Z8F0423PB005EC [IXYS]

Microcontroller, 8-Bit, FLASH, Z8 CPU, 20MHz, CMOS, PDIP8, PLASTIC, DIP-8;
Z8F0423PB005EC
型号: Z8F0423PB005EC
厂家: IXYS CORPORATION    IXYS CORPORATION
描述:

Microcontroller, 8-Bit, FLASH, Z8 CPU, 20MHz, CMOS, PDIP8, PLASTIC, DIP-8

微控制器 光电二极管
文件: 总247页 (文件大小:3360K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High-Performance 8-Bit Microcontrollers  
Z8 Encore! XP® F0823  
Series  
Product Specification  
PS024314-0308  
®
Copyright © 2008 by Zilog , Inc. All rights reserved.  
www.zilog.com  
Warning:  
DO NOT USE IN LIFE SUPPORT  
LIFE SUPPORT POLICY  
ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE  
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF  
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.  
As used herein  
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)  
support or sustain life and whose failure to perform when properly used in accordance with instructions for  
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A  
critical component is any component in a life support device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support device or system or to affect its safety or  
effectiveness.  
Document Disclaimer  
©2008 by Zilog, Inc. All rights reserved. Information in this publication concerning the devices,  
applications, or technology described is intended to suggest possible uses and may be superseded. ZILOG,  
INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY  
OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT.  
ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY  
INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR  
TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this  
document has been verified according to the general principles of electrical and mechanical engineering.  
Z8, Z8 Encore!, Z8 Encore! XP, Z8 Encore! MC, Crimzon, eZ80, and ZNEO are trademarks or registered  
trademarks of Zilog, Inc. All other product or service names are the property of their respective owners.  
PS024314-0308  
Z8 Encore! XP® F0823 Series  
Product Specification  
iii  
Revision History  
Each instance in Revision History reflects a change to this document from its previous  
revision. For more details, refer to the corresponding pages and appropriate links in the  
table below.  
Revision  
Date  
Level  
Description  
Page No  
March  
2008  
14  
Changed title to Z8 Encore! XP F0823 Series and the All  
contents to match the title.  
December 13  
2007  
Updated title from Z8 Encore! 8K and 4K Series to Z8 8, 39,  
Encore! XP Z8F0823 Series. Updated Figure 3, Table 59, 91,  
15, Table 35, Table 59 through Table 61, Table 119, 196, and  
and Part Number Suffix Designations section.  
226  
August  
2007  
12  
Updated Table 1, Table 16, and Program Memory 2, 42,  
section. and 13  
June 2007 11  
Updated to combine Z8 Encore! 8K and Z8 Encore! 4K All  
Series.  
December 10  
2006  
Updated Ordering Information chapter.  
217  
PS024314-0308  
Revision History  
Z8 Encore! XP® F0823 Series  
Product Specification  
iv  
Table of Contents  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Part Selection Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
CPU and Peripheral Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
eZ8 CPU Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
General-Purpose I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Flash Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Internal Precision Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
10-Bit Analog-to-Digital Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Analog Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Universal Asynchronous Receiver/Transmitter . . . . . . . . . . . . . . . . . . . . . . . 5  
Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Interrupt Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Reset Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
On-Chip Debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Available Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Pin Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Register File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Program Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Data Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Flash Information Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Reset and Stop Mode Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Reset Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Reset Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Voltage Brownout Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Watchdog Timer Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
External Reset Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
External Reset Indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
PS024314-0308  
Table of Contents  
Z8 Encore! XP® F0823 Series  
Product Specification  
v
On-Chip Debugger Initiated Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Stop Mode Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Stop Mode Recovery Using Watchdog Timer Time-Out . . . . . . . . . . . . . . . 27  
Stop Mode Recovery Using a GPIO Port Pin Transition . . . . . . . . . . . . . . . 27  
Stop Mode Recovery Using the External RESET Pin . . . . . . . . . . . . . . . . . 28  
Reset Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
STOP Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
HALT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Peripheral-Level Power Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Power Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
General-Purpose Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
GPIO Port Availability By Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
GPIO Alternate Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Direct LED Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Shared Reset Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Shared Debug Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Crystal Oscillator Override . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
5 V Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
External Clock Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
GPIO Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
GPIO Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Port A–C Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Port A–C Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Port A–C Data Direction Sub-Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Port A–C Alternate Function Sub-Registers . . . . . . . . . . . . . . . . . . . . . . . . 45  
Port A–C Input Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Port A–C Output Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
LED Drive Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
LED Drive Level High Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
LED Drive Level Low Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Interrupt Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Interrupt Vector Listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Master Interrupt Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
PS024314-0308  
Table of Contents  
Z8 Encore! XP® F0823 Series  
Product Specification  
vi  
Interrupt Vectors and Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Interrupt Assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Software Interrupt Assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Watchdog Timer Interrupt Assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Interrupt Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Interrupt Request 0 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Interrupt Request 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Interrupt Request 2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
IRQ0 Enable High and Low Bit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
IRQ1 Enable High and Low Bit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
IRQ2 Enable High and Low Bit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Interrupt Edge Select Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Shared Interrupt Select Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Interrupt Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Timer Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Reading the Timer Count Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Timer Pin Signal Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Timer Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Timer 0–1 High and Low Byte Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Timer Reload High and Low Byte Registers . . . . . . . . . . . . . . . . . . . . . . . . 80  
Timer 0-1 PWM High and Low Byte Registers . . . . . . . . . . . . . . . . . . . . . . 81  
Timer 0–1 Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Watchdog Timer Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Watchdog Timer Time-Out Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Watchdog Timer Reload Unlock Sequence . . . . . . . . . . . . . . . . . . . . . . . . 89  
Watchdog Timer Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Watchdog Timer Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Watchdog Timer Reload Upper, High and Low Byte Registers . . . . . . . . . . 90  
Universal Asynchronous Receiver/Transmitter . . . . . . . . . . . . . . . . . . . . . . 93  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Transmitting Data using the Polled Method . . . . . . . . . . . . . . . . . . . . . . . . 95  
Transmitting Data using the Interrupt-Driven Method . . . . . . . . . . . . . . . . . 96  
PS024314-0308  
Table of Contents  
Z8 Encore! XP® F0823 Series  
Product Specification  
vii  
Receiving Data using the Polled Method . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Receiving Data using the Interrupt-Driven Method . . . . . . . . . . . . . . . . . . . 98  
Clear To Send (CTS) Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
MULTIPROCESSOR (9-Bit) Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
External Driver Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
UART Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
UART Baud Rate Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
UART Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
UART Transmit Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
UART Receive Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
UART Status 0 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
UART Status 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
UART Control 0 and Control 1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . 107  
UART Address Compare Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
UART Baud Rate High and Low Byte Registers . . . . . . . . . . . . . . . . . . . . 110  
Infrared Encoder/Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Transmitting IrDA Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Receiving IrDA Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Infrared Encoder/Decoder Control Register Definitions . . . . . . . . . . . . . . . . . 116  
Analog-to-Digital Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Automatic Powerdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Single-Shot Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Calibration and Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
ADC Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
ADC Control Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
ADC Control/Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
ADC Data High Byte Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
ADC Data Low Bits Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Comparator Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Flash Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
PS024314-0308  
Table of Contents  
Z8 Encore! XP® F0823 Series  
Product Specification  
viii  
Flash Information Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Flash Operation Timing Using the Flash Frequency Registers . . . . . . . . . 133  
Flash Code Protection Against External Access . . . . . . . . . . . . . . . . . . . . 133  
Flash Code Protection Against Accidental Program and Erasure . . . . . . . 133  
Byte Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Page Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Mass Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Flash Controller Bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Flash Controller Behavior in DEBUG Mode . . . . . . . . . . . . . . . . . . . . . . . 136  
Flash Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Flash Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Flash Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Flash Page Select Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Flash Sector Protect Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
Flash Frequency High and Low Byte Registers . . . . . . . . . . . . . . . . . . . . 139  
Flash Option Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
Option Bit Configuration By Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
Option Bit Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
Reading the Flash Information Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
Flash Option Bit Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 143  
Trim Bit Address Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
Trim Bit Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Flash Option Bit Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Flash Program Memory Address 0000H . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Flash Program Memory Address 0001H . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
Trim Bit Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Trim Bit Address 0000H—Reserved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Trim Bit Address 0001H—Reserved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Trim Bit Address 0002H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Trim Bit Address 0003H—Reserved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Trim Bit Address 0004H—Reserved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Zilog Calibration Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
ADC Calibration Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Serialization Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Randomized Lot Identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
On-Chip Debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
PS024314-0308  
Table of Contents  
Z8 Encore! XP® F0823 Series  
Product Specification  
ix  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
OCD Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
DEBUG Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
OCD Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
OCD Auto-Baud Detector/Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
OCD Serial Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
OCD Unlock Sequence (8-Pin Devices Only) . . . . . . . . . . . . . . . . . . . . . . 156  
Breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Runtime Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
On-Chip Debugger Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
On-Chip Debugger Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . 161  
OCD Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
OCD Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Oscillator Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
System Clock Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
Clock Failure Detection and Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
Oscillator Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Internal Precision Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
eZ8 CPU Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
Assembly Language Programming Introduction . . . . . . . . . . . . . . . . . . . . . . . 171  
Assembly Language Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
eZ8 CPU Instruction Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
eZ8 CPU Instruction Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
eZ8 CPU Instruction Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
Opcode Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
On-Chip Peripheral AC and DC Electrical Characteristics . . . . . . . . . . . . . . . 199  
General Purpose I/O Port Input Data Sample Timing . . . . . . . . . . . . . . . . 202  
General Purpose I/O Port Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . 204  
On-Chip Debugger Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
UART Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206  
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209  
PS024314-0308  
Table of Contents  
Z8 Encore! XP® F0823 Series  
Product Specification  
x
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
Part Number Suffix Designations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
Customer Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237  
PS024314-0308  
Table of Contents  
Z8 Encore! XP® F0823 Series  
Product Specification  
1
Overview  
Zilog’s Z8 Encore! XP® microcontroller unit (MCU) family of products are the first  
Zilog® microcontroller products based on the 8-bit eZ8 CPU core. Z8 Encore! XP F0823  
Series products expand upon Zilog’s extensive line of 8-bit microcontrollers. The Flash  
in-circuit programming capability allows for faster development time and program  
changes in the field. The new eZ8 CPU is upward compatible with existing Z8® instruc-  
tions. The rich peripheral set of Z8 Encore! XP F0823 Series makes it suitable for a vari-  
ety of applications including motor control, security systems, home appliances, personal  
electronic devices, and sensors.  
Features  
The key features of Z8 Encore! XP F0823 Series include:  
5 MHz eZ8 CPU  
1 KB, 2 KB, 4 KB, or 8 KB Flash memory with in-circuit programming capability  
256 B, 512 B, or 1 KB register RAM  
6 to 24 I/O pins depending upon package  
Internal precision oscillator (IPO)  
Full-duplex UART  
The universal asynchronous receiver/transmitter (UART) baud rate generator (BRG) can  
be configured and used as a basic 16-bit timer  
Infrared data association (IrDA)-compliant infrared encoder/decoders, integrated with  
UART  
Two enhanced 16-bit timers with capture, compare, and PWM capability  
Watchdog Timer (WDT) with dedicated internal RC oscillator  
On-Chip Debugger (OCD)  
Optional 8-channel, 10-bit Analog-to-Digital Converter (ADC)  
On-Chip analog comparator  
Up to 20 vectored interrupts  
Direct LED drive with programmable drive strengths  
Voltage Brownout (VBO) protection  
Power-On Reset (POR)  
PS024314-0308  
Overview  
Z8 Encore! XP® F0823 Series  
Product Specification  
2
2.7 V to 3.6 V operating voltage  
Up to thirteen 5 V-tolerant input pins  
8-, 20-, and 28-pin packages  
0 °C to +70 °C and -40 °C to +105 °C for operating temperature ranges  
Part Selection Guide  
Table 1 lists the basic features and package styles available for each device within the  
Z8 Encore! XP® F0823 Series product line.  
Table 1. Z8 Encore! XP F0823 Series Family Part Selection Guide  
Part  
Flash RAM  
ADC  
Number  
(KB)  
(B)  
1024  
I/O  
6–22  
Inputs  
Packages  
Z8F0823  
Z8F0813  
Z8F0423  
Z8F0413  
Z8F0223  
Z8F0213  
Z8F0123  
Z8F0113  
8
8
4
4
2
2
1
1
4–8  
0
8-, 20-, and 28-pins  
8-, 20-, and 28-pins  
8-, 20-, and 28-pins  
8-, 20-, and 28-pins  
8-, 20-, and 28-pins  
8-, 20-, and 28-pins  
8-, 20-, and 28-pins  
8-, 20-, and 28-pins  
1024  
1024  
1024  
512  
6–24  
6–22  
6–24  
6–22  
6–24  
6–22  
6–24  
4–8  
0
4–8  
0
512  
256  
4–8  
0
256  
PS024314-0308  
Overview  
Z8 Encore! XP® F0823 Series  
Product Specification  
3
Block Diagram  
Figure 1 on page 3 displays the block diagram of the architecture of Z8 Encore! XP F0823  
Series devices.  
Internal  
System  
Clock  
Oscillator  
Control  
Precision  
Oscillator  
Low Power  
On-Chip  
RC Oscillator  
Debugger  
POR/VBO  
eZ8  
and Reset  
Controller  
Interrupt  
WDT  
CPU  
Controller  
Memory Busses  
Register Bus  
Flash  
RAM  
Timers  
UART  
ADC  
Comparator  
Controller  
Controller  
IrDA  
Flash  
RAM  
Memory  
GPIO  
Figure 1. Z8 Encore! XP® F0823 Series Block Diagram  
PS024314-0308  
Overview  
Z8 Encore! XP® F0823 Series  
Product Specification  
4
CPU and Peripheral Overview  
eZ8 CPU Features  
The eZ8 CPU, Zilog’s latest 8-bit central processing unit (CPU), meets the continuing  
demand for faster and code-efficient microcontrollers. The eZ8 CPU executes a superset  
of the original Z8® instruction set. The eZ8 CPU features include:  
Direct register-to-register architecture allows each register to function as an  
accumulator, improving execution time and decreasing the required program memory.  
Software stack allows much greater depth in subroutine calls and interrupts than  
hardware stacks.  
Compatible with existing Z8 code.  
Expanded internal Register File allows access of up to 4 KB.  
New instructions improve execution efficiency for code developed using higher-level  
programming languages, including C.  
Pipelined instruction fetch and execution.  
New instructions for improved performance including BIT, BSWAP, BTJ, CPC, LDC,  
LDCI, LEA, MULT, and SRL.  
New instructions support 12-bit linear addressing of the Register file.  
Up to 10 MIPS operation.  
C-Compiler friendly.  
2 to 9 clock cycles per instruction.  
For more information on eZ8 CPU, refer to eZ8 CPU Core User Manual (UM0128) avail-  
able for download at www.zilog.com.  
General-Purpose I/O  
Z8 Encore! XP F0823 Series features 6 to 24 port pins (Ports A–C) for general-purpose  
I/O (GPIO). The number of GPIO pins available is a function of package. Each pin is  
individually programmable. 5 V tolerant input pins are available on all I/Os on 8-pin  
devices, most I/Os on other package types.  
Flash Controller  
The Flash Controller programs and erases Flash memory. The Flash Controller supports  
protection against accidental program and erasure, as well as factory serialization and read  
protection.  
PS024314-0308  
Overview  
Z8 Encore! XP® F0823 Series  
Product Specification  
5
Internal Precision Oscillator  
The internal precision oscillator (IPO) is a trimmable clock source that requires no  
external components.  
10-Bit Analog-to-Digital Converter  
The optional analog-to-digital converter (ADC) converts an analog input signal to a 10-bit  
binary number. The ADC accepts inputs from eight different analog input pins in both sin-  
gle-ended and differential modes.  
Analog Comparator  
The analog comparator compares the signal at an input pin with either an internal  
programmable voltage reference or a second input pin. The comparator output can be used  
to drive either an output pin or to generate an interrupt.  
Universal Asynchronous Receiver/Transmitter  
The UART is full-duplex and capable of handling asynchronous data transfers. The UART  
supports 8- and 9-bit data modes and selectable parity. The UART also supports multi-  
drop address processing in hardware. The UART baud rate generator can be  
configured and used as a basic 16-bit timer.  
Timers  
Two enhanced 16-bit reloadable timers can be used for timing/counting events or for  
motor control operations. These timers provide a 16-bit programmable reload counter and  
operate in ONE-SHOT, CONTINUOUS, GATED, CAPTURE, CAPTURE RESTART,  
COMPARE, CAPTURE AND COMPARE, PWM SINGLE OUTPUT, and PWM DUAL  
OUTPUT modes.  
Interrupt Controller  
Z8 Encore! XP® F0823 Series products support up to 20 interrupts. These interrupts  
consist of eight internal peripheral interrupts and 12 general-purpose I/O pin interrupt  
sources. The interrupts have three levels of programmable interrupt priority.  
PS024314-0308  
Overview  
Z8 Encore! XP® F0823 Series  
Product Specification  
6
Reset Controller  
Z8 Encore! XP® F0823 Series products can be reset using the RESET pin, POR, WDT  
time-out, STOP mode exit, or Voltage Brownout warning signal. The RESET pin is  
bidirectional, that is, it functions as reset source as well as a reset indicator.  
On-Chip Debugger  
Z8 Encore! XP F0823 Series products feature an integrated On-Chip Debugger. The OCD  
provides a rich-set of debugging capabilities, such as reading and writing registers, pro-  
gramming Flash memory, setting breakpoints and executing code. A single-pin  
interface provides communication to the OCD.  
PS024314-0308  
Overview  
Z8 Encore! XP® F0823 Series  
Product Specification  
7
Pin Description  
Z8 Encore! XP® F0823 Series products are available in a variety of package styles and pin  
configurations. This chapter describes the signals and pin configurations available for  
each of the package styles. For information on physical package specifications, see Pack-  
aging on page 209.  
Available Packages  
Table 2 lists the package styles that are available for each device in the Z8 Encore! XP  
F0823 Series product line.  
Table 2. Z8 Encore! XP F0823 Series Package Options  
Part  
8-pin 8-pin 20-pin 20-pin 20-pin 28-pin 28-pin 28-pin 8-pin QFN/  
Number  
ADC  
Yes  
No  
PDIP SOIC PDIP SOIC SSOP  
PDIP  
X
SOIC SSOP  
MLF-S  
Z8F0823  
Z8F0813  
Z8F0423  
Z8F0413  
Z8F0223  
Z8F0213  
Z8F0123  
Z8F0113  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Yes  
No  
X
X
Yes  
No  
X
X
Yes  
No  
X
X
Pin Configurations  
Figure 2 through Figure 4 displays the pin configurations for all packages available in the  
Z8 Encore! XP F0823 Series. For description of signals, see Table 3. The analog input  
alternate functions (ANAx) are not available on the Z8F0x13 devices. The analog supply  
pins (AVDD and AVSS) are also not available on these parts, and are replaced by PB6 and  
PB7.  
At reset, all pins of Ports A, B, and C default to an input state. In addition, any alternate  
functionality is not enabled, so the pins function as general-purpose input ports until  
programmed otherwise.  
PS024314-0308  
Pin Description  
Z8 Encore! XP® F0823 Series  
Product Specification  
8
The pin configurations listed are preliminary and subject to change based on manufactur-  
ing limitations.  
VSS  
VDD  
PA0/T0IN/T0OUT/DBG  
PA1/T0OUT/ANA3/VREF/CLKIN  
PA2/RESET/DE0/T1OUT  
1
2
3
4
8
7
6
5
PA5/TXD0/T1OUT/ANA0/CINP  
PA4/RXD0/ANA1/CINN  
PA3/CTS0/ANA2/COUT/T1IN  
Figure 2. Z8F08x3, Z8F04x3, F02x3 and Z8F01x3 in 8-Pin SOIC, QFN/MLF-S, or PDIP Package*  
PB1/ANA1  
PB2/ANA2  
PB3/CLKIN/ANA3  
VDD  
PA0/T0IN/T0OUT  
PA1/T0OUT  
VSS  
PB0/ANA0  
PC3/COUT/LED  
PC2/ANA6/LED/VREF  
PC1/ANA5/CINN/LED  
PC0/ANA4/CINP/LED  
DBG  
RESET  
PA7/T1OUT  
PA6/T1IN/T1OUT  
PA5/TXD0  
1
2
3
4
5
6
7
8
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
PA2/DE0  
PA3/CTS0  
PA4/RXD0  
9
10  
Figure 3. Z8F08x3, Z8F04x3, F02x3 and Z8F01x3 in 20-Pin SOIC, SSOP or PDIP Package*  
PB2/ANA2  
PB4/ANA7  
PB5/VREF  
PB1/ANA1  
PB0/ANA0  
PC3/COUT/LED  
PC2/ANA6/LED  
PC1/ANA5/CINN/LED  
PC0/ANA4/CINP/LED  
DBG  
RESET  
PC7/LED  
PC6/LED  
PA7/T1OUT  
1
2
3
4
5
6
7
8
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
PB3/CLKIN/ANA3  
(PB6) AVDD  
VDD  
PA0/T0IN/T0OUT  
PA1/T0OUT  
VSS  
9
(PB7) AVSS  
PA2/DE0  
PA3/CTS0  
PA4/RXD0  
PA5/TXD0  
10  
11  
12  
13  
14  
PC5/LED  
PC4/LED  
PA6/T1IN/T1OUT  
Figure 4. Z8F08x3, Z8F04x3, F02x3 and Z8F01x3 in 28-Pin SOIC, SSOP or PDIP Package*  
PS024314-0308  
Pin Description  
Z8 Encore! XP® F0823 Series  
Product Specification  
9
*Analog input alternate functions (ANA) are not available on the Z8F0x13 devices.  
Note:  
Signal Descriptions  
Table 3 lists the Z8 Encore! XP® F0823 Series signals. To determine the signals available  
for the specific package styles, see Pin Configurations on page 7.  
Table 3. Signal Descriptions  
Signal Mnemonic  
I/O  
Description  
General-Purpose I/O Ports A–D  
PA[7:0]  
PB[7:0]  
I/O  
I/O  
Port A. These pins are used for general-purpose I/O.  
Port B. These pins are used for general-purpose I/O. PB6 and PB7 are  
available only in those devices without an ADC.  
PC[7:0]  
I/O  
Port C. These pins are used for general-purpose I/O.  
Note: PB6 and PB7 are only available in 28-pin packages without ADC. In 28-pin packages with ADC, they are  
replaced by AVDD and AVSS  
.
UART Controllers  
TXD0  
RXD0  
CTS0  
DE  
O
I
I
Transmit Data. This signal is the transmit output from the UART and IrDA.  
Receive Data. This signal is the receive input for the UART and IrDA.  
Clear To Send. This signal is the flow control input for the UART.  
O
Driver Enable. This signal allows automatic control of external RS-485  
drivers. This signal is approximately the inverse of the TXE (Transmit  
Empty) bit in the UART Status 0 register. The DE signal can be used to  
ensure the external RS-485 driver is enabled when data is transmitted by  
the UART.  
Timers  
T0OUT/T1OUT  
T0OUT/T1OUT  
O
O
Timer Output 0–1. These signals are output from the timers.  
Timer Complement Output 0–1. These signals are output from the timers  
in PWM Dual Output mode.  
T0IN/T1IN  
I
Timer Input 0–1. These signals are used as the capture, gating and  
counter inputs. The T0IN signal is multiplexed T0OUT signals.  
Comparator  
CINP/CINN  
I
Comparator Inputs. These signals are the positive and negative inputs to  
the comparator.  
COUT  
O
Comparator Output. This is the output of the comparator.  
PS024314-0308  
Pin Description  
Z8 Encore! XP® F0823 Series  
Product Specification  
10  
Table 3. Signal Descriptions (Continued)  
Signal Mnemonic  
I/O  
Description  
Analog  
ANA[7:0]  
I
Analog port. These signals are used as inputs to the ADC. The ANA0,  
ANA1, and ANA2 pins can also access the inputs and output of the  
integrated transimpedance amplifier.  
VREF  
I/O  
I
Analog-to-Digital Converter reference voltage input.  
Clock Input  
CLKIN  
Clock Input Signal. This pin can be used to input a TTL-level signal to be  
used as the system clock.  
LED Drivers  
LED  
O
Direct LED drive capability. All port C pins have the capability to drive an  
LED without any other external components. These pins have  
programmable drive strengths set by the GPIO block.  
On-Chip Debugger  
DBG  
I/O  
Debug. This signal is the control and data input and output to and from the  
OCD.  
Caution: The DBG pin is open-drain and requires an external pull-  
up resistor to ensure proper operation.  
Reset  
I/O  
RESET. Generates a reset when asserted (driven Low). Also serves as a  
reset indicator; the Z8 Encore! XP forces this pin Low when in reset. This  
pin is open-drain and features an enabled internal pull-up resistor.  
RESET  
Power Supply  
V
AV  
V
AV  
I
I
I
I
Digital Power Supply.  
Analog Power Supply.  
Digital Ground.  
DD  
DD  
SS  
Analog Ground.  
SS  
Note: The AVDD and AVSS signals are available only in 28-pin packages with ADC. They are replaced by PB6 and  
PB7 on 28-pin packages without ADC.  
Pin Characteristics  
Table 4 provides detailed information about the characteristics for each pin available on  
Z8 Encore! XP F0823 Series 20- and 28-pin devices. Data in Table 4 is sorted alphabeti-  
cally by the pin symbol mnemonic.  
PS024314-0308  
Pin Description  
Z8 Encore! XP® F0823 Series  
Product Specification  
11  
Table 5 provides detailed information about the characteristics for each pin available on  
Z8 Encore! XP® F0823 Series 8-pin devices.  
All six I/O pins on the 8-pin packages are 5 V-tolerant (unless the pull-up devices are  
enabled). The column in Table 4 below describes 5 V-tolerance for the 20- and 28-pin  
packages only.  
Note:  
Table 4. Pin Characteristics (20- and 28-pin Devices)  
Active  
Low or  
Schmitt-  
Tristate Internal Pull-up Trigger Open Drain  
Symbol  
Reset  
Active  
5 V  
Mnemonic Direction Direction High  
Output or Pull-down  
Input  
N/A  
N/A  
Yes  
Output  
N/A  
Tolerance  
AVDD  
AVSS  
DBG  
N/A  
N/A  
I/O  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Yes  
Yes  
N/A  
N/A  
No  
N/A  
NA  
N/A  
N/A  
Yes  
I
I
Yes  
PA[7:0]  
I/O  
Programmable  
Pull-up  
Yes  
Yes,  
Programmable  
PA[7:2]  
only  
PB[7:0]  
PC[7:0]  
RESET  
I/O  
I/O  
I/O  
I
I
N/A  
N/A  
Yes  
Yes  
Programmable  
Pull-up  
Yes  
Yes  
Yes  
Yes,  
PB[7:6]  
only  
Programmable  
Programmable  
Pull-up  
Yes,  
Programmable  
PC[7:3]  
only  
I/O  
Low (in Yes (PD0 Always on for  
Reset  
Always on for  
RESET  
Yes  
(defaults  
only)  
RESET  
to RESET) mode)  
VDD  
VSS  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
PB6 and PB7 are available only in the devices without ADC.  
Note:  
PS024314-0308  
Pin Description  
Z8 Encore! XP® F0823 Series  
Product Specification  
12  
)
Table 5. Pin Characteristics (8-Pin Devices)  
Active Low  
Schmitt-  
Tristate Internal Pull-up Trigger Open Drain  
Output or Pull-down Input Output  
Symbol  
Reset  
or Active  
5 V  
Mnemonic Direction Direction High  
Tolerance  
PA0/DBG  
I/O  
I (but can  
change  
N/A  
Yes  
Programmable  
Pull-up  
Yes  
Yes,  
Programmable  
Yes, unless  
pull-ups  
enabled  
during  
reset if key  
sequence  
detected)  
PA1  
I/O  
I/O  
I/O  
I
N/A  
N/A  
N/A  
Yes  
Yes  
Yes  
Programmable  
Pull-up  
Yes  
Yes  
Yes  
Yes,  
Yes, unless  
pull-ups  
Programmable  
enabled  
RESET/  
PA2  
I/O  
(defaults  
to RESET)  
Programmable  
for PA2; always  
on for RESET  
Programmable Yes, unless  
for PA2; always  
on for RESET  
pull-ups  
enabled  
PA[5:3]  
I
Programmable  
Pull-up  
Yes,  
Programmable  
Yes, unless  
pull-ups  
enabled  
VDD  
VSS  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
PS024314-0308  
Pin Description  
Z8 Encore! XP® F0823 Series  
Product Specification  
13  
Address Space  
The eZ8 CPU can access three distinct address spaces:  
The Register File contains addresses for the general-purpose registers and the eZ8 CPU,  
peripheral, and general-purpose I/O port control registers.  
The Program Memory contains addresses for all memory locations having executable  
code and/or data.  
The Data Memory contains addresses for all memory locations that contain data only.  
These three address spaces are covered briefly in the following subsections. For more  
detailed information regarding the eZ8 CPU and its address space, refer to eZ8 CPU Core  
User Manual (UM0128) available for download at www.zilog.com.  
Register File  
The Register File address space in the Z8 Encore! XP® MCU is 4 KB (4096 bytes). The  
Register File is composed of two sections: control registers and general-purpose registers.  
When instructions are executed, registers defined as sources are read, and registers defined  
as destinations are written. The architecture of the eZ8 CPU allows all general-purpose  
registers to function as accumulators, address pointers, index registers, stack areas, or  
scratch pad memory.  
The upper 256 bytes of the 4 KB Register File address space are reserved for control of the  
eZ8 CPU, the on-chip peripherals, and the I/O ports. These registers are located at  
addresses from F00Hto FFFH. Some of the addresses within the 256 B control register  
section are reserved (unavailable). Reading from a reserved Register File address returns  
an undefined value. Writing to reserved Register File addresses is not recommended and  
can produce unpredictable results.  
The on-chip RAM always begins at address 000Hin the Register File address space.  
Z8 Encore! XP F0823 Series devices contain 256 B-1 KB of on-chip RAM. Reading from  
Register File addresses outside the available RAM addresses (and not within the control  
register address space) returns an undefined value. Writing to these Register File addresses  
produces no effect.  
Program Memory  
The eZ8 CPU supports 64 KB of Program Memory address space. Z8 Encore! XP F0823  
Series devices contain 1 KB to 8 KB of on-chip Flash memory in the Program Memory  
address space. Reading from Program Memory addresses outside the available Flash  
PS024314-0308  
Address Space  
Z8 Encore! XP® F0823 Series  
Product Specification  
14  
memory addresses returns FFH. Writing to these unimplemented Program Memory  
addresses produces no effect. Table 6 describes the Program Memory maps for the Z8  
Encore! XP® F0823 Series products.  
Table 6. Z8 Encore! XP F0823 Series Program Memory Maps  
Program Memory Address (Hex)  
Function  
Z8F0823 and Z8F0813 Products  
0000–0001  
Flash Option Bits  
Reset Vector  
0002–0003  
0004–0005  
WDT Interrupt Vector  
Illegal Instruction Trap  
Interrupt Vectors*  
Oscillator Fail Traps*  
Program Memory  
0006–0007  
0008–0037  
0038–003D  
003E–0FFF  
Z8F0423 and Z8F0413 Products  
0000–0001  
Flash Option Bits  
Reset Vector  
0002–0003  
0004–0005  
WDT Interrupt Vector  
Illegal Instruction Trap  
Interrupt Vectors*  
Oscillator Fail Traps*  
Program Memory  
0006–0007  
0008–0037  
0038–003D  
003E–0FFF  
Z8F0223 and Z8F0213 Products  
0000–0001  
Flash Option Bits  
Reset Vector  
0002–0003  
0004–0005  
WDT Interrupt Vector  
Illegal Instruction Trap  
Interrupt Vectors*  
Oscillator Fail Traps*  
Program Memory  
0006–0007  
0008–0037  
0038–003D  
003E–07FF  
Z8F0123 and Z8F0113 Products  
0000–0001  
Flash Option Bits  
PS024314-0308  
Address Space  
Z8 Encore! XP® F0823 Series  
Product Specification  
15  
Table 6. Z8 Encore! XP F0823 Series Program Memory Maps (Continued)  
Program Memory Address (Hex)  
0002–0003  
Function  
Reset Vector  
0004–0005  
WDT Interrupt Vector  
Illegal Instruction Trap  
Interrupt Vectors*  
Oscillator Fail Traps*  
Program Memory  
0006–0007  
0008–0037  
0038–003D  
003E–03FF  
*See Table 33 on page 54 for a list of the interrupt vectors and traps.  
Data Memory  
Z8 Encore! XP® F0823 Series does not use the eZ8 CPU’s 64 KB Data Memory address  
space.  
Flash Information Area  
Table 7 lists the Z8 Encore! XP F0823 Series Flash Information Area. This 128 B  
Information Area is accessed by setting bit 7 of the Flash Page Select Register to 1. When  
access is enabled, the Flash Information Area is mapped into the Program Memory and  
overlays the 128 bytes at addresses FE00Hto FF7FH. When the Information Area access is  
enabled, all reads from these Program Memory addresses return the Information Area data  
rather than the Program Memory data. Access to the Flash Information Area is read-only.  
Table 7. Z8 Encore! XP F0823 Series Flash Memory Information Area Map  
Program Memory Address  
(Hex)  
Function  
FE00–FE3F  
FE40–FE53  
Zilog Option Bits.  
Part Number.  
20-character ASCII alphanumeric code  
Left justified and filled with FH.  
FE54–FE5F  
FE60–FE7F  
FE80–FFFF  
Reserved.  
Zilog Calibration Data.  
Reserved.  
PS024314-0308  
Address Space  
Z8 Encore! XP® F0823 Series  
Product Specification  
16  
PS024314-0308  
Address Space  
Z8 Encore! XP® F0823 Series  
Product Specification  
17  
Register Map  
Table 8 lists the address map for the Register File of the Z8 Encore! XP® F0823 Series  
devices. Not all devices and package styles in the Z8 Encore! XP F0823 Series support the  
ADC, or all GPIO ports. Consider registers for unimplemented peripherals as reserved.  
Table 8. Register File Address Map  
Address (Hex) Register Description  
General-Purpose RAM  
Mnemonic  
Reset (Hex) Page No  
Z8F0823/Z8F0813 Devices  
000–3FF  
General-Purpose Register File RAM  
XX  
XX  
400–EFF  
Reserved  
Z8F0423/Z8F0413 Devices  
000–3FF  
General-Purpose Register File RAM  
XX  
XX  
400–EFF  
Reserved  
Z8F0223/Z8F0213 Devices  
000–1FF  
General-Purpose Register File RAM  
XX  
XX  
200–EFF  
Reserved  
Z8F0123/Z8F0113 Devices  
000–0FF  
General-Purpose Register File RAM  
XX  
XX  
100–EFF  
Reserved  
Timer 0  
F00  
F01  
F02  
F03  
F04  
F05  
F06  
F07  
Timer 0 High Byte  
Timer 0 Low Byte  
T0H  
T0L  
T0RH  
T0RL  
T0PWMH  
T0PWML  
T0CTL0  
T0CTL1  
00  
01  
FF  
FF  
00  
00  
00  
00  
80  
80  
81  
81  
81  
82  
82  
83  
Timer 0 Reload High Byte  
Timer 0 Reload Low Byte  
Timer 0 PWM High Byte  
Timer 0 PWM Low Byte  
Timer 0 Control 0  
Timer 0 Control 1  
Timer 1  
F08  
F09  
F0A  
F0B  
Timer 1 High Byte  
Timer 1 Low Byte  
Timer 1 Reload High Byte  
Timer 1 Reload Low Byte  
T1H  
T1L  
T1RH  
T1RL  
00  
01  
FF  
FF  
80  
80  
81  
81  
PS024314-0308  
Register Map  
Z8 Encore! XP® F0823 Series  
Product Specification  
18  
Table 8. Register File Address Map (Continued)  
Address (Hex) Register Description  
Mnemonic  
T1PWMH  
T1PWML  
T1CTL0  
T1CTL1  
Reset (Hex) Page No  
F0C  
Timer 1 PWM High Byte  
Timer 1 PWM Low Byte  
Timer 1 Control 0  
Timer 1 Control 1  
Reserved  
00  
00  
00  
00  
XX  
81  
82  
82  
80  
F0D  
F0E  
F0F  
F10–F3F  
UART  
F40  
UART0 Transmit Data  
UART0 Receive Data  
UART0 Status 0  
UART0 Control 0  
UART0 Control 1  
U0TXD  
U0RXD  
U0STAT0  
U0CTL0  
U0CTL1  
U0STAT1  
U0ADDR  
U0BRH  
U0BRL  
XX  
XX  
0000011Xb  
00  
00  
00  
00  
FF  
FF  
XX  
104  
105  
105  
107  
107  
106  
109  
110  
110  
F41  
F42  
F43  
F44  
F45  
F46  
F47  
F48–F6F  
UART0 Status 1  
UART0 Address Compare  
UART0 Baud Rate High Byte  
UART0 Baud Rate Low Byte  
Reserved  
Analog-to-Digital Converter (ADC)  
F70  
ADC Control 0  
ADC Control 1  
ADC Data High Byte  
ADC Data Low Bits  
Reserved  
ADCCTL0  
ADCCTL1  
ADCD_H  
ADCD_L  
00  
80  
XX  
XX  
XX  
122  
122  
124  
124  
F71  
F72  
F73  
F74–F7F  
Low Power Control  
F80  
Power Control 0  
PWRCTL0  
80  
XX  
33  
F81  
Reserved  
LED Controller  
F82  
F83  
F84  
F85  
LED Drive Enable  
LEDEN  
LEDLVLH  
LEDLVLL  
00  
00  
00  
XX  
51  
51  
52  
LED Drive Level High Byte  
LED Drive Level Low Byte  
Reserved  
Oscillator Control  
F86  
Oscillator Control  
OSCCTL  
A0  
XX  
167  
128  
F87–F8F  
Reserved  
Comparator 0  
F90  
Comparator 0 Control  
CMP0  
14  
PS024314-0308  
Register Map  
Z8 Encore! XP® F0823 Series  
Product Specification  
19  
Table 8. Register File Address Map (Continued)  
Address (Hex) Register Description  
Mnemonic  
Reset (Hex) Page No  
XX  
F91–FBF  
Reserved  
Interrupt Controller  
FC0  
Interrupt Request 0  
IRQ0  
00  
00  
00  
00  
00  
00  
00  
00  
00  
XX  
00  
00  
00  
58  
60  
61  
59  
62  
62  
60  
63  
63  
FC1  
FC2  
FC3  
FC4  
FC5  
FC6  
FC7  
FC8  
FC9–FCC  
FCD  
FCE  
FCF  
IRQ0 Enable High Bit  
IRQ0 Enable Low Bit  
Interrupt Request 1  
IRQ1 Enable High Bit  
IRQ1 Enable Low Bit  
Interrupt Request 2  
IRQ2 Enable High Bit  
IRQ2 Enable Low Bit  
Reserved  
IRQ0ENH  
IRQ0ENL  
IRQ1  
IRQ1ENH  
IRQ1ENL  
IRQ2  
IRQ2ENH  
IRQ2ENL  
IRQES  
IRQSS  
IRQCTL  
Interrupt Edge Select  
Shared Interrupt Select  
Interrupt Control  
64  
64  
65  
GPIO Port A  
FD0  
FD1  
FD2  
FD3  
Port A Address  
Port A Control  
Port A Input Data  
Port A Output Data  
PAADDR  
PACTL  
PAIN  
00  
00  
XX  
00  
43  
45  
45  
45  
PAOUT  
GPIO Port B  
FD4  
FD5  
FD6  
FD7  
Port B Address  
Port B Control  
Port B Input Data  
Port B Output Data  
PBADDR  
PBCTL  
PBIN  
00  
00  
XX  
00  
43  
45  
45  
45  
PBOUT  
GPIO Port C  
FD8  
FD9  
FDA  
FDB  
Port C Address  
Port C Control  
Port C Input Data  
Port C Output Data  
Reserved  
PCADDR  
PCCTL  
PCIN  
PCOUT  
00  
00  
XX  
00  
XX  
43  
45  
45  
45  
FDC–FEF  
Watchdog Timer (WDT)  
FF0  
Reset Status  
RSTSTAT  
WDTCTL  
WDTU  
XX  
XX  
FF  
90  
90  
91  
Watchdog Timer Control  
FF1  
Watchdog Timer Reload Upper Byte  
PS024314-0308  
Register Map  
Z8 Encore! XP® F0823 Series  
Product Specification  
20  
Table 8. Register File Address Map (Continued)  
Address (Hex) Register Description  
Mnemonic  
WDTH  
WDTL  
Reset (Hex) Page No  
FF2  
Watchdog Timer Reload High Byte  
Watchdog Timer Reload Low Byte  
Reserved  
FF  
FF  
XX  
91  
91  
FF3  
FF4–FF5  
Trim Bit Control  
FF6  
FF7  
Trim Bit Address  
Trim Data  
TRMADR  
TRMDR  
00  
XX  
143  
144  
Flash Memory Controller  
FF8  
FF8  
FF9  
Flash Control  
Flash Status  
Flash Page Select  
Flash Sector Protect  
FCTL  
FSTAT  
FPS  
00  
00  
00  
00  
00  
00  
137  
137  
138  
139  
140  
140  
FPROT  
FFA  
FFB  
Flash Programming Frequency High Byte FFREQH  
Flash Programming Frequency Low Byte FFREQL  
eZ8 CPU  
FFC  
FFD  
FFE  
FFF  
Flags  
RP  
SPH  
SPL  
XX  
XX  
XX  
XX  
Refer to eZ8  
CPU Core  
Register Pointer  
Stack Pointer High Byte  
Stack Pointer Low Byte  
User Manual  
(UM0128)  
XX=Undefined  
PS024314-0308  
Register Map  
Z8 Encore! XP® F0823 Series  
Product Specification  
21  
Reset and Stop Mode Recovery  
The Reset Controller within the Z8 Encore! XP® F0823 Series controls Reset and Stop  
Mode Recovery operation and provides indication of low supply voltage conditions. In  
typical operation, the following events cause a Reset:  
Power-On Reset (POR)  
Voltage Brownout (VBO)  
Watchdog Timer time-out (when configured by the WDT_RES Flash Option Bit to  
initiate a reset)  
External RESET pin assertion (when the alternate RESET function is enabled by the  
GPIO register)  
On-chip Debugger initiated Reset (OCDCTL[0] set to 1)  
When the device is in STOP mode, a Stop Mode Recovery is initiated by either of the  
following:  
Watchdog Timer time-out  
GPIO port input pin transition on an enabled Stop Mode Recovery source  
The VBO circuitry on the device performs the following function:  
Generates the VBO reset when the supply voltage drops below a minimum safe level  
Reset Types  
Z8 Encore! XP F0823 Series provides several different types of Reset operation. Stop  
Mode Recovery is considered a form of Reset. Table 9 lists the types of Reset and their  
operating characteristics. The System Reset is longer if the external crystal oscillator is  
enabled by the Flash option bits, allowing additional time for oscillator start-up.  
PS024314-0308  
Reset and Stop Mode Recovery  
Z8 Encore! XP® F0823 Series  
Product Specification  
22  
Table 9. Reset and Stop Mode Recovery Characteristics and Latency  
Reset Characteristics and Latency  
Reset  
Type  
eZ8  
Control Registers  
Reset (as applicable)  
CPU Reset Latency (Delay)  
System  
Reset  
Reset 66 Internal Precision Oscillator Cycles  
Stop Mode Unaffected, except  
Recovery WDT_CTL and OSC_CTL  
registers  
Reset 66 Internal Precision Oscillator Cycles  
+ IPO startup time  
During a System Reset or Stop Mode Recovery, the IPO requires 4 µs to start up. Then the  
Z8 Encore! XP F0823 Series device is held in Reset for 66 cycles of the Internal Precision  
Oscillator. If the crystal oscillator is enabled in the Flash option bits, this reset period is  
increased to 5000 IPO cycles. When a reset occurs because of a low voltage condition or  
Power-On Reset, this delay is measured from the time that the supply voltage first exceeds  
the POR level. If the external pin reset remains asserted at the end of the reset period, the  
device remains in reset until the pin is deasserted.  
At the beginning of Reset, all GPIO pins are configured as inputs with pull-up resistor  
disabled.  
During Reset, the eZ8 CPU and on-chip peripherals are idle; however, the on-chip crystal  
oscillator and Watchdog Timer oscillator continue to run.  
Upon Reset, control registers within the Register File that have a defined Reset value are  
loaded with their reset values. Other control registers (including the Stack Pointer, Regis-  
ter Pointer, and Flags) and general-purpose RAM are undefined following Reset. The eZ8  
CPU fetches the Reset vector at Program Memory addresses 0002Hand 0003Hand loads  
that value into the Program Counter. Program execution begins at the Reset vector  
address.  
When the control registers are re-initialized by a system reset, the system clock after reset  
is always the IPO. The software must reconfigure the oscillator control block, such that the  
correct system clock source is enabled and selected.  
Reset Sources  
Table 10 lists the possible sources of a System Reset.  
PS024314-0308  
Reset and Stop Mode Recovery  
Z8 Encore! XP® F0823 Series  
Product Specification  
23  
Table 10. Reset Sources and Resulting Reset Type  
Operating Mode Reset Source  
Special Conditions  
NORMAL or HALT Power-On Reset/Voltage  
Reset delay begins after supply voltage exceeds  
POR level.  
modes  
Brownout  
Watchdog Timer time-out  
when configured for Reset  
None.  
RESET pin assertion  
All reset pulses less than three system clocks in  
width are ignored.  
OCD initiated Reset  
(OCDCTL[0] set to 1)  
System Reset, except the OCD is unaffected by  
the reset.  
STOP mode  
Power-On Reset/Voltage  
Brownout  
Reset delay begins after supply voltage exceeds  
POR level.  
RESET pin assertion  
All reset pulses less than the specified analog  
delay are ignored. See Electrical Characteristics  
on page 193.  
DBG pin driven Low  
None.  
Power-On Reset  
Each device in the Z8 Encore! XP F0823 Series contains an internal POR circuit. The  
POR circuit monitors the supply voltage and holds the device in the Reset state until the  
supply voltage reaches a safe operating level. After the supply voltage exceeds the POR  
voltage threshold (VPOR), the device is held in the Reset state until the POR Counter has  
timed out. If the crystal oscillator is enabled by the option bits, this time-out is longer.  
After the Z8 Encore! XP F0823 Series device exits the POR state, the eZ8 CPU fetches the  
Reset vector. Following the POR, the PORstatus bit in Watchdog Timer Control  
(WDTCTL) register is set to 1.  
Figure 5 displays POR operation. For the POR threshold voltage (VPOR), see Electrical  
Characteristics on page 193.  
PS024314-0308  
Reset and Stop Mode Recovery  
Z8 Encore! XP® F0823 Series  
Product Specification  
24  
VCC = 3.3 V  
VPOR  
VVBO  
Program  
VCC = 0.0 V  
Execution  
Internal Precision  
Oscillator  
Internal RESET  
signal  
POR  
counter delay  
Note: Not to Scale  
Figure 5. Power-On Reset Operation  
Voltage Brownout Reset  
The devices in the Z8 Encore! XP F0823 Series provide low VBO protection. The VBO  
circuit senses when the supply voltage drops to an unsafe level (below the VBO threshold  
voltage) and forces the device into the Reset state. While the supply voltage remains  
below the POR voltage threshold (VPOR), the VBO block holds the device in the Reset.  
After the supply voltage again exceeds the Power-On Reset voltage threshold, the device  
progresses through a full System Reset sequence, as described in the POR section.  
Following POR, the POR status bit in the Reset Status (RSTSTAT) register is set to 1.  
Figure 6 displays Voltage Brownout operation. For the VBO and POR threshold  
voltages (VVBO and VPOR), see Electrical Characteristics on page 193.  
The VBO circuit can be either enabled or disabled during STOP mode. Operation during  
STOP mode is set by the VBO_AO Flash Option bit. For information on configuring  
VBO_AO, see Flash Option Bits on page 141.  
PS024314-0308  
Reset and Stop Mode Recovery  
Z8 Encore! XP® F0823 Series  
Product Specification  
25  
VCC = 3.3 V  
VCC = 3.3 V  
VPOR  
VVBO  
Program  
Voltage  
Program  
Execution  
Brownout  
Execution  
WDT Clock  
System Clock  
Internal RESET  
signal  
POR  
Note: Not to Scale  
counter delay  
Figure 6. Voltage Brownout Reset Operation  
The POR level is greater than the VBO level by the specified hysteresis value. This  
ensures that the device undergoes a POR after recovering from a VBO condition.  
Watchdog Timer Reset  
If the device is in NORMAL or STOP mode, the Watchdog Timer can initiate a System  
Reset at time-out if the WDT_RES Flash Option Bit is programmed to 1. This is the  
unprogrammed state of the WDT_RES Flash Option Bit. If the bit is programmed to 0, it  
configures the Watchdog Timer to cause an interrupt, not a System Reset, at time-out.  
The WDT status bit in the WDT Control register is set to signify that the reset was  
initiated by the Watchdog Timer.  
External Reset Input  
The RESET pin has a Schmitt-Triggered input and an internal pull-up resistor. Once the  
RESET pin is asserted for a minimum of four system clock cycles, the device progresses  
through the System Reset sequence. Because of the possible asynchronicity of the system  
PS024314-0308  
Reset and Stop Mode Recovery  
Z8 Encore! XP® F0823 Series  
Product Specification  
26  
clock and reset signals, the required reset duration can be as short as three clock periods  
and as long as four. A reset pulse three clock cycles in duration might trigger a reset; a  
pulse four cycles in duration always triggers a reset.  
While the RESET input pin is asserted Low, the Z8 Encore! XP F0823 Series devices  
remain in the Reset state. If the RESET pin is held Low beyond the System Reset time-  
out, the device exits the Reset state on the system clock rising edge following RESET pin  
deassertion. Following a System Reset initiated by the external RESET pin, the EXT sta-  
tus bit in the WDT Control (WDTCTL) register is set to 1.  
External Reset Indicator  
During System Reset or when enabled by the GPIO logic (see Port A–C Control Registers  
on page 44), the RESET pin functions as an open-drain (active Low) reset mode indicator  
in addition to the input functionality. This reset output feature allows an Z8 Encore! XP  
F0823 Series device to reset other components to which it is connected, even if that reset  
is caused by internal sources such as POR, VBO, or WDT events.  
After an internal reset event occurs, the internal circuitry begins driving the RESET pin  
Low. The RESET pin is held Low by the internal circuitry until the appropriate delay  
listed in Table 9 has elapsed.  
On-Chip Debugger Initiated Reset  
A POR is initiated using the On-Chip Debugger by setting the RST bit in the OCD Control  
register. The OCD block is not reset but the rest of the chip goes through a normal system  
reset. The RST bit automatically clears during the System Reset. Following the System  
Reset, the POR bit in the Reset Status (RSTSTAT) register is set.  
Stop Mode Recovery  
The device enters into STOP mode when eZ8 CPU executes a STOPinstruction. For more  
details on STOP mode, see Low-Power Modes on page 31. During Stop Mode Recovery,  
the CPU is held in reset for 66 IPO cycles if the crystal oscillator is disabled or 5000  
cycles if it is enabled. The SMR delay also included the time required to start up the IPO.  
Stop Mode Recovery does not affect on-chip registers other than the Watchdog Timer  
Control register (WDTCTL) and the Oscillator Control register (OSCCTL). After any  
Stop Mode Recovery, the IPO is enabled and selected as the system clock. If another  
system clock source is required or IPO disabling is required, the Stop Mode Recovery  
code must reconfigure the oscillator control block such that the correct system clock  
source is enabled and selected.  
The eZ8 CPU fetches the Reset vector at Program Memory addresses 0002Hand 0003H  
and loads that value into the Program Counter. Program execution begins at the Reset  
PS024314-0308  
Reset and Stop Mode Recovery  
Z8 Encore! XP® F0823 Series  
Product Specification  
27  
vector address. Following Stop Mode Recovery, the STOP bit in the Watchdog Timer  
Control Register is set to 1. Table 11 lists the Stop Mode Recovery sources and resulting  
actions. The section following the table provides more detailed information on each of the  
Stop Mode Recovery sources.  
Table 11. Stop Mode Recovery Sources and Resulting Action  
Operating Mode Stop Mode Recovery Source  
Action  
STOP mode  
Watchdog Timer time-out when configured Stop Mode Recovery  
for Reset  
Watchdog Timer time-out when configured Stop Mode Recovery followed by interrupt  
for interrupt  
(if interrupts are enabled)  
Stop Mode Recovery  
Data transition on any GPIO port pin  
enabled as a Stop Mode Recovery source  
Assertion of external RESET Pin  
Debug Pin driven Low  
System Reset  
System Reset  
Stop Mode Recovery Using Watchdog Timer Time-Out  
If the Watchdog Timer times out during STOP mode, the device undergoes a Stop Mode  
Recovery sequence. In the Watchdog Timer Control register, the WDT and STOP bits are  
set to 1. If the Watchdog Timer is configured to generate an interrupt upon time-out and  
Z8 Encore! XP® F0823 Series device is configured to respond to interrupts, the eZ8 CPU  
services the Watchdog Timer interrupt request following the normal Stop Mode Recovery  
sequence.  
Stop Mode Recovery Using a GPIO Port Pin Transition  
Each of the GPIO port pins can be configured as a Stop Mode Recovery input source. On  
any GPIO pin enabled as a Stop Mode Recovery source, a change in the input pin value  
(from High to Low or from Low to High) initiates Stop Mode Recovery.  
The SMR pulses shorter than specified does not trigger a recovery. When this happens, the  
STOP bit in the Reset Status (RSTSTAT) register is set to 1.  
Note:  
In STOP mode, the GPIO Port Input Data registers (PxIN) are disabled. The Port Input  
Data registers record the port transition only if the signal stays on the port pin through  
the end of the Stop Mode Recovery delay. As a result, short pulses on the port pin can  
initiate Stop Mode Recovery without being written to the Port Input Data register or  
without initiating an interrupt (if enabled for that pin).  
Caution:  
PS024314-0308  
Reset and Stop Mode Recovery  
Z8 Encore! XP® F0823 Series  
Product Specification  
28  
Stop Mode Recovery Using the External RESET Pin  
When the Z8 Encore! XP F0823 Series device is in STOP mode and the external RESET  
pin is driven Low, a system reset occurs. Because of a glitch filter operating on the RESET  
pin, the Low pulse must be greater than the minimum width specified, or it is ignored. For  
more details, see Electrical Characteristics on page 193.  
Reset Register Definitions  
Reset Status Register  
The Reset Status (RSTSTAT) register is a read-only register that indicates the source of  
the most recent Reset event, indicates a Stop Mode Recovery event, and indicates a  
Watchdog Timer time-out. Reading this register resets the upper four bits to 0.  
This register shares its address with the Watchdog Timer control register, which is write-  
only (Table 12).  
Table 12. Reset Status Register (RSTSTAT)  
BITS  
7
6
5
4
3
2
1
0
POR  
STOP  
WDT  
EXT  
Reserved  
FIELD  
RESET  
R/W  
See descriptions below  
0
0
0
0
0
R
R
R
R
R
R
R
R
FF0H  
ADDR  
Reset or Stop Mode Recovery Event  
Power-On Reset  
Reset using RESET pin assertion  
Reset using WDT time-out  
POR  
STOP  
WDT  
EXT  
0
1
0
0
0
0
0
1
0
0
1
1
0
0
0
0
0
0
0
1
1
0
0
1
0
0
0
1
Reset using the OCD (OCTCTL[1] set to 1)  
Reset from STOP Mode using DBG Pin driven Low  
Stop Mode Recovery using GPIO pin transition  
Stop Mode Recovery using WDT time-out  
POR—Power-On Reset Indicator  
If this bit is set to 1, a Power-On Reset event is occurred. This bit is reset to 0 if a WDT  
time-out or Stop Mode Recovery occurs. This bit is also reset to 0 when the register is  
read.  
PS024314-0308  
Reset and Stop Mode Recovery  
Z8 Encore! XP® F0823 Series  
Product Specification  
29  
STOP—Stop Mode Recovery Indicator  
If this bit is set to 1, a Stop Mode Recovery is occurred. If the STOPand WDTbits are both  
set to 1, the Stop Mode Recovery occurred because of a WDT time-out. If the STOPbit is  
1 and the WDTbit is 0, the Stop Mode Recovery was not caused by a WDT time-out. This  
bit is reset by a POR or a WDT time-out that occurred while not in STOP mode. Reading  
this register also resets this bit.  
WDT—Watchdog Timer time-out Indicator  
If this bit is set to 1, a WDT time-out occurred. A POR resets this pin. A Stop Mode  
Recovery from a change in an input pin also resets this bit. Reading this register resets this  
bit. This read must occur before clearing the WDT interrupt.  
EXT—External Reset Indicator  
If this bit is set to 1, a Reset initiated by the external RESET pin occurred. A Power-On  
Reset or a Stop Mode Recovery from a change in an input pin resets this bit. Reading this  
register resets this bit.  
Reserved—0 when read  
PS024314-0308  
Reset and Stop Mode Recovery  
Z8 Encore! XP® F0823 Series  
Product Specification  
30  
PS024314-0308  
Reset and Stop Mode Recovery  
Z8 Encore! XP® F0823 Series  
Product Specification  
31  
Low-Power Modes  
Z8 Encore! XP® F0823 Series products contain power-saving features. The highest level  
of power reduction is provided by the STOP mode, in which nearly all device functions  
are powered down. The next lower level of power reduction is provided by the HALT  
mode, in which the CPU is powered down.  
Further power savings can be implemented by disabling individual peripheral blocks  
while in ACTIVE mode (defined as being in neither STOP nor HALT mode).  
STOP Mode  
Executing the eZ8 CPU’s Stop instruction places the device into STOP mode, powering  
down all peripherals except the Voltage Brownout detector, and the Watchdog Timer.  
These two blocks may also be disabled for additional power savings. In STOP mode, the  
operating characteristics are:  
Primary crystal oscillator and internal precision oscillator are stopped; XIN and XOUT (if  
previously enabled) are disabled, and PA0/PA1 revert to the states programmed by the  
GPIO registers.  
System clock is stopped.  
eZ8 CPU is stopped.  
Program counter (PC) stops incrementing.  
Watchdog Timer’s internal RC oscillator continues to operate if enabled by the Oscillator  
Control Register.  
If enabled, the Watchdog Timer logic continues to operate.  
If enabled for operation in STOP mode by the associated Flash Option Bit, the Voltage  
Brownout protection circuit continues to operate.  
All other on-chip peripherals are idle.  
To minimize current in STOP mode, all GPIO pins that are configured as digital inputs  
must be driven to one of the supply rails (VCC or GND). Additionally, any GPIOs config-  
ured as outputs must also be driven to one of the supply rails. The device can be brought  
out of STOP mode using Stop Mode Recovery. For more information on Stop Mode  
Recovery, see Reset and Stop Mode Recovery on page 21.  
PS024314-0308  
Low-Power Modes  
Z8 Encore! XP® F0823 Series  
Product Specification  
32  
HALT Mode  
Executing the eZ8 CPU’s HALTinstruction places the device into HALT mode, which  
powers down the CPU but leaves all other peripherals active. In HALT mode, the  
operating characteristics are:  
Primary oscillator is enabled and continues to operate.  
System clock is enabled and continues to operate.  
eZ8 CPU is stopped.  
Program counter stops incrementing.  
Watchdog Timer’s internal RC oscillator continues to operate.  
If enabled, the Watchdog Timer continues to operate.  
All other on-chip peripherals continue to operate.  
The eZ8 CPU can be brought out of HALT mode by any of the following operations:  
Interrupt  
Watchdog Timer time-out (interrupt or reset)  
Power-On Reset  
Voltage Brownout reset  
External RESET pin assertion  
To minimize current in HALT mode, all GPIO pins that are configured as inputs must be  
driven to one of the supply rails (VCC or GND).  
Peripheral-Level Power Control  
In addition to the STOP and HALT modes, it is possible to disable each peripheral on each  
of the Z8 Encore! XP F0823 Series devices. Disabling a given peripheral minimizes its  
power consumption.  
Power Control Register Definitions  
The following sections describe the power control registers.  
Power Control Register 0  
Each bit of the following registers disables a peripheral block, either by gating its system  
clock input or by removing power from the block.  
PS024314-0308  
Low-Power Modes  
Z8 Encore! XP® F0823 Series  
Product Specification  
33  
This register is only reset during a Power-On Reset sequence. Other System Reset events  
do not affect it.  
Note:  
Table 13. Power Control Register 0 (PWRCTL0)  
BITS  
7
6
5
4
3
2
1
0
Reserved  
Reserved  
VBO  
Reserved  
ADC  
COMP  
Reserved  
FIELD  
RESET  
R/W  
1
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
F80H  
ADDR  
Reserved—Must be 1  
Reserved—Must be 0  
VBO—Voltage Brownout Detector Disable  
This bit and the VBO_AO Flash option bit must both enable the VBO for the VBO to be  
active.  
0 = VBO enabled  
1 = VBO disabled  
ADC—Analog-to-Digital Converter Disable  
0 = Analog-to-Digital Converter enabled  
1 = Analog-to-Digital Converter disabled  
COMP—Comparator Disable  
0 = Comparator is enabled  
1 = Comparator is disabled  
Reserved—Must be 0  
PS024314-0308  
Low-Power Modes  
Z8 Encore! XP® F0823 Series  
Product Specification  
34  
PS024314-0308  
Low-Power Modes  
Z8 Encore! XP® F0823 Series  
Product Specification  
35  
General-Purpose Input/Output  
Z8 Encore! XP® F0823 Series products support a maximum of 24 port pins (Ports A–C)  
for general-purpose input/output (GPIO) operations. Each port contains control and data  
registers. The GPIO control registers determine data direction, open-drain, output drive  
current, programmable pull-ups, Stop Mode Recovery functionality, and alternate pin  
functions. Each port pin is individually programmable. In addition, the Port C pins are  
capable of direct LED drive at programmable drive strengths.  
GPIO Port Availability By Device  
Table 14 lists the port pins available with each device and package type.  
Table 14. Port Availability by Device and Package Type  
Devices  
Package 10-Bit ADC Port A Port B Port C Total I/O  
Z8F0823SB, Z8F0823PB  
Z8F0423SB, Z8F0423PB  
Z8F0223SB, Z8F0223PB  
Z8F0123SB, Z8F0123PB  
8-pin  
Yes  
[5:0]  
[5:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
No  
No  
6
Z8F0813SB, Z8F0813PB  
Z8F0413SB, Z8F0413PB  
Z8F0213SB, Z8F0213PB  
Z8F0113SB, Z8F011vPB  
8-pin  
No  
No  
No  
6
Z8F0823PH, Z8F0823HH 20-pin  
Z8F0423PH, Z8F0423HH  
Z8F0223PH, Z8F0223HH  
Z8F0123PH, Z8F0123HH  
Yes  
No  
[3:0]  
[3:0]  
[5:0]  
[7:0]  
[3:0]  
[3:0]  
[7:0]  
[7:0]  
16  
16  
22  
24  
Z8F0813PH, Z8F0813HH 20-pin  
Z8F0413PH, Z8F0413HH  
Z8F0213PH, Z8F0213HH  
Z8F0113PH, Z8F0113HH  
Z8F0823PJ, Z8F0823SJ  
Z8F0423PJ, Z8F0423SJ  
Z8F0223PJ, Z8F0223SJ  
Z8F0123PJ, Z8F0123SJ  
28-pin  
Yes  
No  
Z8F0813PJ, Z8F0813SJ  
Z8F0413PJ, Z8F0413SJ  
Z8F0213PJ, Z8F0213SJ  
Z8F0113PJ, Z8F0113SJ  
28-pin  
PS024314-0308  
General-Purpose Input/Output  
Z8 Encore! XP® F0823 Series  
Product Specification  
36  
Architecture  
Figure 7 displays a simplified block diagram of a GPIO port pin. In this figure,  
the ability to accommodate alternate functions and variable port current drive strength is  
not displayed.  
Port Input  
Schmitt-Trigger  
Data Register  
Q
D
Q
D
System  
Clock  
VDD  
Port Output Control  
Port Output  
Data Register  
DATA  
Bus  
D
Q
Port  
Pin  
System  
Clock  
Port Data Direction  
GND  
Figure 7. GPIO Port Pin Block Diagram  
GPIO Alternate Functions  
Many of the GPIO port pins are used for general-purpose I/O and access to on-chip  
peripheral functions such as the timers and serial communication devices. The port A–D  
Alternate Function sub-registers configure these pins for either GPIO or alternate function  
operation. When a pin is configured for alternate function, control of the port pin direction  
(input/output) is passed from the Port A–D Data Direction registers to the alternate func-  
tion assigned to this pin. Table 15 on page 39 lists the alternate functions possible with  
each port pin. The alternate function associated at a pin is defined through Alternate  
Function Sets sub-registers AFS1 and AFS2.  
The crystal oscillator functionality is not controlled by the GPIO block. When the crystal  
oscillator is enabled in the oscillator control block, the GPIO functionality of PA0 and PA1  
is overridden. In that case, those pins function as input and output for the crystal oscillator.  
PS024314-0308  
General-Purpose Input/Output  
Z8 Encore! XP® F0823 Series  
Product Specification  
37  
PA0 and PA6 contain two different timer functions, a timer input and a complementary  
timer output. Both of these functions require the same GPIO configuration, the selection  
between the two is based on the timer mode. For more details, see Timers on page 67.  
Caution:  
For pin with multiple alternate functions, it is recommended to write to the  
AFS1 and AFS2 sub-registers before enabling the alternate function via  
the AF sub-register. This prevents spurious transitions through unwanted  
alternate function modes.  
Direct LED Drive  
The Port C pins provide a current sinked output capable of driving an LED without  
requiring an external resistor. The output sinks current at programmable levels of 3 mA,  
7 mA, 13 mA, and 20 mA. This mode is enabled through the Alternate Function  
sub-register AFS1 and is programmable through the LED control registers. The LED  
Drive Enable (LEDEN) register turns on the drivers. The LED Drive Level (LEDLVLH  
and LEDLVLL) registers select the sink current.  
For correct function, the LED anode must be connected to VDD and the cathode to the  
GPIO pin. Using all Port C pins in LED drive mode with maximum current can result in  
excessive total current. For the maximum total current for the applicable package, see  
Electrical Characteristics on page 193.  
Shared Reset Pin  
On the 8-pin product versions, the reset pin is shared with PA2, but the pin is not  
limited to output-only when in GPIO mode.  
Caution:  
If PA2 on the 8-pin product is reconfigured as an input, take care that no  
external stimulus drives the pin Low during any reset sequence. Since PA2  
returns to its RESET alternate function during system resets, driving it Low  
holds the chip in a reset state until the pin is released.  
Shared Debug Pin  
On the 8-pin version of this device only, the Debug pin shares function with the PA0 GPIO  
pin. This pin performs as a general purpose input pin on power-up, but the debug logic  
monitors this pin during the reset sequence to determine if the unlock sequence occurs. If  
the unlock sequence is present, the debug function is unlocked and the pin no longer func-  
PS024314-0308  
General-Purpose Input/Output  
Z8 Encore! XP® F0823 Series  
Product Specification  
38  
tions as a GPIO pin. If it is not present, the debug feature is disabled until/unless another  
reset event occurs. For more details, see On-Chip Debugger on page 151.  
Crystal Oscillator Override  
For systems using a crystal oscillator, PA0 and PA1 are used to connect the crystal. When  
the crystal oscillator is enabled (see Oscillator Control Register Definitions on page 167),  
the GPIO settings are overridden and PA0 and PA1 are disabled.  
5 V Tolerance  
All six I/O pins on the 8-pin devices are 5 V-tolerant, unless the programmable pull-ups  
are enabled. If the pull-ups are enabled and inputs higher than VDD are applied to these  
parts, excessive current flows through those pull-up devices and can damage the chip.  
In the 20- and 28-pin versions of this device, any pin which shares functionality with an  
ADC, crystal or comparator port is not 5 V-tolerant, including PA[1:0], PB[5:0], and  
PC[2:0]. All other signal pins are 5 V-tolerant, and can safely handle inputs higher than  
VDD even with the pull-ups enabled.  
Note:  
External Clock Setup  
For systems using an external TTL drive, PB3 is the clock source for 20- and 28-pin  
devices. In this case, configure PB3 for alternate function CLKIN. Write the Oscillator  
Control Register (see Oscillator Control Register Definitions on page 167) such that the  
external oscillator is selected as the system clock. For 8-pin devices use PA1 instead of  
PB3.  
PS024314-0308  
General-Purpose Input/Output  
Z8 Encore! XP® F0823 Series  
Product Specification  
39  
Table 15. Port Alternate Function Mapping (Non 8-Pin Parts)  
Alternate Function  
Set Register AFS1  
Port  
Pin  
Mnemonic  
T0IN/T0OUT*  
Reserved  
T0OUT  
Alternate Function Description  
PA0  
Timer 0 Input/Timer 0 Output Complement N/A  
Port A  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
Timer 0 Output  
Reserved  
DE0  
UART 0 Driver Enable  
Reserved  
CTS0  
UART 0 Clear to Send  
Reserved  
RXD0/IRRX0  
Reserved  
TXD0/IRTX0  
Reserved  
T1IN/T1OUT*  
Reserved  
T1OUT  
UART 0 / IrDA 0 Receive Data  
UART 0 / IrDA 0 Transmit Data  
Timer 1 Input/Timer 1 Output Complement  
Timer 1 Output  
Reserved  
Note: Because there is only a single alternate function for each Port A pin, the Alternate Function Set registers are  
not implemented for Port A. Enabling alternate function selections as described in Port A–C Alternate Function  
Sub-Registers automatically enables the associated alternate function.  
* Whether PA0/PA6 take on the timer input or timer output complement function depends on the timer  
configuration as described in Timer Pin Signal Operation on page 79.  
PS024314-0308  
General-Purpose Input/Output  
Z8 Encore! XP® F0823 Series  
Product Specification  
40  
Table 15. Port Alternate Function Mapping (Non 8-Pin Parts) (Continued)  
Alternate Function  
Set Register AFS1  
Port  
Pin  
Mnemonic  
Reserved  
ANA0  
Alternate Function Description  
ADC Analog Input  
PB0  
AFS1[0]: 0  
AFS1[0]: 1  
AFS1[1]: 0  
AFS1[1]: 1  
AFS1[2]: 0  
AFS1[2]: 1  
AFS1[3]: 0  
AFS1[3]: 1  
AFS1[4]: 0  
AFS1[4]: 1  
AFS1[5]: 0  
AFS1[5]: 1  
AFS1[6]: 0  
AFS1[6]: 1  
AFS1[7]: 0  
AFS1[7]: 1  
Port B  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
Reserved  
ANA1  
ADC Analog Input  
Reserved  
ANA2  
ADC Analog Input  
External Clock Input  
ADC Analog Input  
CLKIN  
ANA3  
Reserved  
ANA7  
ADC Analog Input  
Reserved  
VREF*  
ADC Voltage Reference  
Reserved  
Reserved  
Reserved  
Reserved  
Note: Because there are at most two choices of alternate function for any pin of Port B, the Alternate Function Set  
register AFS2 is implemented but not used to select the function. Also, alternate function selection as described  
in Port A–C Alternate Function Sub-Registers must also be enabled.  
* VREF is available on PB5 in 28-pin products only.  
PS024314-0308  
General-Purpose Input/Output  
Z8 Encore! XP® F0823 Series  
Product Specification  
41  
Table 15. Port Alternate Function Mapping (Non 8-Pin Parts) (Continued)  
Alternate Function  
Set Register AFS1  
Port  
Pin  
Mnemonic  
Alternate Function Description  
PC0  
Reserved  
AFS1[0]: 0  
AFS1[0]: 1  
Port C  
ANA4/CINP/LED ADC or Comparator Input, or LED drive  
Drive  
PC1  
PC2  
Reserved  
AFS1[1]: 0  
AFS1[1]: 1  
ANA5/CINN/ LED ADC or Comparator Input, or LED drive  
Drive  
Reserved  
AFS1[2]: 0  
AFS1[2]: 1  
ANA6/LED/  
VREF*  
ADC Analog Input or LED Drive or ADC  
Voltage Reference  
PC3  
PC4  
PC5  
PC6  
PC7  
COUT  
LED  
Comparator Output  
LED drive  
AFS1[3]: 0  
AFS1[3]: 1  
AFS1[4]: 0  
AFS1[4]: 1  
AFS1[5]: 0  
AFS1[5]: 1  
AFS1[6]: 0  
AFS1[6]: 1  
AFS1[7]: 0  
AFS1[7]: 1  
Reserved  
LED  
LED Drive  
LED Drive  
LED Drive  
LED Drive  
Reserved  
LED  
Reserved  
LED  
Reserved  
LED  
Note: Because there are at most two choices of alternate function for any pin of Port C, the Alternate Function Set  
register AFS2 is implemented but not used to select the function. Also, Alternate Function selection as  
described in Port A–C Alternate Function Sub-Registers must also be enabled.  
*
VREF is available on PC2 in 20-pin parts only.  
PS024314-0308  
General-Purpose Input/Output  
Z8 Encore! XP® F0823 Series  
Product Specification  
42  
Table 16. Port Alternate Function Mapping (8-Pin Parts)  
Alternate Function  
Alternate  
Function  
Alternate  
Select  
Function Select Register  
Register AFS1 AFS2  
Port  
Pin  
Mnemonic  
Description  
PA0  
T0IN  
Timer 0 Input  
AFS1[0]: 0  
AFS2[0]: 0  
Port A  
Reserved  
Reserved  
T0OUT  
AFS1[0]: 0  
AFS1[0]: 1  
AFS1[0]: 1  
AFS1[1]: 0  
AFS1[1]: 0  
AFS1[1]: 1  
AFS1[1]: 1  
AFS1[2]: 0  
AFS1[2]: 0  
AFS1[2]: 1  
AFS1[2]: 1  
AFS1[3]: 0  
AFS1[3]: 0  
AFS1[3]: 1  
AFS1[3]: 1  
AFS1[4]: 0  
AFS1[4]: 0  
AFS1[4]: 1  
AFS1[4]: 1  
AFS1[5]: 0  
AFS1[5]: 0  
AFS1[5]: 1  
AFS2[0]: 1  
AFS2[0]: 0  
AFS2[0]: 1  
AFS2[1]: 0  
AFS2[1]: 1  
AFS2[1]: 0  
AFS2[1]: 1  
AFS2[2]: 0  
AFS2[2]: 1  
AFS2[2]: 0  
AFS2[2]: 1  
AFS2[3]: 0  
AFS2[3]: 1  
AFS2[3]: 0  
AFS2[3]: 1  
AFS2[4]: 0  
AFS2[4]: 1  
AFS2[4]: 0  
AFS2[4]: 1  
AFS2[5]: 0  
AFS2[5]: 1  
AFS2[5]: 0  
Timer 0 Output Complement  
Timer 0 Output  
PA1  
PA2  
PA3  
PA4  
PA5  
T0OUT  
Reserved  
CLKIN  
External Clock Input  
Analog Functions* ADC Analog Input/VREF  
DE0  
UART 0 Driver Enable  
External Reset  
RESET  
T1OUT  
Reserved  
CTS0  
Timer 1 Output  
UART 0 Clear to Send  
Comparator Output  
Timer 1 Input  
COUT  
T1IN  
Analog Functions* ADC Analog Input  
RXD0  
UART 0 Receive Data  
Reserved  
Reserved  
Analog Functions* ADC/Comparator Input (N)  
TXD0  
UART 0 Transmit Data  
T1OUT  
Reserved  
Timer 1 Output Complement  
Analog Functions* ADC/Comparator Input (P)  
AFS1[5]: 1  
AFS2[5]: 1  
Note: * Analog Functions include ADC inputs, ADC reference and comparator inputs. Also, alternate function selection  
as described in Port A–C Alternate Function Sub-Registers must be enabled.  
PS024314-0308  
General-Purpose Input/Output  
Z8 Encore! XP® F0823 Series  
Product Specification  
43  
GPIO Interrupts  
Many of the GPIO port pins are used as interrupt sources. Some port pins are  
configured to generate an interrupt request on either the rising edge or falling edge of the  
pin input signal. Other port pin interrupt sources generate an interrupt when any edge  
occurs (both rising and falling). For more information about interrupts using the GPIO  
pins, see Interrupt Controller on page 53.  
GPIO Control Register Definitions  
Four registers for each Port provide access to GPIO control, input data, and output data.  
Table 17 lists these Port registers. Use the Port A–D Address and Control registers  
together to provide access to sub-registers for Port configuration and control.  
Table 17. GPIO Port Registers and Sub-Registers  
Port Register  
Mnemonic  
PxADDR  
Port Register Name  
Port A–C Address Register (Selects sub-registers)  
Port A–C Control Register (Provides access to sub-registers)  
Port A–C Input Data Register  
PxCTL  
PxIN  
PxOUT  
Port A–C Output Data Register  
Port Sub-Register  
Mnemonic  
Port Register Name  
Data Direction  
PxDD  
PxAF  
Alternate Function  
PxOC  
Output Control (Open-Drain)  
High Drive Enable  
PxHDE  
PxSMRE  
PxPUE  
PxAFS1  
PxAFS2  
Stop Mode Recovery Source Enable  
Pull-up Enable  
Alternate Function Set 1  
Alternate Function Set 2  
PS024314-0308  
General-Purpose Input/Output  
Z8 Encore! XP® F0823 Series  
Product Specification  
44  
Port A–C Address Registers  
The Port A–C Address registers select the GPIO Port functionality accessible through the  
Port A–C Control registers. The Port A–C Address and Control registers combine to  
provide access to all GPIO Port controls (Table 18).  
Table 18. Port A–C GPIO Address Registers (PxADDR)  
BITS  
7
6
5
4
3
2
1
0
PADDR[7:0]  
FIELD  
RESET  
R/W  
00H  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FD0H, FD4H, FD8H  
ADDR  
PADDR[7:0]—Port Address  
The Port Address selects one of the sub-registers accessible through the Port Control  
register.  
PADDR[7:0]  
00H  
Port Control Sub-register Accessible Using the Port A–C Control Registers  
No function. Provides some protection against accidental Port reconfiguration.  
01H  
Data Direction.  
02H  
Alternate Function.  
03H  
04H  
Output Control (Open-Drain).  
High Drive Enable.  
05H  
06H  
Stop Mode Recovery Source Enable.  
Pull-up Enable.  
07H  
08H  
09H–FFH  
Alternate Function Set 1.  
Alternate Function Set 2.  
No function.  
Port A–C Control Registers  
The Port A–C Control registers set the GPIO port operation. The value in the  
corresponding Port A–C Address register determines which sub-register is read from or  
written to by a Port A–C Control register transaction (Table 19).  
PS024314-0308  
General-Purpose Input/Output  
Z8 Encore! XP® F0823 Series  
Product Specification  
45  
Table 19. Port A–C Control Registers (PxCTL)  
BITS  
7
6
5
4
3
2
1
0
PCTL  
00H  
FIELD  
RESET  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FD1H, FD5H, FD9H  
ADDR  
PCTL[7:0]—Port Control  
The Port Control register provides access to all sub-registers that configure the GPIO Port  
operation.  
Port A–C Data Direction Sub-Registers  
The Port A–C Data Direction sub-register is accessed through the Port A–C Control  
register by writing 01H to the Port A–C Address register (Table 20).  
Table 20. Port A–C Data Direction Sub-Registers (PxDD)  
BITS  
7
6
5
4
3
2
1
0
DD7  
DD6  
DD5  
DD4  
DD3  
DD2  
DD1  
DD0  
FIELD  
RESET  
R/W  
1
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
If 01H in Port A–C Address Register, accessible through the Port A–C Control Register  
ADDR  
DD[7:0]—Data Direction  
These bits control the direction of the associated port pin. Port Alternate Function  
operation overrides the Data Direction register setting.  
0 = Output. Data in the Port A–C Output Data register is driven onto the port pin.  
1 = Input. The port pin is sampled and the value written into the Port A–C Input Data  
Register. The output driver is tristated.  
Port A–C Alternate Function Sub-Registers  
The Port A–C Alternate Function sub-register (Table 21) is accessed through the Port A–C  
Control register by writing 02Hto the Port A–C Address register. The Port A–C Alternate  
Function sub-registers enable the alternate function selection on pins. If disabled, pins  
functions as GPIO. If enabled, select one of four alternate functions using alternate  
function set subregisters 1 and 2 as described in the Port A–C Alternate Function Set 1  
Sub-Registers on page 48 and Port A–C Alternate Function Set 2 Sub-Registers on  
PS024314-0308  
General-Purpose Input/Output  
Z8 Encore! XP® F0823 Series  
Product Specification  
46  
page 49. See GPIO Alternate Functions on page 36 to determine the alternate  
function associated with each port pin.  
Caution:  
Do not enable alternate functions for GPIO port pins for which there is no  
associated alternate function. Failure to follow this guideline can result in  
unpredictable operation.  
Table 21. Port A–C Alternate Function Sub-Registers (PxAF)  
BITS  
7
6
5
4
3
2
1
0
AF7  
AF6  
AF5  
AF4  
AF3  
AF2  
AF1  
AF0  
FIELD  
RESET  
R/W  
00H (Ports A–C); 04H (Port A of 8-pin device)  
R/W  
If 02H in Port A–C Address Register, accessible through the Port A–C Control Register  
ADDR  
AF[7:0]—Port Alternate Function enabled  
0 = The port pin is in normal mode and the DDxbit in the Port A–C Data Direction sub-  
register determines the direction of the pin.  
1 = The alternate function selected through Alternate Function Set sub-registers is  
enabled. Port pin operation is controlled by the alternate function.  
Port A–C Output Control Sub-Registers  
The Port A–C Output Control sub-register (Table 22) is accessed through the Port A–C  
Control register by writing 03Hto the Port A–C Address register. Setting the bits in the  
Port A–C Output Control sub-registers to 1 configures the specified port pins for open-  
drain operation. These sub-registers affect the pins directly and, as a result, alternate  
functions are also affected.  
Table 22. Port A–C Output Control Sub-Registers (PxOC)  
BITS  
7
6
5
4
3
2
1
0
POC7  
POC6  
POC5  
POC4  
POC3  
POC2  
POC1  
POC0  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
If 03H in Port A–C Address Register, accessible through the Port A–C Control Register  
ADDR  
POC[7:0]—Port Output Control  
These bits function independently of the alternate function bit and always disable the  
drains if set to 1.  
PS024314-0308  
General-Purpose Input/Output  
Z8 Encore! XP® F0823 Series  
Product Specification  
47  
0 = The drains are enabled for any output mode (unless overridden by the alternate  
function).  
1 = The drain of the associated pin is disabled (open-drain mode).  
Port A–C High Drive Enable Sub-Registers  
The Port A–C High Drive Enable sub-register (Table 23) is accessed through the Port  
A–C Control register by writing 04Hto the Port A–C Address register. Setting the bits in  
the Port A–C High Drive Enable sub-registers to 1 configures the specified port pins for  
high current output drive operation. The Port A–C High Drive Enable sub-register affects  
the pins directly and, as a result, alternate functions are also affected.  
Table 23. Port A–C High Drive Enable Sub-Registers (PxHDE)  
BITS  
7
6
5
4
3
2
1
0
PHDE7  
PHDE6  
PHDE5  
PHDE4  
PHDE3  
PHDE2  
PHDE1  
PHDE0  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
If 04H in Port A–C Address Register, accessible through the Port A–C Control Register  
ADDR  
PHDE[7:0]—Port High Drive Enabled.  
0 = The Port pin is configured for standard output current drive.  
1 = The Port pin is configured for high output current drive.  
Port A–C Stop Mode Recovery Source Enable Sub-Registers  
The Port A–C Stop Mode Recovery Source Enable sub-register (Table 24) is accessed  
through the Port A–C Control register by writing 05Hto the Port A–C Address register.  
Setting the bits in the Port A–C Stop Mode Recovery Source Enable sub-registers to 1  
configures the specified Port pins as a Stop Mode Recovery source. During STOP mode,  
any logic transition on a Port pin enabled as a Stop Mode Recovery source initiates Stop  
Mode Recovery.  
Table 24. Port A–C Stop Mode Recovery Source Enable Sub-Registers (PxSMRE)  
BITS  
7
6
5
4
3
2
1
0
PSMRE7 PSMRE6 PSMRE5 PSMRE4 PSMRE3 PSMRE2 PSMRE1 PSMRE0  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
If 05H in Port A–C Address Register, accessible through the Port A–C Control Register  
ADDR  
PS024314-0308  
General-Purpose Input/Output  
Z8 Encore! XP® F0823 Series  
Product Specification  
48  
PSMRE[7:0]—Port Stop Mode Recovery Source Enabled.  
0 = The Port pin is not configured as a Stop Mode Recovery source. Transitions on this pin  
during STOP mode do not initiate Stop Mode Recovery.  
1 = The Port pin is configured as a Stop Mode Recovery source. Any logic transition on  
this pin during STOP mode initiates Stop Mode Recovery.  
Port A–C Pull-up Enable Sub-Registers  
The Port A–C Pull-up Enable sub-register (Table 25) is accessed through the Port A–C  
Control register by writing 06Hto the Port A–C Address register. Setting the bits in the  
Port A–C Pull-up Enable sub-registers enables a weak internal resistive pull-up on the  
specified Port pins.  
Table 25. Port A–C Pull-Up Enable Sub-Registers (PxPUE)  
BITS  
7
6
5
4
3
2
1
0
PPUE7  
PPUE6  
PPUE5  
PPUE4  
PPUE3  
PPUE2  
PPUE1  
PPUE0  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
If 06H in Port AC Address Register, accessible through the Port AC Control Register  
ADDR  
PPUE[7:0]—Port Pull-up Enabled  
0 = The weak pull-up on the Port pin is disabled.  
1 = The weak pull-up on the Port pin is enabled.  
Port A–C Alternate Function Set 1 Sub-Registers  
The Port A–C Alternate Function Set1 sub-register (Table 26) is accessed through the Port  
A–C Control register by writing 07Hto the Port A–C Address register. The Alternate  
Function Set 1 sub-registers selects the alternate function available at a port pin. Alternate  
Functions selected by setting or clearing bits of this register are defined in GPIO Alternate  
Functions on page 36.  
Alternate function selection on port pins must also be enabled as described in Port A–C  
Note:  
Alternate Function Sub-Registers on page 45  
.
PS024314-0308  
General-Purpose Input/Output  
Z8 Encore! XP® F0823 Series  
Product Specification  
49  
Table 26. Port A–C Alternate Function Set 1 Sub-Registers (PxAFS1)  
BITS  
7
6
5
4
3
2
1
0
PAFS17  
PAFS16  
PAFS15  
PAFS14  
PAFS13  
PAFS12  
PAFS11  
PAFS10  
FIELD  
RESET  
R/W  
00H (all ports of 20/28 pin devices); 04H (Port A of 8-pin device)  
R/W R/W R/W R/W R/W R/W  
R/W  
R/W  
If 07H in Port A–C Address Register, accessible through the Port A–C Control Register  
ADDR  
PAFS1[7:0]—Port Alternate Function Set to 1  
0 = Port Alternate Function selected as defined in Table 14 (see GPIO Alternate Functions  
on page 36).  
1 = Port Alternate Function selected as defined in Table 14 (see GPIO Alternate Functions  
on page 36).  
Port A–C Alternate Function Set 2 Sub-Registers  
The Port A–C Alternate Function Set 2 sub-register (Table 27) is accessed through the  
Port A–C Control register by writing 08Hto the Port A–C Address register. The Alternate  
Function Set 2 sub-registers selects the alternate function available at a port pin. Alternate  
Functions selected by setting or clearing bits of this register is defined in Table 14 in the  
section GPIO Alternate Functions on page 36.  
Table 27. Port A–C Alternate Function Set 2 Sub-Registers (PxAFS2)  
BITS  
7
6
5
4
3
2
1
0
PAFS27  
PAFS26  
PAFS25  
PAFS24  
PAFS23  
PAFS22  
PAFS21  
PAFS20  
FIELD  
RESET  
R/W  
00H (all ports of 20/28 pin devices); 04H (Port A of 8-pin device)  
R/W R/W R/W R/W R/W R/W  
R/W  
R/W  
If 08H in Port A–C Address Register, accessible through the Port A–C Control Register  
ADDR  
PAFS2[7:0]—Port Alternate Function Set 2  
0 = Port Alternate Function selected as defined in Table 14 (see GPIO Alternate Functions  
on page 36).  
1 = Port Alternate Function selected as defined in Table 14.  
Port A–C Input Data Registers  
Reading from the Port A–C Input Data registers (Table 28) returns the sampled values  
from the corresponding port pins. The Port A–C Input Data registers are read-only. The  
value returned for any unused ports is 0. Unused ports include those missing on the 8- and  
28-pin packages, as well as those missing on the ADC-enabled 28-pin packages.  
PS024314-0308  
General-Purpose Input/Output  
Z8 Encore! XP® F0823 Series  
Product Specification  
50  
Table 28. Port A–C Input Data Registers (PxIN)  
BITS  
7
6
5
4
3
2
1
0
PIN7  
PIN6  
PIN5  
PIN4  
PIN3  
PIN2  
PIN1  
PIN0  
FIELD  
RESET  
R/W  
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
FD2H, FD6H, FDAH  
ADDR  
PIN[7:0]—Port Input Data  
Sampled data from the corresponding port pin input.  
0 = Input data is logical 0 (Low)  
1 = Input data is logical 1 (High)  
Port A–C Output Data Register  
The Port A–C Output Data register (Table 29) controls the output data to the pins.  
Table 29. Port A–C Output Data Register (PxOUT)  
BITS  
7
6
5
4
3
2
1
0
POUT7  
POUT6  
POUT5  
POUT4  
POUT3  
POUT2  
POUT1  
POUT0  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FD3H, FD7H, FDBH  
ADDR  
POUT[7:0]—Port Output Data  
These bits contain the data to be driven to the port pins. The values are only driven if the  
corresponding pin is configured as an output and the pin is not configured for alternate  
function operation.  
0 = Drive a logical 0 (Low).  
1 = Drive a logical 1 (High). High value is not driven if the drain has been disabled by  
setting the corresponding Port Output Control register bit to 1.  
LED Drive Enable Register  
The LED Drive Enable register (Table 30) activates the controlled current drive. The Port  
C pin must first be enabled by setting the Alternate Function register to select the LED  
function.  
PS024314-0308  
General-Purpose Input/Output  
Z8 Encore! XP® F0823 Series  
Product Specification  
51  
.
Table 30. LED Drive Enable (LEDEN)  
BITS  
7
6
5
4
3
2
1
0
LEDEN[7:0]  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F82H  
ADDR  
LEDEN[7:0]—LED Drive Enable  
These bits determine which Port C pins are connected to an internal current sink.  
0 = Tristate the Port C pin.  
1= Connect controlled current sink to the Port C pin.  
LED Drive Level High Register  
The LED Drive Level registers contain two control bits for each Port C pin (Table 31).  
These two bits select between four programmable drive levels. Each pin is individually  
programmable.  
Table 31. LED Drive Level High Register (LEDLVLH)  
BITS  
7
6
5
4
3
2
1
0
LEDLVLH[7:0]  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F83H  
ADDR  
LEDLVLH[7:0]—LED Level High Bit  
{LEDLVLH, LEDLVLL} select one of four programmable current drive levels for each  
Port C pin.  
00 = 3 mA  
01= 7 mA  
10= 13 mA  
11= 20 mA  
LED Drive Level Low Register  
The LED Drive Level registers contain two control bits for each Port C pin (Table 32).  
These two bits select between four programmable drive levels. Each pin is individually  
programmable.  
PS024314-0308  
General-Purpose Input/Output  
Z8 Encore! XP® F0823 Series  
Product Specification  
52  
Table 32. LED Drive Level Low Register (LEDLVLL)  
BITS  
7
6
5
4
3
2
1
0
LEDLVLL[7:0]  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F84H  
ADDR  
LEDLVLH[7:0]—LED Level High Bit  
{LEDLVLH, LEDLVLL} select one of four programmable current drive levels for each  
Port C pin.  
00 = 3 mA  
01 = 7 mA  
10 = 13 mA  
11 = 20 mA  
PS024314-0308  
General-Purpose Input/Output  
Z8 Encore! XP® F0823 Series  
Product Specification  
53  
Interrupt Controller  
The interrupt controller on the Z8 Encore! XP® F0823 Series products prioritizes the  
interrupt requests from the on-chip peripherals and the GPIO port pins. The features of  
interrupt controller include:  
20 unique interrupt vectors  
12 GPIO port pin interrupt sources (two are shared)  
8 on-chip peripheral interrupt sources (two are shared)  
Flexible GPIO interrupts  
Eight selectable rising and falling edge GPIO interrupts  
Four dual-edge interrupts  
Three levels of individually programmable interrupt priority  
Watchdog Timer can be configured to generate an interrupt  
Interrupt requests (IRQs) allow peripheral devices to suspend CPU operation in an orderly  
manner and force the CPU to start an interrupt service routine (ISR). Usually this interrupt  
service routine is involved with the exchange of data, status information, or control  
information between the CPU and the interrupting peripheral. When the service routine is  
completed, the CPU returns to the operation from which it was interrupted.  
The eZ8 CPU supports both vectored and polled interrupt handling. For polled interrupts,  
the interrupt controller has no effect on operation. For more information on interrupt  
servicing by the eZ8 CPU, refer to eZ8 CPU Core User Manual (UM0128) available for  
download at www.zilog.com.  
Interrupt Vector Listing  
Table 33 lists all of the interrupts available in order of priority. The interrupt vector is  
stored with the most-significant byte (MSB) at the even Program Memory address and the  
least-significant byte (LSB) at the following odd Program Memory address.  
Some port interrupts are not available on the 8- and 20-pin packages. The ADC interrupt  
is unavailable on devices not containing an ADC.  
Note:  
PS024314-0308  
Interrupt Controller  
Z8 Encore! XP® F0823 Series  
Product Specification  
54  
Table 33. Trap and Interrupt Vectors in Order of Priority  
Program  
Memory  
Priority Vector Address Interrupt or Trap Source  
Highest 0002H  
0004H  
003AH  
003CH  
0006H  
0008H  
000AH  
000CH  
000EH  
0010H  
0012H  
0014H  
0016H  
0018H  
001AH  
001CH  
001EH  
0020H  
0022H  
0024H  
0026H  
0028H  
002AH  
002CH  
002EH  
0030H  
0032H  
0034H  
Reset (not an interrupt)  
Watchdog Timer (see Watchdog Timer on page 87)  
Primary Oscillator Fail Trap (not an interrupt)  
Watchdog Timer Oscillator Fail Trap (not an interrupt)  
Illegal Instruction Trap (not an interrupt)  
Reserved  
Timer 1  
Timer 0  
UART 0 receiver  
UART 0 transmitter  
Reserved  
Reserved  
ADC  
Port A Pin 7, selectable rising or falling input edge  
Port A Pin 6, selectable rising or falling input edge or Comparator Output  
Port A Pin 5, selectable rising or falling input edge  
Port A Pin 4, selectable rising or falling input edge  
Port A Pin 3 or Port D Pin 3, selectable rising or falling input edge  
Port A Pin 2 or Port D Pin 2, selectable rising or falling input edge  
Port A Pin 1, selectable rising or falling input edge  
Port A Pin 0, selectable rising or falling input edge  
Reserved  
Reserved  
Reserved  
Reserved  
Port C Pin 3, both input edges  
Port C Pin 2, both input edges  
Port C Pin 1, both input edges  
PS024314-0308  
Interrupt Controller  
Z8 Encore! XP® F0823 Series  
Product Specification  
55  
Table 33. Trap and Interrupt Vectors in Order of Priority (Continued)  
Program  
Memory  
Priority Vector Address Interrupt or Trap Source  
Lowest 0036H  
0038H  
Port C Pin 0, both input edges  
Reserved  
Architecture  
Figure 8 displays the interrupt controller block diagram.  
High  
Port Interrupts  
Priority  
Vector  
Priority  
IRQ Request  
Mux  
Medium  
Priority  
Internal Interrupts  
Low  
Priority  
Figure 8. Interrupt Controller Block Diagram  
Operation  
Master Interrupt Enable  
The master interrupt enable bit (IRQE) in the Interrupt Control register globally enables  
and disables interrupts.  
Interrupts are globally enabled by any of the following actions:  
Execution of an Enable Interrupt (EI)instruction  
Execution of an Return from Interrupt (IRET) instruction  
PS024314-0308  
Interrupt Controller  
Z8 Encore! XP® F0823 Series  
Product Specification  
56  
Writing a 1 to the IRQEbit in the Interrupt Control register  
Interrupts are globally disabled by any of the following actions:  
Execution of a Disable Interrupt (DI) instruction  
eZ8 CPU acknowledgement of an interrupt service request from the interrupt controller  
Writing a 0 to the IRQEbit in the Interrupt Control register  
Reset  
Execution of a Trapinstruction  
Illegal Instruction Trap  
Primary Oscillator Fail Trap  
Watchdog Timer Oscillator Fail Trap  
Interrupt Vectors and Priority  
The interrupt controller supports three levels of interrupt priority. Level 3 is the highest  
priority, Level 2 is the second highest priority, and Level 1 is the lowest priority. If all  
interrupts are enabled with identical interrupt priority (for example, all as Level 2  
interrupts), the interrupt priority is assigned from highest to lowest as specified in Table 33  
on page 54. Level 3 interrupts are always assigned higher priority than Level 2 interrupts  
which, in turn, always are assigned higher priority than Level 1 interrupts. Within each  
interrupt priority level (Level 1, Level 2, or Level 3), priority is assigned as specified in  
Table 33. Reset, Watchdog Timer interrupt (if enabled), Primary Oscillator Fail Trap,  
Watchdog Timer Oscillator Fail Trap, and Illegal Instruction Trap always have  
highest (Level 3) priority.  
Interrupt Assertion  
Interrupt sources assert their interrupt requests for only a single system clock period  
(single pulse). When the interrupt request is acknowledged by the eZ8 CPU, the  
corresponding bit in the Interrupt Request register is cleared until the next interrupt  
occurs. Writing a 0 to the corresponding bit in the Interrupt Request register likewise  
clears the interrupt request.  
The following coding style that clears bits in the Interrupt Request registers is not  
recommended. All incoming interrupts received between execution of the first LDX  
command and the final LDX command are lost.  
Caution:  
Poor coding style that can result in lost interrupt requests:  
LDX r0, IRQ0  
AND r0, MASK  
LDX IRQ0, r0  
PS024314-0308  
Interrupt Controller  
Z8 Encore! XP® F0823 Series  
Product Specification  
57  
To avoid missing interrupts, use the following coding style to clear bits in the Interrupt  
Request 0 register:  
Caution:  
Good coding style that avoids lost interrupt requests:  
ANDX IRQ0, MASK  
Software Interrupt Assertion  
Program code generates interrupts directly. Writing a 1 to the correct bit in the Interrupt  
Request register triggers an interrupt (assuming that interrupt is enabled). When the inter-  
rupt request is acknowledged by the eZ8 CPU, the bit in the Interrupt Request register is  
automatically cleared to 0.  
The following coding style used to generate software interrupts by setting bits in the  
Interrupt Request registers is not recommended. All incoming interrupts received  
between execution of the first LDX command and the final LDX command are lost.  
Caution:  
Poor coding style that can result in lost interrupt requests:  
LDX r0, IRQ0  
OR r0, MASK  
LDX IRQ0, r0  
To avoid missing interrupts, use the following coding style to set bits in the Interrupt  
Request registers:  
Caution:  
Good coding style that avoids lost interrupt requests:  
ORX IRQ0, MASK  
Watchdog Timer Interrupt Assertion  
The Watchdog Timer interrupt behavior is different from interrupts generated by other  
sources. The Watchdog Timer continues to assert an interrupt as long as the timeout condi-  
tion continues. As it operates on a different (and usually slower) clock domain than the  
rest of the device, the Watchdog Timer continues to assert this interrupt for many system  
clocks until the counter rolls over.  
To avoid re-triggerings of the Watchdog Timer interrupt after exiting the associated in-  
terrupt service routine, it is recommended that the service routine continues to read from  
the RSTSTAT register until the WDTbit is cleared as given in the following coding  
sample:  
Caution:  
CLEARWDT:  
LDX r0, RSTSTAT ; read reset status register to clear wdt  
bit  
BTJNZ 5, r0, CLEARWDT ; loop until bit is cleared  
PS024314-0308  
Interrupt Controller  
Z8 Encore! XP® F0823 Series  
Product Specification  
58  
Interrupt Control Register Definitions  
For all interrupts other than the Watchdog Timer interrupt, the Primary Oscillator Fail  
Trap, and the Watchdog Timer Oscillator Fail Trap, the interrupt control registers enable  
individual interrupts, set interrupt priorities, and indicate interrupt requests.  
Interrupt Request 0 Register  
The Interrupt Request 0 (IRQ0) register (Table 34) stores the interrupt requests for both  
vectored and polled interrupts. When a request is presented to the interrupt controller, the  
corresponding bit in the IRQ0 register becomes 1. If interrupts are globally enabled (vec-  
tored interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU. If  
interrupts are globally disabled (polled interrupts), the eZ8 CPU reads the Interrupt  
Request 0 register to determine if any interrupt requests are pending.  
Table 34. Interrupt Request 0 Register (IRQ0)  
BITS  
7
6
5
4
3
2
1
0
Reserved  
T1I  
T0I  
U0RXI  
U0TXI  
Reserved Reserved  
ADCI  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FC0H  
ADDR  
Reserved—Must be 0  
T1I—Timer 1 Interrupt Request  
0 = No interrupt request is pending for Timer 1  
1 = An interrupt request from Timer 1 is awaiting service  
T0I—Timer 0 Interrupt Request  
0 = No interrupt request is pending for Timer 0  
1 = An interrupt request from Timer 0 is awaiting service  
U0RXI—UART 0 Receiver Interrupt Request  
0 = No interrupt request is pending for the UART 0 receiver  
1 = An interrupt request from the UART 0 receiver is awaiting service  
U0TXI—UART 0 Transmitter Interrupt Request  
0 = No interrupt request is pending for the UART 0 transmitter  
1 = An interrupt request from the UART 0 transmitter is awaiting service  
ADCI—ADC Interrupt Request  
0 = No interrupt request is pending for the ADC  
1 = An interrupt request from the ADC is awaiting service  
PS024314-0308  
Interrupt Controller  
Z8 Encore! XP® F0823 Series  
Product Specification  
59  
Interrupt Request 1 Register  
The Interrupt Request 1 (IRQ1) register (Table 35) stores interrupt requests for both  
vectored and polled interrupts. When a request is presented to the interrupt controller, the  
corresponding bit in the IRQ1 register becomes 1. If interrupts are globally enabled  
(vectored interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU. If  
interrupts are globally disabled (polled interrupts), the eZ8 CPU reads the Interrupt  
Request 1 register to determine if any interrupt requests are pending.  
Table 35. Interrupt Request 1 Register (IRQ1)  
BITS  
7
6
5
4
3
2
1
0
PA7VI  
PA6CI  
PA5I  
PA4I  
PA3I  
PA2I  
PA1I  
PA0I  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FC3H  
ADDR  
PA7VI—Port A7 Interrupt Request  
0 = No interrupt request is pending for GPIO Port A  
1 = An interrupt request from GPIO Port A  
PA6CI—Port A6 or Comparator Interrupt Request  
0 = No interrupt request is pending for GPIO Port A or Comparator  
1 = An interrupt request from GPIO Port A or Comparator  
PAxI—Port A Pin x Interrupt Request  
0 = No interrupt request is pending for GPIO Port A pin x  
1 = An interrupt request from GPIO Port A pin x is awaiting service  
where x indicates the specific GPIO Port pin number (0–5)  
Interrupt Request 2 Register  
The Interrupt Request 2 (IRQ2) register (Table 36) stores interrupt requests for both  
vectored and polled interrupts. When a request is presented to the interrupt controller, the  
corresponding bit in the IRQ2 register becomes 1. If interrupts are globally enabled (vec-  
tored interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU. If  
interrupts are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt  
Request 2 register to determine if any interrupt requests are pending.  
PS024314-0308  
Interrupt Controller  
Z8 Encore! XP® F0823 Series  
Product Specification  
60  
Table 36. Interrupt Request 2 Register (IRQ2)  
BITS  
7
6
5
4
3
2
1
0
Reserved  
PC3I  
PC2I  
PC1I  
PC0I  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FC6H  
ADDR  
Reserved—Must be 0  
PCxI—Port C Pin x Interrupt Request  
0 = No interrupt request is pending for GPIO Port C pin x  
1 = An interrupt request from GPIO Port C pin x is awaiting service  
where x indicates the specific GPIO Port C pin number (0–3)  
IRQ0 Enable High and Low Bit Registers  
Table 37 describes the priority control for IRQ0. The IRQ0 Enable High and Low Bit  
registers (Table 38 and Table 39) form a priority encoded enabling for interrupts in the  
Interrupt Request 0 register. Priority is generated by setting bits in each register.  
Table 37. IRQ0 Enable and Priority Encoding  
IRQ0ENH[x] IRQ0ENL[x] Priority  
Description  
Disabled  
Low  
0
0
1
1
0
1
0
1
Disabled  
Level 1  
Level 2  
Level 3  
Nominal  
High  
where x indicates the register bits from 0–7.  
Table 38. IRQ0 Enable High Bit Register (IRQ0ENH)  
BITS  
7
6
5
4
3
2
1
0
Reserved  
T1ENH  
T0ENH  
U0RENH U0TENH Reserved Reserved ADCENH  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FC1H  
ADDR  
PS024314-0308  
Interrupt Controller  
Z8 Encore! XP® F0823 Series  
Product Specification  
61  
Reserved—Must be 0  
T1ENH—Timer 1 Interrupt Request Enable High Bit  
T0ENH—Timer 0 Interrupt Request Enable High Bit  
U0RENH—UART 0 Receive Interrupt Request Enable High Bit  
U0TENH—UART 0 Transmit Interrupt Request Enable High Bit  
ADCENH—ADC Interrupt Request Enable High Bit  
Table 39. IRQ0 Enable Low Bit Register (IRQ0ENL)  
BITS  
7
6
5
4
3
2
1
0
Reserved  
T1ENL  
T0ENL  
U0RENL U0TENL Reserved Reserved ADCENL  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R
R/W  
R/W  
R/W  
R/W  
R
R
R/W  
FC2H  
ADDR  
Reserved—0 when read  
T1ENL—Timer 1 Interrupt Request Enable Low Bit  
T0ENL—Timer 0 Interrupt Request Enable Low Bit  
U0RENL—UART 0 Receive Interrupt Request Enable Low Bit  
U0TENL—UART 0 Transmit Interrupt Request Enable Low Bit  
ADCENL—ADC Interrupt Request Enable Low Bit  
IRQ1 Enable High and Low Bit Registers  
Table 40 describes the priority control for IRQ1. The IRQ1 Enable High and Low Bit  
registers (Table 41 and Table 42) form a priority encoded enabling for interrupts in the  
Interrupt Request 1 register. Priority is generated by setting bits in each register.  
Table 40. IRQ1 Enable and Priority Encoding  
IRQ1ENH[x] IRQ1ENL[x] Priority  
Description  
Disabled  
Low  
0
0
1
1
0
1
0
1
Disabled  
Level 1  
Level 2  
Level 3  
Nominal  
High  
where x indicates the register bits from 0–7.  
PS024314-0308  
Interrupt Controller  
Z8 Encore! XP® F0823 Series  
Product Specification  
62  
Table 41. IRQ1 Enable High Bit Register (IRQ1ENH)  
BITS  
7
6
5
4
3
2
1
0
PA7VENH PA6CENH PA5ENH PA4ENH PA3ENH PA2ENH PA1ENH PA0ENH  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FC4H  
ADDR  
PA7VENH—Port A Bit[7] Interrupt Request Enable High Bit  
PA6CENH—Port A Bit[7] or Comparator Interrupt Request Enable High Bit  
PAxENH—Port A Bit[x] Interrupt Request Enable High Bit  
For selection of Port A as the interrupt source, see Shared Interrupt Select Register on  
page 64.  
Table 42. IRQ1 Enable Low Bit Register (IRQ1ENL)  
BITS  
7
6
5
4
3
2
1
0
PA7VENL PA6CENL PA5ENL  
PA4ENL  
PA3ENL  
PA2ENL  
PA1ENL  
PA0ENL  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FC5H  
ADDR  
PA7VENH—Port A Bit[7] Interrupt Request Enable Low Bit  
PA6CENH—Port A Bit[6] or Comparator Interrupt Request Enable Low Bit  
PAxENL—Port A Bit[x] Interrupt Request Enable Low Bit  
IRQ2 Enable High and Low Bit Registers  
Table 43 describes the priority control for IRQ2. The IRQ2 Enable High and Low Bit  
registers (Table 44 and Table 45) form a priority encoded enabling for interrupts in the  
Interrupt Request 2 register. Priority is generated by setting bits in each register.  
Table 43. IRQ2 Enable and Priority Encoding  
IRQ2ENH[x] IRQ2ENL[x] Priority  
Description  
Disabled  
Low  
0
0
1
0
1
0
Disabled  
Level 1  
Level 2  
Nominal  
PS024314-0308  
Interrupt Controller  
Z8 Encore! XP® F0823 Series  
Product Specification  
63  
Table 43. IRQ2 Enable and Priority Encoding (Continued)  
IRQ2ENH[x] IRQ2ENL[x] Priority  
Level 3  
Description  
1
1
High  
where x indicates the register bits from 0–7.  
Table 44. IRQ2 Enable High Bit Register (IRQ2ENH)  
BITS  
7
6
5
4
3
2
1
0
Reserved  
C3ENH  
C2ENH  
C1ENH  
C0ENH  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FC7H  
ADDR  
Reserved—Must be 0  
C3ENH—Port C3 Interrupt Request Enable High Bit  
C2ENH—Port C2 Interrupt Request Enable High Bit  
C1ENH—Port C1 Interrupt Request Enable High Bit  
C0ENH—Port C0 Interrupt Request Enable High Bit  
Table 45. IRQ2 Enable Low Bit Register (IRQ2ENL)  
BITS  
7
6
5
4
3
2
1
0
Reserved  
C3ENL  
0
C2ENL  
0
C1ENL  
0
C0ENL  
0
FIELD  
RESET  
R/W  
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FC8H  
ADDR  
Reserved—Must be 0  
C3ENL—Port C3 Interrupt Request Enable Low Bit  
C2ENL—Port C2 Interrupt Request Enable Low Bit  
C1ENL—Port C1 Interrupt Request Enable Low Bit  
C0ENL—Port C0 Interrupt Request Enable Low Bit  
Interrupt Edge Select Register  
The Interrupt Edge Select (IRQES) register (Table 46) determines whether an interrupt is  
generated for the rising edge or falling edge on the selected GPIO Port A or Port D input  
pin.  
PS024314-0308  
Interrupt Controller  
Z8 Encore! XP® F0823 Series  
Product Specification  
64  
Table 46. Interrupt Edge Select Register (IRQES)  
BITS  
7
6
5
4
3
2
1
0
IES7  
IES6  
IES5  
IES4  
IES3  
IES2  
IES1  
IES0  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FCDH  
ADDR  
IESx—Interrupt Edge Select x  
0 = An interrupt request is generated on the falling edge of the PAx input or PDx  
1 = An interrupt request is generated on the rising edge of the PAx input PDx  
where x indicates the specific GPIO port pin number (0 through 7)  
Shared Interrupt Select Register  
The Shared Interrupt Select (IRQSS) register (Table 47) determines the source of the  
PADxS interrupts. The Shared Interrupt Select register selects between Port A and  
alternate sources for the individual interrupts.  
Because these shared interrupts are edge-triggered, it is possible to generate an interrupt  
just by switching from one shared source to another. For this reason, an interrupt must be  
disabled before switching between sources.  
Table 47. Shared Interrupt Select Register (IRQSS)  
BITS  
7
6
5
4
3
2
1
0
Reserved  
PA6CS  
Reserved  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FCEH  
ADDR  
PA6CS—PA6/Comparator Selection  
0 = PA6 is used for the interrupt for PA6CS interrupt request  
1 = The Comparator is used for the interrupt for PA6CS interrupt request  
Reserved—Must be 0  
Interrupt Control Register  
The Interrupt Control (IRQCTL) register (Table 48) contains the master enable bit for all  
interrupts.  
PS024314-0308  
Interrupt Controller  
Z8 Encore! XP® F0823 Series  
Product Specification  
65  
Table 48. Interrupt Control Register (IRQCTL)  
BITS  
7
6
5
4
3
2
1
0
IRQE  
Reserved  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R
R
R
R
R
R
R
FCFH  
ADDR  
IRQE—Interrupt Request Enable  
This bit is set to 1 by executing an EI(Enable Interrupts) or IRET(Interrupt Return)  
instruction, or by a direct register write of a 1 to this bit. It is reset to 0 by executing a DI  
instruction, eZ8 CPU acknowledgement of an interrupt request, reset or by a direct register  
write of a 0 to this bit.  
0 = Interrupts are disabled  
1 = Interrupts are enabled  
Reserved—0 when read  
PS024314-0308  
Interrupt Controller  
Z8 Encore! XP® F0823 Series  
Product Specification  
66  
PS024314-0308  
Interrupt Controller  
Z8 Encore! XP® F0823 Series  
Product Specification  
67  
Timers  
Z8 Encore! XP® F0823 Series products contain up to two 16-bit reloadable timers that are  
used for timing, event counting, or generation of PWM signals. The timers’ features  
include:  
16-bit reload counter.  
Programmable prescaler with prescale values from 1 to 128.  
PWM output generation.  
Capture and compare capability.  
External input pin for timer input, clock gating, or capture signal. External input pin signal  
frequency is limited to a maximum of one-fourth the system clock frequency.  
Timer output pin.  
Timer interrupt.  
In addition to the timers described in this chapter, the baud rate generator of the UART (if  
unused) also provides basic timing functionality. For information on using the baud rate  
generator as an additional timer, see Universal Asynchronous Receiver/Transmitter on  
page 93.  
Architecture  
Figure 9 displays the architecture of the timers.  
Timer Block  
Timer  
Control  
Data  
Bus  
Block  
Control  
Timer  
16-Bit  
Interrupt,  
PWM,  
Interrupt  
Reload Register  
and  
Timer  
Output  
Timer Output  
Control  
System  
Clock  
Timer  
Output  
16-Bit Counter  
with Prescaler  
Timer  
Input  
Complement  
Gate  
16-Bit  
Input  
PWM/Compare  
Capture  
Input  
Figure 9. Timer Block Diagram  
PS024314-0308  
Timers  
Z8 Encore! XP® F0823 Series  
Product Specification  
68  
Operation  
The timers are 16-bit up-counters. Minimum time-out delay is set by loading the value  
0001Hinto the Timer Reload High and Low Byte registers and setting the prescale value  
to 1. Maximum time-out delay is set by loading the value 0000Hinto the Timer Reload  
High and Low Byte registers and setting the prescale value to 128. If the Timer reaches  
FFFFH, the timer rolls over to 0000Hand continues counting.  
Timer Operating Modes  
The timers can be configured to operate in the following modes:  
ONE-SHOT Mode  
In ONE-SHOT mode, the timer counts up to the 16-bit Reload value stored in the Timer  
Reload High and Low Byte registers. The timer input is the system clock. Upon reaching  
the Reload value, the timer generates an interrupt and the count value in the Timer High  
and Low Byte registers is reset to 0001H. The timer is automatically disabled and stops  
counting.  
Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state  
for one system clock cycle (from Low to High or from High to Low) upon timer Reload. If  
it is appropriate to have the Timer Output make a state change at a One-Shot time-out  
(rather than a single cycle pulse), first set the TPOL bit in the Timer Control register to the  
start value before enabling ONE-SHOT mode. After starting the timer, set TPOLto the  
opposite bit value.  
Follow the steps below for configuring a timer for ONE-SHOT mode and initiating the  
count:  
1. Write to the Timer Control register to:  
Disable the timer  
Configure the timer for ONE-SHOT mode  
Set the prescale value  
Set the initial output level (High or Low) if using the Timer Output alternate  
function  
2. Write to the Timer High and Low Byte registers to set the starting count value.  
3. Write to the Timer Reload High and Low Byte registers to set the Reload value.  
4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing  
to the relevant interrupt registers.  
5. If using the Timer Output function, configure the associated GPIO port pin for the  
Timer Output alternate function.  
PS024314-0308  
Timers  
Z8 Encore! XP® F0823 Series  
Product Specification  
69  
6. Write to the Timer Control register to enable the timer and initiate counting.  
In ONE-SHOT mode, the system clock always provides the timer input. The timer period  
is given by the following equation:  
(Reload Value Start Value) × Prescale  
ONE-SHOT Mode Time-Out Period (s) = ----------------------------------------------------------------------------------------------  
System Clock Frequency (Hz)  
CONTINUOUS Mode  
In CONTINUOUS mode, the timer counts up to the 16-bit Reload value stored in the  
Timer Reload High and Low Byte registers. The timer input is the system clock. Upon  
reaching the Reload value, the timer generates an interrupt, the count value in the Timer  
High and Low Byte registers is reset to 0001Hand counting resumes. Also, if the Timer  
Output alternate function is enabled, the Timer Output pin changes state (from Low to  
High or from High to Low) at timer Reload.  
Follow the steps below to configure a timer for CONTINUOUS mode and to initiate the  
count:  
1. Write to the Timer Control register to:  
Disable the timer  
Configure the timer for CONTINUOUS mode  
Set the prescale value  
If using the Timer Output alternate function, set the initial output level (High or  
Low)  
2. Write to the Timer High and Low Byte registers to set the starting count value (usually  
0001H). This action only affects the first pass in CONTINUOUS mode. After the first  
timer Reload in CONTINUOUS mode, counting always begins at the reset value of  
0001H.  
3. Write to the Timer Reload High and Low Byte registers to set the Reload value.  
4. Enable the timer interrupt (if appropriate) and set the timer interrupt priority by  
writing to the relevant interrupt registers.  
5. Configure the associated GPIO port pin (if using the Timer Output function) for the  
Timer Output alternate function.  
6. Write to the Timer Control register to enable the timer and initiate counting.  
In CONTINUOUS mode, the system clock always provides the timer input. The timer  
period is given by the following equation:  
Reload Value × Prescale  
CONTINUOUS Mode Time-Out Period (s) = -----------------------------------------------------------------------  
System Clock Frequency (Hz)  
If an initial starting value other than 0001His loaded into the Timer High and Low Byte  
registers, use the ONE-SHOT mode equation to determine the first time-out period.  
PS024314-0308  
Timers  
Z8 Encore! XP® F0823 Series  
Product Specification  
70  
COUNTER Mode  
In COUNTER mode, the timer counts input transitions from a GPIO port pin. The timer  
input is taken from the GPIO port pin Timer Input alternate function. The TPOLbit in the  
Timer Control register selects whether the count occurs on the rising edge or the falling  
edge of the timer input signal. In COUNTER mode, the prescaler is disabled.  
The input frequency of the timer input signal must not exceed one-fourth the system  
clock frequency.  
Caution:  
Upon reaching the Reload value stored in the Timer Reload High and Low Byte registers,  
the timer generates an interrupt, the count value in the Timer High and Low Byte registers  
is reset to 0001Hand counting resumes. Also, if the Timer Output alternate function is  
enabled, the Timer Output pin changes state (from Low to High or from High to Low) at  
timer Reload.  
Follow the steps below for configuring a timer for COUNTER mode and initiating the  
count:  
1. Write to the Timer Control register to:  
Disable the timer.  
Configure the timer for COUNTER mode.  
Select either the rising edge or falling edge of the Timer Input signal for the count.  
This selection also sets the initial logic level (High or Low) for the Timer Output  
alternate function. However, the Timer Output function is not required to be  
enabled.  
2. Write to the Timer High and Low Byte registers to set the starting count value. This  
only affects the first pass in COUNTER mode. After the first timer Reload in  
COUNTER mode, counting always begins at the reset value of 0001H. In COUNTER  
mode the Timer High and Low Byte registers must be written with the value 0001H.  
3. Write to the Timer Reload High and Low Byte registers to set the Reload value.  
4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing  
to the relevant interrupt registers.  
5. Configure the associated GPIO port pin for the Timer Input alternate function.  
6. If using the Timer Output function, configure the associated GPIO port pin for the  
Timer Output alternate function.  
7. Write to the Timer Control register to enable the timer.  
In COUNTER mode, the number of Timer Input transitions since the timer start is given  
by the following equation:  
COUNTER Mode Timer Input Transitions = Current Count Value Start Value  
PS024314-0308  
Timers  
Z8 Encore! XP® F0823 Series  
Product Specification  
71  
COMPARATOR COUNTER Mode  
In COMPARATOR COUNTER mode, the timer counts input transitions from the analog  
comparator output. The TPOLbit in the Timer Control Register selects whether the count  
occurs on the rising edge or the falling edge of the comparator output signal. In  
COMPARATOR COUNTER mode, the prescaler is disabled.  
The frequency of the comparator output signal must not exceed one-fourth the system  
clock frequency.  
Caution:  
After reaching the Reload value stored in the Timer Reload High and Low Byte registers,  
the timer generates an interrupt, the count value in the Timer High and Low Byte registers  
is reset to 0001Hand counting resumes. Also, if the Timer Output alternate function is  
enabled, the Timer Output pin changes state (from Low to High or from High to Low) at  
timer Reload.  
Follow the steps below for configuring a timer for COMPARATOR COUNTER mode and  
initiating the count:  
1. Write to the Timer Control register to:  
Disable the timer.  
Configure the timer for COMPARATOR COUNTER mode.  
Select either the rising edge or falling edge of the comparator output signal for the  
count. This also sets the initial logic level (High or Low) for the Timer Output  
alternate function. However, the Timer Output function is not required to be  
enabled.  
2. Write to the Timer High and Low Byte registers to set the starting count value. This  
action only affects the first pass in COMPARATOR COUNTER mode. After the first  
timer Reload in COMPARATOR COUNTER mode, counting always begins at the  
reset value of 0001H. Generally, in COMPARATOR COUNTER mode the Timer  
High and Low Byte registers must be written with the value 0001H.  
3. Write to the Timer Reload High and Low Byte registers to set the Reload value.  
4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing  
to the relevant interrupt registers.  
5. If using the Timer Output function, configure the associated GPIO port pin for the  
Timer Output alternate function.  
6. Write to the Timer Control register to enable the timer.  
In COMPARATOR COUNTER mode, the number of comparator output transitions since  
the timer start is given by the following equation:  
Comparator Output Transitions = Current Count Value Start Value  
PS024314-0308  
Timers  
Z8 Encore! XP® F0823 Series  
Product Specification  
72  
PWM SINGLE OUTPUT Mode  
In PWM SINGLE OUTPUT mode, the timer outputs a PWM output signal through a  
GPIO port pin. The timer input is the system clock. The timer first counts up to the 16-bit  
PWM match value stored in the Timer PWM High and Low Byte registers. When the  
timer count value matches the PWM value, the Timer Output toggles. The timer continues  
counting until it reaches the Reload value stored in the Timer Reload High and Low Byte  
registers. Upon reaching the Reload value, the timer generates an interrupt, the count  
value in the Timer High and Low Byte registers is reset to 0001Hand counting resumes.  
If the TPOLbit in the Timer Control register is set to 1, the Timer Output signal begins as  
a High (1) and transitions to a Low (0) when the timer value matches the PWM value. The  
Timer Output signal returns to a High (1) after the timer reaches the Reload value and is  
reset to 0001H.  
If the TPOLbit in the Timer Control register is set to 0, the Timer Output signal begins as  
a Low (0) and transitions to a High (1) when the timer value matches the PWM value. The  
Timer Output signal returns to a Low (0) after the timer reaches the Reload value and is  
reset to 0001H.  
Follow the steps below for configuring a timer for PWM Single Output mode and initiat-  
ing the PWM operation:  
1. Write to the Timer Control register to:  
Disable the timer  
Configure the timer for PWM mode  
Set the prescale value  
Set the initial logic level (High or Low) and PWM High/Low transition for the  
Timer Output alternate function  
2. Write to the Timer High and Low Byte registers to set the starting count value  
(typically 0001H). This only affects the first pass in PWM mode. After the first timer  
reset in PWM mode, counting always begins at the reset value of 0001H.  
3. Write to the PWM High and Low Byte registers to set the PWM value.  
4. Write to the Timer Reload High and Low Byte registers to set the Reload value (PWM  
period). The Reload value must be greater than the PWM value.  
5. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing  
to the relevant interrupt registers.  
6. Configure the associated GPIO port pin for the Timer Output alternate function.  
7. Write to the Timer Control register to enable the timer and initiate counting.  
The PWM period is represented by the following equation:  
Reload Value × Prescale  
PWM Period (s) = -----------------------------------------------------------------------  
System Clock Frequency (Hz)  
PS024314-0308  
Timers  
Z8 Encore! XP® F0823 Series  
Product Specification  
73  
If an initial starting value other than 0001His loaded into the Timer High and Low Byte  
registers, use the ONE-SHOT mode equation to determine the first PWM time-out period.  
If TPOLis set to 0, the ratio of the PWM output High time to the total period is  
represented by the following equation:  
Reload Value PWM Value  
-------------------------------------------------------------------  
PWM Output High Time Ratio (%) =  
× 100  
Reload Value  
If TPOLis set to 1, the ratio of the PWM output High time to the total period is  
represented by the following equation:  
PWM Value  
-----------------------------------  
Reload Value  
PWM Output High Time Ratio (%) =  
× 100  
PWM Dual Output Mode  
In PWM DUAL OUTPUT mode, the timer outputs a PWM output signal pair (basic PWM  
signal and its complement) through two GPIO port pins. The timer input is the system  
clock. The timer first counts up to the 16-bit PWM match value stored in the Timer PWM  
High and Low Byte registers. When the timer count value matches the PWM value, the  
Timer Output toggles. The timer continues counting until it reaches the Reload value  
stored in the Timer Reload High and Low Byte registers. Upon reaching the Reload value,  
the timer generates an interrupt, the count value in the Timer High and Low Byte registers  
is reset to 0001Hand counting resumes.  
If the TPOLbit in the Timer Control register is set to 1, the Timer Output signal begins as  
a High (1) and transitions to a Low (0) when the timer value matches the PWM value. The  
Timer Output signal returns to a High (1) after the timer reaches the Reload value and is  
reset to 0001H.  
If the TPOLbit in the Timer Control register is set to 0, the Timer Output signal begins as  
a Low (0) and transitions to a High (1) when the timer value matches the PWM value. The  
Timer Output signal returns to a Low (0) after the timer reaches the Reload value and is  
reset to 0001H.  
The timer also generates a second PWM output signal Timer Output Complement. The  
Timer Output Complement is the complement of the Timer Output PWM signal. A  
programmable deadband delay can be configured to time delay (0 to 128 system clock  
cycles) PWM output transitions on these two pins from a low to a high (inactive to active).  
This ensures a time gap between the deassertion of one PWM output to the assertion of its  
complement.  
Follow the steps below for configuring a timer for PWM Dual Output mode and initiating  
the PWM operation:  
1. Write to the Timer Control register to:  
Disable the timer  
Configure the timer for PWM Dual Output mode. Setting the mode also involves  
writing to TMODEHI bit in TxCTL1 register  
Set the prescale value  
PS024314-0308  
Timers  
Z8 Encore! XP® F0823 Series  
Product Specification  
74  
Set the initial logic level (High or Low) and PWM High/Low transition for the  
Timer Output alternate function  
2. Write to the Timer High and Low Byte registers to set the starting count value  
(typically 0001H). This only affects the first pass in PWM mode. After the first timer  
reset in PWM mode, counting always begins at the reset value of 0001H.  
3. Write to the PWM High and Low Byte registers to set the PWM value.  
4. Write to the PWM Control register to set the PWM dead band delay value. The  
deadband delay must be less than the duration of the positive phase of the PWM signal  
(as defined by the PWM high and low byte registers). It must also be less than the  
duration of the negative phase of the PWM signal (as defined by the difference  
between the PWM registers and the Timer Reload registers).  
5. Write to the Timer Reload High and Low Byte registers to set the Reload value (PWM  
period). The Reload value must be greater than the PWM value.  
6. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing  
to the relevant interrupt registers.  
7. Configure the associated GPIO port pin for the Timer Output and Timer Output  
Complement alternate functions. The Timer Output Complement function is shared  
with the Timer Input function for both timers. Setting the timer mode to Dual PWM  
automatically switches the function from Timer In to Timer Out Complement.  
8. Write to the Timer Control register to enable the timer and initiate counting.  
The PWM period is represented by the following equation:  
Reload Value × Prescale  
PWM Period (s) = -----------------------------------------------------------------------  
System Clock Frequency (Hz)  
If an initial starting value other than 0001His loaded into the Timer High and Low Byte  
registers, the ONE-SHOT mode equation determines the first PWM time-out period.  
If TPOLis set to 0, the ratio of the PWM output High time to the total period is repre-  
sented by:  
Reload Value PWM Value  
------------------------------------------------------------------  
PWM Output High Time Ratio (%) =  
× 100  
Reload Value  
If TPOLis set to 1, the ratio of the PWM output High time to the total period is repre-  
sented by:  
PWM Value  
-----------------------------------  
Reload Value  
PWM Output High Time Ratio (%) =  
× 100  
CAPTURE Mode  
In CAPTURE mode, the current timer count value is recorded when the appropriate exter-  
nal Timer Input transition occurs. The Capture count value is written to the Timer PWM  
High and Low Byte Registers. The timer input is the system clock. The TPOLbit in the  
Timer Control register determines if the Capture occurs on a rising edge or a falling edge  
PS024314-0308  
Timers  
Z8 Encore! XP® F0823 Series  
Product Specification  
75  
of the Timer Input signal. When the Capture event occurs, an interrupt is generated and the  
timer continues counting. The INPCAPbit in TxCTL1 register is set to indicate the timer  
interrupt is because of an input capture event.  
The timer continues counting up to the 16-bit Reload value stored in the Timer Reload  
High and Low Byte registers. Upon reaching the Reload value, the timer generates an  
interrupt and continues counting. The INPCAP bit in TxCTL1 register clears indicating  
the timer interrupt is not because of an input capture event.  
Follow the steps below for configuring a timer for CAPTURE mode and initiating the  
count:  
1. Write to the Timer Control register to:  
Disable the timer  
Configure the timer for CAPTURE mode  
Set the prescale value  
Set the Capture edge (rising or falling) for the Timer Input  
2. Write to the Timer High and Low Byte registers to set the starting count value  
(typically 0001H).  
3. Write to the Timer Reload High and Low Byte registers to set the Reload value.  
4. Clear the Timer PWM High and Low Byte registers to 0000H. Clearing these  
registers allows the software to determine if interrupts were generated by either a  
Capture or a Reload event. If the PWM High and Low Byte registers still contain  
0000Hafter the interrupt, the interrupt was generated by a Reload.  
5. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing  
to the relevant interrupt registers. By default, the timer interrupt is generated for both  
input Capture and Reload events. If appropriate, configure the timer interrupt to be  
generated only at the input capture event or the Reload event by setting TICONFIG  
field of the TxCTL1 register.  
6. Configure the associated GPIO port pin for the Timer Input alternate function.  
7. Write to the Timer Control register to enable the timer and initiate counting.  
In CAPTURE mode, the elapsed time from timer start to Capture event can be calculated  
using the following equation:  
(Capture Value Start Value) × Prescale  
Capture Elapsed Time (s) = -------------------------------------------------------------------------------------------------  
System Clock Frequency (Hz)  
CAPTURE RESTART Mode  
In CAPTURE RESTART mode, the current timer count value is recorded when the  
acceptable external Timer Input transition occurs. The Capture count value is written to  
the Timer PWM High and Low Byte Registers. The timer input is the system clock. The  
TPOLbit in the Timer Control register determines if the Capture occurs on a rising edge or  
a falling edge of the Timer Input signal. When the Capture event occurs, an interrupt is  
PS024314-0308  
Timers  
Z8 Encore! XP® F0823 Series  
Product Specification  
76  
generated and the count value in the Timer High and Low Byte registers is reset to 0001H  
and counting resumes. The INPCAPbit in TxCTL1 register is set to indicate the timer  
interrupt is because of an input capture event.  
If no Capture event occurs, the timer counts up to the 16-bit Compare value stored in the  
Timer Reload High and Low Byte registers. Upon reaching the Reload value, the timer  
generates an interrupt, the count value in the Timer High and Low Byte registers is reset to  
0001Hand counting resumes. The INPCAPbit in TxCTL1 register is cleared to indicate  
the timer interrupt is not caused by an input capture event.  
Follow the steps below for configuring a timer for CAPTURE RESTART mode and initi-  
ating the count:  
1. Write to the Timer Control register to:  
Disable the timer.  
Configure the timer for CAPTURE RESTART mode. Setting the mode also  
involves writing to TMODEHIbit in TxCTL1 register.  
Set the prescale value.  
Set the Capture edge (rising or falling) for the Timer Input.  
2. Write to the Timer High and Low Byte registers to set the starting count value  
(typically 0001H).  
3. Write to the Timer Reload High and Low Byte registers to set the Reload value.  
4. Clear the Timer PWM High and Low Byte registers to 0000H. This allows the  
software to determine if interrupts were generated by either a Capture or a Reload  
event. If the PWM High and Low Byte registers still contain 0000Hafter the interrupt,  
the interrupt was generated by a Reload.  
5. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing  
to the relevant interrupt registers. By default, the timer interrupt is generated for both  
input Capture and Reload events. If appropriate, configure the timer interrupt to be  
generated only at the input Capture event or the Reload event by setting TICONFIG  
field of the TxCTL1 register.  
6. Configure the associated GPIO port pin for the Timer Input alternate function.  
7. Write to the Timer Control register to enable the timer and initiate counting.  
In CAPTURE mode, the elapsed time from timer start to Capture event can be calculated  
using the following equation:  
(Capture Value Start Value) × Prescale  
Capture Elapsed Time (s) = -------------------------------------------------------------------------------------------------  
System Clock Frequency (Hz)  
COMPARE Mode  
In COMPARE mode, the timer counts up to the 16-bit maximum Compare value stored in  
the Timer Reload High and Low Byte registers. The timer input is the system clock. Upon  
reaching the Compare value, the timer generates an interrupt and counting continues (the  
PS024314-0308  
Timers  
Z8 Encore! XP® F0823 Series  
Product Specification  
77  
timer value is not reset to 0001H). Also, if the Timer Output alternate function is enabled,  
the Timer Output pin changes state (from Low to High or from High to Low) upon  
Compare.  
If the Timer reaches FFFFH, the timer rolls over to 0000Hand continue counting. Follow  
the steps below to configure a timer for COMPARE mode and to initiate the count:  
1. Write to the Timer Control register to:  
Disable the timer.  
Configure the timer for Compare mode.  
Set the prescale value.  
Set the initial logic level (High or Low) for the Timer Output alternate function, if  
appropriate.  
2. Write to the Timer High and Low Byte registers to set the starting count value.  
3. Write to the Timer Reload High and Low Byte registers to set the Compare value.  
4. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing  
to the relevant interrupt registers.  
5. If using the Timer Output function, configure the associated GPIO port pin for the  
Timer Output alternate function.  
6. Write to the Timer Control register to enable the timer and initiate counting.  
In COMPARE mode, the system clock always provides the timer input. The Compare time  
can be calculated by the following equation:  
(Compare Value Start Value) × Prescale  
COMPARE Mode Time (s) = ----------------------------------------------------------------------------------------------------  
System Clock Frequency (Hz)  
GATED Mode  
In GATED mode, the timer counts only when the Timer Input signal is in its active state  
(asserted), as determined by the TPOLbit in the Timer Control register. When the Timer  
Input signal is asserted, counting begins. A timer interrupt is generated when the Timer  
Input signal is deasserted or a timer Reload occurs. To determine if a Timer Input signal  
deassertion generated the interrupt, read the associated GPIO input value and compare to  
the value stored in the TPOLbit.  
The timer counts up to the 16-bit Reload value stored in the Timer Reload High and Low  
Byte registers. The timer input is the system clock. When reaching the Reload value, the  
timer generates an interrupt, the count value in the Timer High and Low Byte registers is  
reset to 0001Hand counting resumes (assuming the Timer Input signal remains asserted).  
Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state  
(from Low to High or from High to Low) at timer reset.  
PS024314-0308  
Timers  
Z8 Encore! XP® F0823 Series  
Product Specification  
78  
Follow the steps below to configure a timer for GATED mode and to initiate the count:  
1. Write to the Timer Control register to:  
Disable the timer  
Configure the timer for Gated mode  
Set the prescale value  
2. Write to the Timer High and Low Byte registers to set the starting count value. Writing  
these registers only affects the first pass in GATED mode. After the first timer reset in  
GATED mode, counting always begins at the reset value of 0001H.  
3. Write to the Timer Reload High and Low Byte registers to set the Reload value.  
4. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing  
to the relevant interrupt registers. By default, the timer interrupt is generated for both  
input deassertion and Reload events. If appropriate, configure the timer interrupt to be  
generated only at the input deassertion event or the Reload event by setting  
TICONFIG field of the TxCTL1 register.  
5. Configure the associated GPIO port pin for the Timer Input alternate function.  
6. Write to the Timer Control register to enable the timer.  
7. Assert the Timer Input signal to initiate the counting.  
CAPTURE/COMPARE Mode  
In CAPTURE/COMPARE mode, the timer begins counting on the first external Timer  
Input transition. The acceptable transition (rising edge or falling edge) is set by the TPOL  
bit in the Timer Control Register. The timer input is the system clock.  
Every subsequent acceptable transition (after the first) of the Timer Input signal captures  
the current count value. The Capture value is written to the Timer PWM High and Low  
Byte Registers. When the Capture event occurs, an interrupt is generated, the count value  
in the Timer High and Low Byte registers is reset to 0001H, and counting resumes. The  
INPCAPbit in TxCTL1 register is set to indicate the timer interrupt is caused by an input  
Capture event.  
If no Capture event occurs, the timer counts up to the 16-bit Compare value stored in the  
Timer Reload High and Low Byte registers. Upon reaching the Compare value, the timer  
generates an interrupt, the count value in the Timer High and Low Byte registers is reset to  
0001Hand counting resumes. The INPCAPbit in TxCTL1 register is cleared to indicate  
the timer interrupt is not because of an input Capture event.  
Follow the steps below for configuring a timer for CAPTURE/COMPARE mode and initi-  
ating the count:  
1. Write to the Timer Control register to:  
Disable the timer  
PS024314-0308  
Timers  
Z8 Encore! XP® F0823 Series  
Product Specification  
79  
Configure the timer for CAPTURE/COMPARE mode  
Set the prescale value  
Set the Capture edge (rising or falling) for the Timer Input  
2. Write to the Timer High and Low Byte registers to set the starting count value  
(typically 0001H).  
3. Write to the Timer Reload High and Low Byte registers to set the Compare value.  
4. Enable the timer interrupt, if appropriate, and set the timer interrupt priority by writing  
to the relevant interrupt registers.By default, the timer interrupt are generated for both  
input Capture and Reload events. If appropriate, configure the timer interrupt to be  
generated only at the input Capture event or the Reload event by setting TICONFIG  
field of the TxCTL1 register.  
5. Configure the associated GPIO port pin for the Timer Input alternate function.  
6. Write to the Timer Control register to enable the timer.  
7. Counting begins on the first appropriate transition of the Timer Input signal. No  
interrupt is generated by this first edge.  
In CAPTURE/COMPARE mode, the elapsed time from timer start to Capture event can be  
calculated using the following equation:  
(Capture Value Start Value) × Prescale  
-----------------------------------------------------------------------------------------------------------------------  
Capture Elapsed Time (s) =  
System Clock Frequency (Hz)  
Reading the Timer Count Values  
The current count value in the timers can be read while counting (enabled). This capability  
has no effect on timer operation. When the timer is enabled and the Timer High Byte  
register is read, the contents of the Timer Low Byte register are placed in a holding  
register. A subsequent read from the Timer Low Byte register returns the value in the hold-  
ing register. This operation allows accurate reads of the full 16-bit timer count value while  
enabled. When the timers are not enabled, a read from the Timer Low Byte register returns  
the actual value in the counter.  
Timer Pin Signal Operation  
Timer Output is a GPIO port pin alternate function. The Timer Output is toggled every  
time the counter is reloaded.  
The timer input can be used as a selectable counting source. It shares the same pin as the  
complementary timer output. When selected by the GPIO Alternate Function Registers,  
this pin functions as a timer input in all modes except for the DUAL PWM OUTPUT  
mode. For this mode, there is no timer input available.  
PS024314-0308  
Timers  
Z8 Encore! XP® F0823 Series  
Product Specification  
80  
Timer Control Register Definitions  
Timer 0–1 High and Low Byte Registers  
The Timer 0–1 High and Low Byte (TxH and TxL) registers (Table 49 and Table 50)  
contain the current 16-bit timer count value. When the timer is enabled, a read from TxH  
causes the value in TxL to be stored in a temporary holding register. A read from TxL  
always returns this temporary register when the timers are enabled. When the timer is dis-  
abled, reads from the TxL reads the register directly.  
Writing to the Timer High and Low Byte registers while the timer is enabled is not recom-  
mended. There are no temporary holding registers available for write operations, so simul-  
taneous 16-bit writes are not possible. If either the Timer High or Low Byte registers are  
written during counting, the 8-bit written value is placed in the counter (High or Low  
Byte) at the next clock edge. The counter continues counting from the new value.  
Table 49. Timer 0–1 High Byte Register (TxH)  
BITS  
7
6
5
4
3
2
1
0
TH  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F00H, F08H  
ADDR  
Table 50. Timer 0–1 Low Byte Register (TxL)  
BITS  
7
6
5
4
3
2
1
0
TL  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F01H, F09H  
ADDR  
TH and TL—Timer High and Low Bytes  
These 2 bytes, {TH[7:0], TL[7:0]}, contain the current 16-bit timer count value  
Timer Reload High and Low Byte Registers  
The Timer 0–1 Reload High and Low Byte (TxRH and TxRL) registers (Table 51 and  
Table 52) store a 16-bit Reload value, {TRH[7:0], TRL[7:0]}. Values written to the Timer  
Reload High Byte register are stored in a temporary holding register. When a write to the  
Timer Reload Low Byte register occurs, the temporary holding register value is written to  
the Timer High Byte register. This operation allows simultaneous updates of the 16-bit  
Timer Reload value.  
PS024314-0308  
Timers  
Z8 Encore! XP® F0823 Series  
Product Specification  
81  
In COMPARE mode, the Timer Reload High and Low Byte registers store the 16-bit  
Compare value.  
Table 51. Timer 0–1 Reload High Byte Register (TxRH)  
BITS  
7
6
5
4
3
2
1
0
TRH  
FIELD  
RESET  
R/W  
1
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F02H, F0AH  
ADDR  
Table 52. Timer 0–1 Reload Low Byte Register (TxRL)  
BITS  
7
6
5
4
3
2
1
0
TRL  
FIELD  
RESET  
R/W  
1
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F03H, F0BH  
ADDR  
TRH and TRL—Timer Reload Register High and Low  
These two bytes form the 16-bit Reload value, {TRH[7:0], TRL[7:0]}. This value sets the  
maximum count value which initiates a timer reload to 0001H. In Compare mode, these  
two bytes form the 16-bit Compare value.  
Timer 0-1 PWM High and Low Byte Registers  
The Timer 0-1 PWM High and Low Byte (TxPWMH and TxPWML) registers (Table 53  
and Table 54) control pulse-width modulator (PWM) operations. These registers also store  
the Capture values for the CAPTURE and CAPTURE/COMPARE modes.  
Table 53. Timer 0–1 PWM High Byte Register (TxPWMH)  
BITS  
7
6
5
4
3
2
1
0
PWMH  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F04H, F0CH  
ADDR  
PS024314-0308  
Timers  
Z8 Encore! XP® F0823 Series  
Product Specification  
82  
Table 54. Timer 0–1 PWM Low Byte Register (TxPWML)  
BITS  
7
6
5
4
3
2
1
0
PWML  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F05H, F0DH  
ADDR  
PWMH and PWML—Pulse-Width Modulator High and Low Bytes  
These two bytes, {PWMH[7:0], PWML[7:0]}, form a 16-bit value that is compared to the  
current 16-bit timer count. When a match occurs, the PWM output changes state. The  
PWM output value is set by the TPOLbit in the Timer Control Register (TxCTL1)  
register.  
The TxPWMH and TxPWML registers also store the 16-bit captured timer value when  
operating in CAPTURE or CAPTURE/COMPARE modes.  
Timer 0–1 Control Registers  
Time 0–1 Control Register 0  
The Timer Control Register 0 (TxCTL0) and Timer Control Register 1 (TxCTL1)  
determine the timer operating mode. It also includes a programmable PWM deadband  
delay, two bits to configure timer interrupt definition, and a status bit to identify if the  
most recent timer interrupt is caused by an input Capture event.  
Table 55. Timer 0–1 Control Register 0 (TxCTL0)  
BITS  
7
6
5
4
3
2
1
0
TMODEHI  
TICONFIG  
Reserved  
PWMD  
INPCAP  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F06H, F0EH  
ADDR  
TMODEHI—Timer Mode High Bit  
This bit along with the TMODE field in TxCTL1 register determines the operating mode  
of the timer. This is the most-significant bit of the Timer mode selection value. See the  
TxCTL1 register description for more details.  
TICONFIG—Timer Interrupt Configuration  
This field configures timer interrupt definition.  
PS024314-0308  
Timers  
Z8 Encore! XP® F0823 Series  
Product Specification  
83  
0x = Timer Interrupt occurs on all defined Reload, Compare and Input Events  
10 = Timer Interrupt only on defined Input Capture/Deassertion Events  
11 = Timer Interrupt only on defined Reload/Compare Events  
Reserved—Must be 0  
PWMD—PWM Delay value  
This field is a programmable delay to control the number of system clock cycles delay  
before the Timer Output and the Timer Output Complement are forced to their active state.  
000 = No delay  
001 = 2 cycles delay  
010 = 4 cycles delay  
011 = 8 cycles delay  
100 = 16 cycles delay  
101 = 32 cycles delay  
110 = 64 cycles delay  
111 = 128 cycles delay  
INPCAP—Input Capture Event  
This bit indicates if the most recent timer interrupt is caused by a Timer Input Capture  
Event.  
0 = Previous timer interrupt is not a result of Timer Input Capture Event  
1 = Previous timer interrupt is a result of Timer Input Capture Event  
Timer 0–1 Control Register 1  
The Timer 0–1 Control (TxCTL1) registers enable/disable the timers, set the prescaler  
value, and determine the timer operating mode.  
Table 56. Timer 0–1 Control Register 1 (TxCTL1)  
BITS  
7
6
5
4
3
2
1
0
TEN  
TPOL  
PRES  
TMODE  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F07H, F0FH  
ADDR  
TEN—Timer Enable  
0 = Timer is disabled  
1 = Timer enabled to count  
TPOL—Timer Input/Output Polarity  
Operation of this bit is a function of the current operating mode of the timer  
PS024314-0308  
Timers  
Z8 Encore! XP® F0823 Series  
Product Specification  
84  
ONE-SHOT Mode  
When the timer is disabled, the Timer Output signal is set to the value of this bit.  
When the timer is enabled, the Timer Output signal is complemented upon timer  
Reload.  
CONTINUOUS Mode  
When the timer is disabled, the Timer Output signal is set to the value of this bit.  
When the timer is enabled, the Timer Output signal is complemented upon timer  
Reload.  
COUNTER Mode  
If the timer is enabled the Timer Output signal is complemented after timer reload.  
0 = Count occurs on the rising edge of the Timer Input signal  
1 = Count occurs on the falling edge of the Timer Input signal  
PWM SINGLE OUTPUT Mode  
0 = Timer Output is forced Low (0) when the timer is disabled. When enabled, the  
Timer Output is forced High (1) upon PWM count match and forced Low (0) upon  
Reload.  
1 = Timer Output is forced High (1) when the timer is disabled. When enabled, the  
Timer Output is forced Low (0) upon PWM count match and forced High (1) upon  
Reload.  
CAPTURE Mode  
0 = Count is captured on the rising edge of the Timer Input signal  
1 = Count is captured on the falling edge of the Timer Input signal  
COMPARE Mode  
When the timer is disabled, the Timer Output signal is set to the value of this bit.  
When the timer is enabled, the Timer Output signal is complemented upon timer  
Reload.  
GATED Mode  
0 = Timer counts when the Timer Input signal is High (1) and interrupts are generated  
on the falling edge of the Timer Input.  
1 = Timer counts when the Timer Input signal is Low (0) and interrupts are generated  
on the rising edge of the Timer Input.  
PS024314-0308  
Timers  
Z8 Encore! XP® F0823 Series  
Product Specification  
85  
CAPTURE/COMPARE Mode  
0 = Counting is started on the first rising edge of the Timer Input signal. The current  
count is captured on subsequent rising edges of the Timer Input signal.  
1 = Counting is started on the first falling edge of the Timer Input signal. The current  
count is captured on subsequent falling edges of the Timer Input signal.  
PWM DUAL OUTPUT Mode  
0 = Timer Output is forced Low (0) and Timer Output Complement is forced High (1)  
when the timer is disabled. When enabled, the Timer Output is forced High (1) upon  
PWM count match and forced Low (0) upon Reload. When enabled, the Timer Output  
Complement is forced Low (0) upon PWM count match and forced High (1) upon  
Reload. The PWMD field in TxCTL0 register is a programmable delay to control the  
number of cycles time delay before the Timer Output and the Timer Output  
Complement is forced to High (1).  
1 = Timer Output is forced High (1) and Timer Output Complement is forced Low (0)  
when the timer is disabled. When enabled, the Timer Output is forced Low (0) upon  
PWM count match and forced High (1) upon Reload.When enabled, the Timer Output  
Complement is forced High (1) upon PWM count match and forced Low (0) upon  
Reload. The PWMD field in TxCTL0 register is a programmable delay to control the  
number of cycles time delay before the Timer Output and the Timer Output  
Complement is forced to Low (0).  
CAPTURE RESTART Mode  
0 = Count is captured on the rising edge of the Timer Input signal  
1 = Count is captured on the falling edge of the Timer Input signal  
COMPARATOR COUNTER Mode  
When the timer is disabled, the Timer Output signal is set to the value of this bit.  
When the timer is enabled, the Timer Output signal is complemented upon timer  
Reload.  
When the Timer Output alternate function TxOUT on a GPIO port pin is enabled, Tx-  
OUT changes to whatever state the TPOLbit is in. The timer does not need to be enabled  
for that to happen. Also, the port data direction sub register is not needed to be set to  
output on TxOUT. Changing the TPOLbit with the timer enabled and running does not  
immediately change the TxOUT.  
Caution:  
PRES—Prescale value.  
The timer input clock is divided by 2PRES, where PRES can be set from 0 to 7. The  
prescaler is reset each time the Timer is disabled. This reset ensures proper clock division  
each time the Timer is restarted.  
000 = Divide by 1  
001 = Divide by 2  
PS024314-0308  
Timers  
Z8 Encore! XP® F0823 Series  
Product Specification  
86  
010 = Divide by 4  
011 = Divide by 8  
100 = Divide by 16  
101 = Divide by 32  
110 = Divide by 64  
111 = Divide by 128  
TMODE—Timer mode  
This field along with the TMODEHI bit in TxCTL0 register determines the operating  
mode of the timer. TMODEHI is the most significant bit of the Timer mode selection  
value.  
0000 = ONE-SHOT mode  
0001 = CONTINUOUS mode  
0010 = COUNTER mode  
0011 = PWM SINGLE OUTPUT mode  
0100 = CAPTURE mode  
0101 = COMPARE mode  
0110 = GATED mode  
0111 = CAPTURE/COMPARE mode  
1000 = PWM DUAL OUTPUT mode  
1001 = CAPTURE RESTART mode  
1010 = COMPARATOR COUNTER Mode  
PS024314-0308  
Timers  
Z8 Encore! XP® F0823 Series  
Product Specification  
87  
Watchdog Timer  
The Watchdog Timer (WDT) protects against corrupt or unreliable software, power faults,  
and other system-level problems which can place Z8 Encore! XP® F0823 Series devices  
into unsuitable operating states. The features of Watchdog Timer include:  
On-chip RC oscillator  
A selectable time-out response: reset or interrupt  
24-bit programmable time-out value  
Operation  
The WDT is a retriggerable one-shot timer that resets or interrupts Z8 Encore! XP F0823  
Series devices when the WDT reaches its terminal count. The Watchdog Timer uses a ded-  
icated on-chip RC oscillator as its clock source. The Watchdog Timer operates in only two  
modes: ON and OFF. Once enabled, it always counts and must be refreshed to prevent a  
time-out. Perform an enable by executing the WDTinstruction or by setting the WDT_AO  
Flash Option Bit. The WDT_AObit forces the Watchdog Timer to operate immediately  
upon reset, even if a WDTinstruction has not been executed.  
The Watchdog Timer is a 24-bit reloadable down counter that uses three 8-bit registers in  
the eZ8 CPU register space to set the reload value. The nominal WDT time-out period is  
described by the following equation:  
WDT Reload Value  
------------------------------------------  
WDT Time-out Period (ms) =  
10  
where the WDT reload value is the decimal value of the 24-bit value given by  
{WDTU[7:0], WDTH[7:0], WDTL[7:0]} and the typical Watchdog Timer RC oscillator  
frequency is 10 kHz. The Watchdog Timer cannot be refreshed after it reaches 000002H.  
The WDT Reload Value must not be set to values below 000004H. Table 57 provides  
information about approximate time-out delays for the minimum and maximum WDT  
reload values.  
Table 57. Watchdog Timer Approximate Time-Out Delays  
Approximate Time-Out Delay  
(with 10 kHz typical WDT oscillator frequency)  
WDT Reload Value WDT Reload Value  
(Hex)  
000004  
FFFFFF  
(Decimal)  
4
Typical  
400 µs  
Description  
Minimum time-out delay  
Maximum time-out delay  
16,777,215  
28 minutes  
PS024314-0308  
Watchdog Timer  
Z8 Encore! XP® F0823 Series  
Product Specification  
88  
Watchdog Timer Refresh  
When first enabled, the WDT is loaded with the value in the Watchdog Timer Reload  
registers. The Watchdog Timer counts down to 000000Hunless a WDTinstruction is  
executed by the eZ8 CPU. Execution of the WDTinstruction causes the down counter to be  
reloaded with the WDT Reload value stored in the Watchdog Timer Reload registers.  
Counting resumes following the reload operation.  
When Z8 Encore! XP® F0823 Series devices are operating in DEBUG Mode (using the  
OCD), the Watchdog Timer is continuously refreshed to prevent any Watchdog Timer  
time-outs.  
Watchdog Timer Time-Out Response  
The Watchdog Timer times out when the counter reaches 000000H. A time-out of the  
Watchdog Timer generates either an interrupt or a system reset. The WDT_RES Flash  
Option Bit determines the time-out response of the Watchdog Timer. For information on  
programming of the WDT_RES Flash Option Bit, see Flash Option Bits on page 141.  
WDT Interrupt in Normal Operation  
If configured to generate an interrupt when a time-out occurs, the Watchdog Timer issues  
an interrupt request to the interrupt controller and sets the WDTstatus bit in the Watchdog  
Timer Control register. If interrupts are enabled, the eZ8 CPU responds to the interrupt  
request by fetching the Watchdog Timer interrupt vector and executing code from the  
vector address. After time-out and interrupt generation, the Watchdog Timer counter rolls  
over to its maximum value of FFFFFHand continues counting. The Watchdog Timer  
counter is not automatically returned to its Reload Value.  
The Reset Status Register (see Reset Status Register on page 28) must be read before  
clearing the WDT interrupt. This read clears the WDT time-out Flag and prevents further  
WDT interrupts for immediately occurring.  
WDT Interrupt in STOP Mode  
If configured to generate an interrupt when a time-out occurs and Z8 Encore! XP F0823  
Series are in STOP mode, the Watchdog Timer automatically initiates a Stop Mode Recov-  
ery and generates an interrupt request. Both the WDT status bit and the STOPbit in the  
Watchdog Timer Control register are set to 1 following a WDT time-out in STOP mode.  
For more information on Stop Mode Recovery, see Reset and Stop Mode Recovery on  
page 21.  
If interrupts are enabled, following completion of the Stop Mode Recovery the eZ8 CPU  
responds to the interrupt request by fetching the Watchdog Timer interrupt vector and  
executing code from the vector address.  
PS024314-0308  
Watchdog Timer  
Z8 Encore! XP® F0823 Series  
Product Specification  
89  
WDT Reset in NORMAL Operation  
If configured to generate a Reset when a time-out occurs, the Watchdog Timer forces the  
device into the System Reset state. The WDT status bit in the Watchdog Timer Control  
register is set to 1. For more information on System Reset, see Reset and Stop Mode  
Recovery on page 21.  
WDT Reset in STOP Mode  
If configured to generate a Reset when a time-out occurs and the device is in STOP mode,  
the Watchdog Timer initiates a Stop Mode Recovery. Both the WDT status bit and the  
STOPbit in the Watchdog Timer Control register are set to 1 following WDT time-out in  
STOP mode. For more information, see Reset and Stop Mode Recovery on page 21.  
Watchdog Timer Reload Unlock Sequence  
Writing the unlock sequence to the Watchdog Timer Control Register (WDTCTL) address  
unlocks the three Watchdog Timer Reload Byte Registers (WDTU, WDTH, and WDTL)  
to allow changes to the time-out period. These write operations to the WDTCTL register  
address produce no effect on the bits in the WDTCTL register. The locking mechanism  
prevents spurious writes to the Reload registers. The following sequence is required to  
unlock the Watchdog Timer Reload Byte Registers (WDTU, WDTH, and WDTL) for  
write access.  
1. Write 55Hto the Watchdog Timer Control register (WDTCTL).  
2. Write AAHto the Watchdog Timer Control register (WDTCTL).  
3. Write the Watchdog Timer Reload Upper Byte register (WDTU).  
4. Write the Watchdog Timer Reload High Byte register (WDTH).  
5. Write the Watchdog Timer Reload Low Byte register (WDTL).  
All three Watchdog Timer Reload registers must be written in the order just listed. There  
must be no other register writes between each of these operations. If a register write  
occurs, the lock state machine resets and no further writes can occur unless the sequence is  
restarted. The value in the Watchdog Timer Reload registers is loaded into the counter  
when the Watchdog Timer is first enabled and every time a WDTinstruction is executed.  
Watchdog Timer Control Register Definitions  
Watchdog Timer Control Register  
The Watchdog Timer Control (WDTCTL) register is a write-only control register. Writing  
the 55H, AAHunlock sequence to the WDTCTL register address unlocks the three  
PS024314-0308  
Watchdog Timer  
Z8 Encore! XP® F0823 Series  
Product Specification  
90  
Watchdog Timer Reload Byte registers (WDTU, WDTH, and WDTL) to allow changes to  
the time-out period. These write operations to the WDTCTL register address produce no  
effect on the bits in the WDTCTL register. The locking mechanism prevents spurious  
writes to the Reload registers.  
This register address is shared with the read-only Reset Status Register.  
Table 58. Watchdog Timer Control Register (WDTCTL)  
BITS  
7
6
5
4
3
2
1
0
WDTUNLK  
FIELD  
RESET  
R/W  
X
X
X
X
X
X
X
X
W
W
W
W
W
W
W
W
FF0H  
ADDR  
WDTUNLK—Watchdog Timer Unlock  
The software must write the correct unlocking sequence to this register before it is allowed  
to modify the contents of the Watchdog Timer reload registers.  
Watchdog Timer Reload Upper, High and Low Byte Registers  
The Watchdog Timer Reload Upper, High and Low Byte (WDTU, WDTH, WDTL)  
registers (Tables 59 through Table 61) form the 24-bit reload value that is loaded into the  
Watchdog Timer when a WDTinstruction executes. The 24-bit reload value is  
{WDTU[7:0], WDTH[7:0], WDTL[7:0]}. Writing to these registers sets the appropriate  
Reload Value. Reading from these registers returns the current Watchdog Timer count  
value.  
The 24-bit WDT Reload Value must not be set to a value less than 000004H.  
Caution:  
PS024314-0308  
Watchdog Timer  
Z8 Encore! XP® F0823 Series  
Product Specification  
91  
Table 59. Watchdog Timer Reload Upper Byte Register (WDTU)  
BITS  
7
6
5
4
3
2
1
0
WDTU  
00H  
FIELD  
RESET  
R/W  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
FF1H  
ADDR  
R/W*—Read returns the current WDT count value. Write sets the appropriate Reload Value.  
WDTU—WDT Reload Upper Byte  
Most significant byte (MSB), Bits[23:16], of the 24-bit WDT reload value.  
Table 60. Watchdog Timer Reload High Byte Register (WDTH)  
BITS  
7
6
5
4
3
2
1
0
WDTH  
04H  
FIELD  
RESET  
R/W  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
FF2H  
ADDR  
R/W*—Read returns the current WDT count value. Write sets the appropriate Reload Value.  
WDTH—WDT Reload High Byte  
Middle byte, Bits[15:8], of the 24-bit WDT reload value.  
Table 61. Watchdog Timer Reload Low Byte Register (WDTL)  
BITS  
7
6
5
4
3
2
1
0
WDTL  
00H  
FIELD  
RESET  
R/W  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
R/W*  
FF3H  
ADDR  
R/W*—Read returns the current WDT count value. Write sets the appropriate Reload Value.  
WDTL—WDT Reload Low  
Least significant byte (LSB), Bits[7:0], of the 24-bit WDT reload value.  
PS024314-0308  
Watchdog Timer  
Z8 Encore! XP® F0823 Series  
Product Specification  
92  
PS024314-0308  
Watchdog Timer  
Z8 Encore! XP® F0823 Series  
Product Specification  
93  
Universal Asynchronous  
Receiver/Transmitter  
The universal asynchronous receiver/transmitter (UART) is a full-duplex communication  
channel capable of handling asynchronous data transfers. The UART uses a single 8-bit  
data mode with selectable parity. The features of UART include:  
8-bit asynchronous data transfer  
Selectable even- and odd-parity generation and checking  
Option of one or two STOP bits  
Separate transmit and receive interrupts  
Framing, parity, overrun, and break detection  
Separate transmit and receive enables  
16-bit baud rate generator (BRG)  
Selectable MULTIPROCESSOR (9-bit) mode with three configurable interrupt schemes  
BRG can be configured and used as a basic 16-bit timer  
Driver Enable output for external bus transceivers  
Architecture  
The UART consists of three primary functional blocks: transmitter, receiver, and baud rate  
generator. The UART’s transmitter and receiver function independently, but employ the  
same baud rate and data format. Figure 10 displays the UART architecture.  
PS024314-0308  
Universal Asynchronous Receiver/Transmitter  
Z8 Encore! XP® F0823 Series  
Product Specification  
94  
Parity Checker  
Receive Shifter  
Receiver Control  
with Address Compare  
RXD  
Receive Data  
Register  
Control Registers  
System Bus  
Transmit Data  
Register  
Status Register  
Baud Rate  
Generator  
Transmit Shift  
Register  
TXD  
Transmitter Control  
Parity Generator  
CTS  
DE  
Figure 10. UART Block Diagram  
Operation  
Data Format  
The UART always transmits and receives data in an 8-bit data format, least-significant bit  
(lsb) first. An even or odd parity bit can be added to the data stream. Each character begins  
with an active Low Start bit and ends with either 1 or 2 active High Stop bits. Figure 11  
and Figure 12 display the asynchronous data format employed by the UART without par-  
ity and with parity, respectively.  
PS024314-0308  
Universal Asynchronous Receiver/Transmitter  
Z8 Encore! XP® F0823 Series  
Product Specification  
95  
Data Field  
Stop Bit(s)  
msb  
Idle State  
of Line  
lsb  
1
0
Start  
Bit0  
Bit1  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
Bit7  
1
2
Figure 11. UART Asynchronous Data Format without Parity  
Data Field  
Stop Bit(s)  
Idle State  
of Line  
lsb  
msb  
Bit7  
1
0
Start  
Bit0  
Bit1  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
Parity  
1
2
Figure 12. UART Asynchronous Data Format with Parity  
Transmitting Data using the Polled Method  
Follow the steps below to transmit data using the polled method of operation:  
1. Write to the UART Baud Rate High and Low Byte registers to set the required baud  
rate.  
2. Enable the UART pin functions by configuring the associated GPIO port pins for  
alternate function operation.  
3. Write to the UART Control 1 register, if MULTIPROCESSOR mode is appropriate, to  
enable MULTIPROCESSOR (9-bit) mode functions.  
4. Set the Multiprocessor Mode Select (MPEN) bit to enable MULTIPROCESSOR mode.  
5. Write to the UART Control 0 register to:  
Set the transmit enable bit (TEN) to enable the UART for data transmission  
Set the parity enable bit (PEN), if parity is appropriate and MULTIPROCESSOR  
mode is not enabled, and select either even or odd parity (PSEL).  
Set or clear the CTSE bit to enable or disable control from the remote receiver  
using the CTS pin.  
PS024314-0308  
Universal Asynchronous Receiver/Transmitter  
Z8 Encore! XP® F0823 Series  
Product Specification  
96  
6. Check the TDREbit in the UART Status 0 register to determine if the Transmit Data  
register is empty (indicated by a 1). If empty, continue to step 7. If the Transmit Data  
register is full (indicated by a 0), continue to monitor the TDRE bit until the Transmit  
Data register becomes available to receive new data.  
7. Write the UART Control 1 register to select the outgoing address bit.  
8. Set the Multiprocessor Bit Transmitter (MPBT) if sending an address byte, clear it if  
sending a data byte.  
9. Write the data byte to the UART Transmit Data register. The transmitter automatically  
transfers the data to the Transmit Shift register and transmits the data.  
10. Make any changes to the Multiprocessor Bit Transmitter (MPBT) value, if appropriate  
and MULTIPROCESSOR mode is enabled,.  
11. To transmit additional bytes, return to step 5.  
Transmitting Data using the Interrupt-Driven Method  
The UART Transmitter interrupt indicates the availability of the Transmit Data register to  
accept new data for transmission. Follow the steps below to configure the UART for  
interrupt-driven data transmission:  
1. Write to the UART Baud Rate High and Low Byte registers to set the appropriate baud  
rate.  
2. Enable the UART pin functions by configuring the associated GPIO port pins for  
alternate function operation.  
3. Execute a DIinstruction to disable interrupts.  
4. Write to the Interrupt control registers to enable the UART Transmitter interrupt and  
set the acceptable priority.  
5. Write to the UART Control 1 register to enable MULTIPROCESSOR (9-bit) mode  
functions, if MULTIPROCESSOR mode is appropriate.  
6. Set the MULTIPROCESSOR Mode Select (MPEN) to Enable MULTIPROCESSOR  
mode.  
7. Write to the UART Control 0 register to:  
Set the transmit enable bit (TEN) to enable the UART for data transmission.  
Enable parity, if appropriate and if MULTIPROCESSOR mode is not enabled, and  
select either even or odd parity.  
Set or clear CTSEto enable or disable control from the remote receiver using the  
CTS pin.  
8. Execute an EIinstruction to enable interrupts.  
PS024314-0308  
Universal Asynchronous Receiver/Transmitter  
Z8 Encore! XP® F0823 Series  
Product Specification  
97  
The UART is now configured for interrupt-driven data transmission. Because the UART  
Transmit Data register is empty, an interrupt is generated immediately. When the UART  
Transmit interrupt is detected, the associated interrupt service routine (ISR) performs the  
following:  
1. Write the UART Control 1 register to select the multiprocessor bit for the byte to be  
transmitted:  
Set the Multiprocessor Bit Transmitter (MPBT) if sending an address byte, clear it if  
sending a data byte.  
2. Write the data byte to the UART Transmit Data register. The transmitter automatically  
transfers the data to the Transmit Shift register and transmits the data.  
3. Clear the UART Transmit interrupt bit in the applicable Interrupt Request register.  
4. Execute the IRETinstruction to return from the interrupt-service routine and wait for  
the Transmit Data register to again become empty.  
Receiving Data using the Polled Method  
Follow the steps below to configure the UART for polled data reception:  
1. Write to the UART Baud Rate High and Low Byte registers to set an acceptable baud  
rate for the incoming data stream.  
2. Enable the UART pin functions by configuring the associated GPIO port pins for  
alternate function operation.  
3. Write to the UART Control 1 register to enable MULTIPROCESSOR mode functions,  
if appropriate.  
4. Write to the UART Control 0 register to:  
Set the receive enable bit (REN) to enable the UART for data reception  
Enable parity, if appropriate and if Multiprocessor mode is not enabled, and select  
either even or odd parity  
5. Check the RDA bit in the UART Status 0 register to determine if the Receive Data  
register contains a valid data byte (indicated by a 1). If RDAis set to 1 to indicate  
available data, continue to step 6. If the Receive Data register is empty (indicated by a  
0), continue to monitor the RDA bit awaiting reception of the valid data.  
6. Read data from the UART Receive Data register. If operating in MULTIPROCESSOR  
(9-bit) mode, further actions may be required depending on the MULTIPROCESSOR  
mode bits MPMD[1:0].  
7. Return to step 4 to receive additional data.  
PS024314-0308  
Universal Asynchronous Receiver/Transmitter  
Z8 Encore! XP® F0823 Series  
Product Specification  
98  
Receiving Data using the Interrupt-Driven Method  
The UART Receiver interrupt indicates the availability of new data (as well as error  
conditions). Follow the steps below to configure the UART receiver for interrupt-driven  
operation:  
1. Write to the UART Baud Rate High and Low Byte registers to set the acceptable baud  
rate.  
2. Enable the UART pin functions by configuring the associated GPIO port pins for  
alternate function operation.  
3. Execute a DIinstruction to disable interrupts.  
4. Write to the Interrupt control registers to enable the UART Receiver interrupt and set  
the acceptable priority.  
5. Clear the UART Receiver interrupt in the applicable Interrupt Request register.  
6. Write to the UART Control 1 Register to enable Multiprocessor (9-bit) mode  
functions, if appropriate.  
Set the Multiprocessor Mode Select (MPEN) to Enable MULTIPROCESSOR  
mode  
Set the Multiprocessor Mode Bits, MPMD[1:0], to select the acceptable address  
matching scheme  
Configure the UART to interrupt on received data and errors or errors only  
(interrupt on errors only is unlikely to be useful for Z8 Encore! XP devices  
without a DMA block)  
7. Write the device address to the Address Compare Register (automatic  
MULTIPROCESSOR modes only).  
8. Write to the UART Control 0 register to:  
Set the receive enable bit (REN) to enable the UART for data reception  
Enable parity, if appropriate and if multiprocessor mode is not enabled, and select  
either even or odd parity  
9. Execute an EIinstruction to enable interrupts.  
The UART is now configured for interrupt-driven data reception. When the UART  
Receiver interrupt is detected, the associated interrupt service routine (ISR) performs the  
following:  
1. Checks the UART Status 0 register to determine the source of the interrupt - error,  
break, or received data.  
2. Reads the data from the UART Receive Data register if the interrupt was because of  
data available. If operating in MULTIPROCESSOR (9-bit) mode, further actions may  
be required depending on the MULTIPROCESSOR mode bits MPMD[1:0].  
PS024314-0308  
Universal Asynchronous Receiver/Transmitter  
Z8 Encore! XP® F0823 Series  
Product Specification  
99  
3. Clears the UART Receiver interrupt in the applicable Interrupt Request register.  
4. Executes the IRETinstruction to return from the interrupt-service routine and await  
more data.  
Clear To Send (CTS) Operation  
The CTS pin, if enabled by the CTSE bit of the UART Control 0 register, performs flow  
control on the outgoing transmit datastream. The Clear To Send (CTS) input pin is  
sampled one system clock before beginning any new character transmission. To delay  
transmission of the next data character, an external receiver must deassert CTS at least one  
system clock cycle before a new data transmission begins. For multiple character trans-  
missions, this action is typically performed during Stop Bit transmission. If CTS deasserts  
in the middle of a character transmission, the current character is sent completely.  
MULTIPROCESSOR (9-Bit) Mode  
The UART has a MULTIPROCESSOR (9-bit) mode that uses an extra (9th) bit for  
selective communication when a number of processors share a common UART bus. In  
MULTIPROCESSOR mode (also referred to as 9-bit mode), the multiprocessor bit (MP) is  
transmitted immediately following the 8-bits of data and immediately preceding the Stop  
bit(s) as displayed in Figure 13. The character format is given below:  
Data Field  
Stop Bit(s)  
Idle State  
of Line  
lsb  
msb  
Bit7  
1
0
Start  
Bit0  
Bit1  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
MP  
1
2
Figure 13. UART Asynchronous MULTIPROCESSOR Mode Data Format  
In MULTIPROCESSOR (9-bit) mode, the Parity bit location (9th bit) becomes the  
Multiprocessor control bit. The UART Control 1 and Status 1 registers provide  
MULTIPROCESSOR (9-bit) mode control and status information. If an automatic address  
matching scheme is enabled, the UART Address Compare register holds the network  
address of the device.  
MULTIPROCESSOR (9-bit) Mode Receive Interrupts  
When MULTIPROCESSOR mode is enabled, the UART only processes frames addressed  
to it. The determination of whether a frame of data is addressed to the UART can be made  
PS024314-0308  
Universal Asynchronous Receiver/Transmitter  
Z8 Encore! XP® F0823 Series  
Product Specification  
100  
in hardware, software or some combination of the two, depending on the multiprocessor  
configuration bits. In general, the address compare feature reduces the load on the CPU,  
because it does not require access to the UART when it receives data directed to other  
devices on the multi-node network. The following three MULTIPROCESSOR modes are  
available in hardware:  
Interrupt on all address bytes  
Interrupt on matched address bytes and correctly framed data bytes  
Interrupt only on correctly framed data bytes  
These modes are selected with MPMD[1:0]in the UART Control 1 Register. For all  
multiprocessor modes, bit MPENof the UART Control 1 Register must be set to 1.  
The first scheme is enabled by writing 01bto MPMD[1:0]. In this mode, all incoming  
address bytes cause an interrupt, while data bytes never cause an interrupt. The interrupt  
service routine must manually check the address byte that caused triggered the interrupt. If  
it matches the UART address, the software clears MPMD[0]. Each new incoming byte  
interrupts the CPU. The software is responsible for determining the end of the frame. It  
checks for the end-of-frame by reading the MPRXbit of the UART Status 1 Register for  
each incoming byte. If MPRX=1, a new frame has begun. If the address of this new frame  
is different from the UART’s address, MPMD[0] must be set to 1 causing the UART  
interrupts to go inactive until the next address byte. If the new frame’s address matches the  
UART’s, the data in the new frame is processed as well.  
The second scheme requires the following: set MPMD[1:0] to 10B and write the UART’s  
address into the UART Address Compare register. This mode introduces additional  
hardware control, interrupting only on frames that match the UART’s address. When an  
incoming address byte does not match the UART’s address, it is ignored. All successive  
data bytes in this frame are also ignored. When a matching address byte occurs, an inter-  
rupt is issued and further interrupts now occur on each successive data byte. When the first  
data byte in the frame is read, the NEWFRMbit of the UART Status 1 Register is asserted.  
All successive data bytes have NEWFRM=0. When the next address byte occurs, the hard-  
ware compares it to the UART’s address. If there is a match, the interrupts continues and  
the NEWFRMbit is set for the first byte of the new frame. If there is no match, the UART  
ignores all incoming bytes until the next address match.  
The third scheme is enabled by setting MPMD[1:0] to 11band by writing the UART’s  
address into the UART Address Compare Register. This mode is identical to the second  
scheme, except that there are no interrupts on address bytes. The first data byte of each  
frame remains accompanied by a NEWFRMassertion.  
PS024314-0308  
Universal Asynchronous Receiver/Transmitter  
Z8 Encore! XP® F0823 Series  
Product Specification  
101  
External Driver Enable  
The UART provides a Driver Enable (DE) signal for off-chip bus transceivers. This  
feature reduces the software overhead associated with using a GPIO pin to control the  
transceiver when communicating on a multi-transceiver bus, such as RS-485.  
Driver Enable is an active High signal that envelopes the entire transmitted data frame  
including parity and Stop bits as displayed in Figure 14. The Driver Enable signal asserts  
when a byte is written to the UART Transmit Data register. The Driver Enable signal  
asserts at least one UART bit period and no greater than two UART bit periods before the  
Start bit is transmitted. This allows a setup time to enable the transceiver. The Driver  
Enable signal deasserts one system clock period after the final Stop bit is transmitted. This  
one system clock delay allows both time for data to clear the transceiver before disabling  
it, as well as the ability to determine if another character follows the current character. In  
the event of back to back characters (new data must be written to the Transmit Data  
Register before the previous character is completely transmitted) the DE signal is not  
deasserted between characters. The DEPOLbit in the UART Control Register 1 sets the  
polarity of the Driver Enable signal.  
1
DE  
0
Data Field  
Stop Bit  
Idle State  
of Line  
lsb  
msb  
Bit7  
1
0
Start  
Bit0  
Bit1  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
Parity  
1
Figure 14. UART Driver Enable Signal Timing (shown with 1 Stop Bit and Parity)  
The Driver Enable to Start bit setup time is calculated as follows:  
1
2
----------------------------------------  
----------------------------------------  
DE to Start Bit Setup Time (s) ≤  
Baud Rate (Hz)  
Baud Rate (Hz)  
UART Interrupts  
The UART features separate interrupts for the transmitter and the receiver. In addition,  
when the UART primary functionality is disabled, the Baud Rate Generator can also  
function as a basic timer with interrupt capability.  
PS024314-0308  
Universal Asynchronous Receiver/Transmitter  
Z8 Encore! XP® F0823 Series  
Product Specification  
102  
Transmitter Interrupts  
The transmitter generates a single interrupt when the Transmit Data Register Empty bit  
(TDRE) is set to 1. This indicates that the transmitter is ready to accept new data for  
transmission. The TDRE interrupt occurs after the Transmit shift register has shifted the  
first bit of data out. The Transmit Data register can now be written with the next character  
to send. This action provides 7 bit periods of latency to load the Transmit Data register  
before the Transmit shift register completes shifting the current character. Writing to the  
UART Transmit Data register clears the TDREbit to 0.  
Receiver Interrupts  
The receiver generates an interrupt when any of the following occurs:  
A data byte is received and is available in the UART Receive Data register. This interrupt  
can be disabled independently of the other receiver interrupt sources. The received data in-  
terrupt occurs after the receive character has been received and placed in the Receive Data  
register. To avoid an overrun error, software must respond to this received data available  
condition before the next character is completely received.  
In MULTIPROCESSOR mode (MPEN = 1), the receive data interrupts are dependent on  
Note:  
the multiprocessor configuration and the most recent address byte.  
A break is received  
An overrun is detected  
A data framing error is detected  
UART Overrun Errors  
When an overrun error condition occurs the UART prevents overwriting of the valid data  
currently in the Receive Data register. The Break Detect and Overrun status bits are not  
displayed until after the valid data has been read.  
After the valid data has been read, the UART Status 0 register is updated to indicate the  
overrun condition (and Break Detect, if applicable). The RDAbit is set to 1 to indicate that  
the Receive Data register contains a data byte. However, because the overrun error  
occurred, this byte cannot contain valid data and must be ignored. The BRKDbit indicates  
if the overrun was caused by a break condition on the line. After reading the status byte  
indicating an overrun error, the Receive Data register must be read again to clear the error  
bits is the UART Status 0 register. Updates to the Receive Data register occur only when  
the next data word is received.  
UART Data and Error Handling Procedure  
Figure 15 displays the recommended procedure for use in UART receiver interrupt  
service routines.  
PS024314-0308  
Universal Asynchronous Receiver/Transmitter  
Z8 Encore! XP® F0823 Series  
Product Specification  
103  
Receiver  
Ready  
Receiver  
Interrupt  
Read Status  
No  
Errors?  
Yes  
Read Data which  
clears RDA bit and  
resets error bits  
Read Data  
Discard Data  
Figure 15. UART Receiver Interrupt Service Routine Flow  
Baud Rate Generator Interrupts  
If the Baud Rate Generator (BRG) interrupt enable is set, the UART Receiver interrupt  
asserts when the UART Baud Rate Generator reloads. This condition allows the Baud  
Rate Generator to function as an additional counter if the UART functionality is not  
employed.  
UART Baud Rate Generator  
The UART Baud Rate Generator creates a lower frequency baud rate clock for data  
transmission. The input to the Baud Rate Generator is the system clock. The UART Baud  
Rate High and Low Byte registers combine to create a 16-bit baud rate divisor value  
PS024314-0308  
Universal Asynchronous Receiver/Transmitter  
Z8 Encore! XP® F0823 Series  
Product Specification  
104  
(BRG[15:0]) that sets the data transmission rate (baud rate) of the UART. The UART data  
rate is calculated using the following equation:  
System Clock Frequency (Hz)  
16 × UART Baud Rate Divisor Value  
--------------------------------------------------------------------------------  
UART Data Rate (bits/s) =  
When the UART is disabled, the Baud Rate Generator functions as a basic 16-bit timer  
with interrupt on time-out. Follow the steps below to configure the Baud Rate Generator  
as a timer with interrupt on time-out:  
1. Disable the UART by clearing the REN and TEN bits in the UART Control 0 register  
to 0.  
2. Load the acceptable 16-bit count value into the UART Baud Rate High and Low Byte  
registers.  
3. Enable the Baud Rate Generator timer function and associated interrupt by setting the  
BIRQbit in the UART Control 1 register to 1.  
When configured as a general purpose timer, the interrupt interval is calculated using the  
following equation:  
Interrupt Interval (s) = System Clock Period (s) × BRG[15:0]  
UART Control Register Definitions  
The UART control registers support the UART and the associated Infrared Encoder/  
Decoders. For more information on the infrared operation, see Infrared Encoder/Decoder  
on page 113.  
UART Transmit Data Register  
Data bytes written to the UART Transmit Data register (Table 62) are shifted out on the  
TXDxpin. The Write-only UART Transmit Data register shares a Register File address  
with the read-only UART Receive Data register.  
Table 62. UART Transmit Data Register (U0TXD)  
BITS  
7
6
5
4
3
2
1
0
TXD  
FIELD  
RESET  
R/W  
X
X
X
X
X
X
X
X
W
W
W
W
W
W
W
W
F40H  
ADDR  
TXD—Transmit Data  
UART transmitter data byte to be shifted out through the TXDx pin.  
PS024314-0308  
Universal Asynchronous Receiver/Transmitter  
Z8 Encore! XP® F0823 Series  
Product Specification  
105  
UART Receive Data Register  
Data bytes received through the RXDx pin are stored in the UART Receive Data register  
(Table 63). The read-only UART Receive Data register shares a Register File address with  
the Write-only UART Transmit Data register.  
Table 63. UART Receive Data Register (U0RXD)  
BITS  
7
6
5
4
3
2
1
0
RXD  
FIELD  
RESET  
R/W  
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
F40H  
ADDR  
RXD—Receive Data  
UART receiver data byte from the RXDx pin  
UART Status 0 Register  
The UART Status 0 and Status 1 registers (Table 64 and Table 65) identify the current  
UART operating configuration and status.  
Table 64. UART Status 0 Register (U0STAT0)  
BITS  
7
6
5
4
3
2
1
0
RDA  
PE  
OE  
FE  
BRKD  
TDRE  
TXE  
CTS  
FIELD  
RESET  
R/W  
0
0
0
0
0
1
1
X
R
R
R
R
R
R
R
R
F41H  
ADDR  
RDA—Receive Data Available  
This bit indicates that the UART Receive Data register has received data. Reading the  
UART Receive Data register clears this bit.  
0 = The UART Receive Data register is empty  
1 = There is a byte in the UART Receive Data register  
PE—Parity Error  
This bit indicates that a parity error has occurred. Reading the UART Receive Data  
register clears this bit.  
0 = No parity error has occurred  
1 = A parity error has occurred  
OE—Overrun Error  
This bit indicates that an overrun error has occurred. An overrun occurs when new data is  
PS024314-0308  
Universal Asynchronous Receiver/Transmitter  
Z8 Encore! XP® F0823 Series  
Product Specification  
106  
received and the UART Receive Data register has not been read. If the RDA bit is reset to  
0, reading the UART Receive Data register clears this bit.  
0 = No overrun error occurred  
1 = An overrun error occurred  
FE—Framing Error  
This bit indicates that a framing error (no Stop bit following data reception) was detected.  
Reading the UART Receive Data register clears this bit.  
0 = No framing error occurred  
1 = A framing error occurred  
BRKD—Break Detect  
This bit indicates that a break occurred. If the data bits, parity/multiprocessor bit, and Stop  
bit(s) are all 0s this bit is set to 1. Reading the UART Receive Data register clears this bit.  
0 = No break occurred  
1 = A break occurred  
TDRE—Transmitter Data Register Empty  
This bit indicates that the UART Transmit Data register is empty and ready for additional  
data. Writing to the UART Transmit Data register resets this bit.  
0 = Do not write to the UART Transmit Data register  
1 = The UART Transmit Data register is ready to receive an additional byte to be transmit-  
ted  
TXE—Transmitter Empty  
This bit indicates that the transmit shift register is empty and character transmission is fin-  
ished.  
0 = Data is currently transmitting  
1 = Transmission is complete  
CTS—CTS signal  
When this bit is read it returns the level of the CTS signal. This signal is active Low.  
UART Status 1 Register  
This register contains multiprocessor control and status bits.  
Table 65. UART Status 1 Register (U0STAT1)  
BITS  
7
6
5
4
3
2
1
0
Reserved  
NEWFRM  
MPRX  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R
R
R
R
R/W  
R/W  
R
R
F44H  
ADDR  
PS024314-0308  
Universal Asynchronous Receiver/Transmitter  
Z8 Encore! XP® F0823 Series  
Product Specification  
107  
Reserved—R/W bits must be 0 during writes; 0 when read.  
NEWFRM—Status bit denoting the start of a new frame. Reading the UART Receive  
Data register resets this bit to 0.  
0 = The current byte is not the first data byte of a new frame  
1 = The current byte is the first data byte of a new frame  
MPRX—Multiprocessor Receive  
Returns the value of the most recent multiprocessor bit received. Reading from the UART  
Receive Data register resets this bit to 0.  
UART Control 0 and Control 1 Registers  
The UART Control 0 and Control 1 registers (Table 66 and Table 67) configure the  
properties of the UART’s transmit and receive operations. The UART Control registers  
must not be written while the UART is enabled.  
Table 66. UART Control 0 Register (U0CTL0)  
BITS  
7
6
5
4
3
2
1
0
TEN  
REN  
CTSE  
PEN  
PSEL  
SBRK  
STOP  
LBEN  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F42H  
ADDR  
TEN—Transmit Enable  
This bit enables or disables the transmitter. The enable is also controlled by the CTS signal  
and the CTSEbit. If the CTS signal is low and the CTSEbit is 1, the transmitter is  
enabled.  
0 = Transmitter disabled  
1 = Transmitter enabled  
REN—Receive Enable  
This bit enables or disables the receiver.  
0 = Receiver disabled  
1 = Receiver enabled  
CTSE—CTS Enable  
0 = The CTS signal has no effect on the transmitter  
1 = The UART recognizes the CTS signal as an enable control from the transmitter  
PEN—Parity Enable  
This bit enables or disables parity. Even or odd is determined by the PSELbit.  
0 = Parity is disabled  
1 = The transmitter sends data with an additional parity bit and the receiver receives an  
additional parity bit  
PS024314-0308  
Universal Asynchronous Receiver/Transmitter  
Z8 Encore! XP® F0823 Series  
Product Specification  
108  
PSEL—Parity Select  
0 = Even parity is transmitted and expected on all received data  
1 = Odd parity is transmitted and expected on all received data  
SBRK—Send Break  
This bit pauses or breaks data transmission. Sending a break interrupts any transmission in  
progress, so ensure that the transmitter has finished sending data before setting this bit.  
0 = No break is sent  
1 = Forces a break condition by setting the output of the transmitter to zero  
STOP—Stop Bit Select  
0 = The transmitter sends one stop bit  
1 = The transmitter sends two stop bits  
LBEN—Loop Back Enable  
0 = Normal operation  
1 = All transmitted data is looped back to the receiver  
Table 67. UART Control 1 Register (U0CTL1)  
BITS  
7
6
5
4
3
2
1
0
MPMD[1]  
MPEN  
MPMD[0]  
MPBT  
DEPOL BRGCTL  
RDAIRQ  
IREN  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F43H  
ADDR  
MPMD[1:0]—MULTIPROCESSOR Mode  
If MULTIPROCESSOR (9-bit) mode is enabled,  
00 = The UART generates an interrupt request on all received bytes (data and address)  
01 = The UART generates an interrupt request only on received address bytes  
10 = The UART generates an interrupt request when a received address byte matches the  
value stored in the Address Compare Register and on all successive data bytes until an  
address mismatch occurs  
11 = The UART generates an interrupt request on all received data bytes for which the  
most recent address byte matched the value in the Address Compare Register  
MPEN—MULTIPROCESSOR (9-bit) Enable  
This bit is used to enable MULTIPROCESSOR (9-bit) mode.  
0 = Disable MULTIPROCESSOR (9-bit) mode  
1 = Enable MULTIPROCESSOR (9-bit) mode  
MPBT—Multiprocessor Bit Transmit  
This bit is applicable only when MULTIPROCESSOR (9-bit) mode is enabled. The 9th bit  
is used by the receiving device to determine if the data byte contains address or data infor-  
mation.  
PS024314-0308  
Universal Asynchronous Receiver/Transmitter  
Z8 Encore! XP® F0823 Series  
Product Specification  
109  
0 = Send a 0 in the multiprocessor bit location of the data stream (data byte)  
1 = Send a 1 in the multiprocessor bit location of the data stream (address byte)  
DEPOL—Driver Enable Polarity  
0 = DE signal is Active High  
1 = DE signal is Active Low  
BRGCTL—Baud Rate Control  
This bit causes an alternate UART behavior depending on the value of the REN bit in the  
UART Control 0 Register.  
When the UART receiver is not enabled (REN=0), this bit determines whether the Baud  
Rate Generator issues interrupts.  
0 = Reads from the Baud Rate High and Low Byte registers return the BRG Reload Value.  
1 = The Baud Rate Generator generates a receive interrupt when it counts down to 0.  
Reads from the Baud Rate High and Low Byte registers return the current BRG count  
value.  
When the UART receiver is enabled (REN=1), this bit allows reads from the Baud Rate  
Registers to return the BRG count value instead of the Reload Value.  
0 = Reads from the Baud Rate High and Low Byte registers return the BRG Reload Value.  
1 = Reads from the Baud Rate High and Low Byte registers return the current BRG count  
value. Unlike the Timers, there is no mechanism to latch the Low Byte when the High  
Byte is read.  
RDAIRQ—Receive Data Interrupt Enable  
0 = Received data and receiver errors generates an interrupt request to the Interrupt  
Controller.  
1 = Received data does not generate an interrupt request to the Interrupt Controller. Only  
receiver errors generate an interrupt request.  
IREN—Infrared Encoder/Decoder Enable  
0 = Infrared Encoder/Decoder is disabled. UART operates normally.  
1 = Infrared Encoder/Decoder is enabled. The UART transmits and receives data through  
the Infrared Encoder/Decoder.  
UART Address Compare Register  
The UART Address Compare register stores the multi-node network address of the UART.  
When the MPMD[1] bit of UART Control Register 0 is set, all incoming address bytes are  
compared to the value stored in the Address Compare register. Receive interrupts and  
RDA assertions only occur in the event of a match.  
PS024314-0308  
Universal Asynchronous Receiver/Transmitter  
Z8 Encore! XP® F0823 Series  
Product Specification  
110  
Table 68. UART Address Compare Register (U0ADDR)  
BITS  
7
6
5
4
3
2
1
0
COMP_ADDR  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F45H  
ADDR  
COMP_ADDR—Compare Address  
This 8-bit value is compared to incoming address bytes.  
UART Baud Rate High and Low Byte Registers  
The UART Baud Rate High and Low Byte registers (Table 69 and Table 70) combine to  
create a 16-bit baud rate divisor value (BRG[15:0]) that sets the data transmission rate  
(baud rate) of the UART.  
Table 69. UART Baud Rate High Byte Register (U0BRH)  
BITS  
7
6
5
4
3
2
1
0
BRH  
FIELD  
RESET  
R/W  
1
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F46H  
ADDR  
Table 70. UART Baud Rate Low Byte Register (U0BRL)  
BITS  
7
6
5
4
3
2
1
0
BRL  
FIELD  
RESET  
R/W  
1
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F47H  
ADDR  
The UART data rate is calculated using the following equation:  
System Clock Frequency (Hz)  
16 × UART Baud Rate Divisor Value  
--------------------------------------------------------------------------------  
UART Baud Rate (bits/s) =  
For a given UART data rate, calculate the integer baud rate divisor value using the  
following equation:  
System Clock Frequency (Hz)  
16 × UART Data Rate (bits/s)  
-----------------------------------------------------------------  
UART Baud Rate Divisor Value (BRG) = Round  
PS024314-0308  
Universal Asynchronous Receiver/Transmitter  
Z8 Encore! XP® F0823 Series  
Product Specification  
111  
The baud rate error relative to the acceptable baud rate is calculated using the following  
equation:  
Actual Data Rate Desired Data Rate  
------------------------------------------------------------------------------------  
UART Baud Rate Error (%) = 100 ×  
Desired Data Rate  
For reliable communication, the UART baud rate error must never exceed five percent.  
Table 71 provides information about data rate errors for 5.5296 MHz System Clock.  
Table 71. UART Baud Rates  
5.5296 MHz System Clock  
Acceptable Rate BRG Divisor Actual Rate  
(kHz)  
1250.0  
625.0  
250.0  
115.2  
57.6  
(Decimal)  
(kHz)  
N/A  
Error (%)  
N/A  
N/A  
N/A  
1
N/A  
N/A  
345.6  
115.2  
57.6  
38.4  
19.2  
9.60  
4.80  
2.40  
1.20  
0.60  
0.30  
38.24  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
3
6
38.4  
9
19.2  
18  
9.60  
36  
4.80  
72  
2.40  
144  
288  
576  
1152  
1.20  
0.60  
0.30  
PS024314-0308  
Universal Asynchronous Receiver/Transmitter  
Z8 Encore! XP® F0823 Series  
Product Specification  
112  
PS024314-0308  
Universal Asynchronous Receiver/Transmitter  
Z8 Encore! XP® F0823 Series  
Product Specification  
113  
Infrared Encoder/Decoder  
Z8 Encore! XP® F0823 Series products contain a fully-functional, high-performance  
UART with Infrared Encoder/Decoder (Endec). The Infrared Endec is integrated with an  
on-chip UART to allow easy communication between the Z8 Encore! XP and IrDA Phys-  
ical Layer Specification, Version 1.3-compliant infrared transceivers. Infrared communi-  
cation provides secure, reliable, low-cost, point-to-point communication between PCs,  
PDAs, cell phones, printers and other infrared enabled devices.  
Architecture  
Figure 16 displays the architecture of the Infrared Endec.  
System  
Clock  
Infrared  
Transceiver  
RxD  
RXD  
TXD  
RXD  
Infrared  
Encoder/Decoder  
(Endec)  
TxD  
TXD  
UART  
I/O  
Baud Rate  
Clock  
Interrupt  
Data  
Signal Address  
Figure 16. Infrared Data Communication System Block Diagram  
Operation  
When the Infrared Endec is enabled, the transmit data from the associated on-chip UART  
is encoded as digital signals in accordance with the IrDA standard and output to the  
infrared transceiver through the TXD pin. Similarly, data received from the infrared  
transceiver is passed to the Infrared Endec through the RXD pin, decoded by the Infrared  
PS024314-0308  
Infrared Encoder/Decoder  
Z8 Encore! XP® F0823 Series  
Product Specification  
114  
Endec, and passed to the UART. Communication is half-duplex, which means  
simultaneous data transmission and reception is not allowed.  
The baud rate is set by the UART’s baud rate generator and supports IrDA standard baud  
rates from 9600 baud to 115.2 kbaud. Higher baud rates are possible, but do not meet IrDA  
specifications. The UART must be enabled to use the Infrared Endec. The Infrared Endec  
data rate is calculated using the following equation:  
System Clock Frequency (Hz)  
16 × UART Baud Rate Divisor Value  
--------------------------------------------------------------------------------  
Infrared Data Rate (bits/s) =  
Transmitting IrDA Data  
The data to be transmitted using the infrared transceiver is first sent to the UART. The  
UART’s transmit signal (TXD) and baud rate clock are used by the IrDA to generate the  
modulation signal (IR_TXD) that drives the infrared transceiver. Each UART/Infrared  
data bit is 16 clocks wide. If the data to be transmitted is 1, the IR_TXD signal remains  
low for the full 16 clock period. If the data to be transmitted is 0, the transmitter first  
outputs a 7 clock low period, followed by a 3 clock high pulse. Finally, a 6 clock low pulse  
is output to complete the full 16 clock data period. Figure 17 displays IrDA data transmis-  
sion. When the Infrared Endec is enabled, the UART’s TXD signal is internal to  
Z8 Encore! XP® F0823 Series products while the IR_TXD signal is output through the  
TXD pin.  
16 clock  
period  
Baud Rate  
Clock  
UART’s  
TXD  
Start Bit = 0  
Data Bit 0 = 1  
Data Bit 1 = 0  
Data Bit 2 = 1  
Data Bit 3 = 1  
3 clock  
pulse  
IR_TXD  
7-clock  
delay  
Figure 17. Infrared Data Transmission  
PS024314-0308  
Infrared Encoder/Decoder  
Z8 Encore! XP® F0823 Series  
Product Specification  
115  
Receiving IrDA Data  
Data received from the infrared transceiver using the IR_RXD signal through the RXD pin  
is decoded by the Infrared Endec and passed to the UART. The UART’s baud rate clock is  
used by the Infrared Endec to generate the demodulated signal (RXD) that drives the  
UART. Each UART/Infrared data bit is 16-clocks wide. Figure 18 displays data  
reception. When the Infrared Endec is enabled, the UART’s RXD signal is internal to the  
Z8 Encore! XP® F0823 Series products while the IR_RXD signal is received through the  
RXD pin.  
16 clock  
period  
Baud Rate  
Clock  
Start Bit = 0  
Data Bit 0 = 1  
Data Bit 1 = 0  
Data Bit 2 = 1  
Data Bit 3 = 1  
IR_RXD  
min. 1.4 µs  
pulse  
UART’s  
RXD  
Start Bit = 0  
Data Bit 0 = 1  
Data Bit 1 = 0  
Data Bit 2 = 1  
Data Bit 3 = 1  
8 clock  
delay  
16 clock  
period  
16 clock  
period  
16 clock  
period  
16 clock  
period  
Figure 18. IrDA Data Reception  
Infrared Data Reception  
The system clock frequency must be at least 1.0 MHz to ensure proper reception of the  
Caution:  
1.4 µs minimum width pulses allowed by the IrDA standard.  
Endec Receiver Synchronization  
The IrDA receiver uses a local baud rate clock counter (0 to 15 clock periods) to generate  
an input stream for the UART and to create a sampling window for detection of incoming  
pulses. The generated UART input (UART RXD) is delayed by 8 baud rate clock periods  
with respect to the incoming IrDA data stream. When a falling edge in the input data  
stream is detected, the Endec counter is reset. When the count reaches a value of 8, the  
UART RXD value is updated to reflect the value of the decoded data. When the count  
reaches 12 baud clock periods, the sampling window for the next incoming pulse opens.  
The window remains open until the count again reaches 8 (that is, 24 baud clock periods  
since the previous pulse was detected), giving the Endec a sampling window of minus four  
PS024314-0308  
Infrared Encoder/Decoder  
Z8 Encore! XP® F0823 Series  
Product Specification  
116  
baud rate clocks to plus eight baud rate clocks around the expected time of an incoming  
pulse. If an incoming pulse is detected inside this window this process is repeated. If the  
incoming data is a logical 1 (no pulse), the Endec returns to the initial state and waits for  
the next falling edge. As each falling edge is detected, the Endec clock counter is reset,  
resynchronizing the Endec to the incoming signal, allowing the Endec to tolerate jitter and  
baud rate errors in the incoming datastream. Resynchronizing the Endec does not alter the  
operation of the UART, which ultimately receives the data. The UART is only synchro-  
nized to the incoming data stream when a Start bit is received.  
Infrared Encoder/Decoder Control Register Definitions  
All Infrared Endec configuration and status information is set by the UART control  
registers as defined in Universal Asynchronous Receiver/Transmitter on page 93.  
To prevent spurious signals during IrDA data transmission, set the IREN bit in the  
UART Control 1 register to 1 to enable the Infrared Encoder/Decoder before enabling  
the GPIO port alternate function for the corresponding pin.  
Caution:  
PS024314-0308  
Infrared Encoder/Decoder  
Z8 Encore! XP® F0823 Series  
Product Specification  
117  
Analog-to-Digital Converter  
The Analog-to-Digital Converter (ADC) converts an analog input signal to its digital  
representation. The features of this sigma-delta ADC include:  
10-bit resolution  
Eight single-ended analog input sources are multiplexed with general-purpose I/O ports  
Interrupt upon conversion complete  
Bandgap generated internal voltage reference generator with two selectable levels  
Factory offset and gain calibration  
Architecture  
Figure 19 displays the major functional blocks of the ADC. An analog multiplexer  
network selects the ADC input from the available analog pins, ANA0 through ANA7.  
PS024314-0308  
Analog-to-Digital Converter  
Z8 Encore! XP® F0823 Series  
Product Specification  
118  
2
Internal Voltage  
Vrefsel  
VREF  
Reference Generator  
VREFEXT  
Ref Input  
11  
ADC  
Data  
Analog Input  
Multiplexer  
Analog Input  
ANA0  
ANA1  
ANA2  
ANA3  
ANA4  
ANA5  
ANA6  
ANA7  
ADC  
IRQ  
4
ANAIN  
Figure 19. Analog-to-Digital Converter Block Diagram  
Operation  
Data Format  
The output of the ADC is an 11-bit, signed, two’s complement digital value. The output  
generally ranges from 0 to +1023, but offset errors can cause small negative values.  
The ADC registers return 13 bits of data, but the two LSBs are intended for compensation  
use only. When the compensation routine is performed on the 13 bit raw ADC value, two  
PS024314-0308  
Analog-to-Digital Converter  
Z8 Encore! XP® F0823 Series  
Product Specification  
119  
bits of resolution are lost because of a rounding error. As a result, the final value is an  
11- bit number.  
Automatic Powerdown  
If the ADC is idle (no conversions in progress) for 160 consecutive system clock cycles,  
portions of the ADC are automatically powered down. From this powerdown state, the  
ADC requires 40 system clock cycles to powerup. The ADC powers up when a conversion  
is requested by the ADC Control register.  
Single-Shot Conversion  
When configured for single-shot conversion, the ADC performs a single analog-to-digital  
conversion on the selected analog input channel. After completion of the conversion, the  
ADC shuts down. Follow the steps below for setting up the ADC and initiating a single-  
shot conversion:  
1. Enable the acceptable analog inputs by configuring the general-purpose I/O pins for  
alternate function. This configuration disables the digital input and output drivers.  
2. Write the ADC Control/Status Register 1 to configure the ADC  
Write the REFSELHbit of the pair {REFSELH, REFSELL} to select the internal  
voltage reference level or to disable the internal reference. The REFSELHbit is  
contained in the ADC Control/Status Register 1.  
3. Write to the ADC Control Register 0 to configure the ADC and begin the conversion.  
The bit fields in the ADC Control register can be written simultaneously:  
Write to the ANAIN[3:0] field to select from the available analog input sources  
(different input pins available depending on the device).  
Clear CONTto 0 to select a single-shot conversion.  
If the internal voltage reference must be output to a pin, set the REFEXTbit to 1.  
The internal voltage reference must be enabled in this case.  
Write the REFSELL bit of the pair {REFSELH, REFSELL} to select the internal  
voltage reference level or to disable the internal reference. The REFSELL bit is  
contained in the ADC Control Register 0.  
Set CENto 1 to start the conversion.  
4. CENremains 1 while the conversion is in progress. A single-shot conversion requires  
5129 system clock cycles to complete. If a single-shot conversion is requested from an  
ADC powered-down state, the ADC uses 40 additional clock cycles to power-up  
before beginning the 5129 cycle conversion.  
PS024314-0308  
Analog-to-Digital Converter  
Z8 Encore! XP® F0823 Series  
Product Specification  
120  
5. When the conversion is complete, the ADC control logic performs the following  
operations:  
11-bit two’s-complement result written to {ADCD_H[7:0], ADCD_L[7:5]}.  
CENresets to 0 to indicate the conversion is complete.  
6. If the ADC remains idle for 160 consecutive system clock cycles, it is automatically  
powered-down.  
Continuous Conversion  
When configured for continuous conversion, the ADC continuously performs an analog-  
to-digital conversion on the selected analog input. Each new data value over-writes the  
previous value stored in the ADC Data registers. An interrupt is generated after each con-  
version.  
In CONTINUOUS mode, ADC updates are limited by the input signal bandwidth of the  
ADC and the latency of the ADC and its digital filter. Step changes at the input are not  
detected at the next output from the ADC. The response of the ADC (in all modes) is lim-  
ited by the input signal bandwidth and the latency.  
Caution:  
Follow the steps below for setting up the ADC and initiating continuous conversion:  
1. Enable the acceptable analog input by configuring the general-purpose I/O pins for  
alternate function. This action disables the digital input and output driver.  
2. Write the ADC Control/Status Register 1 to configure the ADC:  
Write the REFSELHbit of the pair {REFSELH, REFSELL} to select the internal  
voltage reference level or to disable the internal reference. The REFSELH bit is  
contained in the ADC Control/Status Register 1.  
3. Write to the ADC Control Register 0 to configure the ADC for continuous conversion.  
The bit fields in the ADC Control register can be written simultaneously:  
Write to the ANAIN[3:0] field to select from the available analog input sources  
(different input pins available depending on the device).  
Set CONTto 1 to select continuous conversion.  
If the internal VREF must be output to a pin, set the REFEXT bit to 1. The  
internal voltage reference must be enabled in this case.  
Write the REFSELL bit of the pair {REFSELH, REFSELL} to select the internal  
voltage reference level or to disable the internal reference. The REFSELL bit is  
contained in ADC Control Register 0.  
Set CENto 1 to start the conversions.  
PS024314-0308  
Analog-to-Digital Converter  
Z8 Encore! XP® F0823 Series  
Product Specification  
121  
4. When the first conversion in continuous operation is complete (after 5129 system  
clock cycles, plus the 40 cycles for power-up, if necessary), the ADC control logic  
performs the following operations:  
CENresets to 0 to indicate the first conversion is complete. CENremains 0 for all  
subsequent conversions in continuous operation.  
An interrupt request is sent to the Interrupt Controller to indicate the conversion is  
complete.  
5. The ADC writes a new data result every 256 system clock cycles. For each completed  
conversion, the ADC control logic performs the following operations:  
Writes the 11-bit two’s complement result to {ADCD_H[7:0], ADCD_L[7:5]}.  
An interrupt request to the Interrupt Controller denoting conversion complete.  
6. To disable continuous conversion, clear the CONTbit in the ADC Control register  
to 0.  
Interrupts  
The ADC is able to interrupt the CPU whenever a conversion has been completed and the  
ADC is enabled.  
When the ADC is disabled, an interrupt is not asserted; however, an interrupt pending  
when the ADC is disabled is not cleared.  
Calibration and Compensation  
Z8 Encore! XP® F0823 Series ADC can be factory calibrated for offset error and gain  
error, with the compensation data stored in Flash memory. Alternatively, user code can  
perform its own calibration, storing the values into Flash themselves.  
Factory Calibration  
Devices that have been factory calibrated contain nine bytes of calibration data in the  
Flash option bit space. This data consists of three bytes for each reference type. For a list  
of input modes for which calibration data exists, see Zilog Calibration Data on page 147.  
There is 1 byte for offset, 2 bytes for gain correction.  
User Calibration  
If you have precision references available, its own external calibration can be performed,  
storing the values into Flash themselves.  
PS024314-0308  
Analog-to-Digital Converter  
Z8 Encore! XP® F0823 Series  
Product Specification  
122  
Software Compensation Procedure  
The value read from the ADC high and low byte registers are uncompensated. The user  
mode software must apply gain and offset correction to this uncompensated value for  
maximum accuracy. The following formula yields the compensated value:  
16  
ADC  
= (ADC  
OFFCAL) + ((ADC  
OFFCAL) GAINCAL) ⁄ 2  
comp  
uncomp  
uncomp  
where GAINCAL is the gain calibration byte, OFFCAL is the offset calibration byte and  
ADCuncomp is the uncompensated value read from the ADC. The OFFCAL value is in  
two’s complement format, as are the compensated and uncompensated ADC values.  
The offset compensation is performed first, followed by the gain compensation. One bit of  
resolution is lost because of rounding on both the offset and gain computations. As a result  
the ADC registers read back 13 bits: 1 sign bit, two calibration bits lost to rounding and  
10 data bits. Also note that in the second term, the multiplication must be performed  
before the division by 216. Otherwise, the second term evaluates to zero incorrectly.  
Note:  
Although the ADC can be used without the gain and offset compensation, it does exhibit  
non-unity gain. Designing the ADC with sub-unity gain reduces noise across the ADC  
range but requires the ADC results to be scaled by a factor of 8/7.  
Caution:  
ADC Control Register Definitions  
The following sections define the ADC control registers.  
ADC Control Register 0  
The ADC Control register selects the analog input channel and initiates the  
analog-to-digital conversion.  
Table 72. ADC Control Register 0 (ADCCTL0)  
BITS  
7
6
5
4
3
2
1
0
CEN  
REFSELL REFEXT  
CONT  
ANAIN[3:0]  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F70H  
ADDR  
CEN—Conversion Enable  
0 = Conversion is complete. Writing a 0 produces no effect. The ADC automatically clears  
this bit to 0 when a conversion is complete.  
1 = Begin conversion. Writing a 1 to this bit starts a conversion. If a conversion is already  
in progress, the conversion restarts. This bit remains 1 until the conversion is complete.  
PS024314-0308  
Analog-to-Digital Converter  
Z8 Encore! XP® F0823 Series  
Product Specification  
123  
REFSELL—Voltage Reference Level Select Low Bit; in conjunction with the High bit  
(REFSELH) in ADC Control/Status Register 1, this determines the level of the internal  
voltage reference; the following details the effects of {REFSELH, REFSELL};  
This reference is independent of the Comparator reference.  
Note:  
00= Internal Reference Disabled, reference comes from external pin.  
01= Internal Reference set to 1.0 V  
10= Internal Reference set to 2.0 V (default)  
REFEXTExternal Reference Select  
0 = External reference buffer is disabled; Vref pin is available for GPIO functions  
1 = The internal ADC reference is buffered and connected to the Vref pin  
CONT  
0 = Single-shot conversion. ADC data is output once at completion of the 5129 system  
clock cycles.  
1 = Continuous conversion. ADC data updated every 256 system clock cycles.  
ANAIN[3:0]—Analog Input Select  
These bits select the analog input for conversion. Not all port pins in this list are available  
in all packages for Z8 Encore! XP® F0823 Series. For information on the port pins avail-  
able with each package style, see Pin Description on page 7. Do not enable unavailable  
analog inputs. Usage of these bits changes depending on the buffer mode selected in ADC  
Control/Status Register 1.  
For the reserved values, all input switches are disabled to avoid leakage or other undesir-  
able operation. ADC samples taken with reserved bit settings are undefined.  
Single-Ended:  
0000 = ANA0  
0001 = ANA1  
0010 = ANA2  
0011 = ANA3  
0100 = ANA4  
0101 = ANA5  
0110 = ANA6  
0111 = ANA7  
1000 = Reserved  
1001 = Reserved  
1010 = Reserved  
1011 = Reserved  
1100 = Reserved  
1101 = Reserved  
1110 = Reserved  
1111 = Reserved  
PS024314-0308  
Analog-to-Digital Converter  
Z8 Encore! XP® F0823 Series  
Product Specification  
124  
ADC Control/Status Register 1  
The second ADC Control register contains the voltage reference level selection bit.  
Table 73. ADC Control/Status Register 1 (ADCCTL1)  
BITS  
7
6
5
4
3
2
1
0
REFSELH  
Reserved  
FIELD  
RESET  
R/W  
1
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F71H  
ADDR  
REFSELH—Voltage Reference Level Select High Bit; in conjunction with the Low bit  
(REFSELL) in ADC Control Register 0, this determines the level of the internal voltage  
reference; the following details the effects of {REFSELH, REFSELL}; this reference is  
independent of the Comparator reference  
00= Internal Reference Disabled, reference comes from external pin  
01= Internal Reference set to 1.0 V  
10= Internal Reference set to 2.0 V (default)  
ADC Data High Byte Register  
The ADC Data High Byte register contains the upper eight bits of the ADC output. The  
output is an 11-bit two’s complement value. During a single-shot conversion, this value is  
invalid. Access to the ADC Data High Byte register is read-only. Reading the ADC Data  
High Byte register latches data in the ADC Low Bits register.  
Table 74. ADC Data High Byte Register (ADCD_H)  
BITS  
7
6
5
4
3
2
1
0
ADCDH  
F72H  
FIELD  
RESET  
R/W  
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
ADDR  
ADCDH—ADC Data High Byte  
This byte contains the upper eight bits of the ADC output. These bits are not valid during a  
single-shot conversion. During a continuous conversion, the most recent conversion out-  
put is held in this register. These bits are undefined after a Reset.  
PS024314-0308  
Analog-to-Digital Converter  
Z8 Encore! XP® F0823 Series  
Product Specification  
125  
ADC Data Low Bits Register  
The ADC Data Low Byte register contains the lower bits of the ADC output as well as an  
overflow status bit. The output is a 11-bit two’s complement value. During a single-shot  
conversion, this value is invalid. Access to the ADC Data Low Byte register is read-only.  
Reading the ADC Data High Byte register latches data in the ADC Low Bits register.  
Table 75. ADC Data Low Bits Register (ADCD_L)  
BITS  
7
6
5
4
3
2
1
0
ADCDL  
Reserved  
OVF  
FIELD  
RESET  
R/W  
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
F73H  
ADDR  
ADCDL—ADC Data Low Bits  
These bits are the least significant three bits of the 11-bits of the ADC output. These bits  
are undefined after a Reset.  
Reserved—Undefined when read  
OVF—Overflow Status  
0= An overflow did not occur in the digital filter for the current sample  
1= An overflow did occur in the digital filter for the current sample  
PS024314-0308  
Analog-to-Digital Converter  
Z8 Encore! XP® F0823 Series  
Product Specification  
126  
PS024314-0308  
Analog-to-Digital Converter  
Z8 Encore! XP® F0823 Series  
Product Specification  
127  
Comparator  
Z8 Encore! XP® F0823 Series devices feature a general purpose comparator that com-  
pares two analog input signals. A GPIO (CINP) pin provides the positive comparator  
input. The negative input (CINN) can be taken from either an external GPIO pin or an  
internal reference. The output is available as an interrupt source or can be routed to an  
external pin using the GPIO multiplex. The features of Comparator include:  
Two inputs which can be connected up using the GPIO multiplex (MUX)  
One input can be connected to a programmable internal reference  
One input can be connected to the on-chip temperature sensor  
Output can be either an interrupt source or an output to an external pin  
Operation  
One of the comparator inputs can be connected to an internal reference which is a user  
selectable reference that is user programmable with 200 mV resolution.  
The comparator can be powered down to save on supply current. For details, see Power  
Control Register 0 on page 32.  
Because of the propagation delay of the comparator, it is not recommended to enable  
the comparator without first disabling interrupts and waiting for the comparator output  
to settle. Doing so can result in spurious interrupts after comparator enabling. The fol-  
lowing example shows how to safely enable the comparator:  
Caution:  
di  
ld cmp0  
nop  
nop  
; wait for output to settle  
clr irq0 ; clear any spurious interrupts pending  
ei  
Comparator Control Register Definitions  
Comparator Control Register  
The Comparator Control register (CMPCTL) configures the comparator inputs and sets  
the value of the internal voltage reference.  
PS024314-0308  
Comparator  
Z8 Encore! XP® F0823 Series  
Product Specification  
128  
Table 76. Comparator Control Register (CMP0)  
BITS  
7
6
5
4
3
2
1
0
INPSEL  
INNSEL  
REFLVL  
Reserved  
FIELD  
RESET  
R/W  
0
0
0
1
0
1
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F90H  
ADDR  
INPSEL—Signal Select for Positive Input  
0 = GPIO pin used as positive comparator input  
1 = temperature sensor used as positive comparator input  
INNSEL—Signal Select for Negative Input  
0 = internal reference disabled, GPIO pin used as negative comparator input  
1 = internal reference enabled as negative comparator input  
REFLVL—Internal Reference Voltage Level  
This reference is independent of the ADC voltage reference.  
Note:  
0000 = 0.0 V  
0001 = 0.2 V  
0010 = 0.4 V  
0011 = 0.6 V  
0100 = 0.8 V  
0101 = 1.0 V (Default)  
0110 = 1.2 V  
0111 = 1.4 V  
1000 = 1.6 V  
1001 = 1.8 V  
1010–1111 = Reserved  
Reserved—R/W bits must be 0 during writes; 0 when read  
PS024314-0308  
Comparator  
Z8 Encore! XP® F0823 Series  
Product Specification  
129  
Flash Memory  
The products in Z8 Encore! XP® F0823 Series features either 8 KB (8192), 4 KB (4096),  
2 KB (2048) or 1 KB (1024) of non-volatile Flash memory with read/write/erase capabil-  
ity. Flash Memory can be programmed and erased in-circuit by either user code or through  
the On-Chip Debugger.  
The Flash Memory array is arranged in pages with 512 bytes per page. The 512-byte page  
is the minimum Flash block size that can be erased. Each page is divided into 8 rows of 64  
bytes.  
For program/data protection, the Flash memory is also divided into sectors. In the  
Z8 Encore! XP F0823 Series, these sectors are either 1024 bytes (in the 8 KB devices) or  
512 bytes in size (all other memory sizes); each sector maps to a page. Page and sector  
sizes are not generally equal.  
The first two bytes of the Flash Program memory are used as Flash Option Bits. For more  
information on their operation, see Flash Option Bits on page 141.  
Table 77 describes the Flash memory configuration for each device in the Z8 Encore! XP  
F0823 Series. Figure 20 displays the Flash memory arrangement.  
Table 77. Z8 Encore! XP F0823 Series Flash Memory Configurations  
Flash Size  
KB (Bytes)  
Flash  
Program Memory  
Addresses  
Flash Sector  
Size (bytes)  
Part Number  
Z8F08x3  
Pages  
8 (8192)  
4 (4096)  
2 (2048)  
1 (1024)  
16  
8
0000H–1FFFH  
0000H–0FFFH  
0000H–07FFH  
0000H–03FFH  
1024  
512  
512  
512  
Z8F04x3  
Z8F02x3  
4
Z8F01x3  
2
PS024314-0308  
Flash Memory  
Z8 Encore! XP® F0823 Series  
Product Specification  
130  
Figure 20. Flash Memory Arrangement  
Flash Information Area  
The Flash information area is separate from program memory and is mapped to the  
address range FE00Hto FFFFH. Not all these addresses are accessible. Factory trim values  
for the analog peripherals are stored here. Factory calibration data for the ADC is also  
stored here.  
PS024314-0308  
Flash Memory  
Z8 Encore! XP® F0823 Series  
Product Specification  
131  
Operation  
The Flash Controller programs and erases Flash memory. The Flash Controller provides  
the proper Flash controls and timing for Byte Programming, Page Erase, and Mass Erase  
of Flash memory.  
The Flash Controller contains several protection mechanisms to prevent accidental  
programming or erasure. These mechanism operate on the page, sector and full-memory  
levels.  
The Flowchart in Figure 21 displays basic Flash Controller operation. The following sub-  
sections provide details about the various operations (Lock, Unlock, Byte Programming,  
Page Protect, Page Unprotect, Page Select Page Erase, and Mass Erase) displayed in  
Figure 21.  
PS024314-0308  
Flash Memory  
Z8 Encore! XP® F0823 Series  
Product Specification  
132  
Reset  
Lock State 0  
Write Page  
Select Register  
Write FCTL  
No  
73H  
Yes  
Lock State 1  
Writes to Page Select  
Register in Lock State 1  
result in a return to  
Lock State 0  
Write FCTL  
No  
8CH  
Yes  
Write Page  
Select Register  
No  
Page Select  
values match?  
Yes  
Yes  
Page in  
Protected Sector?  
Byte Program  
Write FCTL  
No  
Page  
Yes  
Unlocked  
95H  
No  
Page Erase  
Program/Erase  
Enabled  
Figure 21. Flash Controller Operation Flowchart  
PS024314-0308  
Flash Memory  
Z8 Encore! XP® F0823 Series  
Product Specification  
133  
Flash Operation Timing Using the Flash Frequency Registers  
Before performing either a program or erase operation on Flash memory, you must first  
configure the Flash Frequency High and Low Byte registers. The Flash Frequency regis-  
ters allow programming and erasing of the Flash with system clock frequencies ranging  
from 32 kHz (32768 Hz) through 20 MHz.  
The Flash Frequency High and Low Byte registers combine to form a 16-bit value,  
FFREQ, to control timing for Flash program and erase operations. The 16-bit binary Flash  
Frequency value must contain the system clock frequency (in kHz). This value is  
calculated using the following equation:  
System Clock Frequency (Hz)  
FFREQ[15:0] = -------------------------------------------------------------------------------  
1000  
Flash programming and erasure are not supported for system clock frequencies below  
32 kHz (32768 Hz) or above 20 MHz. The Flash Frequency High and Low Byte  
registers must be loaded with the correct value to ensure operation of Z8 Encore! XP®  
F0823 Series devices.  
Caution:  
Flash Code Protection Against External Access  
The user code contained within the Flash memory can be protected against external access  
with the On-Chip Debugger. Programming the FRPFlash Option Bit prevents reading of  
the user code with the On-Chip Debugger. For more information, see Flash Option Bits on  
page 141 and On-Chip Debugger on page 151.  
Flash Code Protection Against Accidental Program and Erasure  
Z8 Encore! XP F0823 Series provides several levels of protection against accidental pro-  
gram and erasure of the Flash memory contents. This protection is provided by a combina-  
tion of the Flash Option bits, the register locking mechanism, the page select redundancy  
and the sector level protection control of the Flash Controller.  
Flash Code Protection Using the Flash Option Bits  
The FRPand FWPFlash Option Bits combine to provide three levels of Flash Program  
Memory protection as listed in Table 78. For more information, see Flash Option Bits on  
page 141.  
PS024314-0308  
Flash Memory  
Z8 Encore! XP® F0823 Series  
Product Specification  
134  
.
Table 78. Flash Code Protection Using the Flash Option Bits  
FWP Flash Code Protection Description  
0
Programming and erasing disabled for all of Flash Program Memory. In user  
code programming, Page Erase, and Mass Erase are all disabled. Mass Erase  
is available through the On-Chip Debugger.  
1
Programming, Page Erase, and Mass Erase are enabled for all of Flash  
Program Memory.  
Flash Code Protection Using the Flash Controller  
At Reset, the Flash Controller locks to prevent accidental program or erasure of the Flash  
memory. To program or erase the Flash memory, first write the Page Select Register with  
the target page. Unlock the Flash Controller by making two consecutive writes to the  
Flash Control register with the values 73Hand 8CH, sequentially. The Page Select Register  
must be rewritten with the same page previously stored there. If the two Page Select writes  
do not match, the controller reverts to a locked state. If the two writes match, the selected  
page becomes active. For more details, see Figure 21.  
After unlocking a specific page, you can enable either Page Program or Erase. Writing the  
value 95Hcauses a Page Erase only if the active page resides in a sector that is not  
protected. Any other value written to the Flash Control register locks the Flash Controller.  
Mass Erase is not allowed in the user code but only in through the Debug Port.  
After unlocking a specific page, you can also write to any byte on that page. After a byte is  
written, the page remains unlocked, allowing for subsequent writes to other bytes on the  
same page. Further writes to the Flash Control Register cause the active page to revert to a  
locked state.  
Sector Based Flash Protection  
The final protection mechanism is implemented on a per-sector basis. The Flash memories  
of Z8 Encore! XP devices are divided into maximum number of 8 sectors. A sector is 1/8  
of the total size of the Flash memory, unless this value is smaller than the page size, in  
which case the sector and page sizes are equal.  
The Sector Protect Register controls the protection state of each Flash sector. This register  
is shared with the Page Select Register. It is accessed by writing 73Hfollowed by 5EHto  
the Flash controller. The next write to the Flash Control Register targets the Sector Protect  
Register.  
The Sector Protect Register is initialized to 0 on reset, putting each sector into an  
unprotected state. When a bit in the Sector Protect Register is written to 1, the  
corresponding sector can no longer be written or erased by the CPU. External Flash pro-  
gramming through the OCD or via the Flash Controller Bypass mode are unaffected. After  
PS024314-0308  
Flash Memory  
Z8 Encore! XP® F0823 Series  
Product Specification  
135  
a bit of the Sector Protect Register has been set, it cannot be cleared except by powering  
down the device.  
Byte Programming  
The Flash Memory is enabled for byte programming after unlocking the Flash Controller  
and successfully enabling either Mass Erase or Page Erase. When the Flash Controller is  
unlocked and Mass Erase is successfully completed, all Program Memory locations are  
available for byte programming. In contrast, when the Flash Controller is unlocked and  
Page Erase is successfully enabled, only the locations of the selected page are available for  
byte programming. An erased Flash byte contains all 1’s (FFH). The programming  
operation can only be used to change bits from 1 to 0. To change a Flash bit (or multiple  
bits) from 0 to 1 requires execution of either the Page Erase or Mass Erase commands.  
Byte Programming is accomplished using the On-Chip Debugger's Write Memory  
command or eZ8 CPU execution of the LDCor LDCIinstructions. For a description of the  
LDCand LDCIinstructions, refer to eZ8 CPU Core User Manual (UM0128) available for  
download at www.zilog.com. While the Flash Controller programs the Flash memory, the  
eZ8 CPU idles but the system clock and on-chip peripherals continue to operate. To exit  
programming mode and lock the Flash, write any value to the Flash Control register,  
except the Mass Erase or Page Erase commands.  
The byte at each address of the Flash memory cannot be programmed (any bits written  
to 0) more than twice before an erase cycle occurs. Doing so may result in corrupted  
data at the target byte.  
Caution:  
Page Erase  
The Flash memory can be erased one page (512 bytes) at a time. Page Erasing the Flash  
memory sets all bytes in that page to the value FFH. The Flash Page Select register  
identifies the page to be erased. Only a page residing in an unprotected sector can be  
erased. With the Flash Controller unlocked and the active page set, writing the value 95h  
to the Flash Control register initiates the Page Erase operation. While the Flash Controller  
executes the Page Erase operation, the eZ8 CPU idles but the system clock and on-chip  
peripherals continue to operate. The eZ8 CPU resumes operation after the Page Erase  
operation completes. If the Page Erase operation is performed using the On-Chip Debug-  
ger, poll the Flash Status register to determine when the Page Erase operation is complete.  
When the Page Erase is complete, the Flash Controller returns to its locked state.  
Mass Erase  
The Flash memory can also be Mass Erased using the Flash Controller, but only by using  
the On-Chip Debugger. Mass Erasing the Flash memory sets all bytes to the value FFH.  
With the Flash Controller unlocked and the Mass Erase successfully enabled, writing the  
PS024314-0308  
Flash Memory  
Z8 Encore! XP® F0823 Series  
Product Specification  
136  
value 63Hto the Flash Control register initiates the Mass Erase operation. While the Flash  
Controller executes the Mass Erase operation, the eZ8 CPU idles but the system clock and  
on-chip peripherals continue to operate. Using the On-Chip Debugger, poll the Flash  
Status register to determine when the Mass Erase operation is complete. When the Mass  
Erase is complete, the Flash Controller returns to its locked state.  
Flash Controller Bypass  
The Flash Controller can be bypassed and the control signals for the Flash memory  
brought out to the GPIO pins. Bypassing the Flash Controller allows faster Row Program-  
ming algorithms by controlling the Flash programming signals directly.  
Row programing is recommended for gang programming applications and large volume  
customers who do not require in-circuit initial programming of the Flash memory. Page  
Erase operations are also supported when the Flash Controller is bypassed.  
For more information on bypassing the Flash Controller, refer to Third-Party Flash Pro-  
gramming Support for Z8 Encore! (AN0117) available for download at www.zilog.com.  
Flash Controller Behavior in DEBUG Mode  
The following changes in behavior of the Flash Controller occur when the Flash  
Controller is accessed using the On-Chip Debugger:  
The Flash Write Protect option bit is ignored  
The Flash Sector Protect register is ignored for programming and erase operations  
Programming operations are not limited to the page selected in the Page Select  
register  
Bits in the Flash Sector Protect register can be written to one or zero  
The second write of the Page Select register to unlock the Flash Controller is not  
necessary  
The Page Select register can be written when the Flash Controller is unlocked  
The Mass Erase command is enabled through the Flash Control register  
For security reasons, Flash controller allows only a single page to be opened for write/  
erase. When writing multiple Flash pages, the Flash controller must go through the un-  
lock sequence again to select another page.  
Caution:  
PS024314-0308  
Flash Memory  
Z8 Encore! XP® F0823 Series  
Product Specification  
137  
Flash Control Register Definitions  
Flash Control Register  
The Flash Controller must be unlocked using the Flash Control (FTCTL) register before  
programming or erasing the Flash memory. Writing the sequence 73H8CH, sequentially,  
to the Flash Control register unlocks the Flash Controller. When the Flash Controller is  
unlocked, the Flash memory can be enabled for Mass Erase or Page Erase by writing the  
appropriate enable command to the FCTL. Page Erase applies only to the active page  
selected in Flash Page Select register. Mass Erase is enabled only through the On-Chip  
Debugger. Writing an invalid value or an invalid sequence returns the Flash Controller to  
its locked state. The Write-only Flash Control Register shares its Register File address  
with the read-only Flash Status Register.  
Table 79. Flash Control Register (FCTL)  
BITS  
7
6
5
4
3
2
1
0
FCMD  
FF8H  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
ADDR  
FCMD—Flash Command  
73H = First unlock command  
8CH = Second unlock command  
95H = Page Erase command (must be third command in sequence to initiate Page Erase)  
63H = Mass Erase command (must be third command in sequence to initiate Mass Erase)  
5EH = Enable Flash Sector Protect Register Access  
Flash Status Register  
The Flash Status register indicates the current state of the Flash Controller. This register  
can be read at any time. The read-only Flash Status Register shares its Register File  
address with the write-only Flash Control Register.  
Table 80. Flash Status Register (FSTAT)  
BITS  
7
6
5
4
3
2
1
0
Reserved  
FSTAT  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
FF8H  
ADDR  
PS024314-0308  
Flash Memory  
Z8 Encore! XP® F0823 Series  
Product Specification  
138  
Reserved—0 when read  
FSTAT—Flash Controller Status  
000000 = Flash Controller locked  
000001 = First unlock command received (73H written)  
000010 = Second unlock command received (8CH written)  
000011 = Flash Controller unlocked  
000100 = Sector protect register selected  
001xxx = Program operation in progress  
010xxx = Page erase operation in progress  
100xxx = Mass erase operation in progress  
Flash Page Select Register  
The Flash Page Select (FPS) register shares address space with the Flash Sector Protect  
Register. Unless the Flash controller is unlocked and written with 5EH, writes to this  
address target the Flash Page Select Register.  
The register is used to select one of the eight available Flash memory pages to be pro-  
grammed or erased. Each Flash Page contains 512 bytes of Flash memory. During a Page  
Erase operation, all Flash memory having addresses with the most significant 7-bits given  
by FPS[6:0] are chosen for program/erase operation.  
Table 81. Flash Page Select Register (FPS)  
BITS  
7
6
5
4
3
2
1
0
INFO_EN  
PAGE  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FF9H  
ADDR  
INFO_EN—Information Area Enable  
0 = Information Area us not selected  
1 = Information Area is selected. The Information Area is mapped into the Program Mem-  
ory address space at addresses FE00Hthrough FFFFH.  
PAGE—Page Select  
This 7-bit field identifies the Flash memory page for Page Erase and page unlocking.  
Program Memory Address[15:9] = PAGE[6:0]. For the Z8F04x3 devices, the upper 4 bits  
must always be 0. For the Z8F02x3 devices, the upper 5 bits must always be 0. For the  
Z8F01x3 devices, the upper 6 bits must always be 0.  
PS024314-0308  
Flash Memory  
Z8 Encore! XP® F0823 Series  
Product Specification  
139  
Flash Sector Protect Register  
The Flash Sector Protect (FPROT) register is shared with the Flash Page Select Register.  
When the Flash Control Register is written with 73Hfollowed by 5EH, the next write to  
this address targets the Flash Sector Protect Register. In all other cases, it targets the Flash  
Page Select Register.  
This register selects one of the 8 available Flash memory sectors to be protected. The reset  
state of each Sector Protect bit is an unprotected state. After a sector is protected by setting  
its corresponding register bit, it cannot be unprotected (the register bit cannot be cleared)  
without powering down the device.  
Table 82. Flash Sector Protect Register (FPROT)  
BITS  
7
6
5
4
3
2
1
0
SPROT7 SPROT6 SPROT5 SPROT4 SPROT3 SPROT2 SPROT1 SPROT0  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FF9H  
ADDR  
SPROT7-SPROT0—Sector Protection  
Each bit corresponds to a 512 bytes Flash sector. For the Z8F08x3 devices, the upper 3 bits  
must be zero. For the Z8F04x3 devices all bits are used. For the Z8F02x3 devices, the  
upper 4 bits are unused. For the Z8F01x3 devices, the upper 6 bits are unused.  
Flash Frequency High and Low Byte Registers  
The Flash Frequency High (FFREQH) and Low Byte (FFREQL) registers combine to  
form a 16-bit value, FFREQ, to control timing for Flash program and erase operations.  
The 16-bit binary Flash Frequency value must contain the system clock frequency (in  
kHz) and is calculated using the following equation:  
System Clock Frequency  
FFREQ[15:0] = {FFREQH[7:0],FFREQL[7:0]} = ------------------------------------------------------------------  
1000  
The Flash Frequency High and Low Byte registers must be loaded with the correct value  
to ensure proper operation of the device. Also, Flash programming and erasure is not  
supported for system clock frequencies below 20 kHz or above 20 MHz.  
Caution:  
PS024314-0308  
Flash Memory  
Z8 Encore! XP® F0823 Series  
Product Specification  
140  
Table 83. Flash Frequency High Byte Register (FFREQH)  
BITS  
7
6
5
4
3
2
1
0
FFREQH  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FFAH  
ADDR  
FFREQH—Flash Frequency High Byte  
High byte of the 16-bit Flash Frequency value  
Table 84. Flash Frequency Low Byte Register (FFREQL)  
BITS  
7
6
5
4
3
2
1
0
FFREQL  
FIELD  
RESET  
R/W  
0
R/W  
FFBH  
ADDR  
FFREQL—Flash Frequency Low Byte  
Low byte of the 16-bit Flash Frequency value  
PS024314-0308  
Flash Memory  
Z8 Encore! XP® F0823 Series  
Product Specification  
141  
Flash Option Bits  
Programmable Flash option bits allow user configuration of certain aspects of  
Z8 Encore! XP® F0823 Series operation. The feature configuration data is stored in the  
Flash program memory and loaded into holding registers during Reset. The features  
available for control through the Flash Option Bits include:  
Watchdog Timer time-out response selection–interrupt or system reset  
Watchdog Timer always on (enabled at Reset)  
The ability to prevent unwanted read access to user code in Program Memory  
The ability to prevent accidental programming and erasure of all or a portion of the  
user code in Program Memory  
Voltage Brownout configuration-always enabled or disabled during STOP mode to  
reduce STOP mode power consumption  
Factory trimming information for the internal precision oscillator  
Factory calibration values for ADC  
Factory serialization and randomized lot identifier (optional)  
Operation  
Option Bit Configuration By Reset  
Each time the Flash Option Bits are programmed or erased, the device must be Reset for  
the change to take effect. During any reset operation (System Reset, Power-On Reset, or  
Stop Mode Recovery), the Flash Option Bits are automatically read from the Flash  
Program Memory and written to Option Configuration registers. The Option  
Configuration registers control operation of the devices within the Z8 Encore! XP F0823  
Series. Option Bit control is established before the device exits Reset and the eZ8 CPU  
begins code execution. The Option Configuration registers are not part of the Register File  
and are not accessible for read or write access.  
Option Bit Types  
User Option Bits  
The user option bits are contained in the first two bytes of program memory. Access to  
these bits has been provided because these locations contain application-specific device  
PS024314-0308  
Flash Option Bits  
Z8 Encore! XP® F0823 Series  
Product Specification  
142  
configurations. The information contained here is lost when page 0 of the Program  
Memory is erased.  
Trim Option Bits  
The trim option bits are contained in the information page of the Flash memory. These bits  
are factory programmed values required to optimize the operation of onboard analog cir-  
cuitry and cannot be permanently altered. Program Memory may be erased without endan-  
gering these values. It is possible to alter working values of these bits by accessing the  
Trim Bit Address and Data Registers, but these working values are lost after a power loss  
or any other reset event.  
There are 32 bytes of trim data. To modify one of these values the user code must first  
write a value between 00Hand 1FHinto the Trim Bit Address Register. The next write to  
the Trim Bit Data register changes the working value of the target trim data byte.  
Reading the trim data requires the user code to write a value between 00Hand 1FHinto the  
Trim Bit Address Register. The next read from the Trim Bit Data register returns the work-  
ing value of the target trim data byte.  
The trim address range is from information address 20-3F only. The remainder of the  
information page is not accessible through the trim bit address and data registers.  
Note:  
Calibration Option Bits  
The calibration option bits are also contained in the information page. These bits are fac-  
tory programmed values intended for use in software correcting the device’s analog per-  
formance. To read these values, the user code must employ the LDC instruction to access  
the information area of the address space as defined in Flash Information Area on page 15  
Serialization Bits  
As an optional feature, Zilog® is able to provide factory-programmed serialization. For  
serialized products, the individual devices are programmed with unique serial numbers.  
These serial numbers are binary values, four bytes in length. The numbers increase in size  
with each device, but gaps in the serial sequence may exist.  
These serial numbers are stored in the Flash information page (for more details, see Read-  
ing the Flash Information Page on page 143 and Serialization Data on page 148) and are  
unaffected by mass erasure of the device’s Flash memory.  
Randomized Lot Identification Bits  
As an optional feature, Zilog is able to provide a factory-programmed random lot  
identifier. With this feature, all devices in a given production lot are programmed with the  
same random number. This random number is uniquely regenerated for each successive  
production lot and is not likely to be repeated.  
PS024314-0308  
Flash Option Bits  
Z8 Encore! XP® F0823 Series  
Product Specification  
143  
The randomized lot identifier is a 32 byte binary value, stored in the flash information  
page (for more details, see Reading the Flash Information Page on page 143 and Random-  
ized Lot Identifier on page 149) and is unaffected by mass erasure of the device's flash  
memory.  
Reading the Flash Information Page  
The following code example shows how to read data from the Flash Information Area.  
; get value at info address 60 (FE60h)  
ldx FPS, #%80 ; enable access to flash info page  
ld R0, #%FE  
ld R1, #%60  
ldc R2, @RR0 ; R2 now contains the calibration value  
Flash Option Bit Control Register Definitions  
Trim Bit Address Register  
The Trim Bit Address (TRMADR) register contains the target address for an access to the  
trim option bits.  
Table 85. Trim Bit Address Register (TRMADR)  
BITS  
7
6
5
4
3
2
1
0
TRMADR - Trim Bit Address (00H to 1FH)  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FF6H  
ADDR  
PS024314-0308  
Flash Option Bits  
Z8 Encore! XP® F0823 Series  
Product Specification  
144  
Trim Bit Data Register  
The Trim Bid Data (TRMDR) register contains the read or write data for access to the trim  
option bits.  
Table 86. Trim Bit Data Register (TRMDR)  
BITS  
7
6
5
4
3
2
1
0
TRMDR - Trim Bit Data  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FF7H  
ADDR  
Flash Option Bit Address Space  
The first two bytes of Flash program memory at addresses 0000Hand 0001Hare reserved  
for the user-programmable Flash option bits.  
Flash Program Memory Address 0000H  
Table 87. Flash Option Bits at Program Memory Address 0000H  
BITS  
7
6
5
4
3
2
FRP  
1
0
FWP  
WDT_RES WDT_AO  
Reserved  
VBO_AO  
Reserved  
FIELD  
RESET  
R/W  
U
U
U
U
U
U
U
U
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Program Memory 0000H  
ADDR  
Note: U = Unchanged by Reset. R/W = Read/Write.  
WDT_RES—Watchdog Timer Reset  
0 = Watchdog Timer time-out generates an interrupt request. Interrupts must be globally  
enabled for the eZ8 CPU to acknowledge the interrupt request.  
1 = Watchdog Timer time-out causes a system reset. This setting is the default for unpro-  
grammed (erased) Flash.  
WDT_AO—Watchdog Timer Always ON  
0 = Watchdog Timer is automatically enabled upon application of system power. Watch-  
dog Timer can not be disabled.  
1 = Watchdog Timer is enabled upon execution of the WDT instruction. Once enabled, the  
PS024314-0308  
Flash Option Bits  
Z8 Encore! XP® F0823 Series  
Product Specification  
145  
Watchdog Timer can only be disabled by a Reset or Stop Mode Recovery. This setting is  
the default for unprogrammed (erased) Flash.  
Reserved—R/W bits must be 1 during writes; 1 when read.  
VBO_AO—Voltage Brownout Protection Always ON  
0 = Voltage Brownout Protection can be disabled in STOP mode to reduce total power  
consumption. For the block to be disabled, the power control register bit must also be writ-  
ten (see Power Control Register 0 on page 32).  
1 = Voltage Brownout Protection is always enabled including during STOP mode. This  
setting is the default for unprogrammed (erased) Flash.  
FRP—Flash Read Protect  
0 = User program code is inaccessible. Limited control features are available through the  
On-Chip Debugger.  
1 = User program code is accessible. All On-Chip Debugger commands are enabled. This  
setting is the default for unprogrammed (erased) Flash.  
Reserved—Must be 1  
FWP—Flash Write Protect  
This Option Bit provides Flash Program Memory protection:  
0 = Programming and erasure disabled for all of Flash Program Memory. Programming,  
Page Erase, and Mass Erase through User Code is disabled. Mass Erase is available using  
the On-Chip Debugger.  
1 = Programming, Page Erase, and Mass Erase are enabled for all of Flash program  
memory.  
Flash Program Memory Address 0001H  
Table 88. Flash Options Bits at Program Memory Address 0001H  
BITS  
7
6
5
4
3
2
1
0
Reserved  
XTLDIS  
Reserved  
FIELD  
RESET  
R/W  
U
U
U
U
U
U
U
U
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Program Memory 0001H  
ADDR  
Note: U = Unchanged by Reset. R/W = Read/Write.  
Reserved—R/W must be 1 during writes; 1 when read  
XTLDIS—State of Crystal Oscillator at Reset  
PS024314-0308  
Flash Option Bits  
Z8 Encore! XP® F0823 Series  
Product Specification  
146  
This bit only enables the crystal oscillator. Its selection as system clock must be done man-  
ually.  
Note:  
0 = Crystal oscillator is enabled during reset, resulting in longer reset timing  
1 = Crystal oscillator is disabled during reset, resulting in shorter reset timing  
Programming the XTLDIS bit to zero on 8-pin versions of this device prevents any fur-  
ther communication via the debug pin. This is due to the fact that the XIN and DBG  
functions are shared on pin 2 of this package. Do not program this bit to zero on 8-pin  
devices unless no further debugging or Flash programming is required.  
Warning:  
Trim Bit Address Space  
All available Trim bit addresses and their functions are listed in Table 89 through  
Table 91.  
Trim Bit Address 0000H—Reserved  
Table 89. Trim Options Bits at Address 0000H  
BITS  
7
6
5
4
3
2
1
0
Reserved  
FIELD  
RESET  
R/W  
U
U
U
U
U
U
U
U
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Information Page Memory 0020H  
ADDR  
Note: U = Unchanged by Reset. R/W = Read/Write.  
Reserved—Altering this register may result in incorrect device operation.  
Trim Bit Address 0001H—Reserved  
Table 90. Trim Option Bits at 0001H  
BITS  
7
6
5
4
3
2
1
0
Reserved  
FIELD  
RESET  
R/W  
U
U
U
U
U
U
U
U
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Information Page Memory 0021H  
ADDR  
Note: U = Unchanged by Reset. R/W = Read/Write.  
PS024314-0308  
Flash Option Bits  
Z8 Encore! XP® F0823 Series  
Product Specification  
147  
Reserved— Altering this register may result in incorrect device operation.  
Trim Bit Address 0002H  
Table 91. Trim Option Bits at 0002H (TIPO)  
BITS  
7
6
5
4
3
2
1
0
IPO_TRIM  
FIELD  
RESET  
R/W  
U
R/W  
Information Page Memory 0022H  
ADDR  
Note: U = Unchanged by Reset. R/W = Read/Write.  
IPO_TRIM—Internal Precision Oscillator Trim Byte  
Contains trimming bits for Internal Precision Oscillator.  
Trim Bit Address 0003H—Reserved  
Trim Bit Address 0004H—Reserved  
Zilog Calibration Data  
ADC Calibration Data  
Table 92. ADC Calibration Bits  
BITS  
7
6
5
4
3
2
1
0
ADC_CAL  
FIELD  
RESET  
R/W  
U
U
U
U
U
U
U
U
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Information Page Memory 0060H–007DH  
ADDR  
Note: U = Unchanged by Reset. R/W = Read/Write.  
ADC_CAL—Analog-to-Digital Converter Calibration Values  
Contains factory calibrated values for ADC gain and offset compensation. Each of the ten  
supported modes has one byte of offset calibration and two bytes of gain calibration.  
These values are read by the software to compensate ADC measurements as detailed in  
PS024314-0308  
Flash Option Bits  
Z8 Encore! XP® F0823 Series  
Product Specification  
148  
Software Compensation Procedure on page 122. The location of each calibration byte is  
provided in Table 93 on page 148.  
Table 93. ADC Calibration Data Location  
Info Page  
Address  
Memory  
Address  
Compensation  
Usage  
Reference  
Type  
ADC Mode  
60  
08  
09  
63  
0A  
0B  
66  
0C  
0D  
FE60  
FE08  
FE09  
FE63  
FE0A  
FE0B  
FE66  
FE0C  
FE0D  
Offset  
Single-Ended Unbuffered  
Single-Ended Unbuffered  
Single-Ended Unbuffered  
Single-Ended Unbuffered  
Single-Ended Unbuffered  
Single-Ended Unbuffered  
Single-Ended Unbuffered  
Single-Ended Unbuffered  
Single-Ended Unbuffered  
Internal 2.0 V  
Internal 2.0 V  
Internal 2.0 V  
Internal 1.0 V  
Internal 1.0 V  
Internal 1.0 V  
External 2.0 V  
External 2.0 V  
External 2.0 V  
Gain High Byte  
Gain Low Byte  
Offset  
Gain High Byte  
Gain Low Byte  
Offset  
Gain High Byte  
Gain Low Byte  
Serialization Data  
Table 94. Serial Number at 001C-001F (S_NUM)  
BITS  
7
6
5
4
3
2
1
0
S_NUM  
FIELD  
RESET  
R/W  
U
U
U
U
U
U
U
U
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Information Page Memory 001C-001F  
ADDR  
Note: U = Unchanged by Reset. R/W = Read/Write.  
S_NUM— Serial Number Byte  
The serial number is a unique four-byte binary value.  
PS024314-0308  
Flash Option Bits  
Z8 Encore! XP® F0823 Series  
Product Specification  
149  
Table 95. Serialization Data Locations  
Info Page  
Address  
Memory Address Usage  
Serial Number Byte 3 (most  
significant)  
1C  
FE1C  
1D  
1E  
FE1D  
FE1E  
Serial Number Byte 2  
Serial Number Byte 1  
Serial Number Byte 0 (least  
significant)  
1F  
FE1F  
Randomized Lot Identifier  
Table 96. Lot Identification Number (RAND_LOT)  
BITS  
7
6
5
4
3
2
1
0
RAND_LOT  
FIELD  
RESET  
R/W  
U
U
U
U
U
U
U
U
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Interspersed throughout Information Page Memory  
ADDR  
Note: U = Unchanged by Reset. R/W = Read/Write.  
RAND_LOT— Randomized Lot ID  
The randomized lot ID is a 32 byte binary value that changes for each production lot.  
Table 97. Randomized Lot ID Locations  
Info Page Memory  
Address Address Usage  
3C  
3D  
3E  
3F  
58  
59  
5A  
5B  
FE3C  
FE3D  
FE3E  
FE3F  
FE58  
FE59  
FE5A  
FE5B  
Randomized Lot ID Byte 31 (most significant)  
Randomized Lot ID Byte 30  
Randomized Lot ID Byte 29  
Randomized Lot ID Byte 28  
Randomized Lot ID Byte 27  
Randomized Lot ID Byte 26  
Randomized Lot ID Byte 25  
Randomized Lot ID Byte 24  
PS024314-0308  
Flash Option Bits  
Z8 Encore! XP® F0823 Series  
Product Specification  
150  
Table 97. Randomized Lot ID Locations (Continued)  
Info Page Memory  
Address Address Usage  
5C  
5D  
5E  
5F  
61  
62  
64  
65  
67  
68  
6A  
6B  
6D  
6E  
70  
71  
73  
74  
76  
77  
79  
7A  
7C  
7D  
FE5C  
FE5D  
FE5E  
FE5F  
FE61  
FE62  
FE64  
FE65  
FE67  
FE68  
FE6A  
FE6B  
FE6D  
FE6E  
FE70  
FE71  
FE73  
FE74  
FE76  
FE77  
FE79  
FE7A  
FE7C  
FE7D  
Randomized Lot ID Byte 23  
Randomized Lot ID Byte 22  
Randomized Lot ID Byte 21  
Randomized Lot ID Byte 20  
Randomized Lot ID Byte 19  
Randomized Lot ID Byte 18  
Randomized Lot ID Byte 17  
Randomized Lot ID Byte 16  
Randomized Lot ID Byte 15  
Randomized Lot ID Byte 14  
Randomized Lot ID Byte 13  
Randomized Lot ID Byte 12  
Randomized Lot ID Byte 11  
Randomized Lot ID Byte 10  
Randomized Lot ID Byte 9  
Randomized Lot ID Byte 8  
Randomized Lot ID Byte 7  
Randomized Lot ID Byte 6  
Randomized Lot ID Byte 5  
Randomized Lot ID Byte 4  
Randomized Lot ID Byte 3  
Randomized Lot ID Byte 2  
Randomized Lot ID Byte 1  
Randomized Lot ID Byte 0 (least significant)  
PS024314-0308  
Flash Option Bits  
Z8 Encore! XP® F0823 Series  
Product Specification  
151  
On-Chip Debugger  
Z8 Encore! XP® F0823 Series devices contain an integrated On-Chip Debugger (OCD)  
that provides advanced debugging features that include:  
Single pin interface  
Reading and writing of the register file  
Reading and writing of program and data memory  
Setting of breakpoints and watchpoints  
Executing eZ8 CPU instructions  
Debug pin sharing with general-purpose input-output function to maximize the pins  
available  
Architecture  
The on-chip debugger consists of four primary functional blocks: transmitter, receiver,  
auto-baud detector/generator, and debug controller. Figure 22 displays the architecture of  
the OCD.  
System Clock  
Auto-Baud  
Detector/Generator  
Transmitter  
Receiver  
Debug Controller  
DBG Pin  
Figure 22. On-Chip Debugger Block Diagram  
PS024314-0308  
On-Chip Debugger  
Z8 Encore! XP® F0823 Series  
Product Specification  
152  
Operation  
The following sections describes the operation of OCD.  
OCD Interface  
The OCD uses the DBG pin for communication with an external host. This one-pin  
interface is a bidirectional open-drain interface that transmits and receives data. Data  
transmission is half-duplex, in that transmit and receive cannot occur simultaneously. The  
serial data on the DBG pin is sent using the standard asynchronous data format defined in  
RS-232. This pin creates an interface from the Z8 Encore! XP F0823 Series products to  
the serial port of a host PC using minimal external hardware.Two different methods for  
connecting the DBG pin to an RS-232 interface are displayed in Figure 23 and Figure 24.  
The recommended method is the buffered implementation depicted in Figure 24. The  
DBG pin has a internal pull-up resistor which is sufficient for some applications (for more  
details on the pull-up current, see Electrical Characteristics on page 193). For OCD  
operation at higher data rates or in noisy systems, an external pull-up resistor is  
recommended.  
For operation of the OCD, all power pins (VDD and AVDD) must be supplied with power,  
and all ground pins (VSS and AVSS) must be properly grounded. The DBG pin is open-  
drain and may require an external pull-up resistor to ensure proper operation.  
Caution:  
VDD  
RS-232  
10 kΩ  
Transceiver  
Schottky  
Diode  
RS-232 TX  
DBG Pin  
RS-232 RX  
Figure 23. Interfacing the On-Chip Debugger’s DBG Pin with an RS-232 Interface (1)  
PS024314-0308  
On-Chip Debugger  
Z8 Encore! XP® F0823 Series  
Product Specification  
153  
VDD  
RS-232  
10 kΩ  
Transceiver  
Open-Drain  
Buffer  
RS-232 TX  
RS-232 RX  
DBG Pin  
Figure 24. Interfacing the On-Chip Debugger’s DBG Pin with an RS-232 Interface (2)  
DEBUG Mode  
The operating characteristics of the devices in DEBUG mode are:  
The eZ8 CPU fetch unit stops, idling the eZ8 CPU, unless directed by the OCD to execute  
specific instructions  
The system clock operates unless in STOP mode  
All enabled on-chip peripherals operate unless in STOP mode  
Automatically exits HALT mode  
Constantly refreshes the Watchdog Timer, if enabled.  
Entering DEBUG Mode  
The device enters DEBUG mode following the operations below:  
The device enters DEBUG mode after the eZ8 CPU executes a BRK(breakpoint) instruc-  
tion  
If the DBG pin is held Low during the most recent clock cycle of System Reset, the part  
enters DEBUG mode upon exiting System Reset  
Holding the DBG pin Low for an additional 5000 (minimum) clock cycles after reset  
(making sure to account for any specified frequency error if using an internal oscillator)  
prevents a false interpretation of an Autobaud sequence (see OCD Auto-Baud Detector/  
Generator on page 154).  
Note:  
If the PA2/RESET pin is held Low while a 32-bit key sequence is issued to the PA0/DBG  
pin, the DBG feature is unlocked. After releasing PA2/RESET, it is pulled high. At this  
PS024314-0308  
On-Chip Debugger  
Z8 Encore! XP® F0823 Series  
Product Specification  
154  
point, the PA0/DBG pin can be used to autobaud and cause the device to enter  
DEBUG mode. For more details, see OCD Unlock Sequence (8-Pin Devices Only) on  
page 156.  
Exiting DEBUG Mode  
The device exits DEBUG mode following any of these operations:  
Clearing the DBGMODE bit in the OCD Control Register to 0  
Power-On Reset  
Voltage Brownout reset  
Watchdog Timer reset  
Asserting the RESET pin Low to initiate a Reset  
Driving the DBG pin Low while the device is in STOP mode initiates a system reset  
OCD Data Format  
The OCD interface uses the asynchronous data format defined for RS-232. Each character  
is transmitted as 1 Start bit, 8 data bits (least-significant bit first), and 1 Stop bit as  
displayed in Figure 25.  
START  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
STOP  
Figure 25. OCD Data Format  
When responding to a request for data, the OCD may commence transmitting immediately  
after receiving the stop bit of an incoming frame. Therefore, when sending the stop bit, the  
host must not actively drive the DBG pin High for more than 0.5 bit times. It is recom-  
mended that, if possible, the host drives the DBG pin using an open-drain output.  
Note:  
OCD Auto-Baud Detector/Generator  
To run over a range of baud rates (data bits per second) with various system clock  
frequencies, the OCD contains an auto-baud detector/generator. After a reset, the OCD is  
idle until it receives data. The OCD requires that the first character sent from the host is  
the character 80H. The character 80Hhas eight continuous bits Low (one Start bit plus 7  
data bits), framed between High bits. The auto-baud detector measures this period and sets  
the OCD baud rate generator accordingly.  
The auto-baud detector/generator is clocked by the system clock. The minimum baud rate  
is the system clock frequency divided by 512. For optimal operation with asynchronous  
PS024314-0308  
On-Chip Debugger  
Z8 Encore! XP® F0823 Series  
Product Specification  
155  
datastreams, the maximum recommended baud rate is the system clock frequency divided  
by eight. The maximum possible baud rate for asynchronous datastreams is the system  
clock frequency divided by four, but this theoretical maximum is possible only for low  
noise designs with clean signals. Table 98 lists minimum and recommended maximum  
baud rates for sample crystal frequencies.  
Table 98. OCD Baud-Rate Limits  
Recommended Recommended  
System Clock  
Maximum Baud Standard PC  
Minimum Baud  
Frequency (MHz)  
Rate (kbps)  
1382.4  
Baud Rate (bps) Rate (kbps)  
5.5296  
691,200  
2400  
1.08  
0.032768 (32 kHz)  
4.096  
0.064  
If the OCD receives a Serial Break (nine or more continuous bits Low) the auto-baud  
detector/generator resets. Reconfigure the auto-baud detector/generator by sending 80H.  
OCD Serial Errors  
The OCD detects any of the following error conditions on the DBG pin:  
Serial Break (a minimum of nine continuous bits Low)  
Framing Error (received Stop bit is Low)  
Transmit Collision (OCD and host simultaneous transmission detected by the OCD)  
When the OCD detects one of these errors, it aborts any command currently in progress,  
transmits a four character long Serial Break back to the host, and resets the auto-baud  
detector/generator. A Framing Error or Transmit Collision may be caused by the host  
sending a Serial Break to the OCD. Because of the open-drain nature of the interface,  
returning a Serial Break break back to the host only extends the length of the Serial Break  
if the host releases the Serial Break early.  
The host transmits a Serial Break on the DBGpin when first connecting to the Z8 Encore!  
XP F0823 Series devices or when recovering from an error. A Serial Break from the host  
resets the auto-baud generator/detector but does not reset the OCD Control register. A  
Serial Break leaves the device in DEBUG mode if that is the current mode. The OCD is  
held in Reset until the end of the Serial Break when the DBG pin returns High. Because of  
the open-drain nature of the DBG pin, the host sends a Serial Break to the OCD even if the  
OCD is transmitting a character.  
PS024314-0308  
On-Chip Debugger  
Z8 Encore! XP® F0823 Series  
Product Specification  
156  
OCD Unlock Sequence (8-Pin Devices Only)  
Because of pin-sharing on the 8-pin device, an unlock sequence must be performed to  
access the DBG pin. If this sequence is not completed during a system reset, then the PA0/  
DBG pin functions only as a GPIO pin.  
The following sequence unlocks the DBG pin:  
1. Hold PA2/RESET Low.  
2. Wait 5 ms for the internal reset sequence to complete.  
3. Send the following bytes serially to the debug pin:  
DBG80H (autobaud)  
DBGEBH  
DBG5AH  
DBG70H  
DBGCDH (32-bit unlock key)  
4. Release PA2/RESET. The PA0/DBG pin is now identical in function to that of the  
DBG pin on the 20- or 28-pin device. To enter DEBUG mode, re-autobaud and write  
80Hto the OCD control register (see On-Chip Debugger Commands on page 157).  
Breakpoints  
Execution breakpoints are generated using the BRKinstruction (opcode 00H). When the  
eZ8 CPU decodes a BRKinstruction, it signals the OCD. If breakpoints are enabled, the  
OCD enters DEBUG mode and idles the eZ8 CPU. If breakpoints are not enabled, the  
OCD ignores the BRK signal and the BRKinstruction operates as an NOPinstruction.  
Breakpoints in Flash Memory  
The BRKinstruction is opcode 00H, which corresponds to the fully programmed state of a  
byte in Flash memory. To implement a breakpoint, write 00Hto the required break  
address, overwriting the current instruction. To remove a breakpoint, the corresponding  
page of Flash memory must be erased and reprogrammed with the original data.  
Runtime Counter  
The OCD contains a 16-bit Runtime Counter. It counts system clock cycles between  
breakpoints. The counter starts counting when the OCD leaves DEBUG mode and stops  
counting when it enters DEBUG mode again or when it reaches the maximum count of  
FFFFH.  
PS024314-0308  
On-Chip Debugger  
Z8 Encore! XP® F0823 Series  
Product Specification  
157  
On-Chip Debugger Commands  
The host communicates to the OCD by sending OCD commands using the DBG interface.  
During normal operation, only a subset of the OCD commands are available. In DEBUG  
mode, all OCD commands become available unless the user code and control registers are  
protected by programming the Flash Read Protect Option bit (FRP). The Flash Read  
Protect Option bit prevents the code in memory from being read out of Z8 Encore! XP®  
F0823 Series products. When this option is enabled, several of the OCD commands are  
disabled. Table 99 on page 162 is a summary of the OCD commands. Each OCD com-  
mand is described in further detail in the bulleted list following this table. Table 99 on  
page 162 also indicates those commands that operate when the device is not in DEBUG  
mode (normal operation) and those commands that are disabled by programming the Flash  
Read Protect Option bit.  
Enabled when  
Command NOT in DEBUG  
Disabled by Flash Read Protect  
Option Bit  
Debug Command  
Byte  
00H  
mode?  
Read OCD Revision  
Reserved  
Yes  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
Read OCD Status Register  
Read Runtime Counter  
Write OCD Control Register  
Read OCD Control Register  
Write Program Counter  
Read Program Counter  
Write Register  
Yes  
Yes  
Yes  
Cannot clear DBGMODE bit.  
Disabled.  
Disabled.  
Only writes of the Flash Memory Control  
registers are allowed. Additionally, only  
the Mass Erase command is allowed to  
be written to the Flash Control register.  
Read Register  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
Disabled.  
Write Program Memory  
Read Program Memory  
Write Data Memory  
Read Data Memory  
Read Program Memory CRC  
Reserved  
Disabled.  
Disabled.  
Yes.  
Step Instruction  
Disabled.  
PS024314-0308  
On-Chip Debugger  
Z8 Encore! XP® F0823 Series  
Product Specification  
158  
Enabled when  
Command NOT in DEBUG  
Disabled by Flash Read Protect  
Option Bit  
Debug Command  
Stuff Instruction  
Execute Instruction  
Reserved  
Byte  
mode?  
11H  
Disabled.  
Disabled.  
12H  
13H–FFH  
In the following list of OCD Commands, data and commands sent from the host to the  
OCD are identified by ’DBGCommand/Data’. Data sent from the OCD back to the host  
is identified by ’DBGData’.  
Read OCD Revision (00H)—The Read OCD Revision command determines the ver-  
sion of the OCD. If OCD commands are added, removed, or changed, this revision number  
changes.  
DBG 00H  
DBG OCDRev[15:8] (Major revision number)  
DBG OCDRev[7:0] (Minor revision number)  
Read OCD Status Register (02H)—The Read OCD Status register command reads the  
OCDSTAT register.  
DBG 02H  
DBG OCDSTAT[7:0]  
Read Runtime Counter (03H)—The Runtime Counter counts system clock cycles in  
between breakpoints. The 16-bit Runtime Counter counts up from 0000Hand stops at the  
maximum count of FFFFH. The Runtime Counter is overwritten during the Write Memo-  
ry, Read Memory, Write Register, Read Register, Read Memory CRC, Step Instruction,  
Stuff Instruction, and Execute Instruction commands.  
DBG 03H  
DBG RuntimeCounter[15:8]  
DBG RuntimeCounter[7:0]  
Write OCD Control Register (04H)—The Write OCD Control Register command  
writes the data that follows to the OCDCTL register. When the Flash Read Protect Option  
Bit is enabled, the DBGMODE bit (OCDCTL[7]) can only be set to 1, it cannot be cleared  
to 0 and the only method of returning the device to normal operating mode is to reset the  
device.  
DBG 04H  
DBG OCDCTL[7:0]  
Read OCD Control Register (05H)—The Read OCD Control Register command reads  
the value of the OCDCTL register.  
PS024314-0308  
On-Chip Debugger  
Z8 Encore! XP® F0823 Series  
Product Specification  
159  
DBG 05H  
DBG OCDCTL[7:0]  
Write Program Counter (06H)—The Write Program Counter command writes the data  
that follows to the eZ8 CPU’s Program Counter (PC). If the device is not in DEBUG mode  
or if the Flash Read Protect Option bit is enabled, the Program Counter (PC) values are  
discarded.  
DBG 06H  
DBG ProgramCounter[15:8]  
DBG ProgramCounter[7:0]  
Read Program Counter (07H)—The Read Program Counter command reads the value  
in the eZ8 CPU’s Program Counter (PC). If the device is not in DEBUG mode or if the  
Flash Read Protect Option bit is enabled, this command returns FFFFH.  
DBG 07H  
DBG ProgramCounter[15:8]  
DBG ProgramCounter[7:0]  
Write Register (08H)—The Write Register command writes data to the Register File.  
Data can be written 1–256 bytes at a time (256 bytes can be written by setting size to 0). If  
the device is not in DEBUG mode, the address and data values are discarded. If the Flash  
Read Protect Option bit is enabled, only writes to the Flash Control Registers are allowed  
and all other register write data values are discarded.  
DBG 08H  
DBG {4’h0,Register Address[11:8]}  
DBG Register Address[7:0]  
DBG Size[7:0]  
DBG 1-256 data bytes  
Read Register (09H)—The Read Register command reads data from the Register File.  
Data can be read 1–256 bytes at a time (256 bytes can be read by setting size to 0). If the  
device is not in DEBUG mode or if the Flash Read Protect Option bit is enabled, this com-  
mand returns FFHfor all the data values.  
DBG 09H  
DBG {4’h0,Register Address[11:8]  
DBG Register Address[7:0]  
DBG Size[7:0]  
DBG 1-256 data bytes  
Write Program Memory (0AH)—The Write Program Memory command writes data  
to Program Memory. This command is equivalent to the LDCand LDCIinstructions. Data  
can be written 1–65536 bytes at a time (65536 bytes can be written by setting size to 0).  
The on-chip Flash Controller must be written to and unlocked for the programming oper-  
ation to occur. If the Flash Controller is not unlocked, the data is discarded. If the device  
PS024314-0308  
On-Chip Debugger  
Z8 Encore! XP® F0823 Series  
Product Specification  
160  
is not in DEBUG mode or if the Flash Read Protect Option bit is enabled, the data is dis-  
carded.  
DBG 0AH  
DBG Program Memory Address[15:8]  
DBG Program Memory Address[7:0]  
DBG Size[15:8]  
DBG Size[7:0]  
DBG 1-65536 data bytes  
Read Program Memory (0BH)—The Read Program Memory command reads data  
from Program Memory. This command is equivalent to the LDCand LDCIinstructions.  
Data can be read 1–65536 bytes at a time (65536 bytes can be read by setting size to 0). If  
the device is not in DEBUG mode or if the Flash Read Protect Option Bit is enabled, this  
command returns FFHfor the data.  
DBG 0BH  
DBG Program Memory Address[15:8]  
DBG Program Memory Address[7:0]  
DBG Size[15:8]  
DBG Size[7:0]  
DBG 1-65536 data bytes  
Write Data Memory (0CH)—The Write Data Memory command writes data to Data  
Memory. This command is equivalent to the LDEand LDEIinstructions. Data can be writ-  
ten 1–65536 bytes at a time (65536 bytes can be written by setting size to 0). If the device  
is not in DEBUG mode or if the Flash Read Protect Option Bit is enabled, the data is dis-  
carded.  
DBG 0CH  
DBG Data Memory Address[15:8]  
DBG Data Memory Address[7:0]  
DBG Size[15:8]  
DBG Size[7:0]  
DBG 1-65536 data bytes  
Read Data Memory (0DH)—The Read Data Memory command reads from Data Mem-  
ory. This command is equivalent to the LDEand LDEIinstructions. Data can be read 1 to  
65536 bytes at a time (65536 bytes can be read by setting size to 0). If the device is not in  
DEBUG mode, this command returns FFHfor the data.  
DBG 0DH  
DBG Data Memory Address[15:8]  
DBG Data Memory Address[7:0]  
DBG Size[15:8]  
DBG Size[7:0]  
DBG 1-65536 data bytes  
PS024314-0308  
On-Chip Debugger  
Z8 Encore! XP® F0823 Series  
Product Specification  
161  
Read Program Memory CRC (0EH)—The Read Program Memory Cyclic Redundan-  
cy Check (CRC) command computes and returns the CRC of Program Memory using the  
16-bit CRC-CCITT polynomial. If the device is not in DEBUG mode, this command re-  
turns FFFFHfor the CRC value. Unlike most other OCD Read commands, there is a delay  
from issuing of the command until the OCD returns the data. The OCD reads the Program  
Memory, calculates the CRC value, and returns the result. The delay is a function of the  
Program Memory size and is approximately equal to the system clock period multiplied  
by the number of bytes in the Program Memory.  
DBG 0EH  
DBG CRC[15:8]  
DBG CRC[7:0]  
Step Instruction (10H)—The Step Instruction command steps one assembly instruction  
at the current Program Counter (PC) location. If the device is not in DEBUG mode or the  
Flash Read Protect Option bit is enabled, the OCD ignores this command.  
DBG 10H  
Stuff Instruction (11H)—The Stuff Instruction command steps one assembly instruction  
and allows specification of the first byte of the instruction. The remaining 0-4 bytes of the  
instruction are read from Program Memory. This command is useful for stepping over in-  
structions where the first byte of the instruction has been overwritten by a Breakpoint. If  
the device is not in DEBUG mode or the Flash Read Protect Option bit is enabled, the  
OCD ignores this command.  
DBG 11H  
DBG opcode[7:0]  
Execute Instruction (12H)—The Execute Instruction command allows sending an  
entire instruction to be executed to the eZ8 CPU. This command can also step over break-  
points. The number of bytes to send for the instruction depends on the opcode. If the device  
is not in DEBUG mode or the Flash Read Protect Option bit is enabled, this command  
reads and discards one byte.  
DBG 12H  
DBG 1-5 byte opcode  
On-Chip Debugger Control Register Definitions  
OCD Control Register  
The OCD Control register controls the state of the OCD. This register is used to enter or  
exit DEBUG mode and to enable the BRKinstruction. It also resets Z8 Encore! XP® F0823  
Series device.  
PS024314-0308  
On-Chip Debugger  
Z8 Encore! XP® F0823 Series  
Product Specification  
162  
A reset and stop function can be achieved by writing 81Hto this register. A reset and go  
function can be achieved by writing 41Hto this register. If the device is in DEBUG mode,  
a run function can be implemented by writing 40Hto this register.  
.
Table 99. OCD Control Register (OCDCTL)  
BITS  
7
6
5
4
3
2
1
0
DBGMODE BRKEN DBGACK  
Reserved  
RST  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R
R
R
R
R/W  
DBGMODE—DEBUG Mode  
The device enters DEBUG mode when this bit is 1. When in DEBUG mode, the eZ8 CPU  
stops fetching new instructions. Clearing this bit causes the eZ8 CPU to restart. This bit is  
automatically set when a BRKinstruction is decoded and breakpoints are enabled. If the  
Flash Read Protect Option Bit is enabled, this bit can only be cleared by resetting the  
device. It cannot be written to 0.  
0 = Z8 Encore! XP F0823 Series device is operating in NORMAL mode  
1 = Z8 Encore! XP F0823 Series device is in DEBUG mode  
BRKEN—Breakpoint Enable  
This bit controls the behavior of the BRKinstruction (opcode 00H). By default, breakpoints  
are disabled and the BRKinstruction behaves similar to an NOPinstruction. If this bit is 1,  
when a BRKinstruction is decoded, the DBGMODEbit of the OCDCTL register is automati-  
cally set to 1.  
0 = Breakpoints are disabled  
1 = Breakpoints are enabled  
DBGACK—Debug Acknowledge  
This bit enables the debug acknowledge feature. If this bit is set to 1, the OCD sends a  
Debug Acknowledge character (FFH) to the host when a Breakpoint occurs.  
0 = Debug Acknowledge is disabled  
1 = Debug Acknowledge is enabled  
Reserved—0 when read  
RST—Reset  
Setting this bit to 1 resets the Z8F04xA family device. The device goes through a normal  
Power-On Reset sequence with the exception that the OCD is not reset. This bit is auto-  
matically cleared to 0 at the end of reset.  
0 = No effect  
1 = Reset the Flash Read Protect Option Bit device  
PS024314-0308  
On-Chip Debugger  
Z8 Encore! XP® F0823 Series  
Product Specification  
163  
OCD Status Register  
The OCD Status register reports status information about the current state of the debugger  
and the system.  
Table 100. OCD Status Register (OCDSTAT)  
BITS  
7
6
5
4
3
2
1
0
DBG  
HALT  
FRPENB  
Reserved  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
DBG—Debug Status  
0 = NORMAL mode  
1 = DEBUG mode  
HALT—HALT Mode  
0 = Not in HALT mode  
1 = In HALT mode  
FRPENB—Flash Read Protect Option Bit Enable  
0 = FRP bit enabled, that allows disabling of many OCD commands  
1 = FRP bit has no effect  
Reserved—0 when read  
PS024314-0308  
On-Chip Debugger  
Z8 Encore! XP® F0823 Series  
Product Specification  
164  
PS024314-0308  
On-Chip Debugger  
Z8 Encore! XP® F0823 Series  
Product Specification  
165  
Oscillator Control  
Z8 Encore! XP® F0823 Series devices uses three possible clocking schemes, each  
user-selectable:  
On-chip precision trimmed RC oscillator  
External clock drive  
On-chip low power Watchdog Timer oscillator  
In addition, Z8 Encore! XP F0823 Series devices contain clock failure detection and  
recovery circuitry, allowing continued operation despite a failure of the primary oscillator.  
Operation  
This chapter discusses the logic used to select the system clock and handle primary  
oscillator failures. A description of the specific operation of each oscillator is outlined  
elsewhere in this document.  
System Clock Selection  
The oscillator control block selects from the available clocks. Table 101 details each clock  
source and its usage.  
Table 101. Oscillator Configuration and Selection  
Clock Source  
Characteristics  
Required Setup  
Internal Precision  
RC Oscillator  
• 32.8 kHz or 5.53 MHz  
• Unlock and write Oscillator Control  
Register (OSCCTL) to enable and  
select oscillator at either 5.53 MHz or  
32.8 kHz  
• ± 4% accuracy when trimmed  
• No external components required  
External Clock  
Drive  
• 0 to 20 MHz  
• Write GPIO registers to configure PB3  
pin for external clock function  
• Accuracy dependent on external clock  
source  
• Unlock and write OSCCTL to select  
external system clock  
• Apply external clock signal to GPIO  
Internal Watchdog  
Timer Oscillator  
• 10 kHz nominal  
• Enable WDT if not enabled and wait  
until WDT Oscillator is operating.  
• Unlock and write Oscillator Control  
Register (OSCCTL) to enable and  
select oscillator  
• ± 40% accuracy; no external  
components required  
• Very Low power consumption  
PS024314-0308  
Oscillator Control  
Z8 Encore! XP® F0823 Series  
Product Specification  
166  
Unintentional accesses to the oscillator control register can actually stop the chip by  
switching to a non-functioning oscillator. To prevent this condition, the oscillator con-  
trol block employs a register unlocking/locking scheme.  
Caution:  
OSC Control Register Unlocking/Locking  
To write the oscillator control register, unlock it by making two writes to the OSCCTL  
register with the values E7Hfollowed by 18H. A third write to the OSCCTL register  
changes the value of the actual register and returns the register to a locked state. Any other  
sequence of oscillator control register writes has no effect. The values written to unlock  
the register must be ordered correctly, but are not necessarily consecutive. It is possible to  
write to or read from other registers within the unlocking/locking operation.  
When selecting a new clock source, the primary oscillator failure detection circuitry and  
the Watchdog Timer oscillator failure circuitry must be disabled. If POFEN and WOFEN  
are not disabled prior to a clock switch-over, it is possible to generate an interrupt for a  
failure of either oscillator. The Failure detection circuitry can be enabled anytime after a  
successful write of OSCSEL in the oscillator control register.  
The internal precision oscillator is enabled by default. If the user code changes to a  
different oscillator, it is appropriate to disable the IPO for power savings. Disabling the  
IPO does not occur automatically.  
Clock Failure Detection and Recovery  
Primary Oscillator Failure  
Z8 Encore! XP® F0823 Series devices can generate non-maskable interrupt-like events  
when the primary oscillator fails. To maintain system function in this situation, the clock  
failure recovery circuitry automatically forces the Watchdog Timer oscillator to drive the  
system clock. The Watchdog Timer oscillator must be enabled to allow the recovery.  
Although this oscillator runs at a much slower speed than the original system clock, the  
CPU continues to operate, allowing execution of a clock failure vector and software rou-  
tines that either remedy the oscillator failure or issue a failure alert. This automatic switch-  
over is not available if the Watchdog Timer is the primary oscillator. It is also unavailable  
if the Watchdog Timer oscillator is disabled, though it is not necessary to enable the  
Watchdog Timer reset function outlined in the Watchdog Timer on page 87.  
The primary oscillator failure detection circuitry asserts if the system clock frequency  
drops below 1 kHz ±50%. If an external signal is selected as the system oscillator, it is  
possible that a very slow but non-failing clock can generate a failure condition. Under  
these conditions, do not enable the clock failure circuitry (POFEN must be deasserted in  
the OSCCTL register).  
PS024314-0308  
Oscillator Control  
Z8 Encore! XP® F0823 Series  
Product Specification  
167  
Watchdog Timer Failure  
In the event of a Watchdog Timer oscillator failure, a similar non-maskable interrupt-like  
event is issued. This event does not trigger an attendant clock switch-over, but alerts the  
CPU of the failure. After a Watchdog Timer failure, it is no longer possible to detect a  
primary oscillator failure. The failure detection circuitry does not function if the Watchdog  
Timer is used as the primary oscillator or if the Watchdog Timer oscillator has been dis-  
abled. For either of these cases, it is necessary to disable the detection circuitry by deas-  
serting the WDFENbit of the OSCCTL register.  
The Watchdog Timer oscillator failure detection circuit counts system clocks while  
searching for a Watchdog Timer clock. The logic counts 8004 system clock cycles before  
determining that a failure has occurred. The system clock rate determines the speed at  
which the Watchdog Timer failure can be detected. A very slow system clock results in  
very slow detection times.  
It is possible to disable the clock failure detection circuitry as well as all functioning  
clock sources. In this case, the Z8 Encore! XP F0823 Series device ceases functioning  
and can only be recovered by Power-On Reset.  
Caution:  
Oscillator Control Register Definitions  
The following section provides the bit definitions for the Oscillator Control register.  
Oscillator Control Register  
The Oscillator Control register (OSCCTL) enables/disables the various oscillator circuits,  
enables/disables the failure detection/recovery circuitry and selects the primary oscillator,  
which becomes the system clock.  
The Oscillator Control register must be unlocked before writing. Writing the two step  
sequence E7Hfollowed by 18Hto the Oscillator Control Register unlocks it. The register  
is locked at successful completion of a register write to the OSCCTL.  
Table 102. Oscillator Control Register (OSCCTL)  
BITS  
7
6
5
4
3
2
1
0
INTEN  
Reserved WDTEN  
POFEN  
WDFEN  
SCKSEL  
FIELD  
RESET  
R/W  
1
0
1
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
F86H  
ADDR  
PS024314-0308  
Oscillator Control  
Z8 Encore! XP® F0823 Series  
Product Specification  
168  
INTEN—Internal Precision Oscillator Enable  
1 = Internal precision oscillator is enabled  
0 = Internal precision oscillator is disabled  
Reserved—R/W bits must be 0 during writes; 0 when read  
WDTEN—Watchdog Timer Oscillator Enable  
1 = Watchdog Timer oscillator is enabled  
0 = Watchdog Timer oscillator is disabled  
POFEN—Primary Oscillator Failure Detection Enable  
1 = Failure detection and recovery of primary oscillator is enabled  
0 = Failure detection and recovery of primary oscillator is disabled  
WDFEN—Watchdog Timer Oscillator Failure Detection Enable  
1 = Failure detection of Watchdog Timer oscillator is enabled  
0 = Failure detection of Watchdog Timer oscillator is disabled  
SCKSEL—System Clock Oscillator Select  
000 = Internal precision oscillator functions as system clock at 5.53 MHz  
001 = Internal precision oscillator functions as system clock at 32 kHz  
010 = Reserved  
011 = Watchdog Timer oscillator functions as system clock  
100 = External clock signal on PB3 functions as system clock  
101 = Reserved  
110 = Reserved  
111 = Reserved  
PS024314-0308  
Oscillator Control  
Z8 Encore! XP® F0823 Series  
Product Specification  
169  
Internal Precision Oscillator  
The internal precision oscillator (IPO) is designed for use without external components.  
You can either manually trim the oscillator for a non-standard frequency or use the  
automatic factory-trimmed version to achieve a 5.53 MHz frequency. The features of IPO  
include:  
On-chip RC oscillator that does not require external components  
Output frequency of either 5.53 MHz or 32.8 kHz (contains both a fast and a slow mode)  
Trimming possible through Flash option bits with user override  
Elimination of crystals or ceramic resonators in applications where high timing accuracy  
is not required  
Operation  
An 8-bit trimming register, incorporated into the design, compensates for absolute varia-  
tion of oscillator frequency. Once trimmed the oscillator frequency is stable and does not  
require subsequent calibration. Trimming is performed during manufacturing and is not  
necessary for you to repeat unless a frequency other than 5.53 MHz (fast mode) or 32.8  
kHz (slow mode) is required. This trimming is done at +30 °C and a supply voltage of 3.3  
V, so accuracy of this operating point is optimal.  
Power down this block for minimum system power. By default, the oscillator is configured  
through the Flash Option bits. However, the user code can override these trim values as  
described in Trim Bit Address Space on page 146.  
Select one of the two frequencies for the oscillator: 5.53 MHz and 32.8 kHz, using the  
OSCSEL bits in the Oscillator Control on page 165.  
PS024314-0308  
Internal Precision Oscillator  
Z8 Encore! XP® F0823 Series  
Product Specification  
170  
PS024314-0308  
Internal Precision Oscillator  
Z8 Encore! XP® F0823 Series  
Product Specification  
171  
eZ8 CPU Instruction Set  
Assembly Language Programming Introduction  
The eZ8 CPU assembly language provides a means for writing an application program  
without concern for actual memory addresses or machine instruction formats. A program  
written in assembly language is called a source program. Assembly language allows the  
use of symbolic addresses to identify memory locations. It also allows mnemonic codes  
(opcodes and operands) to represent the instructions themselves. The opcodes identify the  
instruction while the operands represent memory locations, registers, or immediate data  
values.  
Each assembly language program consists of a series of symbolic commands called  
statements. Each statement can contain labels, operations, operands, and comments.  
Labels are assigned to a particular instruction step in a source program. The label  
identifies that step in the program as an entry point for use by other instructions.  
The assembly language also includes assembler directives that supplement the machine  
instruction. The assembler directives, or pseudo-ops, are not translated into a machine  
instruction. Rather, the pseudo-ops are interpreted as directives that control or assist the  
assembly process.  
The source program is processed (assembled) by the assembler to obtain a machine  
language program called the object code. The object code is executed by the eZ8 CPU. An  
example segment of an assembly language program is detailed in the following example.  
Assembly Language Source Program Example  
JP START  
; Everything after the semicolon is a comment.  
START:  
; A label called ‘START’. The first instruction (JP START) in this  
; example causes program execution to jump to the point within the  
; program where the STARTlabel occurs.  
LD R4, R7  
; A Load (LD) instruction with two operands. The first operand,  
; Working Register R4, is the destination. The second operand,  
; Working Register R7, is the source. The contents of R7 is  
; written into R4.  
LD 234H, #%01 ; Another Load (LD) instruction with two operands.  
; The first operand, Extended Mode Register Address 234H,  
; identifies the destination. The second operand, Immediate Data  
; value 01H, is the source. The value 01His written into the  
; Register at address 234H.  
PS024314-0308  
eZ8 CPU Instruction Set  
Z8 Encore! XP® F0823 Series  
Product Specification  
172  
Assembly Language Syntax  
For proper instruction execution, eZ8 CPU assembly language syntax requires that the  
operands be written as ‘destination, source’. After assembly, the object code usually has  
the operands in the order ‘source, destination’, but ordering is opcode-dependent. The  
following instruction examples illustrate the format of some basic assembly instructions  
and the resulting object code produced by the assembler. You must follow this binary for-  
mat if you prefer manual program coding or intend to implement your own assembler.  
Example 1  
If the contents of Registers 43Hand 08Hare added and the result is stored in 43H, the  
assembly syntax and resulting object code is:  
Table 103. Assembly Language Syntax Example 1  
ADD  
04  
43H,  
08  
08H  
43  
(ADD dst, src)  
(OPC src, dst)  
Assembly Language Code  
Object Code  
Example 2  
In general, when an instruction format requires an 8-bit register address, that address can  
specify any register location in the range 0–255 or, using Escaped Mode Addressing, a  
Working Register R0–R15. If the contents of Register 43Hand Working Register R8 are  
added and the result is stored in 43H, the assembly syntax and resulting object code is:  
Table 104. Assembly Language Syntax Example 2  
ADD  
04  
43H,  
E8  
R8  
43  
(ADD dst, src)  
(OPC src, dst)  
Assembly Language Code  
Object Code  
See the device-specific Product Specification to determine the exact register file range  
available. The register file size varies, depending on the device type.  
eZ8 CPU Instruction Notation  
In the eZ8 CPU Instruction Summary and Description sections, the operands, condition  
codes, status flags, and address modes are represented by a notational shorthand that is  
described in Table 105.  
PS024314-0308  
eZ8 CPU Instruction Set  
Z8 Encore! XP® F0823 Series  
Product Specification  
173  
.
Table 105. Notational Shorthand  
Notation Description  
Operand Range  
b
Bit  
b
b represents a value from 0 to 7 (000B to 111B).  
cc  
Condition Code  
See Condition Codes overview in the eZ8 CPU  
User Manual.  
DA  
ER  
Direct Address  
Addrs  
Reg  
Addrs represents a number in the range of 0000H  
to FFFFH.  
Extended Addressing Register  
Reg represents a number in the range of 000H to  
FFFH.  
IM  
Ir  
Immediate Data  
#Data  
@Rn  
Data is a number between 00H to FFH.  
n = 0–15.  
Indirect Working Register  
Indirect Register  
IR  
@Reg  
Reg. represents a number in the range of 00H to  
FFH.  
Irr  
Indirect Working Register Pair  
Indirect Register Pair  
@RRp  
@Reg  
p = 0, 2, 4, 6, 8, 10, 12, or 14.  
IRR  
Reg represents an even number in the range 00H  
to FEH  
p
Polarity  
p
Polarity is a single bit binary value of either 0B or  
1B.  
r
Working Register  
Register  
Rn  
n = 0–15.  
R
Reg  
Reg. represents a number in the range of 00H to  
FFH.  
RA  
Relative Address  
X
X represents an index in the range of +127 to –  
128 which is an offset relative to the address of  
the next instruction  
rr  
Working Register Pair  
Register Pair  
RRp  
Reg  
p = 0, 2, 4, 6, 8, 10, 12, or 14.  
RR  
Reg. represents an even number in the range of  
00H to FEH.  
Vector  
X
Vector Address  
Indexed  
Vector  
#Index  
Vector represents a number in the range of 00H  
to FFH.  
The register or register pair to be indexed is offset  
by the signed Index value (#Index) in a +127 to  
-128 range.  
PS024314-0308  
eZ8 CPU Instruction Set  
Z8 Encore! XP® F0823 Series  
Product Specification  
174  
Table 106 lists additional symbols that are used throughout the Instruction Summary and  
Instruction Set Description sections.  
Table 106. Additional Symbols  
Symbol  
dst  
src  
@
Definition  
Destination Operand  
Source Operand  
Indirect Address Prefix  
Stack Pointer  
SP  
PC  
FLAGS  
RP  
#
Program Counter  
Flags Register  
Register Pointer  
Immediate Operand Prefix  
Binary Number Suffix  
Hexadecimal Number Prefix  
Hexadecimal Number Suffix  
B
%
H
Assignment of a value is indicated by an arrow. For example,  
dst dst + src  
indicates the source data is added to the destination data and the result is stored in the  
destination location.  
eZ8 CPU Instruction Classes  
eZ8 CPU instructions are divided functionally into the following groups:  
Arithmetic  
Bit Manipulation  
Block Transfer  
CPU Control  
Load  
Logical  
Program Control  
PS024314-0308  
eZ8 CPU Instruction Set  
Z8 Encore! XP® F0823 Series  
Product Specification  
175  
Rotate and Shift  
Tables 107 through Table 114 contain the instructions belonging to each group and the  
number of operands required for each instruction. Some instructions appear in more than  
one table as these instruction can be considered as a subset of more than one category.  
Within these tables, the source operand is identified as ‘src’, the destination operand  
is ‘dst’ and a condition code is ‘cc’.  
Table 107. Arithmetic Instructions  
Mnemonic  
ADC  
Operands  
dst, src  
dst, src  
dst, src  
dst, src  
dst, src  
dst, src  
dst, src  
dst, src  
dst  
Instruction  
Add with Carry  
ADCX  
ADD  
Add with Carry using Extended Addressing  
Add  
ADDX  
CP  
Add using Extended Addressing  
Compare  
CPC  
Compare with Carry  
Compare with Carry using Extended Addressing  
Compare using Extended Addressing  
Decimal Adjust  
CPCX  
CPX  
DA  
DEC  
dst  
Decrement  
DECW  
INC  
dst  
Decrement Word  
dst  
Increment  
INCW  
MULT  
SBC  
dst  
Increment Word  
dst  
Multiply  
dst, src  
dst, src  
dst, src  
dst, src  
Subtract with Carry  
SBCX  
SUB  
Subtract with Carry using Extended Addressing  
Subtract  
SUBX  
Subtract using Extended Addressing  
PS024314-0308  
eZ8 CPU Instruction Set  
Z8 Encore! XP® F0823 Series  
Product Specification  
176  
Table 108. Bit Manipulation Instructions  
Mnemonic  
BCLR  
BIT  
Operands Instruction  
bit, dst  
p, bit, dst  
bit, dst  
dst  
Bit Clear  
Bit Set or Clear  
Bit Set  
BSET  
BSWAP  
CCF  
Bit Swap  
Complement Carry Flag  
Reset Carry Flag  
Set Carry Flag  
RCF  
SCF  
TCM  
dst, src  
dst, src  
dst, src  
dst, src  
Test Complement Under Mask  
TCMX  
TM  
Test Complement Under Mask using Extended Addressing  
Test Under Mask  
TMX  
Test Under Mask using Extended Addressing  
Table 109. Block Transfer Instructions  
Mnemonic Operands Instruction  
LDCI  
dst, src  
Load Constant to/from Program Memory and Auto-Increment  
Addresses  
LDEI  
dst, src  
Load External Data to/from Data Memory and Auto-Increment  
Addresses  
Table 110. CPU Control Instructions  
Mnemonic Operands  
Instruction  
ATM  
CCF  
DI  
Atomic Execution  
Complement Carry Flag  
Disable Interrupts  
Enable Interrupts  
HALT Mode  
EI  
HALT  
NOP  
RCF  
No Operation  
Reset Carry Flag  
PS024314-0308  
eZ8 CPU Instruction Set  
Z8 Encore! XP® F0823 Series  
Product Specification  
177  
Table 110. CPU Control Instructions (Continued)  
Mnemonic Operands  
Instruction  
SCF  
src  
Set Carry Flag  
SRP  
Set Register Pointer  
STOP Mode  
STOP  
WDT  
Watchdog Timer Refresh  
Table 111. Load Instructions  
Mnemonic Operands Instruction  
CLR  
LD  
dst  
Clear  
Load  
dst, src  
dst, src  
dst, src  
LDC  
LDCI  
Load Constant to/from Program Memory  
Load Constant to/from Program Memory and Auto-Increment  
Addresses  
LDE  
dst, src  
dst, src  
Load External Data to/from Data Memory  
LDEI  
Load External Data to/from Data Memory and Auto-Increment  
Addresses  
LDWX  
LDX  
dst, src  
dst, src  
Load Word using Extended Addressing  
Load using Extended Addressing  
LEA  
dst, X(src) Load Effective Address  
POP  
dst  
dst  
src  
src  
Pop  
POPX  
PUSH  
PUSHX  
Pop using Extended Addressing  
Push  
Push using Extended Addressing  
Table 112. Logical Instructions  
Mnemonic Operands Instruction  
AND  
ANDX  
COM  
OR  
dst, src  
dst, src  
dst  
Logical AND  
Logical AND using Extended Addressing  
Complement  
dst, src  
Logical OR  
PS024314-0308  
eZ8 CPU Instruction Set  
Z8 Encore! XP® F0823 Series  
Product Specification  
178  
Table 112. Logical Instructions (Continued)  
Mnemonic Operands Instruction  
ORX  
dst, src  
dst, src  
dst, src  
Logical OR using Extended Addressing  
XOR  
Logical Exclusive OR  
XORX  
Logical Exclusive OR using Extended Addressing  
Table 113. Program Control Instructions  
Mnemonic  
BRK  
Operands  
Instruction  
On-Chip Debugger Break  
BTJ  
p, bit, src, DA Bit Test and Jump  
BTJNZ  
BTJZ  
CALL  
DJNZ  
IRET  
JP  
bit, src, DA  
bit, src, DA  
dst  
Bit Test and Jump if Non-Zero  
Bit Test and Jump if Zero  
Call Procedure  
dst, src, RA Decrement and Jump Non-Zero  
Interrupt Return  
Jump  
dst  
dst  
DA  
DA  
JP cc  
JR  
Jump Conditional  
Jump Relative  
Jump Relative Conditional  
Return  
JR cc  
RET  
TRAP  
vector  
Software Trap  
Table 114. Rotate and Shift Instructions  
Mnemonic Operands  
Instruction  
BSWAP  
RL  
dst  
dst  
dst  
dst  
dst  
Bit Swap  
Rotate Left  
RLC  
RR  
Rotate Left through Carry  
Rotate Right  
RRC  
Rotate Right through Carry  
PS024314-0308  
eZ8 CPU Instruction Set  
Z8 Encore! XP® F0823 Series  
Product Specification  
179  
Table 114. Rotate and Shift Instructions (Continued)  
Mnemonic Operands  
Instruction  
SRA  
dst  
dst  
dst  
Shift Right Arithmetic  
Shift Right Logical  
Swap Nibbles  
SRL  
SWAP  
eZ8 CPU Instruction Summary  
Table 115 summarizes the eZ8 CPU instructions. The table identifies the addressing  
modes employed by the instruction, the effect upon the Flags register, the number of CPU  
clock cycles required for the instruction fetch, and the number of CPU clock cycles  
required for the instruction execution.  
.
Table 115. eZ8 CPU Instruction Summary  
Address Mode  
Flags  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Fetch Instr.  
Symbolic Operation  
dst  
src  
C
Z
S
V
D
H
Cycles Cycles  
ADC dst, src  
dst dst + src + C  
r
r
12  
13  
14  
15  
16  
17  
18  
19  
02  
03  
04  
05  
06  
07  
08  
09  
*
*
*
*
0
*
2
2
3
3
3
3
4
4
2
2
3
3
3
3
4
4
3
4
3
4
3
4
3
3
3
4
3
4
3
4
3
3
r
R
Ir  
R
R
IR  
IM  
IM  
ER  
IM  
r
R
IR  
ER  
ER  
r
ADCX dst, src  
ADD dst, src  
dst dst + src + C  
dst dst + src  
*
*
*
*
*
*
*
*
0
0
*
*
r
Ir  
R
R
R
IR  
IM  
IM  
ER  
IM  
R
IR  
ER  
ER  
ADDX dst, src  
Flags Notation:  
dst dst + src  
*
*
*
*
0
*
* = Value is a function of the result of the operation.  
– = Unaffected  
X = Undefined  
0 = Reset to 0  
1 = Set to 1  
PS024314-0308  
eZ8 CPU Instruction Set  
Z8 Encore! XP® F0823 Series  
Product Specification  
180  
Table 115. eZ8 CPU Instruction Summary (Continued)  
Address Mode  
Flags  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Fetch Instr.  
Symbolic Operation  
dst  
src  
C
Z
S
V
D
H
Cycles Cycles  
AND dst, src  
dst dst AND src  
r
r
52  
*
*
0
2
2
3
3
3
3
4
4
1
3
4
3
4
3
4
3
3
2
r
Ir  
R
53  
54  
55  
56  
57  
58  
59  
2F  
R
R
IR  
IM  
IM  
ER  
IM  
R
IR  
ER  
ER  
ANDX dst, src  
ATM  
dst dst AND src  
*
*
0
Block all interrupt and  
DMA requests during  
execution of the next 3  
instructions  
BCLR bit, dst  
BIT p, bit, dst  
BRK  
dst[bit] 0  
r
r
E2  
E2  
00  
E2  
D5  
F6  
F7  
F6  
F7  
F6  
F7  
D4  
D6  
X
*
*
0
0
0
2
2
1
2
2
3
3
3
3
3
3
2
3
2
2
1
2
2
3
4
3
4
3
4
6
3
dst[bit] p  
Debugger Break  
dst[bit] 1  
BSET bit, dst  
BSWAP dst  
r
dst[7:0] dst[0:7]  
R
BTJ p, bit, src, dst if src[bit] = p  
PC PC + X  
r
Ir  
r
BTJNZ bit, src, dst if src[bit] = 1  
PC PC + X  
Ir  
r
BTJZ bit, src, dst if src[bit] = 0  
PC PC + X  
Ir  
CALL dst  
SP SP -2  
@SP PC  
PC dst  
IRR  
DA  
CCF  
C ~C  
EF  
B0  
B1  
*
–-  
1
2
2
2
2
3
CLR dst  
dst 00H  
R
IR  
Flags Notation:  
* = Value is a function of the result of the operation.  
– = Unaffected  
X = Undefined  
0 = Reset to 0  
1 = Set to 1  
PS024314-0308  
eZ8 CPU Instruction Set  
Z8 Encore! XP® F0823 Series  
Product Specification  
181  
Table 115. eZ8 CPU Instruction Summary (Continued)  
Address Mode  
Flags  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Fetch Instr.  
Symbolic Operation  
dst  
src  
C
Z
S
V
D
H
Cycles Cycles  
COM dst  
dst ~dst  
R
60  
*
*
0
2
2
2
2
3
3
3
3
3
3
4
4
4
4
5
5
4
4
2
2
2
2
2
2
1
2
2
3
3
4
3
4
3
4
3
4
3
4
3
4
3
3
3
3
2
3
2
3
5
6
2
3
IR  
r
61  
A2  
CP dst, src  
dst - src  
r
*
*
*
*
r
Ir  
R
A3  
R
A4  
R
IR  
IM  
IM  
r
A5  
R
A6  
IR  
r
A7  
CPC dst, src  
dst - src - C  
1F A2  
1F A3  
1F A4  
1F A5  
1F A6  
1F A7  
1F A8  
1F A9  
A8  
*
*
*
*
r
Ir  
R
R
R
IR  
IM  
IM  
ER  
IM  
ER  
IM  
R
IR  
ER  
ER  
ER  
ER  
R
CPCX dst, src  
CPX dst, src  
DA dst  
dst - src - C  
dst - src  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
A9  
dst DA(dst)  
dst dst - 1  
dst dst - 1  
IRQCTL[7] 0  
40  
*
X
*
IR  
R
41  
DEC dst  
30  
IR  
RR  
IRR  
31  
DECW dst  
80  
*
81  
DI  
8F  
DJNZ dst, RA  
dst dst – 1  
if dst 0  
PC PC + X  
r
0A-FA  
EI  
IRQCTL[7] 1  
9F  
1
2
Flags Notation:  
* = Value is a function of the result of the operation.  
– = Unaffected  
X = Undefined  
0 = Reset to 0  
1 = Set to 1  
PS024314-0308  
eZ8 CPU Instruction Set  
Z8 Encore! XP® F0823 Series  
Product Specification  
182  
Table 115. eZ8 CPU Instruction Summary (Continued)  
Address Mode  
Flags  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Fetch Instr.  
Symbolic Operation  
HALT Mode  
dst  
src  
C
Z
S
V
D
H
Cycles Cycles  
HALT  
7F  
1
2
2
1
2
2
1
2
2
3
2
5
6
5
INC dst  
dst dst + 1  
R
20  
21  
*
*
IR  
r
0E-FE  
A0  
INCW dst  
IRET  
dst dst + 1  
RR  
IRR  
*
*
*
*
*
*
*
*
*
A1  
FLAGS @SP  
SP SP + 1  
PC @SP  
SP SP + 2  
IRQCTL[7] 1  
BF  
JP dst  
PC dst  
DA  
IRR  
DA  
8D  
C4  
3
2
3
2
3
2
JP cc, dst  
if cc is true  
PC dst  
0D-FD  
JR dst  
PC PC + X  
DA  
DA  
8B  
2
2
2
2
JR cc, dst  
if cc is true  
PC PC + X  
0B-FB  
LD dst, rc  
dst src  
r
r
IM  
0C-FC  
C7  
D7  
E3  
2
3
3
2
3
3
3
3
2
3
2
3
4
3
2
4
2
3
3
3
X(r)  
r
X(r)  
r
Ir  
R
R
E4  
R
IR  
IM  
IM  
r
E5  
R
E6  
IR  
Ir  
E7  
F3  
IR  
R
F5  
Flags Notation:  
PS024314-0308  
* = Value is a function of the result of the operation.  
– = Unaffected  
X = Undefined  
0 = Reset to 0  
1 = Set to 1  
eZ8 CPU Instruction Set  
Z8 Encore! XP® F0823 Series  
Product Specification  
183  
Table 115. eZ8 CPU Instruction Summary (Continued)  
Address Mode  
Flags  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Fetch Instr.  
Symbolic Operation  
dst  
src  
Irr  
C
Z
S
V
D
H
Cycles Cycles  
LDC dst, src  
dst src  
r
C2  
2
2
2
2
2
5
9
5
9
9
Ir  
Irr  
Ir  
Irr  
r
C5  
D2  
C3  
D3  
LDCI dst, src  
dst src  
r r + 1  
rr rr + 1  
Irr  
Ir  
Irr  
LDE dst, src  
LDEI dst, src  
dst src  
r
Irr  
r
82  
92  
83  
93  
2
2
2
2
5
5
9
9
Irr  
Ir  
dst src  
r r + 1  
rr rr + 1  
Irr  
Ir  
Irr  
LDWX dst, src  
LDX dst, src  
dst src  
dst src  
ER  
r
ER  
ER  
ER  
IRR  
IRR  
X(rr)  
r
1FE8  
84  
85  
86  
87  
88  
89  
94  
95  
96  
97  
E8  
E9  
98  
99  
F4  
5
3
3
3
3
3
3
3
3
3
3
4
4
3
3
2
4
2
3
4
5
4
4
2
3
4
5
2
2
3
5
8
Ir  
R
IR  
r
X(rr)  
ER  
ER  
IRR  
IRR  
ER  
ER  
r
r
Ir  
R
IR  
ER  
IM  
LEA dst, X(src)  
MULT dst  
dst src + X  
X(r)  
X(rr)  
rr  
dst[15:0] ←  
dst[15:8] * dst[7:0]  
RR  
NOP  
No operation  
0F  
1
2
Flags Notation:  
* = Value is a function of the result of the operation.  
– = Unaffected  
X = Undefined  
0 = Reset to 0  
1 = Set to 1  
PS024314-0308  
eZ8 CPU Instruction Set  
Z8 Encore! XP® F0823 Series  
Product Specification  
184  
Table 115. eZ8 CPU Instruction Summary (Continued)  
Address Mode  
Flags  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Fetch Instr.  
Symbolic Operation  
dst  
src  
C
Z
S
V
D
H
Cycles Cycles  
OR dst, src  
dst dst OR src  
r
r
42  
*
*
0
2
2
3
3
3
3
4
4
2
2
3
3
4
3
4
3
4
3
3
2
3
2
r
Ir  
R
43  
44  
45  
46  
47  
48  
49  
50  
51  
D8  
R
R
IR  
IM  
IM  
ER  
IM  
R
IR  
ER  
ER  
R
ORX dst, src  
POP dst  
dst dst OR src  
*
*
0
dst @SP  
SP SP + 1  
IR  
ER  
POPX dst  
PUSH src  
dst @SP  
SP SP + 1  
SP SP – 1  
@SP src  
R
70  
71  
2
2
3
2
3
2
IR  
IM  
IF70  
PUSHX src  
SP SP – 1  
@SP src  
ER  
C8  
3
2
RCF  
RET  
C 0  
CF  
AF  
0
1
1
2
4
PC @SP  
SP SP + 2  
RL dst  
R
90  
91  
*
*
*
*
2
2
2
3
C
D7 D6 D5 D4 D3 D2 D1 D0  
dst  
IR  
RLC dst  
R
10  
11  
*
*
*
*
2
2
2
3
C
D7 D6 D5 D4 D3 D2 D1 D0  
dst  
IR  
Flags Notation:  
* = Value is a function of the result of the operation.  
– = Unaffected  
X = Undefined  
0 = Reset to 0  
1 = Set to 1  
PS024314-0308  
eZ8 CPU Instruction Set  
Z8 Encore! XP® F0823 Series  
Product Specification  
185  
Table 115. eZ8 CPU Instruction Summary (Continued)  
Address Mode  
Flags  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Fetch Instr.  
Symbolic Operation  
dst  
src  
C
Z
S
V
D
H
Cycles Cycles  
RR dst  
R
E0  
*
*
*
*
2
2
2
3
D7 D6 D5 D4 D3 D2 D1 D0  
dst  
C
IR  
E1  
RRC dst  
R
C0  
C1  
*
*
*
*
*
*
*
*
1
*
2
2
2
3
D7 D6 D5 D4 D3 D2 D1 D0  
dst  
C
IR  
SBC dst, src  
dst dst – src - C  
r
r
r
32  
33  
34  
35  
36  
37  
38  
39  
DF  
D0  
D1  
2
2
3
3
3
3
4
4
1
2
2
3
4
3
4
3
4
3
3
2
2
3
Ir  
R
R
R
IR  
IM  
IM  
ER  
IM  
R
IR  
ER  
ER  
SBCX dst, src  
dst dst – src - C  
C 1  
*
*
*
*
1
*
SCF  
1
*
*
*
0
SRA dst  
R
D7 D6 D5 D4 D3 D2 D1 D0  
dst  
C
C
IR  
SRL dst  
R
1F C0  
1F C1  
*
*
0
*
3
3
2
3
0
D7 D6 D5 D4 D3 D2 D1 D0  
dst  
IR  
SRP src  
STOP  
RP src  
IM  
01  
6F  
22  
23  
24  
25  
26  
27  
*
*
*
*
1
*
2
1
2
2
3
3
3
3
2
2
3
4
3
4
3
4
STOP Mode  
dst dst – src  
SUB dst, src  
r
r
r
Ir  
R
R
R
IR  
R
IR  
IM  
IM  
Flags Notation:  
PS024314-0308  
* = Value is a function of the result of the operation.  
– = Unaffected  
X = Undefined  
0 = Reset to 0  
1 = Set to 1  
eZ8 CPU Instruction Set  
Z8 Encore! XP® F0823 Series  
Product Specification  
186  
Table 115. eZ8 CPU Instruction Summary (Continued)  
Address Mode  
Flags  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Fetch Instr.  
Symbolic Operation  
dst  
ER  
src  
ER  
C
Z
S
V
D
H
Cycles Cycles  
SUBX dst, src  
dst dst – src  
28  
*
*
*
*
1
*
4
4
2
2
2
2
3
3
3
3
4
4
2
2
3
3
3
3
4
4
2
3
3
2
3
3
4
3
4
3
4
3
3
3
4
3
4
3
4
3
3
6
ER  
R
IM  
29  
F0  
F1  
62  
63  
64  
65  
66  
67  
68  
69  
72  
73  
74  
75  
76  
77  
78  
79  
F2  
SWAP dst  
dst[7:4] dst[3:0]  
X
*
*
*
*
X
0
IR  
r
TCM dst, src  
(NOT dst) AND src  
r
Ir  
r
R
R
R
IR  
R
IM  
IM  
ER  
IM  
r
IR  
ER  
ER  
r
*
*
*
*
0
0
TCMX dst, src  
(NOT dst) AND src  
TM dst, src  
dst AND src  
r
Ir  
R
R
R
IR  
R
IM  
IM  
ER  
IM  
Vector  
IR  
ER  
ER  
TMX dst, src  
TRAP Vector  
dst AND src  
*
*
0
SP SP – 2  
@SP PC  
SP SP – 1  
@SP FLAGS  
PC @Vector  
WDT  
5F  
1
2
Flags Notation:  
* = Value is a function of the result of the operation.  
– = Unaffected  
X = Undefined  
0 = Reset to 0  
1 = Set to 1  
PS024314-0308  
eZ8 CPU Instruction Set  
Z8 Encore! XP® F0823 Series  
Product Specification  
187  
Table 115. eZ8 CPU Instruction Summary (Continued)  
Address Mode  
Flags  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Fetch Instr.  
Symbolic Operation  
dst  
src  
C
Z
S
V
D
H
Cycles Cycles  
XOR dst, src  
dst dst XOR src  
r
r
B2  
*
*
0
2
2
3
3
3
3
4
4
3
4
3
4
3
4
3
3
r
Ir  
R
B3  
B4  
B5  
B6  
B7  
B8  
B9  
R
R
IR  
IM  
IM  
ER  
IM  
R
IR  
ER  
ER  
XORX dst, src  
Flags Notation:  
dst dst XOR src  
*
*
0
* = Value is a function of the result of the operation.  
– = Unaffected  
X = Undefined  
0 = Reset to 0  
1 = Set to 1  
PS024314-0308  
eZ8 CPU Instruction Set  
Z8 Encore! XP® F0823 Series  
Product Specification  
188  
Opcode Maps  
A description of the opcode map data and the abbreviations are provided in Figure 26.  
Figure 27 and Figure 28 provide information about each of the eZ8 CPU instructions.  
Table 116 lists Opcode Map abbreviations.  
Opcode  
Lower Nibble  
Fetch Cycles  
Instruction Cycles  
4
3.3  
CP  
Opcode  
A
Upper Nibble  
R2,R1  
First Operand  
Second Operand  
After Assembly  
After Assembly  
Figure 26. Opcode Map Cell Description  
PS024314-0308  
Opcode Maps  
Z8 Encore! XP® F0823 Series  
Product Specification  
189  
Table 116. Opcode Map Abbreviations  
Abbreviation  
Description  
Bit position  
Abbreviation  
Description  
b
IRR  
Indirect Register Pair  
Polarity (0 or 1)  
cc  
X
Condition code  
p
r
8-bit signed index or  
displacement  
4-bit Working Register  
DA  
ER  
Destination address  
R
8-bit register  
Extended Addressing register r1, R1, Ir1, Irr1, IR1,  
Destination address  
rr1, RR1, IRR1, ER1  
IM  
Immediate data value  
r2, R2, Ir2, Irr2, IR2,  
rr2, RR2, IRR2, ER2  
Source address  
Ir  
Indirect Working Register  
Indirect register  
RA  
rr  
Relative  
IR  
Irr  
Working Register Pair  
Register Pair  
Indirect Working Register Pair RR  
PS024314-0308  
Opcode Maps  
Z8 Encore! XP® F0823 Series  
Product Specification  
190  
Lower Nibble (Hex)  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
1.1  
2.2  
2.3  
2.4  
3.3  
3.4  
3.3  
3.4  
4.3  
4.3  
2.3  
2.2  
JR  
cc,X  
2.2  
LD  
3.2  
JP  
1.2  
INC  
r1  
1.2  
BRK SRP ADD ADD ADD ADD ADD ADD ADDX ADDX DJNZ  
NOP  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
IM  
2.3  
r1,r2  
2.3  
r1,Ir2  
2.4  
R2,R1  
3.3  
IR2,R1  
3.4  
R1,IM  
3.3  
IR1,IM ER2,ER1 IM,ER1  
3.4 4.3 4.3  
r1,X  
r1,IM  
cc,DA  
2.2  
RLC  
R1  
2.2  
INC  
R1  
See 2nd  
Opcode  
Map  
RLC ADC ADC ADC ADC ADC ADC ADCX ADCX  
IR1  
r1,r2  
2.3  
r1,Ir2  
2.4  
R2,R1  
3.3  
IR2,R1  
3.4  
R1,IM  
3.3  
IR1,IM ER2,ER1 IM,ER1  
3.4 4.3 4.3  
2.3  
INC  
IR1  
1, 2  
ATM  
SUB SUB SUB SUB SUB SUB SUBX SUBX  
r1,r2  
2.3  
r1,Ir2  
2.4  
R2,R1  
3.3  
IR2,R1  
3.4  
R1,IM  
3.3  
IR1,IM ER2,ER1 IM,ER1  
3.4 4.3 4.3  
2.2  
2.3  
DEC DEC SBC SBC SBC SBC SBC SBC SBCX SBCX  
R1  
IR1  
r1,r2  
r1,Ir2  
R2,R1  
IR2,R1  
R1,IM  
IR1,IM ER2,ER1 IM,ER1  
2.2  
DA  
R1  
2.3  
DA  
IR1  
2.3  
OR  
r1,r2  
2.4  
OR  
r1,Ir2  
3.3  
OR  
3.4  
OR  
3.3  
OR  
3.4  
OR  
4.3  
4.3  
ORX ORX  
R2,R1  
IR2,R1  
R1,IM  
IR1,IM ER2,ER1 IM,ER1  
2.2  
2.3  
2.3  
2.4  
3.3  
3.4  
3.3  
3.4  
4.3  
4.3  
1.2  
WDT  
POP POP AND AND AND AND AND AND ANDX ANDX  
R1  
2.2  
IR1  
2.3  
r1,r2  
2.3  
r1,Ir2  
2.4  
R2,R1  
3.3  
IR2,R1  
3.4  
R1,IM  
3.3  
IR1,IM ER2,ER1 IM,ER1  
3.4 4.3 4.3  
1.2  
STOP  
COM COM TCM TCM TCM TCM TCM TCM TCMX TCMX  
R1  
2.2  
IR1  
2.3  
r1,r2  
2.3  
r1,Ir2  
R2,R1  
IR2,R1  
R1,IM  
IR1,IM ER2,ER1 IM,ER1  
2.4  
TM  
3.3  
TM  
3.4  
TM  
3.3  
TM  
3.4  
TM  
4.3  
4.3  
1.2  
HALT  
PUSH PUSH TM  
TMX TMX  
R2  
2.5  
IR2  
2.6  
r1,r2  
2.5  
r1,Ir2  
R2,R1  
IR2,R1  
R1,IM  
IR1,IM ER2,ER1 IM,ER1  
2.9  
3.2  
3.3  
LDX  
3.4  
LDX  
3.5  
LDX  
3.4  
LDX  
3.4  
LDX  
1.2  
DI  
DECW DECW LDE LDEI LDX  
RR1  
IRR1  
r1,Irr2  
2.5  
Ir1,Irr2 r1,ER2 Ir1,ER2 IRR2,R1 IRR2,IR1 r1,rr2,X rr1,r2,X  
2.9  
2.2  
RL  
R1  
2.3  
RL  
IR1  
3.2  
3.3  
LDX  
3.4  
LDX  
3.5  
LDX  
3.3  
LEA  
3.5  
LEA  
1.2  
EI  
LDE LDEI LDX  
r2,Irr1  
Ir2,Irr1 r2,ER1 Ir2,ER1 R2,IRR1 IR2,IRR1 r1,r2,X rr1,rr2,X  
2.5  
2.6  
2.3  
CP  
r1,r2  
2.4  
CP  
3.3  
CP  
3.4  
CP  
3.3  
CP  
3.4  
CP  
4.3  
CPX  
4.3  
CPX  
1.4  
RET  
INCW INCW  
RR1  
IRR1  
2.3  
r1,Ir2  
R2,R1  
IR2,R1  
R1,IM  
IR1,IM ER2,ER1 IM,ER1  
2.2  
CLR  
R1  
2.3  
2.4  
3.3  
3.4  
3.3  
3.4  
4.3  
4.3  
1.5  
IRET  
CLR XOR XOR XOR XOR XOR XOR XORX XORX  
IR1  
2.3  
r1,r2  
2.5  
r1,Ir2  
2.9  
R2,R1  
IR2,R1  
R1,IM  
IR1,IM ER2,ER1 IM,ER1  
3.4 3.2  
2.2  
2.3  
JP  
2.9  
1.2  
RCF  
RRC RRC LDC LDCI  
LDC  
LD PUSHX  
R1  
2.2  
IR1  
2.3  
r1,Irr2  
2.5  
Ir1,Irr2  
2.9  
IRR1  
Ir1,Irr2  
r1,r2,X  
ER2  
2.6  
2.2  
3.3  
3.4  
LD  
3.2  
POPX  
ER1  
4.2  
LDX  
1.2  
SCF  
SRA SRA  
LDC LDCI CALL BSWAP CALL  
R1  
IR1  
r2,Irr1  
Ir2,Irr1  
IRR1  
R1  
DA  
r2,r1,X  
2.2  
RR  
R1  
2.3  
RR  
IR1  
2.2  
2.3  
LD  
3.2  
LD  
3.3  
LD  
3.2  
LD  
3.3  
LD  
4.2  
LDX  
1.2  
CCF  
BIT  
p,b,r1  
r1,Ir2  
R2,R1  
IR2,R1  
R1,IM  
IR1,IM ER2,ER1 IM,ER1  
2.2  
2.3  
2.6  
2.3  
LD  
2.8  
MULT  
RR1  
3.3  
LD  
3.3  
BTJ  
3.4  
BTJ  
SWAP SWAP TRAP  
R1  
IR1  
Vector  
Ir1,r2  
R2,IR1 p,b,r1,X p,b,Ir1,X  
Figure 27. First Opcode Map  
PS024314-0308  
Opcode Maps  
Z8 Encore! XP® F0823 Series  
Product Specification  
191  
Lower Nibble (Hex)  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
3, 2  
PUSH  
IM  
3.3  
3.4  
4.3  
4.4  
4.3  
4.4  
5.3  
5.3  
CPC CPC CPC CPC CPC CPC CPCX CPCX  
r1,r2  
r1,Ir2  
R2,R1  
IR2,R1  
R1,IM  
IR1,IM ER2,ER1 IM,ER1  
3.2  
SRL  
R1  
3.3  
SRL  
IR1  
5, 4  
LDWX  
ER2,ER1  
Figure 28. Second Opcode Map after 1FH  
PS024314-0308  
Opcode Maps  
Z8 Encore! XP® F0823 Series  
Product Specification  
192  
PS024314-0308  
Opcode Maps  
Z8 Encore! XP® F0823 Series  
Product Specification  
193  
Electrical Characteristics  
The data in this chapter is pre-qualification and pre-characterization and is subject to  
change. Additional electrical characteristics may be found in the individual chapters.  
Absolute Maximum Ratings  
Stresses greater than those listed in Table 117 may cause permanent damage to the device.  
These ratings are stress ratings only. Operation of the device at any condition outside those  
indicated in the operational sections of these specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
For improved reliability, tie unused inputs to one of the supply voltages (VDD or VSS).  
Table 117. Absolute Maximum Ratings  
Parameter  
Minimum Maximum Units  
Notes  
Ambient temperature under bias  
Storage temperature  
-40  
-65  
-0.3  
-0.3  
-0.3  
-5  
+105  
+150  
+5.5  
+3.9  
+3.6  
+5  
°C  
°C  
V
Voltage on any pin with respect to V  
1
2
SS  
V
Voltage on V pin with respect to V  
V
DD  
SS  
Maximum current on input and/or inactive output pin  
Maximum output current from active output pin  
µA  
mA  
-25  
+25  
8-pin Packages Maximum Ratings at 0 °C to 70 °C  
Total power dissipation  
220  
60  
mW  
mA  
Maximum current into V or out of V  
DD  
SS  
20-pin Packages Maximum Ratings at 0 °C to 70 °C  
Total power dissipation  
430  
120  
mW  
mA  
Maximum current into V or out of V  
DD  
SS  
28-pin Packages Maximum Ratings at 0 °C to 70 °C  
Total power dissipation  
450  
mW  
PS024314-0308  
Electrical Characteristics  
Z8 Encore! XP® F0823 Series  
Product Specification  
194  
Table 117. Absolute Maximum Ratings (Continued)  
Parameter  
Minimum Maximum Units  
125 mA  
Notes  
Maximum current into V or out of V  
DD  
SS  
Operating temperature is specified in DC Characteristics.  
1. This voltage applies to all pins except the following: V , AV , pins supporting analog input (Port B[5:0], Port  
DD  
DD  
C[2:0]) and pins supporting the crystal oscillator (PA0 and PA1). On the 8-pin packages, this applies to all pins  
but V  
.
DD  
2. This voltage applies to pins on the 20/28 pin packages supporting analog input (Port B[5:0], Port C[2:0]) and pins  
supporting the crystal oscillator (PA0 and PA1).  
DC Characteristics  
Table 118 lists the DC characteristics of the Z8 Encore! XP® F0823 Series products. All  
voltages are referenced to VSS, the primary system ground.  
Table 118. DC Characteristics  
T = -40 °C to +105 °C  
A
(unless otherwise specified)  
Symbol Parameter  
Minimum Typical Maximum Units Conditions  
V
V
Supply Voltage  
2.7  
3.6  
V
V
DD  
IL1  
Low Level Input  
Voltage  
-0.3  
0.3*V  
DD  
V
V
High Level Input  
Voltage  
0.7*V  
0.7*V  
5.5  
V
V
For all input pins without analog  
or oscillator function. For all  
signal pins on the 8-pin devices.  
Programmable pull-ups must  
also be disabled.  
IH1  
IH2  
DD  
DD  
High Level Input  
Voltage  
V
+0.3  
For those pins with analog or  
oscillator function (20-/28-pin  
devices only), or when  
programmable pull-ups are  
enabled.  
DD  
V
V
V
Low Level Output  
Voltage  
2.4  
0.4  
V
V
V
I
= 2 mA; V = 3.0 V  
OL1  
OH1  
OL2  
OL DD  
High Output Drive disabled.  
I = -2 mA; V = 3.0 V  
OH  
High Level Output  
Voltage  
DD  
High Output Drive disabled.  
= 20 mA; V = 3.3 V  
Low Level Output  
Voltage  
0.6  
I
OL  
DD  
High Output Drive enabled.  
PS024314-0308  
Electrical Characteristics  
Z8 Encore! XP® F0823 Series  
Product Specification  
195  
Table 118. DC Characteristics (Continued)  
T = -40 °C to +105 °C  
A
(unless otherwise specified)  
Symbol Parameter  
Minimum Typical Maximum Units Conditions  
V
High Level Output  
Voltage  
2.4  
V
I
= -20 mA; V = 3.3 V  
OH DD  
OH2  
High Output Drive enabled.  
I
I
I
I
Input Leakage  
Current  
+0.002  
+0.007  
+5  
+5  
+5  
µA  
µA  
µA  
V
V
= V  
DD  
DD  
IH  
IN  
= 3.3 V;  
Input Leakage  
Current  
V
V
= V  
SS  
IL  
IN  
= 3.3 V;  
DD  
Tristate Leakage  
Current  
TL  
Controlled Current  
Drive  
1.8  
2.8  
7.8  
12  
3
7
4.5  
10.5  
19.5  
30  
mA {AFS2,AFS1} = {0,0}  
mA {AFS2,AFS1} = {0,1}  
mA {AFS2,AFS1} = {1,0}  
mA {AFS2,AFS1} = {1,1}  
pF  
LED  
13  
20  
2
C
C
C
GPIO Port Pad  
Capacitance  
8.0  
PAD  
XIN  
2
XIN Pad  
8.0  
pF  
pF  
Capacitance  
2
XOUT Pad  
Capacitance  
9.5  
XOUT  
I
Weak Pull-up  
Current  
30  
100  
350  
µA  
V
V
= 3.0 V–3.6 V  
DD  
PU  
V
RAM Data  
TBD  
Voltage at which RAM retains  
static values; no reading or  
writing is allowed.  
RAM  
Retention Voltage  
Notes  
1. This condition excludes all pins that have on-chip pull-ups, when driven Low.  
2. These values are provided for design guidance only and are not tested in production.  
PS024314-0308  
Electrical Characteristics  
Z8 Encore! XP® F0823 Series  
Product Specification  
196  
Table 119. Power Consumption  
V
= 2.7 V to 3.6 V  
DD  
2
3
Maximum Maximum  
1
Symbol  
Parameter  
Typical  
Std Temp Ext Temp Units Conditions  
I
Stop  
Supply Current in STOP  
Mode  
0.1  
2
7.5  
µA No peripherals enabled.  
All pins driven to V or  
DD  
DD  
V
.
SS  
I
Halt  
Supply Current in HALT  
Mode (with all  
35  
55  
65  
µA 32 kHz  
DD  
520  
630  
700  
µA 5.5 MHz  
peripherals disabled)  
I
Supply Current in  
2.8  
4.5  
4.5  
5.2  
4.8  
5.2  
mA 32 kHz  
DD  
ACTIVE Mode (with all  
peripherals disabled)  
mA 5.5 MHz  
I
I
WDT Watchdog Timer Supply  
Current  
0.9  
1.0  
1.1  
µA  
µA  
DD  
DD  
IPO  
Internal Precision  
Oscillator Supply  
Current  
350  
500  
550  
I
I
VBO  
Voltage Brownout  
Supply Current  
50  
µA For 20-/28-pin devices  
(VBO only); see Note 4  
DD  
DD  
For 8-pin devices; See  
Note 4  
ADC  
Analog-to-Digital  
Converter Supply  
Current (with External  
Reference)  
2.8  
3.1  
3.3  
3.7  
0
3.1  
3.6  
3.7  
4.2  
3.2  
3.7  
3.8  
4.3  
mA 32 kHz  
mA 5.5 MHz  
mA 10 MHz  
mA 20 MHz  
µA See Note 4  
I
ADC Internal Reference  
Supply Current  
DD  
ADCRef  
I
CMP Comparator supply  
Current  
150  
180  
190  
µA See Note 4  
DD  
PS024314-0308  
Electrical Characteristics  
Z8 Encore! XP® F0823 Series  
Product Specification  
197  
Table 119. Power Consumption (Continued)  
V
= 2.7 V to 3.6 V  
DD  
2
3
Maximum Maximum  
1
Symbol  
BG  
Parameter  
Typical  
Std Temp Ext Temp Units Conditions  
I
Band Gap Supply  
Current  
320  
480  
500  
µA For 20-/28-pin devices  
For 8-pin devices  
DD  
Notes  
1. Typical conditions are defined as VDD = 3.3 V and +30 °C.  
2. Standard temperature is defined as TA = 0 °C to +70 °C; these values not tested in production for worst case  
behavior, but are derived from product characterization and provided for design guidance only.  
3. Extended temperature is defined as TA = -40 °C to +105 °C; these values not tested in production for worst case  
behavior, but are derived from product characterization and provided for design guidance only.  
4. For this block to operate, the bandgap circuit is automatically turned on and must be added to the total supply  
current. This bandgap current is only added once, regardless of how many peripherals are using it.  
AC Characteristics  
The section provides information about the AC characteristics and timing. All AC timing  
information assumes a standard load of 50 pF on all outputs.  
Table 120. AC Characteristics  
V
= 2.7 V to 3.6 V  
DD  
T = -40 °C to +105 °C  
A
(unless otherwise  
stated)  
Symbol Parameter  
Minimum Maximum Units Conditions  
1
F
System Clock Frequency  
20.0  
20.0  
MHz Read-only from Flash memory  
SYSCLK  
1
0.032768  
MHz Program or erasure of the  
Flash memory  
T
T
T
T
T
System Clock Period  
50  
20  
20  
30  
30  
3
ns  
ns  
ns  
ns  
ns  
T
T
T
T
T
= 1/F  
sysclk  
XIN  
CLK  
CLK  
CLK  
CLK  
CLK  
System Clock High Time  
System Clock Low Time  
System Clock Rise Time  
System Clock Fall Time  
= 50 ns  
= 50 ns  
= 50 ns  
XINH  
XINL  
XINR  
XINF  
3
= 50 ns  
®
1System Clock Frequency is limited by the Internal Precision Oscillator on the Z8 Encore! XP F0823 Series. See  
Table 121 on page 198.  
PS024314-0308  
Electrical Characteristics  
Z8 Encore! XP® F0823 Series  
Product Specification  
198  
Table 121. Internal Precision Oscillator Electrical Characteristics  
V
A
= 2.7 V to 3.6 V  
DD  
T = -40 °C to +105 °C  
(unless otherwise stated)  
Minimum Typical Maximum Units Conditions  
Symbol Parameter  
F
F
F
T
Internal Precision Oscillator  
Frequency (High Speed)  
5.53  
32.7  
+1  
MHz  
kHz  
%
V
A
= 3.3 V  
DD  
IPO  
T = 30 °C  
Internal Precision Oscillator  
Frequency (Low Speed)  
V
= 3.3 V  
DD  
IPO  
T = 30 °C  
A
Internal Precision Oscillator  
Error  
+4  
IPO  
Internal Precision Oscillator  
Startup Time  
3
µs  
IPOST  
PS024314-0308  
Electrical Characteristics  
Z8 Encore! XP® F0823 Series  
Product Specification  
199  
On-Chip Peripheral AC and DC Electrical Characteristics  
Table 122. Power-On Reset and Voltage Brownout Electrical Characteristics and Timing  
T = -40 °C to +105 °C  
A
1
Symbol Parameter  
Minimum Typical Maximum Units Conditions  
V
Power-On Reset  
Voltage Threshold  
2.20  
2.45  
2.40  
50  
2.70  
V
V
= V  
POR  
DD  
POR  
V
Voltage Brownout Reset  
Voltage Threshold  
2.15  
2.65  
V
V
= V  
VBO  
DD  
VBO  
V
to V  
hysteresis  
VBO  
75  
mV  
V
POR  
Starting V voltage to  
V
SS  
DD  
ensure valid Power-On  
Reset.  
T
T
Power-On Reset Analog  
Delay  
70  
µs  
µs  
V
> V  
; T  
Digital  
ANA  
ANA  
DD  
POR POR  
Reset delay follows T  
66 Internal Precision  
Power-On Reset Digital  
Delay  
16  
POR  
Oscillator cycles + IPO  
startup time (T  
)
IPOST  
T
T
Stop Mode Recovery  
16  
10  
µs  
µs  
66 Internal Precision  
Oscillator cycles  
SMR  
Voltage Brownout Pulse  
Rejection Period  
Period of time in which V  
VBO  
DD  
< V  
without generating  
VBO  
a Reset.  
T
Time for V to  
0.10  
100  
ms  
ns  
RAMP  
SMP  
DD  
transition from V to  
SS  
V
to ensure valid  
POR  
Reset  
T
Stop Mode Recovery pin  
pulse rejection period  
20  
For any SMR pin or for the  
Reset pin when it is  
asserted in STOP mode.  
1Data in the typical column is from characterization at 3.3 V and 30 °C. These values are provided for design guidance  
only and are not tested in production.  
PS024314-0308  
Electrical Characteristics  
Z8 Encore! XP® F0823 Series  
Product Specification  
200  
Table 123. Flash Memory Electrical Characteristics and Timing  
V
A
= 2.7 V to 3.6 V  
DD  
T = -40 °C to +105 °C  
(unless otherwise stated)  
Parameter  
Minimum Typical Maximum Units Notes  
Flash Byte Read Time  
Flash Byte Program Time  
Flash Page Erase Time  
Flash Mass Erase Time  
100  
20  
40  
ns  
µs  
10  
ms  
ms  
200  
Writes to Single Address  
Before Next Erase  
2
Flash Row Program Time  
8
ms  
Cumulative program time for  
single row cannot exceed limit  
before next erase. This  
parameter is only an issue  
when bypassing the Flash  
Controller.  
Data Retention  
Endurance  
100  
years 25 °C  
10,000  
cycles Program/erase cycles  
Table 124. Watchdog Timer Electrical Characteristics and Timing  
V
A
= 2.7 V to 3.6 V  
DD  
T = -40 °C to +105 °C  
(unless otherwise stated)  
Symbol Parameter  
Minimum Typical Maximum Units Conditions  
F
F
T
WDT Oscillator Frequency  
WDT Oscillator Error  
10  
kHz  
%
WDT  
+50  
WDT  
WDT Calibrated Timeout  
0.98  
0.70  
0.50  
1
1
1
1.02  
s
V
A
= 3.3 V;  
DD  
WDTCAL  
T = 30 °C  
1.30  
1.50  
s
s
V
= 2.7 V to 3.6 V  
DD  
T = 0 °C to 70 °C  
A
V
= 2.7 V to 3.6 V  
DD  
T = -40 °C to +105 °C  
A
PS024314-0308  
Electrical Characteristics  
Z8 Encore! XP® F0823 Series  
Product Specification  
201  
Table 125. Analog-to-Digital Converter Electrical Characteristics and Timing  
V
= 3.0 V to 3.6 V  
DD  
A
T = 0 °C to +70 °C  
(unless otherwise stated)  
Symbol Parameter  
Minimum Typical Maximum Units Conditions  
Resolution  
10  
bits  
3
Differential Nonlinearity  
-1.0  
1.0  
LSB External V  
= 2.0 V;  
= 2.0 V;  
REF  
(DNL)  
R 3.0 kΩ  
S
3
Integral Nonlinearity (INL)  
-3.0  
3.0  
LSB External V  
REF  
R 3.0 kΩ  
S
3
3
Offset Error with Calibration  
+1  
+3  
LSB  
LSB  
Absolute Accuracy with  
Calibration  
V
V
V
Internal Reference Voltage  
1.0  
2.0  
1.1  
2.2  
1.2  
2.4  
V
%
%
REFSEL=01  
REFSEL=10  
REF  
REF  
REF  
Internal Reference  
+1.0  
+0.5  
850  
Temperature variation  
Variation with Temperature  
with V = 3.0  
DD  
Internal Reference Voltage  
Supply voltage variation  
Variation with V  
with T = 30 °C  
DD  
A
R
Reference Buffer Output  
Impedance  
When the internal  
REFOUT  
reference is buffered and  
driven out to the VREF  
pin (REFOUT = 1)  
Single-Shot Conversion  
Time  
5129  
System All measurements but  
clock temperature sensor  
cycles  
10258  
256  
Temperature sensor  
measurement  
Continuous Conversion  
Time  
System All measurements but  
clock temperature sensor  
cycles  
512  
Temperature sensor  
measurement  
Signal Input Bandwidth  
10  
kHz As defined by -3 dB point  
4
R
Analog Source Impedance  
10  
kΩ  
In unbuffered mode  
S
PS024314-0308  
Electrical Characteristics  
Z8 Encore! XP® F0823 Series  
Product Specification  
202  
Table 125. Analog-to-Digital Converter Electrical Characteristics and Timing (Continued)  
V
= 3.0 V to 3.6 V  
DD  
A
T = 0 °C to +70 °C  
(unless otherwise stated)  
Symbol Parameter  
Minimum Typical Maximum Units Conditions  
Zin  
Input Impedance  
150  
kΩ  
In unbuffered mode at 20  
5
MHz  
Vin  
Input Voltage Range  
0
V
V
Unbuffered Mode  
DD  
Notes  
1. Analog source impedance affects the ADC offset voltage (because of pin leakage) and input settling time.  
2. Devices are factory calibrated at V  
conditions.  
= 3.3 V and T = +30 °C, so the ADC is maximally accurate under these  
A
DD  
3. LSBs are defined assuming 10-bit resolution.  
4. This is the maximum recommended resistance seen by the ADC input pin.  
5. The input impedance is inversely proportional to the system clock frequency.  
Table 126. Comparator Electrical Characteristics  
V
A
= 2.7 V to 3.6 V  
DD  
T = -40 °C to +105 °C  
Symbol Parameter  
Minimum Typical Maximum Units Conditions  
V
V
Input DC Offset  
5
+5  
+3  
200  
4
mV  
%
OS  
Programmable Internal  
Reference Voltage  
20-/28-pin devices  
8-pin devices  
CREF  
%
T
Propagation Delay  
Input Hysteresis  
ns  
mV  
V
PROP  
V
V
HYS  
IN  
Input Voltage Range  
V
V
-1  
DD  
SS  
General Purpose I/O Port Input Data Sample Timing  
Figure 29 displays timing of the GPIO Port input sampling. The input value on a GPIO  
Port pin is sampled on the rising edge of the system clock. The Port value is available to  
the eZ8 CPU on the second rising clock edge following the change of the Port value.  
PS024314-0308  
Electrical Characteristics  
Z8 Encore! XP® F0823 Series  
Product Specification  
203  
TCLK  
System  
Clock  
Port Value  
Changes to 0  
Port Pin  
Input Value  
Port Input Data  
Register Latch  
0 Latched  
Into Port Input  
Data Register  
Port Input Data Register  
Value 0 Read  
by eZ8  
Port Input Data  
Read on Data Bus  
Figure 29. Port Input Sample Timing  
Table 127. GPIO Port Input Timing  
Delay (ns)  
Parameter Abbreviation  
Minimum Maximum  
T
T
T
Port Input Transition to XIN Rise Setup Time (Not pictured)  
XIN Rise to Port Input Transition Hold Time (Not pictured)  
5
0
S_PORT  
H_PORT  
SMR  
GPIO Port Pin Pulse Width to ensure Stop Mode Recovery (for GPIO  
Port Pins enabled as SMR sources)  
1 µs  
PS024314-0308  
Electrical Characteristics  
Z8 Encore! XP® F0823 Series  
Product Specification  
204  
General Purpose I/O Port Output Timing  
Figure 30 and Table 128 provide timing information for GPIO Port pins.  
TCLK  
XIN  
T1  
T2  
Port Output  
Figure 30. GPIO Port Output Timing  
Table 128. GPIO Port Output Timing  
Delay (ns)  
Minimum Maximum  
Parameter Abbreviation  
GPIO Port pins  
T
T
XIN Rise to Port Output Valid Delay  
XIN Rise to Port Output Hold Time  
2
15  
1
2
PS024314-0308  
Electrical Characteristics  
Z8 Encore! XP® F0823 Series  
Product Specification  
205  
On-Chip Debugger Timing  
Figure 31 and Table 129 provide timing information for the DBG pin. The DBG pin  
timing specifications assume a 4 ns maximum rise and fall time.  
TCLK  
XIN  
T1  
T2  
T4  
DBG  
(Output)  
Output Data  
T3  
DBG  
(Input)  
Input Data  
Figure 31. On-Chip Debugger Timing  
Table 129. On-Chip Debugger Timing  
Delay (ns)  
Minimum Maximum  
Parameter Abbreviation  
DBG  
T
T
T
T
XIN Rise to DBG Valid Delay  
2
5
5
15  
1
2
3
4
XIN Rise to DBG Output Hold Time  
DBG to XIN Rise Input Setup Time  
DBG to XIN Rise Input Hold Time  
PS024314-0308  
Electrical Characteristics  
Z8 Encore! XP® F0823 Series  
Product Specification  
206  
UART Timing  
Figure 32 and Table 130 provide timing information for UART pins for the case where  
CTS is used for flow control. The CTS to DE assertion delay (T1) assumes the transmit  
data register has been loaded with data prior to CTS assertion.  
CTS  
(Input)  
T3  
DE  
(Output)  
T1  
TXD  
(Output)  
bit 7 parity  
stop  
start  
bit 0  
bit 1  
T2  
end of  
stop bit(s)  
Figure 32. UART Timing With CTS  
Table 130. UART Timing With CTS  
Delay (ns)  
Parameter Abbreviation  
UART  
Minimum Maximum  
T
CTS Fall to DE output delay  
2 * XIN  
period  
2 * XIN period  
+ 1 bit time  
1
T
T
DE assertion to TXD falling edge (start bit) delay ± 5  
End of Stop Bit(s) to DE deassertion delay ± 5  
2
3
PS024314-0308  
Electrical Characteristics  
Z8 Encore! XP® F0823 Series  
Product Specification  
207  
Figure 33 and Table 131 provide timing information for UART pins for the case where  
CTS is not used for flow control. DE asserts after the transmit data register has been  
written. DE remains asserted for multiple characters as long as the transmit data register is  
written with the next character before the current character has completed.  
T2  
DE  
(Output)  
TXD  
start  
bit0  
bit 1  
bit 7 parity  
stop  
(Output)  
T1  
end of  
stop bit(s)  
Figure 33. UART Timing Without CTS  
Table 131. UART Timing Without CTS  
Delay (ns)  
Parameter Abbreviation  
UART  
Minimum  
Maximum  
T
DE assertion to TXD falling edge (start bit) delay 1 * XIN  
period  
1 bit time  
1
T
End of Stop Bit(s) to DE deassertion delay (Tx  
data register is empty)  
± 5  
2
PS024314-0308  
Electrical Characteristics  
Z8 Encore! XP® F0823 Series  
Product Specification  
208  
PS024314-0308  
Electrical Characteristics  
Z8 Encore! XP® F0823 Series  
Product Specification  
209  
Packaging  
Figure 34 displays the 8-pin Plastic Dual Inline Package (PDIP) available for the  
Z8 Encore! XP® F0823 Series devices.  
8
5
E1  
1
4
E
D
B1  
Q1  
A2  
A1  
CONTROLLING DIMENSIONS  
: MM.  
L
C
eA  
S
e
B
Figure 34. 8-Pin Plastic Dual Inline Package (PDIP)  
PS024314-0308  
Packaging  
Z8 Encore! XP® F0823 Series  
Product Specification  
210  
Figure 35 displays the 8-pin Small Outline Integrated Circuit package (SOIC) available  
for the Z8 Encore! XP F0823 Series devices.  
Figure 35. 8-Pin Small Outline Integrated Circuit Package (SOIC)  
PS024314-0308  
Packaging  
Z8 Encore! XP® F0823 Series  
Product Specification  
211  
Figure 36 displays the 8-pin Quad Flat No-Lead package (QFN)/MLF-S available for the  
Z8 Encore! XP F0823 Series devices. This package has a footprint identical to that of the  
8-pin SOIC, but with a lower profile.  
Figure 36. 8-Pin Quad Flat No-Lead Package (QFN)/MLF-S  
Figure 37 displays the 20-pin Plastic Dual Inline Package (PDIP) available for  
Z8 Encore! XP F0823 Series devices.  
Figure 37. 20-Pin Plastic Dual Inline Package (PDIP)  
PS024314-0308  
Packaging  
Z8 Encore! XP® F0823 Series  
Product Specification  
212  
Figure 38 displays the 20-pin Small Outline Integrated Circuit Package (SOIC) available  
for Z8 Encore! XP F0823 Series devices.  
Figure 38. 20-Pin Small Outline Integrated Circuit Package (SOIC)  
Figure 39 displays the 20-pin Small Shrink Outline Package (SSOP) available for  
Z8 Encore! XP F0823 Series devices.  
Figure 39. 20-Pin Small Shrink Outline Package (SSOP)  
PS024314-0308  
Packaging  
Z8 Encore! XP® F0823 Series  
Product Specification  
213  
Figure 40 displays the 28-pin Plastic Dual Inline Package (PDIP) available for  
Z8 Encore! XP F0823 Series devices.  
Figure 40. 28-Pin Plastic Dual Inline Package (PDIP)  
PS024314-0308  
Packaging  
Z8 Encore! XP® F0823 Series  
Product Specification  
214  
Figure 41 displays the 28-pin Small Outline Integrated Circuit package (SOIC) available  
in Z8 Encore! XP F0823 Series devices.  
Figure 41. 28-Pin Small Outline Integrated Circuit Package (SOIC)  
PS024314-0308  
Packaging  
Z8 Encore! XP® F0823 Series  
Product Specification  
215  
Figure 42 displays the 28-pin Small Shrink Outline Package (SSOP) available for  
Z8 Encore! XP F0823 Series devices.  
D
C
28  
15  
MILLIMETER  
NOM  
INCH  
NOM  
0.073  
0.005  
0.068  
SYMBOL  
MIN  
1.73  
0.05  
1.68  
0.25  
0.09  
MAX  
1.99  
0.21  
1.78  
0.38  
0.20  
MIN  
MAX  
0.078  
0.008  
0.070  
0.015  
0.008  
A
1.86  
0.068  
0.002  
0.066  
0.010  
0.004  
A1  
A2  
B
0.13  
H
E
1.73  
C
0.006  
1
14  
D
E
e
10.07  
5.20  
10.20  
5.30  
10.33  
5.38  
0.397  
0.205  
0.402  
0.407  
0.212  
DETAIL A  
0.209  
0.65 TYP  
0.0256 TYP  
H
L
7.65  
0.63  
7.80  
0.75  
7.90  
0.95  
0.301  
0.025  
0.307  
0.030  
0.311  
0.037  
A2  
A
B
e
SEATING PLANE  
CONTROLLING DIMENSIONS: MM  
LEADS ARE COPLANAR WITHIN .004 INCHES.  
L
0 - 8  
Figure 42. 28-Pin Small Shrink Outline Package (SSOP)  
PS024314-0308  
Packaging  
Z8 Encore! XP® F0823 Series  
Product Specification  
216  
PS024314-0308  
Packaging  
Z8 Encore! XP® F0823 Series  
Product Specification  
217  
Ordering Information  
Z8 Encore! XP with 8 KB Flash, 10-Bit Analog-to-Digital Converter  
Standard Temperature: 0 °C to 70 °C  
Z8F0823PB005SC  
Z8F0823QB005SC  
Z8F0823SB005SC  
Z8F0823SH005SC  
Z8F0823HH005SC  
Z8F0823PH005SC  
Z8F0823SJ005SC  
Z8F0823HJ005SC  
Z8F0823PJ005SC  
8 KB  
8 KB  
8 KB  
8 KB  
8 KB  
8 KB  
8 KB  
8 KB  
8 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
6
6
6
16  
16  
16  
22  
22  
22  
12  
12  
12  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
4
4
4
7
7
7
8
8
8
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
Extended Temperature: -40 °C to 105 °C  
Z8F0823PB005EC  
Z8F0823QB005EC  
Z8F0823SB005EC  
Z8F0823SH005EC  
Z8F0823HH005EC  
Z8F0823PH005EC  
Z8F0823SJ005EC  
Z8F0823HJ005EC  
Z8F0823PJ005EC  
8 KB  
8 KB  
8 KB  
8 KB  
8 KB  
8 KB  
8 KB  
8 KB  
8 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
6
6
6
16  
16  
16  
22  
22  
22  
12  
12  
12  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
4
4
4
7
7
7
8
8
8
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
Replace C with G for Lead-Free Packaging  
PS024314-0308  
Ordering Information  
Z8 Encore! XP® F0823 Series  
Product Specification  
218  
Z8 Encore! XP with 8 KB Flash  
Standard Temperature: 0 °C to 70 °C  
Z8F0813PB005SC  
Z8F0813QB005SC  
Z8F0813SB005SC  
Z8F0813SH005SC  
Z8F0813HH005SC  
Z8F0813PH005SC  
Z8F0813SJ005SC  
Z8F0813HJ005SC  
Z8F0813PJ005SC  
8 KB  
8 KB  
8 KB  
8 KB  
8 KB  
8 KB  
8 KB  
8 KB  
8 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
6
6
6
16  
16  
16  
24  
24  
24  
12  
12  
12  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
Extended Temperature: -40 °C to 105 °C  
Z8F0813PB005EC  
Z8F0813QB005EC  
Z8F0813SB005EC  
Z8F0813SH005EC  
Z8F0813HH005EC  
Z8F0813PH005EC  
Z8F0813SJ005EC  
Z8F0813HJ005EC  
Z8F0813PJ005EC  
8 KB  
8 KB  
8 KB  
8 KB  
8 KB  
8 KB  
8 KB  
8 KB  
8 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
6
6
6
16  
16  
16  
24  
24  
24  
12  
12  
12  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
Replace C with G for Lead-Free Packaging  
PS024314-0308  
Ordering Information  
Z8 Encore! XP® F0823 Series  
Product Specification  
219  
Z8 Encore! XP with 4 KB Flash, 10-Bit Analog-to-Digital Converter  
Standard Temperature: 0 °C to 70 °C  
Z8F0423PB005SC  
Z8F0423QB005SC  
Z8F0423SB005SC  
Z8F0423SH005SC  
Z8F0423HH005SC  
Z8F0423PH005SC  
Z8F0423SJ005SC  
Z8F0423HJ005SC  
Z8F0423PJ005SC  
4 KB  
4 KB  
4 KB  
4 KB  
4 KB  
4 KB  
4 KB  
4 KB  
4 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
6
6
6
16  
16  
16  
22  
22  
22  
12  
12  
12  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
4
4
4
7
7
7
8
8
8
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
Extended Temperature: -40 °C to 105 °C  
Z8F0423PB005EC  
Z8F0423QB005EC  
Z8F0423SB005EC  
Z8F0423SH005EC  
Z8F0423HH005EC  
Z8F0423PH005EC  
Z8F0423SJ005EC  
Z8F0423HJ005EC  
Z8F0423PJ005EC  
4 KB  
4 KB  
4 KB  
4 KB  
4 KB  
4 KB  
4 KB  
4 KB  
4 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
6
6
6
16  
16  
16  
22  
22  
22  
12  
12  
12  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
4
4
4
7
7
7
8
8
8
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
Replace C with G for Lead-Free Packaging  
PS024314-0308  
Ordering Information  
Z8 Encore! XP® F0823 Series  
Product Specification  
220  
Z8 Encore! XP with 4 KB Flash  
Standard Temperature: 0 °C to 70 °C  
Z8F0413PB005SC  
Z8F0413QB005SC  
Z8F0413SB005SC  
Z8F0413SH005SC  
Z8F0413HH005SC  
Z8F0413PH005SC  
Z8F0413SJ005SC  
Z8F0413HJ005SC  
Z8F0413PJ005SC  
4 KB  
4 KB  
4 KB  
4 KB  
4 KB  
4 KB  
4 KB  
4 KB  
4 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
6
6
6
16  
16  
16  
24  
24  
24  
12  
12  
12  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
Extended Temperature: -40 °C to 105 °C  
Z8F0413PB005EC  
Z8F0413QB005EC  
Z8F0413SB005EC  
Z8F0413SH005EC  
Z8F0413HH005EC  
Z8F0413PH005EC  
Z8F0413SJ005EC  
Z8F0413HJ005EC  
Z8F0413PJ005EC  
4 KB  
4 KB  
4 KB  
4 KB  
4 KB  
4 KB  
4 KB  
4 KB  
4 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
6
6
6
16  
16  
16  
24  
24  
24  
12  
12  
12  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
Replace C with G for Lead-Free Packaging  
PS024314-0308  
Ordering Information  
Z8 Encore! XP® F0823 Series  
Product Specification  
221  
Z8 Encore! XP with 2 KB Flash, 10-Bit Analog-to-Digital Converter  
Standard Temperature: 0 °C to 70 °C  
Z8F0223PB005SC  
Z8F0223QB005SC  
Z8F0223SB005SC  
Z8F0223SH005SC  
Z8F0223HH005SC  
Z8F0223PH005SC  
Z8F0223SJ005SC  
Z8F0223HJ005SC  
Z8F0223PJ005SC  
2 KB  
2 KB  
2 KB  
2 KB  
2 KB  
2 KB  
2 KB  
2 KB  
2 KB  
512 B  
512 B  
512 B  
512 B  
512 B  
512 B  
512 B  
512 B  
512 B  
6
6
6
16  
16  
16  
22  
22  
22  
12  
12  
12  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
4
4
4
7
7
7
8
8
8
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
Extended Temperature: -40 °C to 105 °C  
Z8F0223PB005EC  
Z8F0223QB005EC  
Z8F0223SB005EC  
Z8F0223SH005EC  
Z8F0223HH005EC  
Z8F0223PH005EC  
Z8F0223SJ005EC  
Z8F0223HJ005EC  
Z8F0223PJ005EC  
2 KB  
2 KB  
2 KB  
2 KB  
2 KB  
2 KB  
2 KB  
2 KB  
2 KB  
512 B  
512 B  
512 B  
512 B  
512 B  
512 B  
512 B  
512 B  
512 B  
6
6
6
16  
16  
16  
22  
22  
22  
12  
12  
12  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
4
4
4
7
7
7
8
8
8
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
Replace C with G for Lead-Free Packaging  
PS024314-0308  
Ordering Information  
Z8 Encore! XP® F0823 Series  
Product Specification  
222  
Z8 Encore! XP with 2 KB Flash  
Standard Temperature: 0 °C to 70 °C  
Z8F0213PB005SC  
Z8F0213QB005SC  
Z8F0213SB005SC  
Z8F0213SH005SC  
Z8F0213HH005SC  
Z8F0213PH005SC  
Z8F0213SJ005SC  
Z8F0213HJ005SC  
Z8F0213PJ005SC  
2 KB  
2 KB  
2 KB  
2 KB  
2 KB  
2 KB  
2 KB  
2 KB  
2 KB  
512 B  
512 B  
512 B  
512 B  
512 B  
512 B  
512 B  
512 B  
512 B  
6
6
6
16  
16  
16  
24  
24  
24  
12  
12  
12  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
Extended Temperature: -40 °C to 105 °C  
Z8F0213PB005EC  
Z8F0213QB005EC  
Z8F0213SB005EC  
Z8F0213SH005EC  
Z8F0213HH005EC  
Z8F0213PH005EC  
Z8F0213SJ005EC  
Z8F0213HJ005EC  
Z8F0213PJ005EC  
2 KB  
2 KB  
2 KB  
2 KB  
2 KB  
2 KB  
2 KB  
2 KB  
2 KB  
512 B  
512 B  
512 B  
512 B  
512 B  
512 B  
512 B  
512 B  
512 B  
6
6
6
16  
16  
16  
24  
24  
24  
12  
12  
12  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
Replace C with G for Lead-Free Packaging  
PS024314-0308  
Ordering Information  
Z8 Encore! XP® F0823 Series  
Product Specification  
223  
Z8 Encore! XP with 1 KB Flash, 10-Bit Analog-to-Digital Converter  
Standard Temperature: 0 °C to 70 °C  
Z8F0123PB005SC  
Z8F0123QB005SC  
Z8F0123SB005SC  
Z8F0123SH005SC  
Z8F0123HH005SC  
Z8F0123PH005SC  
Z8F0123SJ005SC  
Z8F0123HJ005SC  
Z8F0123PJ005SC  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
256 B  
256 B  
256 B  
256 B  
256 B  
256 B  
256 B  
256 B  
256 B  
6
6
6
16  
16  
16  
22  
22  
22  
12  
12  
12  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
4
4
4
7
7
7
8
8
8
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
Extended Temperature: -40 °C to 105 °C  
Z8F0123PB005EC  
Z8F0123QB005EC  
Z8F0123SB005EC  
Z8F0123SH005EC  
Z8F0123HH005EC  
Z8F0123PH005EC  
Z8F0123SJ005EC  
Z8F0123HJ005EC  
Z8F0123PJ005EC  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
256 B  
256 B  
256 B  
256 B  
256 B  
256 B  
256 B  
256 B  
256 B  
6
6
6
16  
16  
16  
22  
22  
22  
12  
12  
12  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
4
4
4
7
7
7
8
8
8
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
Replace C with G for Lead-Free Packaging  
PS024314-0308  
Ordering Information  
Z8 Encore! XP® F0823 Series  
Product Specification  
224  
Z8 Encore! XP with 1 KB Flash  
Standard Temperature: 0 °C to 70 °C  
Z8F0113PB005SC  
Z8F0113QB005SC  
Z8F0113SB005SC  
Z8F0113SH005SC  
Z8F0113HH005SC  
Z8F0113PH005SC  
Z8F0113SJ005SC  
Z8F0113HJ005SC  
Z8F0113PJ005SC  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
256 B  
256 B  
256 B  
256 B  
256 B  
256 B  
256 B  
256 B  
256 B  
6
6
6
16  
16  
16  
24  
24  
24  
12  
12  
12  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
Extended Temperature: -40 °C to 105 °C  
Z8F0113PB005EC  
Z8F0113QB005EC  
Z8F0113SB005EC  
Z8F0113SH005EC  
Z8F0113HH005EC  
Z8F0113PH005EC  
Z8F0113SJ005EC  
Z8F0113HJ005EC  
Z8F0113PJ005EC  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
256 B  
256 B  
256 B  
256 B  
256 B  
256 B  
256 B  
256 B  
256 B  
6
6
6
16  
16  
16  
24  
24  
24  
12  
12  
12  
18  
18  
18  
18  
18  
18  
2
2
2
2
2
2
2
2
2
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
PDIP 8-pin package  
QFN 8-pin package  
SOIC 8-pin package  
SOIC 20-pin package  
SSOP 20-pin package  
PDIP 20-pin package  
SOIC 28-pin package  
SSOP 28-pin package  
PDIP 28-pin package  
Replace C with G for Lead-Free Packaging  
PS024314-0308  
Ordering Information  
Z8 Encore! XP® F0823 Series  
Product Specification  
225  
®
Z8 Encore! XP F0823 Series Development Kit  
Z8F08A28100KITG  
Z8F04A28100KITG  
Z8F04A08100KITG  
ZUSBSC00100ZACG  
ZUSBOPTSC01ZACG  
ZENETSC0100ZACG  
Z8 Encore! XP F082A Series Development Kit (20- and 28-Pin)  
Z8 Encore! XP F042A Series Development Kit (20- and 28-Pin)  
Z8 Encore! XP F042A Series Development Kit (8-Pin)  
USB Smart Cable Accessory Kit  
Opto-Isolated USB Smart Cable Accessory Kit  
Ethernet Smart Cable Accessory Kit  
PS024314-0308  
Ordering Information  
Z8 Encore! XP® F0823 Series  
Product Specification  
226  
Part Number Suffix Designations  
Z8  
F
04 23  
S
H 005 S  
C
Environmental Flow  
C = Standard Plastic Packaging Compound  
G = Green Plastic Packaging Compound  
Temperature Range  
S = Standard, 0 °C to 70 °C  
E = Extended, -40 °C to +105 °C  
Speed  
020 = 20 MHz  
Pin Count  
B = 8  
H = 20  
J = 28  
Package  
H = SSOP  
P = PDIP  
S = SOIC  
Device Type  
23 = 6-22 I/O lines, 4-8 ADC channels  
13 = 6-24 I/O lines, no ADC channels  
Memory Size  
08 = 8 KB Flash, 1 KB RAM  
04 = 4 KB Flash, 1 KB RAM  
02 = 2 KB Flash, 512 B RAM  
01 = 1 KB Flash, 256 B RAM  
Memory Type  
F = Flash  
Device Family  
Z8 = Zilog’s 8-Bit Microcontroller  
PS024314-0308  
Ordering Information  
Z8 Encore! XP® F0823 Series  
Product Specification  
227  
ANDX 177  
Index  
arithmetic instructions 175  
assembly language programming 171  
assembly language syntax 172  
Symbols  
# 174  
B
% 174  
@ 174  
B 174  
b 173  
baud rate generator, UART 103  
BCLR 176  
Numerics  
binary number suffix 174  
BIT 176  
10-bit ADC 4  
40-lead plastic dual-inline package 214, 215  
bit 173  
clear 176  
manipulation instructions 176  
set 176  
A
absolute maximum ratings 193  
AC characteristics 197  
ADC 175  
set or clear 176  
swap 176  
test and jump 178  
test and jump if non-zero 178  
test and jump if zero 178  
bit jump and test if non-zero 178  
bit swap 178  
architecture 117  
automatic power-down 118  
block diagram 118  
continuous conversion 120  
control register 122, 124  
control register definitions 122  
data high byte register 124  
data low bits register 125  
electrical characteristics and timing 201  
operation 118  
block diagram 3  
block transfer instructions 176  
BRK 178  
BSET 176  
BSWAP 176, 178  
BTJ 178  
single-shot conversion 119  
ADCCTL register 122, 124  
ADCDH register 124  
ADCDL register 125  
BTJNZ 178  
BTJZ 178  
ADCX 175  
C
ADD 175  
CALL procedure 178  
CAPTURE mode 84, 85  
CAPTURE/COMPARE mode 85  
cc 173  
add - extended addressing 175  
add with carry 175  
add with carry - extended addressing 175  
additional symbols 174  
address space 13  
CCF 176  
characteristics, electrical 193  
clear 177  
ADDX 175  
analog signals 10  
CLR 177  
analog-to-digital converter (ADC) 117  
AND 177  
COM 177  
PS024314-0308  
Index  
Z8 Encore! XP® F0823 Series  
Product Specification  
228  
COMPARE 84  
electrical characteristics 193  
compare - extended addressing 175  
COMPARE mode 84  
ADC 201  
flash memory and timing 200  
GPIO input data sample timing 202  
Watchdog Timer 200, 202  
enable interrupt 176  
compare with carry 175  
compare with carry - extended addressing 175  
complement 177  
complement carry flag 176  
condition code 173  
ER 173  
extended addressing register 173  
external pin reset 25  
continuous conversion (ADC) 120  
CONTINUOUS mode 84  
control register definition, UART 104  
Control Registers 13, 17  
COUNTER modes 84  
CP 175  
eZ8 CPU features 4  
eZ8 CPU instruction classes 174  
eZ8 CPU instruction notation 172  
eZ8 CPU instruction set 171  
eZ8 CPU instruction summary 179  
CPC 175  
CPCX 175  
CPU and peripheral overview 4  
CPU control instructions 176  
CPX 175  
F
FCTL register 137, 143, 144  
features, Z8 Encore! 1  
first opcode map 190  
Customer Support 237  
FLAGS 174  
flags register 174  
D
flash  
DA 173, 175  
controller 4  
data memory 15  
DC characteristics 194  
debugger, on-chip 151  
DEC 175  
option bit address space 144  
option bit configuration - reset 141  
program memory address 0000H 144  
program memory address 0001H 145  
flash memory 129  
decimal adjust 175  
decrement 175  
arrangement 130  
decrement and jump non-zero 178  
decrement word 175  
DECW 175  
byte programming 135  
code protection 133  
configurations 129  
destination operand 174  
device, port availability 35  
DI 176  
control register definitions 137, 143  
controller bypass 136  
electrical characteristics and timing 200  
flash control register 137, 143, 144  
flash option bits 134  
direct address 173  
disable interrupts 176  
DJNZ 178  
flash status register 137  
flow chart 132  
dst 174  
frequency high and low byte registers 139  
mass erase 135  
E
operation 131  
operation timing 133  
EI 176  
PS024314-0308  
Index  
Z8 Encore! XP® F0823 Series  
Product Specification  
229  
page erase 135  
INC 175  
page select register 138, 139  
FPS register 138, 139  
FSTAT register 137  
increment 175  
increment word 175  
INCW 175  
indexed 173  
indirect address prefix 174  
indirect register 173  
indirect register pair 173  
indirect working register 173  
indirect working register pair 173  
infrared encoder/decoder (IrDA) 113  
Instruction Set 171  
instruction set, eZ8 CPU 171  
instructions  
G
GATED mode 84  
general-purpose I/O 35  
GPIO 4, 35  
alternate functions 36  
architecture 36  
control register definitions 43  
input data sample timing 202  
interrupts 43  
ADC 175  
ADCX 175  
port A-C pull-up enable sub-registers 48,  
49  
ADD 175  
ADDX 175  
port A-H address registers 44  
port A-H alternate function sub-registers 45  
port A-H control registers 44  
port A-H data direction sub-registers 45  
port A-H high drive enable sub-registers 47  
port A-H input data registers 49  
port A-H output control sub-registers 46  
port A-H output data registers 50  
port A-H stop mode recovery sub-registers  
47  
AND 177  
ANDX 177  
arithmetic 175  
BCLR 176  
BIT 176  
bit manipulation 176  
block transfer 176  
BRK 178  
BSET 176  
BSWAP 176, 178  
BTJ 178  
port availability by device 35  
port input timing 203  
BTJNZ 178  
port output timing 204  
BTJZ 178  
CALL 178  
CCF 176  
H
CLR 177  
H 174  
COM 177  
HALT 176  
CP 175  
halt mode 32, 176  
CPC 175  
hexadecimal number prefix/suffix 174  
CPCX 175  
CPU control 176  
CPX 175  
I
DA 175  
I2C 4  
DEC 175  
IM 173  
DECW 175  
immediate data 173  
immediate operand prefix 174  
DI 176  
PS024314-0308  
Index  
Z8 Encore! XP® F0823 Series  
Product Specification  
230  
DJNZ 178  
EI 176  
TMX 176  
TRAP 178  
HALT 176  
INC 175  
Watchdog Timer refresh 177  
XOR 178  
INCW 175  
IRET 178  
JP 178  
XORX 178  
instructions, eZ8 classes of 174  
interrupt control register 64  
interrupt controller 53  
architecture 53  
LD 177  
LDC 177  
LDCI 176, 177  
LDE 177  
interrupt assertion types 56  
interrupt vectors and priority 56  
operation 55  
LDEI 176  
LDX 177  
register definitions 58  
software interrupt assertion 57  
interrupt edge select register 63  
interrupt request 0 register 58  
interrupt request 1 register 59  
interrupt request 2 register 59  
interrupt return 178  
interrupt vector listing 53  
interrupts  
LEA 177  
load 177  
logical 177  
MULT 175  
NOP 176  
OR 177  
ORX 178  
POP 177  
POPX 177  
program control 178  
PUSH 177  
PUSHX 177  
RCF 176  
RET 178  
UART 101  
IR 173  
Ir 173  
IrDA  
architecture 113  
block diagram 113  
RL 178  
control register definitions 116  
operation 113  
RLC 178  
rotate and shift 178  
RR 178  
receiving data 115  
transmitting data 114  
IRET 178  
RRC 178  
SBC 175  
SCF 176, 177  
SRA 179  
SRL 179  
IRQ0 enable high and low bit registers 60  
IRQ1 enable high and low bit registers 61  
IRQ2 enable high and low bit registers 62  
IRR 173  
SRP 177  
STOP 177  
SUB 175  
SUBX 175  
SWAP 179  
TCM 176  
TCMX 176  
TM 176  
Irr 173  
J
JP 178  
jump, conditional, relative, and relative condi-  
tional 178  
PS024314-0308  
Index  
Z8 Encore! XP® F0823 Series  
Product Specification  
231  
modes 84  
MULT 175  
multiply 175  
L
LD 177  
LDC 177  
MULTIPROCESSOR mode, UART 99  
LDCI 176, 177  
LDE 177  
LDEI 176, 177  
N
LDX 177  
NOP (no operation) 176  
notation  
b 173  
LEA 177  
load 177  
load constant 176  
cc 173  
load constant to/from program memory 177  
load constant with auto-increment addresses  
177  
DA 173  
ER 173  
IM 173  
load effective address 177  
load external data 177  
load external data to/from data memory and  
auto-increment addresses 176  
load external to/from data memory and auto-in-  
crement addresses 177  
load instructions 177  
IR 173  
Ir 173  
IRR 173  
Irr 173  
p 173  
R 173  
r 173  
load using extended addressing 177  
logical AND 177  
RA 173  
RR 173  
logical AND/extended addressing 177  
logical exclusive OR 178  
logical exclusive OR/extended addressing 178  
logical instructions 177  
logical OR 177  
rr 173  
vector 173  
X 173  
notational shorthand 173  
logical OR/extended addressing 178  
low power modes 31  
O
OCD  
M
architecture 151  
auto-baud detector/generator 154  
baud rate limits 155  
block diagram 151  
breakpoints 156  
master interrupt enable 55  
memory  
data 15  
program 13  
commands 157  
mode  
control register 161  
data format 154  
CAPTURE 84, 85  
CAPTURE/COMPARE 85  
CONTINUOUS 84  
COUNTER 84  
GATED 84  
DBG pin to RS-232 Interface 152  
DEBUG mode 153  
debugger break 178  
interface 152  
ONE-SHOT 84  
PWM 84, 85  
serial errors 155  
PS024314-0308  
Index  
Z8 Encore! XP® F0823 Series  
Product Specification  
232  
status register 163  
PDIP 214, 215  
timing 205  
part selection guide 2  
PC 174  
OCD commands  
execute instruction (12H) 161  
read data memory (0DH) 160  
read OCD control register (05H) 158  
read OCD revision (00H) 158  
read OCD status register (02H) 158  
read program counter (07H) 159  
read program memory (0BH) 160  
read program memory CRC (0EH) 161  
read register (09H) 159  
PDIP 214, 215  
peripheral AC and DC electrical characteristics  
199  
pin characteristics 10  
Pin Descriptions 7  
polarity 173  
POP 177  
pop using extended addressing 177  
POPX 177  
read runtime counter (03H) 158  
step instruction (10H) 161  
stuff instruction (11H) 161  
write data memory (0CH) 160  
write OCD control register (04H) 158  
write program counter (06H) 159  
write program memory (0AH) 159  
write register (08H) 159  
port availability, device 35  
port input timing (GPIO) 203  
port output timing, GPIO 204  
power supply signals 10  
power-down, automatic (ADC) 118  
Power-on and Voltage Brownout electrical  
characteristics and timing 199  
Power-On Reset (POR) 23  
program control instructions 178  
program counter 174  
program memory 13  
on-chip debugger (OCD) 151  
on-chip debugger signals 10  
ONE-SHOT mode 84  
opcode map  
PUSH 177  
abbreviations 189  
push using extended addressing 177  
PUSHX 177  
cell description 188  
first 190  
PWM mode 84, 85  
second after 1FH 191  
PxADDR register 44  
Operational Description 21, 31, 35, 53, 67, 87,  
93, 113, 117, 127, 129, 141, 151, 165, 169  
OR 177  
PxCTL register 45  
ordering information 217  
ORX 178  
R
R 173  
r 173  
RA  
P
register address 173  
p 173  
RCF 176  
packaging  
receive  
20-pin PDIP 211, 212  
20-pin SSOP 212, 215  
28-pin PDIP 213  
28-pin SOIC 214  
8-pin PDIP 209  
8-pin SOIC 210  
IrDA data 115  
receiving UART data-interrupt-driven method  
98  
receiving UART data-polled method 97  
register 173  
ADC control (ADCCTL) 122, 124  
PS024314-0308  
Index  
Z8 Encore! XP® F0823 Series  
Product Specification  
233  
ADC data high byte (ADCDH) 124  
ADC data low bits (ADCDL) 125  
flash control (FCTL) 137, 143, 144  
flash high and low byte (FFREQH and  
FREEQL) 139  
rotate and shift instructions 178  
rotate left 178  
rotate left through carry 178  
rotate right 178  
rotate right through carry 178  
RP 174  
flash page select (FPS) 138, 139  
flash status (FSTAT) 137  
RR 173, 178  
GPIO port A-H address (PxADDR) 44  
GPIO port A-H alternate function sub-regis-  
ters 46  
rr 173  
RRC 178  
GPIO port A-H control address (PxCTL) 45  
GPIO port A-H data direction sub-registers  
45  
S
SBC 175  
OCD control 161  
SCF 176, 177  
OCD status 163  
second opcode map after 1FH 191  
set carry flag 176, 177  
set register pointer 177  
shift right arithmetic 179  
shift right logical 179  
signal descriptions 9  
single-sho conversion (ADC) 119  
software trap 178  
UARTx baud rate high byte (UxBRH) 110  
UARTx baud rate low byte (UxBRL) 110  
UARTx Control 0 (UxCTL0) 107, 110  
UARTx control 1 (UxCTL1) 108  
UARTx receive data (UxRXD) 105  
UARTx status 0 (UxSTAT0) 105  
UARTx status 1 (UxSTAT1) 106  
UARTx transmit data (UxTXD) 104  
Watchdog Timer control (WDTCTL) 90,  
128  
source operand 174  
SP 174  
SRA 179  
watch-dog timer control (WDTCTL) 167  
Watchdog Timer reload high byte (WDTH)  
91  
src 174  
SRL 179  
SRP 177  
Watchdog Timer reload low byte (WDTL)  
91  
stack pointer 174  
STOP 177  
Watchdog Timer reload upper byte (WD-  
TU) 91  
STOP mode 31, 177  
Stop Mode Recovery  
sources 26  
register file 13  
register pair 173  
register pointer 174  
reset  
using a GPIO port pin transition 27, 28  
using Watchdog Timer time-out 27  
SUB 175  
and stop mode characteristics 22  
and stop mode recovery 21  
carry flag 176  
sources 22  
subtract 175  
subtract - extended addressing 175  
subtract with carry 175  
subtract with carry - extended addressing 175  
SUBX 175  
RET 178  
return 178  
SWAP 179  
RL 178  
swap nibbles 179  
RLC 178  
symbols, additional 174  
PS024314-0308  
Index  
Z8 Encore! XP® F0823 Series  
Product Specification  
234  
control register definitions 104  
T
controller signals 9  
TCM 176  
data format 94  
TCMX 176  
interrupts 101  
test complement under mask 176  
test complement under mask - extended ad-  
dressing 176  
MULTIPROCESSOR mode 99  
receiving data using interrupt-driven meth-  
od 98  
test under mask 176  
receiving data using the polled method 97  
transmitting data using the interrupt-driven  
method 96  
test under mask - extended addressing 176  
timer signals 9  
timers 67  
transmitting data using the polled method  
95  
architecture 67  
block diagram 67  
x baud rate high and low registers 110  
x control 0 and control 1 registers 107  
x status 0 and status 1 registers 105, 106  
UxBRH register 110  
CAPTURE mode 74, 75, 84, 85  
CAPTURE/COMPARE mode 78, 85  
COMPARE mode 76, 84  
CONTINUOUS mode 69, 84  
COUNTER mode 70, 71  
COUNTER modes 84  
GATED mode 77, 84  
UxBRL register 110  
UxCTL0 register 107, 110  
UxCTL1 register 108  
UxRXD register 105  
ONE-SHOT mode 68, 84  
operating mode 68  
UxSTAT0 register 105  
UxSTAT1 register 106  
PWM mode 72, 73, 84, 85  
reading the timer count values 79  
reload high and low byte registers 80  
timer control register definitions 80  
timer output signal operation 79  
timers 0-3  
UxTXD register 104  
V
vector 173  
Voltage Brownout reset (VBR) 24  
control registers 82, 83  
high and low byte registers 80, 81  
TM 176  
W
TMX 176  
tools, hardware and software 226  
transmit  
Watchdog Timer  
approximate time-out delay 87  
CNTL 24  
IrDA data 114  
transmitting UART data-polled method 95  
transmitting UART dat-interrupt-driven method  
96  
control register 89, 127, 167  
electrical characteristics and timing 200,  
202  
TRAP 178  
interrupt in normal operation 88  
interrupt in STOP mode 88  
refresh 88, 177  
U
reload unlock sequence 89  
reload upper, high and low registers 90  
reset 25  
UART 4  
architecture 93  
baud rate generator 103  
reset in normal operation 89  
PS024314-0308  
Index  
Z8 Encore! XP® F0823 Series  
Product Specification  
235  
reset in STOP mode 89  
time-out response 88  
Watchdog Timer Control Register (WDTCTL)  
90  
WDTCTL register 90, 128, 167  
WDTH register 91  
WDTL register 91  
WDTU register 91  
working register 173  
working register pair 173  
X
X 173  
XOR 178  
XORX 178  
Z
Z8 Encore!  
block diagram 3  
features 1  
part selection guide 2  
PS024314-0308  
Index  
Z8 Encore! XP® F0823 Series  
Product Specification  
236  
PS024314-0308  
Index  
Z8 Encore! XP® F0823 Series  
Product Specification  
237  
Customer Support  
For answers to technical questions about the product, documentation, or any  
other issues with Zilog’s offerings, please visit Zilog’s Knowledge  
Base at http://www.zilog.com/kb.  
For any comments, detail technical questions, or reporting problems, please visit Zilog’s  
Technical Support at http://support.zilog.com.  
PS024314-0308  
Customer Support  

相关型号:

Z8F0423PB005EG

IC MCU 8BIT 4KB FLASH 8DIP
ZILOG

Z8F0423PB005SC

Microcontroller, 8-Bit, FLASH, Z8 CPU, 20MHz, CMOS, PDIP8, PLASTIC, DIP-8
IXYS

Z8F0423PB005SG

IC 8-BIT, FLASH, 20 MHz, MICROCONTROLLER, PDIP8, GREEN, PLASTIC, DIP-8, Microcontroller
ZILOG

Z8F0423PH005EG

IC 8-BIT, FLASH, 20 MHz, MICROCONTROLLER, PDIP20, GREEN, PLASTIC, DIP-20, Microcontroller
ZILOG

Z8F0423PH005EG

Microcontroller, 8-Bit, FLASH, Z8 CPU, 20MHz, CMOS, PDIP20, GREEN, PLASTIC, DIP-20
IXYS

Z8F0423PH005EG2156

IC MCU 8BIT 4KB FLASH 20DIP
ZILOG

Z8F0423PH005SC

Microcontroller, 8-Bit, FLASH, Z8 CPU, 20MHz, CMOS, PDIP20, PLASTIC, DIP-20
IXYS

Z8F0423PH005SG

IC MCU 8BIT 4KB FLASH 20DIP
ZILOG

Z8F0423PH005SG2156

IC MCU 8BIT 4KB FLASH 20DIP
ZILOG

Z8F0423PJ005EG2156

IC MCU 8BIT 4KB FLASH 28DIP
ZILOG

Z8F0423PJ005SC

Microcontroller, 8-Bit, FLASH, Z8 CPU, 20MHz, CMOS, PDIP28, PLASTIC, DIP-28
IXYS

Z8F0423PJ005SG

IC MCU 8BIT 4KB FLASH 28DIP
ZILOG