100X41W102MT4T [JOHANSON]

X2Y® FILTER & DECOUPLING CAPACITORS;
100X41W102MT4T
型号: 100X41W102MT4T
厂家: JOHANSON TECHNOLOGY INC.    JOHANSON TECHNOLOGY INC.
描述:

X2Y® FILTER & DECOUPLING CAPACITORS

LTE 联轴器
文件: 总8页 (文件大小:1220K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
X2Y FILTER & DECOUPLING  
CAPACITORS  
X2Y® filter capacitors employ a unique, patented low inductance design featuring two balanced capacitors  
that are immune to temperature, voltage and aging performance differences.  
These components offer superior decoupling and EMI filtering performance, virtually eliminate parasitics,  
and can replace multiple capacitors and inductors saving board space and reducing assembly costs.  
ADVANTAGES  
APPLICATIONS  
• One device for EMI suppression or decoupling  
• Replace up to 7 components with one X2Y  
• Differential and common mode attenuation  
• Matched capacitance line to ground, both lines  
• Low inductance due to cancellation effect  
• Amplifier FIlter & Decoupling  
• High Speed Data Filtering  
• EMC I/O Filtering  
• FPGA / ASIC / µ-P Decoupling  
• DDR Memory Decoupling  
Circuit 1  
(1 Y-Cap.)  
Circuit 2  
(2 Y-Caps.)  
SIZE  
NPO 50 50 50 50 50 50 50  
X7R  
NPO 100 100 100 100 100 50 50 50  
0402 (X07)  
50 50 50 50 50 50 16  
X7R  
X5R  
NPO  
X7R  
NPO  
X7R  
X7R  
X7R  
X7R  
100 100 100 100 100 100 100 50 25 25  
16 10  
6.3  
0603 (X14)  
16 10  
10 10  
100 100 100 100 100 100 100 50  
100 100 100 100 100 100 100 100 50 50  
100  
0805 (X15)  
1206 (X18  
50 25 10  
VOLTAGE  
RATINGS  
100 100 100  
100 100  
100  
16 16  
10  
6.3 = 6.3 VDC  
10 = 10 VDC  
16 = 16 VDC  
25 = 25 VDC  
50 = 50 VDC  
100 = 100 VDC  
500 = 500 VDC  
500  
500  
100 100  
25 16  
1210 (X41)  
1410 (X44)  
1812 (X43)  
100  
500  
100  
SEE PART NUMBER LISTING TABLE ON PAGES 7 & 8 Contact factory for part combinations not shown.  
Circuit 1 capacitance measured Line-to-Ground (A or B to G) Circuit 2 capacitance measured Power-to-Ground (A + B to G)  
Rated voltage is from line to ground in Circuit 1, power to ground in Circuit 2 .  
HOW TO  
O
RDER X2Y® FILTER & DECOUPLING  
CAPACITORS  
P/N written: 100X14W104MV4T  
100  
X14  
W
104  
M
V
4
T
VOLTAGE  
CASE SIZE  
DIELECTRIC  
CAPACITANCE  
(Circuit 1)  
1st two digits are  
significant; third digit  
denotes number of zeros.  
TOLERANCE  
TAPE MODIFIER  
TERMINATION  
V = Ni barrier w/  
100ꢀ Sn Plating  
X07 = 0402  
X14 = 0603  
X15 = 0805  
X18 = 1206  
X41 = 1210  
X43 = 1812  
X44 = 1410  
6R3 = 6.3 V  
100 = 10 V  
160 = 16 V  
250 = 25 V  
500 = 50 V  
101 = 100 V  
501 = 500 V  
N = NPO  
W = X7R  
X = X5R  
M
=
20ꢀ  
Code  
Tape  
Embossed  
Paper  
Reel  
E
T
7”  
7”  
Available on select parts:  
®
Tape specs. per EIA RS481  
F = Polyterm  
102 = 1000 pF =  
1 nF  
soft polymer termination  
T = SnPb  
103 = 0.01 µF  
=
10 nF  
MARKING  
4 = Unmarked  
104 = 0.10 µF = 100 nF  
®
X2Y technology patents and registered trademark under license from X2Y ATTENUATORS, LLC  
2
www.johansondielectrics.com  
®
X2Y FILTER & DECOUPLING  
CAPACITORS  
Power  
Signal 1  
A
B
A
Filtering  
Decoupling  
Circuit 2 S21  
Power-to-Ground  
G1  
G2  
G1  
G2  
Ground  
Circuit 1 S21  
Signal-to-Ground  
B
Ground  
Signal 2  
Labeled capacitance values below follow the P/N order code or Y cap value (Circuit 1.)  
Effective capacitance measured in Circuit 2 is 200% of the labled Circuit 1 Y cap value.  
10.0Ω  
1.00Ω  
10.0Ω  
1.00Ω  
0.10Ω  
0.01Ω  
0.10Ω  
0.01Ω  
E
LECTRICAL  
C
HARACTERISTICS  
NPO  
X7R  
X5R  
Temperature Coefficient:  
0 30ppm/ꢁC (-55 to +125ꢁC)  
15ꢀ (-55 to +125ꢁC)  
15ꢀ (-55 to +85ꢁC)  
WVDC 100V: 2.5 X WVDC, 25ꢁC, 50mA max.  
WVDC = 500V: 1.4 X WVDC, 25ꢁC, 50mA max.  
Dielectric Strength:  
WVDC 50 VDC: 2.5ꢀ max.  
WVDC = 25 VDC: 3.5ꢀ max.  
WVDC = 10-16 VDC: 5.0ꢀ max.  
WVDC = 6.3 VDC: 10ꢀ max.  
WVDC 50 VDC: 5ꢀ max.  
WVDC 25 VDC: 10ꢀ max.  
Dissipation Factor:  
0.1ꢀ max.  
Insulation Resistance  
(Min. @ 25ꢁC, WVDC)  
C0.047µF: 1000 ΩF or 100 GΩ, whichever is less  
C> 0.047µF: 500 ΩF or 10 GΩ, whichever is less  
C > 100 pF; 1kHz 50Hz; 1.0 0.2 VRMS  
Test Conditions:  
Other:  
1.0kHz 50Hz @ 1.0 0.2 Vrms  
C 100 pF; 1Mhz 50kHz; 1.0 0.2 VRMS  
See main catalog page 18 for additional dielectric specifications.  
Equivalent Circuits  
Cross-sectional View  
Dimensional View  
A
G
G
CB  
EB  
L
A
G1  
G2  
T
B
W
B
MECHANICAL  
CHARACTERISTICS  
0402 (X07)  
0603 (X14)  
0805 (X15)  
1206 (X18)  
1210 (X41)  
1410 (X44)  
1812 (X43)  
IN  
mm  
IN  
mm  
IN  
mm  
IN  
mm  
IN  
mm  
IN  
mm  
IN  
mm  
0.045  
0.003  
1.143  
0.064  
0.005  
1.626  
0.080  
0.008  
2.032  
0.124  
0.010  
3.150  
0.125  
0.010  
3.175  
0.140  
0.010  
3.556  
0.174  
0.010  
4.420  
L
W
T
0.076  
0.127  
0.203  
0.254  
0.254  
0.254  
0.254  
0.025  
0.003  
0.635  
0.076  
0.035  
0.005  
0.889  
0.127  
0.050  
0.008  
1.270  
0.203  
0.063  
0.010  
1.600  
0.254  
0.098  
0.010  
2.489  
0.254  
0.098  
0.010  
2.490  
0.254  
0.125  
0.010  
3.175  
0.254  
0.020  
max  
0.508  
max  
0.026  
max  
0.660  
max  
0.040  
max  
1.016  
max  
0.050  
max  
1.270  
max  
0.070  
max  
1.778  
max  
0.070  
max  
1.778  
max  
0.090  
max  
2.286  
max  
0.008  
0.003  
0.203  
0.076  
0.010  
0.006  
0.254  
0.152  
0.012  
0.008  
0.305  
0.203  
0.016  
0.010  
0.406  
0.254  
0.018  
0.010  
0.457  
0.254  
0.018  
0.010  
0.457  
0.254  
0.022  
0.012  
0.559  
0.305  
EB  
0.012  
0.003  
0.305  
0.076  
0.018  
0.004  
0.457  
0.102  
0.022  
0.005  
0.559  
0.127  
0.040  
0.005  
1.016  
0.127  
0.045  
0.005  
1.143  
0.127  
0.045  
0.005  
1.143  
0.127  
0.045  
0.005  
1.143  
0.127  
CB  
3
www.johansondielectrics.com  
®
X2Y FILTER & DECOUPLING  
CAPACITORS  
The X2Y® Design - A Balanced, Low ESL, “Capacitor Circuit”  
®
The X2Y capacitor design starts with standard 2 terminal MLC capacitor’s opposing electrode sets, A & B, and adds a third electrode set (G) which surround  
each A & B electrode. The result is a higly vesatile three node capacitive circuit containing two tightly matched, low inductance capacitors in a compact, four-  
terminal SMT chip.  
X2Y® Circuit 1: Filtering  
Circuit 1 connects the X2Y filter capacitor across two signal lines. Common-mode noise is filtered to ground (or  
Signal 1  
A
®
G1  
G2  
®
reference) by the two Y-capacitors, A & B. Because X2Y is a balanced circuit that is tightly matched in both  
Ground  
Signal 2  
phase and magnitude with respect to ground, common-to-differential mode noise conversion is minimized and  
any differential-mode noise is cancelled within the device. The low inductance of the capacitors extends their high  
frequency attenuation considerably over discrete MLCs.  
B
Power  
X2Y® Circuit 2: Power Bypass / Decoupling  
A
Circuit 2 connects the A & B capacitors in parallel doubling the total capacitance while reducing the inductance.  
X2Y capacitors exhibit up to 1/10th the device inductance and 1/5th the mounted inductance of similar sized MLC  
capcitors enabling high-performance bypass networks with far fewer components and vias. Low ESL delivers  
improved High Frequency performance into the GHz range.  
G1  
G2  
B
Ground  
GSM RFI Attenuation in Audio & Analog  
GSM handsets transmit in the 850 and 1850 MHz bands using a TDMA pulse  
rate of 217Hz. These signals cause the GSM buzz heard in a wide range of  
audio products from headphones to concert hall PA systems or “silent” signal  
errors created in medical, industrial process control, and security applications.  
Testing was conducted where an 840MHz GSM handset signal was delivered  
to the inputs of three different amplifier test circuit configurations shown below  
whose outputs were measured on a HF spectrum analyzer.  
1) No input filter, 2 discrete MLC 100nF power bypass caps.  
2) 2 discrete MLC 1nF input filter, 2 discrete MLC 100nF power bypass caps.  
3) A single X2Y 1nF input filter, a single X2Y 100nF power bypass cap.  
X2Y configuration provided a nearly flat response above the ambient and up to  
10 dB imrpoved rejection than the conventional MLCC configuration.  
Amplifier Input Filter Example  
®
In this example, a single Johanson X2Y component was used to filter noise at the input of a DC  
instrumentation amplifier. This reduced component count by 3-to-1 and costs by over 70ꢀ vs.  
conventional filter components that included 1ꢀ film Y-capacitors.  
Parameter  
X2Y®  
10nF  
Discrete  
10nF, 2 @ 220 pF  
Comments  
DC offset shift  
< 0.1 µV  
91 dB  
< 0.1 µV  
92 dB  
Referred to input  
Common mode rejection  
Source: Analog Devices, “A Designer’s Guide to Instrumentation Amplifiers (2nd Edition)” by Charles Kitchin and Lew Counts  
4
www.johansondielectrics.com  
®
X2Y FILTER & DECOUPLING  
CAPACITORS  
Common Mode Choke Replacement  
In this example, a 5 µH common mode choke is replaced by an 0805, 1000pF  
X2Y component acheiving superior EMI filtering by a component a fraction  
DC Motor EMI Reduction: A Superior Solution  
One X2Y component has successfully replaced 7 discrete filter components  
while achieving superior EMI filtering.  
®
®
of the size and cost.  
No Filter  
CMC 5uH  
X2Y® 1000pF  
Ambient  
Common Mode Choke  
9.0 x 6.0 x 5.0 mm  
X2Y®  
2.0 x 1.3 x 1.0 mm  
Eliminating Capacitor Anti-Resonance Issue  
A common design practice is to parallel decade capacitance values to extend  
the high frequency performance of the filter network. This causes an unintende  
and often over-looked effect of anti-resonant peaks in the filter networks  
combined impedance. X2Y’s very low mounted inductance allows designers  
to use a single, higher value part and completely avoid the anti-resonance  
problem. The impedance graph on right shows the combined mounted  
impedance of a 1nF, 10nF & 100nF 0402 MLC in parrallel in RED. The MLC  
networks anti-resonance peaks are nearly 10 times the desired impedance. A  
100nF and 47nF X2Y are plotted in BLUE and GREEN. (The total capacitance of  
X2Y (Circuit 2) is twice the value, or 200nF and 98nF in this example.) The sigle  
X2Y is clearly superior to the three paralleled MLCs.  
X2Y High Performance Power Bypass - Improve Performance, Reduce Space & Vias  
Actual measured performance of two high performance SerDes FPGA designs demonstrate how a 13 component X2Y bypass network significantly out  
performs a 38 component MLC network. For more information see http://johansondielectrics.com/pdfs/JDI_X2Y_STXII.pdf  
5
www.johansondielectrics.com  
SOLDER  
P
AD  
0402 (X07)  
IN mm  
R
ECOMMENDATIONS  
0603 (X14)  
IN mm  
0805 (X15)  
IN mm  
1206 (X18)  
IN mm  
1210 (X41)  
IN mm  
1410 (X44)  
IN mm  
1812 (X43)  
IN mm  
Z
X
Y
G
V
0.020 0.51 0.035 0.89 0.050 1.27 0.065 1.65 0.100 2.54 0.100 2.54 0.125 3.18  
0.020 0.51 0.025 0.64 0.035 0.89 0.040 1.02 0.040 1.02 0.040 1.02 0.040 1.02  
0.024 0.61 0.040 1.02 0.050 1.27 0.080 2.03 0.080 2.03 0.100 2.54 0.130 3.30  
0.015 0.38 0.020 0.51 0.022 0.56 0.040 1.02 0.045 1.14 0.045 1.14 0.045 1.14  
0.039 0.99 0.060 1.52 0.080 2.03 0.120 3.05 0.160 4.06 0.160 4.06 0.190 4.83  
0.064 1.63 0.090 2.29 0.120 3.05 0.160 4.06 0.160 4.06 0.180 4.57 0.210 5.33  
Use of solder mask beneath component is not recommended because of flux/contaminant entrapment.  
U
X
V
V
U
Z
Y
G
OPTIMIZING X2Y PERFORMANCE ON THE PCB  
X2Y capacitors deliver excellent performance in EMI/RFI filtering and Power Bypass applications. Physical and electrical placement  
on the PCB is critical in achieving good results. A low inductance, dual ground connection is mandatory.  
EMI Filter Applications Low inductance PCB routing examples are shown in figures 1 and 2. Figures 3-5 show unbalanced and high  
inductance connections and should be avoided. See detailed application note X2Y EMI FIlter Evaluation and PCB Design Guidelines.  
Fig. 1  
Fig. 2  
Fig. 3  
Fig. 4  
Fig. 5  
PDN / Power Bypass Applications Figures on right compare the X2Y  
recommended layout against a poor layout. Because of its long extents from  
device terminals to vias, and the wide via separation, the poor layout exhibits  
approximately 200ꢀ L1 inductance, and 150ꢀ L2 inductance compared to  
recommended X2Y layouts. See detailed application note X2Y Power Bypass  
Recommended X2Y  
Bypass Layout  
Mounting.  
LAB  
EVALUATION  
S
OLDERING  
PRECAUTIONS  
Ceramic capacitors (X2Y and standard MLC types) can be easily damaged when hand soldered. Thermal cracking of the ceramic  
body is often invisible even under a microscope. Factors that increase thermal cracking risk:  
1. 4 terminals to solder can increase hand-soldering time and temperature exposure  
2. Pb-free solders have higher reflow temperatures  
3. Low inductance connections to ground are inherently good heat-sinks  
A damaged component may exhibit a short circuit immediately and not recover, or may operate with intermittent Insulation Resistance  
(IR) levels. If you are not achieving expected results and have followed the other guidelines carefully, check to see you are adhering to  
the soldering guidelines below:  
• Always pre-heat the PCB and component to within 50ꢁC of solder reflow temperature at 2ꢁC/sec. maximum.  
• Use contact-less hand solder tools such as a hot air pencil, IR lamp, etc.  
• Avoid over-heating of the ceramic component, temperature limit: 260ꢁC for 20-30 seconds max.  
• Use a soldering iron as last resort; 20W max. tip, NO CONTACT with ceramic, limit solder time to 5 seconds max.  
A reliable, cost effective prototype PCB reflow soldering process is possible using a household toaster oven. There are several good  
procedures available on-line by googling “Toaster Oven Soldering”  
6
www.johansondielectrics.com  
Y-CAPACITOR  
VOLTAGE  
RATING (DC)  
SIZE  
TC  
JOHANSON P/N  
REEL QTY  
VALUE  
TOLERANCE  
1.8pF  
2.2pF  
4.7pF  
5.6pF  
10pF  
0.5pF  
0.5pF  
0.5pF  
0.5pF  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
50  
50  
500X07N1R8CV4T  
500X07N2R2CV4T  
500X07N4R7CV4T  
500X07N5R6CV4T  
500X07N100MV4T  
500X07N220MV4T  
500X07N270MV4T  
500X07N330MV4T  
500X07N470MV4T  
500X07N101MV4T  
500X07W101MV4T  
500X07W221MV4T  
500X07W471MV4T  
500X07W102MV4T  
500X07W152MV4T  
500X07W222MV4T  
500X07W472MV4T  
160X07W103MV4T  
101X14N1R8CV4T  
101X14N2R0CV4T  
101X14N4R7CV4T  
101X14N5R6CV4T  
101X14N100MV4T  
101X14N220MV4T  
101X14N270MV4T  
101X14N330MV4T  
101X14N470MV4T  
500X14N101MV4T  
500X14N221MV4T  
101X14W101MV4T  
101X14W221MV4T  
101X14W471MV4T  
101X14W102MV4T  
101X14W152MV4T  
101X14W222MV4T  
101X14W472MV4T  
500X14W103MV4T  
250X14W153MV4T  
250X14W223MV4T  
160X14W473MV4T  
100X14W104MV4T  
6R3X14W224MV4T  
160X14X224MV4T  
100X14X334MV4T  
100X14X474MV4T  
100X14X105MV4T  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
50  
50  
50  
NPO/COG  
22pF  
50  
27pF  
50  
33pF  
50  
47pF  
50  
0402  
100pF  
100pF  
220pF  
470pF  
1.0nF  
1.5nF  
2.2nF  
4.7nF  
10nF  
50  
50  
50  
50  
50  
X7R  
50  
50  
50  
16  
1.8pF  
2.2pF  
4.7pF  
5.6pF  
10pF  
100  
100  
100  
100  
100  
100  
100  
100  
100  
50  
22pF  
NPO/COG  
27pF  
33pF  
47pF  
100pF  
220pF  
100pF  
220pF  
470pF  
1.0nF  
1.5nF  
2.2nF  
4.7nF  
10nF  
50  
100  
100  
100  
100  
100  
100  
100  
50  
0603  
15nF  
25  
22nF  
25  
47nF  
16  
100nF  
220nF  
220nF  
330nF  
470nF  
1.0µF  
10  
6.3  
16  
10  
X5R  
10  
10  
Parts listed in the table are standard parts and carry the highest DC voltage rating for their size and value. Legacy part number requirements for  
lower voltage codes are fulfilled with the higher voltage rating which exceeds the requirement. Please contact the factory for part values or voltage  
combinations that are not shown.  
7
www.johansondielectrics.com  
®
X2Y FILTER & DECOUPLING  
CAPACITORS  
Y-CAPACITOR  
VOLTAGE  
RATING (DC)  
SIZE  
TC  
JOHANSON P/N  
REEL QTY  
VALUE  
TOLERANCE  
10pF  
22pF  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
100  
100  
100  
100  
100  
100  
50  
101X15N100MV4E  
101X15N220MV4E  
101X15N270MV4E  
101X15N330MV4E  
101X15N470MV4E  
101X15N101MV4E  
500X15N221MV4E  
500X15N471MV4E  
101X15W470MV4E  
101X15W101MV4E  
101X15W221MV4E  
101X15W471MV4E  
101X15W102MV4E  
101X15W152MV4E  
101X15W222MV4E  
101X15W472MV4E  
101X15W103MV4E  
500X15W153MV4E  
500X15W223MV4E  
500X15W473MV4E  
250X15W104MV4E  
100X15W184MV4E  
101X18N102MV4E  
101X18W103MV4E  
101X18W153MV4E  
101X18W223MV4E  
101X18W473MV4E  
101X18W104MV4E  
160X18W224MV4E  
160X18W334MV4E  
100X18W474MV4E  
501X41W103MV4E  
101X41W104MV4E  
101X41W224MV4E  
101X41W334MV4E  
160X41W105MV4E  
501X44W153MV4E  
101X44W404MV4E  
501X43W393MV4E  
101X43W474MV4E  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
4,000  
3,000  
3,000  
3,000  
3,000  
3,000  
3,000  
3,000  
3,000  
3,000  
2,000  
2,000  
2,000  
2,000  
2,000  
2,000  
2,000  
1,000  
1,000  
27pF  
33pF  
NPO/COG  
47pF  
100pF  
220pF  
470pF  
47pF  
50  
100  
100  
100  
100  
100  
100  
100  
100  
100  
50  
100pF  
220pF  
470pF  
1nF  
0805  
1.5nF  
2.2nF  
4.7nF  
10nF  
X7R  
15nF  
22nF  
50  
47nF  
50  
100nF  
180nF  
1nF  
25  
10  
100  
100  
100  
100  
100  
100  
16  
NPO/COG  
X7R  
10nF  
15nF  
22nF  
47nF  
1206  
1210  
100nF  
220nF  
330nF  
470nF  
10nF  
16  
10  
500  
100  
100  
100  
16  
100nF  
220nF  
330nF  
1000nF  
15nF  
X7R  
500  
100  
500  
100  
1410  
1812  
X7R  
X7R  
400nF  
39nF  
470nF  
Parts listed in the table are standard parts and carry the highest DC voltage rating for their size and value.  
Legacy part number requirements for lower voltage codes are fulfilled with the higher voltage rating which exceeds the requirement.  
Please contact the factory for part values or voltage combinations that are not shown.  
Johanson Dielectrics, Inc. reserves the right to make design and price changes without notice. All sales are subject to the terms and  
conditions printed on the back side of our sales order acknowledgment forms, including a limited warranty and remedies for non-  
conforming goods or defective goods. We will be pleased to provide a copy of these terms and conditions for your review.  
JOHANSON HONG KONG LTD.  
JOHANSON EUROPE LTD.  
Unit E, 11/F., Phase 1, Kaiser Estate  
41 Man Yue Street  
Hunghom, Kowloon, Hong Kong  
Tel: (852) 2334 6310 • Fax: (852) 2334 8858  
Acorn House, Old Kiln Road  
Flackwell Heath, Bucks HP10 9NR  
United Kingdom  
15191 Bledsoe Street  
Sylmar, California 91342  
Tel (818) 364-9800 • FAX (818) 364-6100  
http://www.johansondielectrics.com  
Tel +44-162-853-1154 • Fax +44-162-853-2703  
© 2010 Publication X2Y0210 Electronic Publication  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY