
Reserved (Must be 1)  
* Default setting after reset  
Figure 34. Port Configuration Register (PCON) (Write Only)  
Comparator Output Port 3 (D0)  
Bit 0 controls the comparator used in Port 3. A 1 in this location brings the compar-  
ator outputs to P34 and P37, and a 0 releases the 0ort to its standard I/O configu-  
ration.  
Port 1 Output Mode (D1)  
Bit 1 controls the output mode of port 1. A 1 in this location sets the output to  
push-pull, and a 0 sets the output to open-drain.  
Port 0 Output Mode (D2)  
Bit 2 controls the output mode of port 0. A 1 in this location sets the output to  
push-pull, and a 0 sets the output to open-drain.  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
61  
Stop-Mode Recovery Register (SMR)  
This register selects the clock divide value and determines the mode of Stop-  
Mode Recovery (Figure 35). All bits are write only except bit 7, which is read only.  
Bit 7 is a flag bit that is hardware set on the condition of STOP recovery and reset  
by a power-on cycle. Bit 6 controls whether a low level or a high level at the XOR-  
gate input is required from the recovery source. Bit 5 controls the reset delay  
after recovery. Bits D2, D3, and D4 or the SMR register specify the source of the  
Stop-Mode Recovery signal. Bits D0 determines if SCLK/TCLK are divided by 16  
or not. The SMR is located in Bank F of the Expanded Register Group at address  
0Bh.  
SMR (0F) 0B  
D7 D6 D5 D4 D3 D2 D1 D0  
SCLK/TCLK Divide-by-16  
0 OFF * *  
1 ON  
Reserved (Must be 0)  
Stop-Mode Recovery Source  
000 POR Only *  
001 Reserved  
010 P31  
011 P32  
100 P33  
101 P27  
110 P2 NOR 0-3  
111 P2 NOR 0-7  
Stop Delay  
0 OFF  
1 ON *  
Stop Recovery Level * * *  
0 Low *  
1 High  
Stop Flag  
0 POR *  
1 Stop Recovery * *  
* Default setting after reset  
* * Default setting after reset and stop-mode recovery  
* * * At the XOR gate input  
Figure 35. Stop-Mode Recovery Register  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
62  
SCLK/TCLK Divide-by-16 Select (D0)  
D0 of the SMR controls a divide-by-16 prescaler of SCLK/TCLK (Figure 36). The  
purpose of this control is to selectively reduce device power consumption during  
normal processor execution (SCLK control) and/or HALT Mode (where TCLK  
sources interrupt logic). After Stop-Mode Recovery, this bit is set to a 0.  
OSC  
÷ 2  
SCLK  
÷ 16  
SMR, D0  
TCLK  
Figure 36. SCLK Circuit  
Stop-Mode Recovery Source (D2, D3, and D4)  
These three bits of the SMR specify the wake-up source of the STOP recovery  
(Figure 37 and Table 17).  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
63  
SMR D4 D3 D2  
0 0  
SMR2 D4 D3 D2  
0
0
0 0  
VCC  
SMR2 D4 D3 D2  
0 1  
VCC  
SMR D4 D3 D2  
1 0  
0
0
P20  
P23  
P31  
P32  
S1  
SMR2 D4 D3 D2  
1 0  
SMR D4 D3 D2  
1 1  
0
P20  
P27  
0
S2  
SMR2 D4 D3 D2  
1 1  
SMR D4 D3 D2  
0 0  
0
1
P31  
P32  
P33  
P33  
S3  
To IRQ1  
S4  
SMR2 D4 D3 D2  
0 0  
SMR D4 D3 D2  
0 1  
1
P31  
P32  
P33  
1
P27  
SMR2 D4 D3 D2  
0 1  
SMR D4 D3 D2  
1 0  
P31  
P32  
P33  
P00  
P07  
1
1
P20  
P23  
SMR2 D4 D3 D2  
1 0  
SMR D4 D3 D2  
1 1  
P31  
P32  
P33  
P00  
P07  
1
1
P20  
P27  
SMR2 D4 D3 D2  
1 1  
SMR D6  
P31  
P32  
P33  
P20  
P21  
P22  
1
SMR2 D6  
To RESET and WDT  
Circuitry (Active Low)  
Figure 37. Stop-Mode Recovery Source  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
64  
Table 17.Stop-Mode Recovery Source  
SMR:432  
D3  
Operation  
Description of Action  
D4  
D2  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
POR and/or external reset recovery  
Reserved  
P31 transition  
P32 transition  
P33 transition  
P27 transition  
Logical NOR of P20 through P23  
Logical NOR of P20 through P27  
Note: Any Port 2 bit defined as an output drives the corresponding  
input to the default state. This condition allows the remaining  
inputs to control the AND/OR function. Refer to SMR2 register  
on page 65 for other recover sources.  
Stop-Mode Recovery Delay Select (D5)  
This bit, if low, disables the 5 ms RESET delay after Stop-Mode Recovery. The  
default configuration of this bit is 1. If the “fast” wake up is selected, the Stop-  
Mode Recovery source must be kept active for at least 5 TpC.  
Stop-Mode Recovery Edge Select (D6)  
A 1 in this bit position indicates that a High level on any one of the recovery  
sources wakes the Z86L87/89/73/987 from STOP Mode. A 0 indicates Low level  
recovery. The default is 0 on POR.  
Cold or Warm Start (D7)  
This bit is read only. It is set to 1 when the device is recovered from Stop Mode.  
The bit is set to 0 when the device reset is other than Stop Mode Recovery (SMR).  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
65  
Stop-Mode Recovery Register 2 (SMR2)  
This register determines the mode of Stop-Mode Recovery for SMR2 (Figure 38).  
SMR2 (0F) DH  
D7 D6 D5 D4 D3 D2 D1 D0  
Reserved (Must be 0)  
Reserved (Must be 0)  
Stop-Mode Recovery Source 2  
000 POR Only *  
001 NAND P20, P21, P22, P23  
010 NAND P20, P21, P22, P23, P24, P25, P26, P27  
011 NOR P31, P32, P33  
100 NAND P31, P32, P33  
101 NOR P31, P32, P33, P00, P07  
110 NAND P31, P32, P33, P00, P07  
111 NAND P31, P32, P33, P20, P21, P22  
Reserved (Must be 0)  
Recovery Level * *  
0 Low *  
1 High  
Reserved (Must be 0)  
Note: If used in conjunction with SMR, either of the two specified events causes a Stop-Mode Recovery.  
* Default setting after reset  
* * At the XOR gate input  
Figure 38. Stop-Mode Recovery Register 2 ((0F) DH:D2–D4, D6 Write Only)  
If SMR2 is used in conjunction with SMR, either of the specified events causes a  
Stop-Mode Recovery.  
Note: Port pins configured as outputs are ignored as an SMR or  
SMR2 recovery source. For example, if the NAND or P23–P20  
is selected as the recovery source and P20 is configured as an  
output, the remaining SMR pins (P23–P21) form the NAND  
equation.  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
66  
Watch-Dog Timer Mode Register (WDTMR)  
The WDT is a retriggerable one-shot timer that resets the Z8 if it reaches its termi-  
nal count. The WDT must initially be enabled by executing the WDT instruction.  
On subsequent executions of the WDT instruction, the WDT is refreshed. The  
WDT circuit is driven by an on-board RC oscillator or external oscillator from the  
XTAL1 pin. The WDT instruction affects the Zero (Z), Sign (S), and Overflow (V)  
flags.  
The POR clock source is selected with bit 4 of the WDT register. Bits 0 and 1 con-  
trol a tap circuit that determines the minimum timeout period. Bit 2 determines  
whether the WDT is active during HALT, and Bit 3 determines WDT activity during  
STOP. Bits 5 through 7 are reserved (Figure 39). This register is accessible only  
during the first 61 processor cycles (122 XTAL clocks) from the execution of the  
first instruction after Power-On-Reset, Watch-Dog Reset, or a Stop-Mode  
Recovery (Figure 38). After this point, the register cannot be modified by any  
means (intentional or otherwise). The WDTMR cannot be read. The register is  
located in Bank F of the Expanded Register Group at address location 0Fh. It is  
organized as shown in Figure 39.  
WDTMR (0F) 0F  
D7 D6 D5 D4 D3 D2 D1 D0  
WDT TAP INT RC OSC  
00  
01*  
10  
11  
5 ms min  
10 ms min  
20 ms min  
80 ms min  
WDT During HALT  
0 OFF  
1 ON *  
WDT During STOP  
0 OFF  
1 ON *  
Reserved (Must be 0)  
Reserved (Must be 0)  
* Default setting after reset  
Figure 39. Watch-Dog Timer Mode Register (Write Only)  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
67  
WDT Time Select (D0, D1)  
This bit selects the WDT time period. It is configured as indicated in Table 18.  
Table 18.WDT Time Select*  
D1  
D0  
0
Timeout of Internal RC OSC  
5 ms min  
0
0
1
10 ms min  
1
0
20 ms min  
1
1
80 ms min  
Note:  
*TpC = XTAL clock cycle. The default on reset is 10 ms.  
WDTMR During HALT (D2)  
This bit determines whether or not the WDT is active during HALT Mode. A 1 indi-  
cates active during HALT. The default is 1. See Figure 40.  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
68  
*CLR2  
CLK  
18 Clock RESET  
Generator  
5 Clock Filter  
RESET  
Internal  
RESET  
Active  
High  
WDT  
TAP SELECT  
CK Source  
Select  
(WDTMR)  
XTAL  
M
U
X
POR  
CLK  
*CLR1  
5 ms 10 ms 20 ms 80 ms  
INTERNAL  
WDT/POR Counter Chain  
RC  
OSC.  
Low Operating  
Voltage Det.  
V
+
-
DD  
VBO/VLV  
2V REF.  
WDT  
V
CC  
From Stop  
Mode  
Recovery  
Source  
12-ns Glitch Filter  
Stop Delay  
Select (SMR)  
* CLR1 and CLR2 enable the WDT/POR and 18 Clock Reset timers upon a Low-to-High input translation.  
Figure 40. Resets and WDT  
WDTMR During STOP (D3)  
This bit determines whether or not the WDT is active during STOP Mode.  
Because the XTAL clock is stopped during STOP Mode, the on-board RC has to  
be selected as the clock source to the WDT/POR counter. A 1 indicates active  
during STOP. The default is 1.  
Clock Source for WDT (D4)  
This bit determines which oscillator source is used to clock the internal POR and  
WDT counter chain. If the bit is a 1, the internal RC oscillator is bypassed, and the  
POR and WDT clock source is driven from the external pin, XTAL1. The default  
configuration of this bit is 0, which selects the RC oscillator.  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
69  
Mask Selectable Options  
There are seven Mask Selectable Options to choose from based on ROM code  
requirements. These are listed in Table 19.  
Table 19.Mask Selectable Options  
RC/Other  
RC/XTAL  
On/Off  
On/Off  
On/Off  
On/Off  
On/Off  
On/Off  
On/Off  
32 kHz XTAL  
Port 00–03 Pull-Ups  
Port 04–07 Pull-Ups  
Port 10–13 Pull-Ups  
Port 14–17 Pull-Ups  
Port 20–27 Pull-Ups  
Port 3: Pull-Ups  
Port 0: 0–3 Normal Mode (0.5 VDD Input Threshold) versus Mouse Mode  
(0.4 VDD Input Threshold)  
Brown-Out Voltage/Standby  
An on-chip Voltage Comparator checks that the V is at the required level for  
CC  
correct operation of the device. Reset is globally driven when V falls below V  
.
CC  
BO  
A small drop in V causes the XTAL1 and XTAL2 circuitry to stop the crystal or  
CC  
resonator clock. Typical Low-Voltage power consumpion in this Low Voltage  
Standby mode (I ) is about 20 µA. If the V is allowed to stay above Vram, the  
LV  
CC  
RAM content is preserved. When the power level is returned to above V , the  
BO  
device performs a POR and functions normally.  
Low-Voltage Detection and Flag  
A Low-Voltage Detection circuit can be used optionally when the voltage  
decreases to V  
. Expanded Register Bank 0Dhregister 0Chbits 0 and 1 are  
LVD  
used for this option. Bit D0 is used to enable/disable this function; bit D1 is the sta-  
tus flag bit of the LVD.  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
70  
Expanded Register File Control Registers (0D)  
The expanded register file control registers (0D) are shown in Figure 41 through  
Figure 44.  
CTR0 (0D) 0H  
D7 D6 D5 D4 D3 D2 D1 D0  
0 P34 as Port Output *  
1 Timer8 Output  
0 Disable T8 Timeout Interrupt  
1 Enable T8 Timeout Interrupt  
0 Disable T8 Data Capture Interrupt  
1 Enable T8 Data Capture Interrupt  
00 SCLK on T8  
01 SCLK/2 on T8  
10 SCLK/4 on T8  
11 SCLK/8 on T8  
R 0 No T8 Counter Timeout  
R 1 T8 Counter Timeout Occurred  
W 0 No Effect  
W 1 Reset Flag to 0  
0 Modulo-N  
1 Single Pass  
R 0 T8 Disabled *  
R 1 T8 Enabled  
W 0 Stop T8  
W 1 Enable T8  
* Default setting after reset  
Figure 41. T8 Control Register ((0D) OH: Read/Write Except Where Noted)  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
71  
CTR1 (0D) 1H  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Transmit Mode  
R/W  
0
1
T16_OUT is 0 initially  
T16_OUT is 1 initially  
Demodulation Mode  
R
R
0
1
No Falling Edge Detection  
Falling Edge Detection  
W
W
0
1
No Effect  
Reset Flag to 0  
Transmit Mode  
R/W  
0
1
T8_OUT is 0 initially  
T8_OUT is 1 initially  
Demodulation Mode  
R
R
0
1
No Rising Edge Detection  
Rising Edge Detection  
W
W
0
1
No Effect  
Reset Flag to 0  
Transmit Mode  
0
0
1
1
0
1
0
1
Normal Operation  
Ping-Pong Mode  
T16_OUT = 0  
T16_OUT = 1  
Demodulation Mode  
0
0
1
1
0
1
0
1
No Filter  
4 SCLK Cycle Filter  
8 SCLK Cycle Filter  
Reserved  
Transmit Mode/T8/T16 Logic  
0
0
1
1
0
1
0
1
AND  
OR  
NOR  
NAND  
Demodulation Mode  
0
0
1
1
0
1
0
1
Falling Edge Detection  
Rising Edge Detection  
Both Edge Detection  
Reserved  
Transmit Mode  
0
1
P36 as Port Output *  
P36 as T8/T16_OUT  
Demodulation Mode  
0
1
P31 as Demodulator Input  
P20 as Demodulator Input  
Transmit/Demodulation Mode  
0
1
Transmit Mode *  
Demodulation Mode  
* Default setting after reset  
Figure 42. T8 and T16 Common Control Functions ((0D) 1h: Read/Write)  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
72  
Notes: Care must be taken in differentiating Transmit Mode from  
Demodulation Mode. Depending on which of these two modes  
is operating, the CTR1 bit has different functions.  
Changing from one mode to another cannot be done without  
disabling the counter/timers.  
CTR2 (0D) 02H  
D7 D6 D5 D4 D3 D2 D1 D0  
0 P35 is Port Output *  
1 P35 is TC16 Output  
0 Disable T16 Timeout Interrupt  
1 Enable T16 Timeout Interrupt  
0 Disable T16 Data Capture Interrupt  
1 Enable T16 Data Capture Interrupt  
0 0 SCLK on T16  
0 1 SCLK/2 on T16  
1 0 SCLK/4 on T16  
1 1 SCLK/8 on T16  
R 0 No T16 Timeout  
R 1 T16 Timeout Occurs  
W 0 No Effect  
W 1 Reset Flag to 0  
Transmit Mode  
0 Modulo-N for T16  
0 Single Pass for T16  
Demodulator Mode  
0 T16 Recognizes Edge  
1 T16 Does Not Recognize Edge  
R 0 T16 Disabled *  
R 1 T16 Enabled  
W 0 Stop T16  
* Default setting after reset  
W 1 Enable T16  
Figure 43. T16 Control Register ((0D) 2h: Read/Write Except Where Noted)  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
73  
LVD (0D) 0CH  
D7 D6 D5 D4 D3 D2 D1 D0  
Low-Voltage Detection at V  
0: Disable *  
+ 0.4 V  
BO  
1: Enable  
LVD Flag (Read only)  
0: LVD flag reset *  
1: LVD flag set  
Reserved (Must be 0)  
* Default  
Figure 44. Low-Voltage Detection  
Note:  
Do not modify register P01M while checking a low-voltage condition.  
Switching noise of both ports 0 and 1 together might trigger the LVD flag.  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
74  
Expanded Register File Control Registers (0F)  
The expanded register file control registers (0F) are shown in Figure 45 through  
Figure 58.  
SMR (0F) 0B  
D7 D6 D5 D4 D3 D2 D1 D0  
SCLK/TCLK Divide-by-16  
0 OFF *  
1 ON  
Reserved (Must be 0)  
Stop-Mode Recovery Source  
000 POR Only *  
001 Reserved  
010 P31  
011 P32  
100 P33  
101 P27  
110 P2 NOR 0–3  
111 P2 NOR 0–7  
Stop Delay  
0 OFF  
1 ON *  
Stop Recovery Level * * *  
0 Low *  
1 High  
Stop Flag  
0 POR *  
1 Stop Recovery * *  
* Default setting after reset  
* * Default setting after reset and stop-mode recovery  
* * * At the XOR gate input  
Figure 45. Stop-Mode Recovery Register ((0F) 0Bh: D6–D0=Write Only, D7=Read  
Only)  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
75  
SMR2 (0F) DH  
D7 D6 D5 D4 D3 D2 D1 D0  
Reserved (Must be 0)  
Reserved (Must be 0)  
Stop-Mode Recovery Source 2  
000 POR Only *  
001 NAND P20, P21, P22, P23  
010 NAND P20, P21, P22, P23, P24, P25, P26, P27  
011 NOR P31, P32, P33  
100 NAND P31, P32, P33  
101 NOR P31, P32, P33, P00, P07  
110 NAND P31, P32, P33, P00, P07  
111 NAND P31, P32, P33, P20, P21, P22  
Reserved (Must be 0)  
Recovery Level * *  
0 Low  
1 High  
Reserved (Must be 0)  
Note: If used in conjunction with SMR, either of the two specified events causes a Stop-Mode Recovery.  
* Default setting after reset  
* * At the XOR gate input  
Figure 46. Stop-Mode Recovery Register 2 ((0F) 0Dh:D2–D4, D6 Write Only)  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
76  
WDTMR (0F) 0F  
D7 D6 D5 D4 D3 D2 D1 D0  
WDT TAP INT RC OSC  
00  
01*  
10  
11  
5 ms min  
10 ms min  
20 ms min  
80 ms min  
WDT During HALT  
0 OFF  
1 ON *  
WDT During STOP  
0 OFF  
1 ON *  
Reserved (Must be 0)  
Reserved (Must be 0)  
* Default setting after reset  
Figure 47. Watch-Dog Timer Register ((0F) 0Fh: Write Only)  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
77  
PCON (FH) 00H  
D7 D6 D5 D4 D3 D2 D1 D0  
Comparator Output Port 3  
0 P34, P37 Standard Output *  
1 P34, P37 Comparator Output  
Port 1  
0: Open-Drain  
1: Push-Pull*  
Port 0  
0: Open-Drain  
1: Push-Pull *  
Reserved (Must be 1)  
* Default setting after reset  
Figure 48. Port Configuration Register (PCON) ((0F) 0h: Write Only)  
R246 P2M  
D7 D6 D5 D4 D3 D2 D1 D0  
P27–P20 I/O Definition  
0 Defines bit as OUTPUT  
1 Defines bit as INPUT *  
* Default setting after reset  
Figure 49. Port 2 Mode Register (F6h: Write Only)  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
78  
R247 P3M  
D7 D6 D5 D4 D3 D2 D1 D0  
0: Port 2 Open Drain *  
1: Port 2 Push-Pull  
0= P31, P32 Digital Mode  
1= P31, P32 Analog Mode  
Reserved (Must be 0)  
00: P33 = Input  
P34 = Output  
01: P33 = Input  
10: P34 = DM  
11: Reserved  
Reserved (Must be 0)  
Reserved (Must be 0)  
* Default setting after reset  
Figure 50. Port 3 Mode Register (F7h: Write Only)  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
79  
R248 P01M  
D7 D6 D5 D4 D3 D2 D1 D0  
P00–P03 Mode  
00: Output  
01: Input *  
1X: A11–A8  
Stack Selection  
0: External  
1: Internal *  
P17–P10 Mode  
00: Byte Output  
01: Byte Input  
10: AD7–AD0  
11: High-Impedance AD7–AD0, AS,  
DS, R/W, A11–A8, A15–A12, if  
selected  
External Memory Timing  
0: Normal *  
1: Extended  
P07–P04 Mode  
00: Output  
01: Input *  
1X: A15–A12  
* Default setting after reset; only P00 and P07 are available on Z86L71  
Figure 51. Port 0 and 1 Mode Register (F8h: Write Only)  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
80  
R249 IPR  
D7 D6 D5 D4 D3 D2 D1 D0  
Interrupt Group Priority  
000 Reserved  
001 C > A > B  
010 A > B >C  
011 A > C > B  
100 B > C > A  
101 C > B > A  
110 B > A > C  
111 Reserved  
IRQ1, IRQ4, Priority  
(Group C)  
0: IRQ1 > IRQ4  
1: IRQ4 > IRQ1  
IRQ0, IRQ2, Priority  
(Group B)  
0: IRQ2 > IRQ0  
1: IRQ0 > IRQ2  
IRQ3, IRQ5, Priority  
(Group A)  
0: IRQ5 > IRQ3  
1: IRQ3 > IRQ5  
Reserved; must be 0  
Figure 52. Interrupt Priority Register (F9h: Write Only)  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
81  
R250 IRQ  
D7 D6 D5 D4 D3 D2 D1 D0  
IRQ0 = P32 Input  
IRQ1 = P33 Input  
IRQ2 = P31 Input  
IRQ3 = T16  
IRQ4 = T8  
IRQ5 = LVD  
Inter Edge  
P31↓  
P31↓  
P31↑  
P32= 00  
P32= 01  
P32= 10  
P31P32= 11  
Figure 53. Interrupt Request Register (FAh: Read/Write)  
R251 IMR  
D7 D6 D5 D4 D3 D2 D1 D0  
1 Enables IRQ5–IRQ0  
(D0 = IRQ0)  
Reserved (Must be 0)  
0 Master Interrupt Disable *  
1 Master Interrupt Enable * *  
* Default setting after reset  
* * Only by using E1, D1 instruction; D1 is required before changing the IMR register  
Figure 54. Interrupt Mask Register (FBh: Read/Write)  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
82  
R252 Flags  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
User Flag F1  
User Flag F2  
Half Carry Flag  
Decimal Adjust Flag  
Overflow Flag  
Sign Tag  
Zero Flag  
Carry Flag  
Figure 55. Flag Register (FCh: Read/Write)  
R253 RP  
D7 D6 D5 D4 D3 D2 D1 D0  
Expanded Register Bank Pointer  
Working Register Pointer  
Default setting after reset = 0000 0000  
Figure 56. Register Pointer (FDh: Read/Write)  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
83  
R254 SPH  
D7 D6 D5 D4 D3 D2 D1 D0  
General-Purpose Register or Stack  
Pointer High (SP15–SP8) if external  
memory is used  
Figure 57. Stack Pointer High (FEh: Read/Write)  
R255 SPL  
D7 D6 D5 D4 D3 D2 D1 D0  
Stack Pointer Low  
Byte (SP7–SP0)  
Figure 58. Stack Pointer Low (FFh: Read/Write)  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
84  
Package Information  
Package information is shown in Figure 59, Figure 60, Figure 61, and Figure 62.  
Figure 59. 40-Pin DIP Package Diagram  
Figure 60. 44-Pin PLCC Package Diagram  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
85  
Figure 61. 44-Pin QFP Package Design  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
86  
c
D
48  
25  
E
H
1
24  
Detail  
A
A2  
A
CONTROLLING DIMENSIONS  
: MM  
LEADS ARE COPLANAR WITHIN .004 INCH  
A1  
SEATING PLANE  
e
b
L
0-8˚  
Detail  
A
Figure 62. 48-Pin SSOP Package Design  
Note:  
Please check with ZiLOG on the actual bonding diagram and  
coordinate for chip-on-board assembly.  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
87  
Ordering Information  
To order the Z86L87/89/73 microcontrollers, see Table 20. To order the Z86L987  
microcontrollers, see Table 21 on page 89.  
Z86L87/89/73 Codes  
Table 20.Z86L87/89/73 Ordering Information  
8.0 MHz 40-Pin DIP  
8.0 MHz 44-Pin PLCC  
Z86L8708VSC  
8.0 MHz 44-Pin QFP  
8.0 MHz 48-Pin SSOP  
Z86L8708HSC  
Z86L8708PSC  
Z86L8908PSC  
Z86L7308PSC  
Die Form  
Z86L8708FSC  
Z86L8908FSC  
Z86L7308FSC  
Z86L8908VSC  
Z86L8908HSC  
Z86L7308VSC  
Z86L7308HSC  
Please contact ZiLOG.  
For fast results, contact your local ZiLOG sales office for assistance in ordering  
the part desired.  
Package  
P = Plastic DIP  
F = Plastic Quad Flat Pack  
H = SSOP  
V = Plastic Chip Carrier  
Speed  
8 = 8.0 MHz  
Environmental  
C = Plastic Standard  
Temperature  
S = 0 °C to +70 °C  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
88  
Figure 63 shows an example of what the ordering codes for the Z86L87/89/73  
microcontrollers represent.  
Z
86L73  
08  
P
S
C
is a Z86L73, 8 MHz, DIP, 0 °C to 70 °C, Plastic Standard Flow  
Environmental Flow  
Temperature  
Package  
Speed  
Product Number  
ZiLOG Prefix  
Figure 63. Z86L87/89/73 Ordering Codes Example  
PS015904-1102  
Z86L87/89/73/987  
40/44/48-Pin Low-Voltage Infrared Microcontrollers  
89  
Z86L987 Codes  
Table 21.Z86L987 Ordering Information  
Z86L987HZ008SC  
48-pin SSOP  
40-pin PDIP  
64K  
64K  
Z86L987SZ008SC  
Package  
P = Plastic DIP  
H = SSOP  
Temperature  
S = 0 °C to +70 °C  
Speed  
008 = 8.0 MHz  
Environmental  
C = Plastic Standard  
Figure 64 shows an example of what the ordering codes for the Z86L987 micro-  
controllers represent.  
Z
86L987  
H
Z
008  
S
C
is a Z86L987, SSOP, 8 MHz, 0 °C to 70 °C, Plastic Standard Flow  
Environmental Flow  
Temperature  
Speed  
ZiLOG Prefix  
Package  
Product Number  
ZiLOG Prefix  
Figure 64. Z86L987 Ordering Codes Example  
PS015904-1102  

相关型号:

Z86L987SZ008SC

Microcontroller, 8-Bit, MROM, Z8 CPU, 8MHz, CMOS, PDIP40,
IXYS

Z86L98ZEM

Z8 In-Circuit Emulator
ZILOG

Z86L99

Low-Voltage Micro controllers with ADC
ZILOG

Z86L990

Low-Voltage Micro controllers with ADC
ZILOG

Z86L9900100ZC0

Evaluation Board IR Controllers
ZILOG
ZILOG

Z86L990FSC

Microcontroller, 8-Bit, MROM, CMOS, PQFP44, QFP-44
ZILOG

Z86L990HZ008SC

Low-Voltage Micro controllers with ADC
ZILOG

Z86L990PSC

Microcontroller, 8-Bit, MROM, CMOS, PDIP40, PLASTIC, DIP-40
ZILOG

Z86L990PZ008SC

Low-Voltage Micro controllers with ADC
ZILOG

Z86L991

Low-Voltage Micro controllers with ADC
ZILOG

Z86L991PZ008SC

Low-Voltage Micro controllers with ADC
ZILOG