B45196-E1226-J0309 [KEMET]

CAPACITOR, TANTALUM, SOLID, POLARIZED, 6.3V, 22uF, SURFACE MOUNT, CHIP;
B45196-E1226-J0309
型号: B45196-E1226-J0309
厂家: KEMET CORPORATION    KEMET CORPORATION
描述:

CAPACITOR, TANTALUM, SOLID, POLARIZED, 6.3V, 22uF, SURFACE MOUNT, CHIP

文件: 总89页 (文件大小:1791K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Contents  
Overview of Types  
5
9
Chip Capacitors  
11  
43  
61  
General Technical Information  
Quality Assurance  
Measuring and Test Conditions  
Soldering Conditions  
75  
76  
Taping, Packing and Weights  
83  
Subject Index  
Symbols and Terms  
86  
88  
S
+
M
Siemens Mats us hita Components  
COMPONENTS  
New lab assortments in film  
capacitors  
Five at a stroke  
To save you the trouble of inquiring  
for individual ratings to put into your  
design, there are now five practical  
sets of film capacitors:  
þ Lead spacing 5: 525 types,  
50 to 400 V, 1 nF to 3.3 µF  
þ SilverCaps: the lowest-cost  
models, low in volume, 63  
to 400 V, 1 nF to 10 µF  
þ MKPs in wound technology: for  
RF applications, 250 to 2000 V,  
1.5 nF to 0.68 µF  
þ MKPs in stacked-film tech-  
nology: 300 types, 160 to  
1000 V, 1.5 nF to 1 µF  
þ Interference suppression: 150  
types with a wide choice of  
ratings for different applications  
X2 with small dimensions,  
Safe-X for maximum security  
against active flammability (X2)  
and Y for suppressing common-  
mode interference (Y2)  
SCS – dependable, fast and com petent  
Tantalum Electrolytic  
Capacitors  
S
+
M
Siemens Mats us hita Components  
COMPONENTS  
Ferrites and inductors in modern  
office communications  
The little things  
that do so much  
In the multimedia age, ferrites and  
inductors often play a key role. In  
the switch-mode power supplies  
of PCs ETD cores ensure interfe-  
rence-free transmission of power.  
Ring and E cores in energy-saving  
lamps provide pleasant lighting.  
Interface transformers in ISDN  
systems satisfy the high demands  
of CCITT standards. And ultra-flat  
planar transformers supply units  
and installations with the necessary  
power.  
For application-specific products  
and inductor design you can  
count on the support of our  
I.F.C. KNOW-HOW CENTER, right  
from the initial engineering phase.  
SCS – dependable, fast and com petent  
Contents  
Overview of Types  
9
Chip Capacitors  
11  
General technical information  
1
2
3
Basic construction  
Polarity  
43  
44  
44  
Standards  
4
Voltages  
Rated voltage  
Maximum continuous voltage  
Operating voltage  
Surge voltage  
Polarity reversal voltage (incorrect polarity)  
Series back-to-back connection  
Inherent voltage  
45  
45  
45  
46  
46  
47  
47  
47  
47  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
Recharging  
5
Capacitance  
Rated capacitance  
Capacitance tolerance  
Temperature dependence of the capacitance  
Frequency dependence of the capacitance  
Charge-discharge proof  
48  
48  
48  
48  
49  
49  
5.1  
5.2  
5.3  
5.4  
5.5  
6
Impedance / Equivalent series resistance (ESR)  
50  
7
7.1  
7.2  
AC power dissipation  
Superimposed alternating voltage for capacitors with solid electrolyte  
Maximum permissible ripple current and alternating voltage loads  
52  
52  
52  
8
Dissipation factor  
54  
9
Leakage current  
55  
55  
56  
56  
57  
9.1  
9.2  
9.3  
9.4  
Temperature and voltage dependence of the leakage current  
Time dependence of the leakage current  
Leakage current measurement  
Leakage current behavior after storage without applied voltage  
10  
Resistance to climatic stress  
Temperature range  
Minimum permissible operating temperature T  
Maximum permissible operating temperatureT  
Damp heat conditions  
57  
57  
57  
57  
57  
58  
58  
10.1  
10.2  
10.3  
10.4  
10.5  
10.6  
(Lower category temperature)  
(Upper category temperature)  
min  
max  
IEC climatic category  
Storage and transportation temperatures  
11  
11.1  
Notes on mounting  
Cleaning agents  
58  
58  
Siemens Matsushita Components  
5
Contents  
12  
13  
14  
15  
Standard barcode label  
Packing  
58  
59  
60  
60  
End of use and disposal  
Structure of the ordering code (part number)  
Quality Assurance  
61  
1
1.1  
1.2  
General  
61  
62  
63  
Total quality management and zero defect concept  
Quality assurance system  
2
Quality assurance procedure  
Material procurement  
Product quality assurance  
Final inspection  
Product monitoring  
64  
64  
64  
64  
64  
65  
2.1  
2.2  
2.3  
2.4  
2.5  
Manufacturing and quality assurance procedures for chip capacitors  
3
Delivery quality  
Random sampling  
Classification of inoperatives / non-conformancies  
AQL figures  
Incoming goods inspection  
66  
66  
66  
66  
66  
3.1  
3.2  
3.3  
3.4  
4
4.1  
Service life  
Failure criteria  
67  
68  
5
Reliability  
Failure rate (long-term failure rate)  
Failure rate values  
Failure rate conversion factors  
Effect of the circuit resistance (series resistance) on the failure rate  
Example of how to calculate the failure rate  
Failure rate for B 45 194  
68  
68  
69  
70  
71  
72  
72  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
6
7
Supplementary information  
73  
74  
Handling of claims and complaints  
Measuring and Test Conditions  
75  
75  
75  
1
2
Test conditions selected from IEC 60-384-1  
Tests with more stringent conditions for B 45 196-P  
Soldering Conditions  
76  
76  
77  
78  
80  
1
2
3
4
Tests  
Recommended solder pad layouts  
Recommended soldering temperature profiles  
Recommended soldering temperature profiles for B 45 194  
6
Siemens Matsushita Components  
Contents  
Taping, Packing and Weights  
83  
83  
84  
84  
1
2
3
Taping  
Packing  
Packing units and weights  
Subject Index  
86  
88  
Symbols and Terms  
Siemens Matsushita Components  
7
S
+
M
Siemens Mats us hita Components  
COMPONENTS  
Siemens filters from stock  
Ready,  
steady, go  
SCS has 100,000 SIFI filters in stock,  
ready to go as soon as your order  
arrives. We offer a big selection  
through all the many variants, ie  
building-block system, different  
attenuation characteristics and  
packages, various kinds of leads and  
current ratings from 1 through 20 A.  
SCS – dependable, fast and com petent  
Overview of Types  
Type  
Series  
Rated  
Rated  
Features  
Page  
voltageVR  
Vdc  
capacitance CR  
µF  
Chip capacitors  
B 45 194  
11  
16  
4,3 … 20  
0,10 …  
3,3 Ultra-small design  
Case size Z =ˆ 0805  
Case size P =ˆ 1206  
B 45 196-E 4,3 … 50  
B 45 198-E  
0,10 … 100  
0,15 … 470  
0,10 … 150  
Standard version  
IECQ/CECC-approved  
24  
27  
31  
B 45 196-H 4,3 … 50  
B 45 198-H  
“HighCap”  
Very high volumetric efficiency  
B 45 196-P 4,3 … 50  
B 45 198-P  
“Performance”  
Extremely high reliability,  
IECQ/CECC-approved  
(150 °C version)  
B 45 197  
6,3 … 50  
3,3 … 330  
“SpeedPower”  
35  
B 45 198-R  
Low ESR, for power  
supplies with very high clock  
frequencies  
Siemens Matsushita Components  
9
S
+
M
Siemens Mats us hita Components  
COMPONENTS  
European technology center for  
ceramic components  
There  
when you  
need us  
This is an organization thats proven  
its worth. Because it stands for  
more customer proximity and thus  
better service. Here you get infor-  
mation straight from the source,  
implementation of the latest tech-  
nologies and products that match  
the market. Concentration of  
resources means that design  
engineers and production engineers  
are working side by side. And SCS  
warehousing directly at the plant  
ensures fastest possible delivery.  
SCS – dependable, fast and com petent  
Chip Capacitors  
Page  
B 45 194  
General specifications  
Overview of available types  
Technical data and ordering codes  
Characteristic curves  
12  
15  
16  
17  
B 45 196, B 45 197, B 45 198  
General specifications  
Overview of available types  
Technical data and ordering codes  
Characteristic curves  
18  
22  
24  
37  
Siemens Matsushita Components  
11  
Chip Capacitors  
B 45 194  
Construction  
Polar tantalum capacitors with solid electrolyte  
Flame-retardant plastic case (UL 94 V-0)  
Tinned terminals  
Features  
Ultra-small design  
Case size Z =ˆ 0805 and P =ˆ 1206 (low profile)  
High volumetric efficiency  
Excellent solderability  
Stable temperature and frequency characteristics  
Low leakage current, low dissipation factor  
Low self-inductance  
High resistance to shock and vibration  
Suitable for use without series resistor  
Applications  
Telecommunications (e.g. pagers, handies)  
Data processing (e.g. PCMA cards)  
Medical engineering (e.g. hearing aids)  
Soldering  
Suitable for reflow soldering (IR and vapor phase) and wave soldering  
Delivery mode  
Taped and reeled in accordance with IEC 286-3  
Ordering code structure  
B45194-A1225-M109  
Reel diameter  
9 = 180 mm  
Passive component  
Tantalum capacitor  
Case size  
80 = Z, 10 = P  
Capacitance tolerance  
M = ± 20 %  
Rated capacitance  
First two digits = significant figures  
Third digit = exponent  
Series  
Voltage  
Code 0 is omitted  
12  
Siemens Matsushita Components  
B 45 194  
Specifications and characteristics in brief  
Series  
B 45 194  
Page 15  
Overview of  
available types  
Rated voltage V 4 … 20 Vdc  
R
(up to 85 ˚C)  
Rated  
0,10 … 3,3 µF  
capacitance C  
R
Tolerance  
± 20 %  
Failure rate  
Refer to page 72  
Leakage current 0,5 µA  
(V , 2 min, 20 ˚C)  
R
IEC climatic  
category  
in accordance with IEC 68-1  
55/125/21 (55/+125 ˚C; 21 days damp heat test)  
Any general information given in the second part of this data book (starting with page 43) only  
applies to B 45 194 if the B 45 194 series or its cases Z and P are explicitly mentioned. Please  
contact your nearest Siemens Office for Passive Components if you need further information.  
!
Dimensional drawing  
Marking  
Encapsulation: molded epoxy resin  
NiFe; surface Sn60/Pb40  
Slotted anode terminal for case size P  
Positive pole marking  
Case size  
Dimensions in mm (inches)  
L ± 0,2 W ± 0,2  
± (,008) ± (,008)  
H max.  
W ± 0,1  
p
2
± (,004)  
Z
P
2,0  
(,079)  
1,25  
(,049)  
1,2  
(,047)  
0,9  
(,035)  
0,5 ± 0,2  
(,020 ± ,008)  
3,2  
1,6  
1,2  
1,2  
0,8 ± 0,3  
(,126)  
(,062)  
(,047)  
(,047)  
(,031 ± ,012)  
Siemens Matsushita Components  
13  
B 45 194  
Marking  
Case size Z  
Case size P  
Positive  
pole (bar)  
Positive  
pole (bar)  
Rated voltage  
(in coded form)  
Capacitance  
(in coded form)  
Rated voltage  
(in coded form)  
Capacitance  
(in coded form)  
Voltage coding  
Rated voltage  
Code letter  
4
6,3 10  
16  
C
20  
D
G
J
A
Capacitance coding  
1st digit (capacitance)  
Code letter  
Cap. value  
A
1
E
J
N
S
W
1)  
1)  
1,5 2,2 3,3 4,7 6,8  
2nd digit (multiplier)  
Code number  
Multiplier  
5
6
5
6
10  
10  
Example: 6,3 V; 1,5 µF in P case: JE6  
Voltage: 6,3 V = J  
6
Capacitance: 1,5 µF = 1,5 · 10 pF  
1,5 = E  
6
10 = 6  
For case size Z the code number for the multiplier  
is omitted. Example : JE  
1) Cap. value 0,47 and 0,68 µF for case size Z  
14  
Siemens Matsushita Components  
B 45 194  
Overview of available types  
(Vdc) 4,0  
V
6,3  
10  
16  
20  
R
up to 85 °C  
C
(µF)  
R
0,10  
0,15  
0,22  
0,33  
0,47  
0,68  
1,0  
P
P
P
P
P
P
Z
Z
P
Z
P
P
1,5  
Z
P
P
2,2  
Z
P
P
3,3  
P
Features  
Ultra-small design  
Low profile  
Siemens Matsushita Components  
15  
B 45 194  
Technical data and ordering codes  
For characteristic curves see page 17  
1)  
V
C
Case  
size  
tan δ  
(20˚C,  
I
lk, max  
(20˚C,V ,  
Ordering code  
R
R
max  
up to 85˚C  
R
(up to 125˚C)  
120 Hz)  
2 min)  
Vdc  
µF  
µA  
4,0  
(2,5)  
2,2  
Z
P
P
Z
P
P
Z
P
P
Z
Z
P
P
P
P
P
P
P
P
0,10  
0,04  
0,04  
0,10  
0,04  
0,04  
0,10  
0,04  
0,04  
0,10  
0,10  
0,04  
0,04  
0,04  
0,04  
0,04  
0,04  
0,04  
0,04  
0,5  
0,5  
0,5  
0,5  
0,5  
0,5  
0,5  
0,5  
0,5  
0,5  
0,5  
0,5  
0,5  
0,5  
0,5  
0,5  
0,5  
0,5  
0,5  
B45194-A225-M809  
B45194-A225-M109  
B45195-A335-M109  
B45194-A1155-M809  
B45194-A1155-M109  
B45194-A1225-M109  
B45194-A2105-M809  
B45194-A2105-M109  
B45194-A2155-M109  
B45194-A3474-M809  
B45194-A3684-M809  
B45194-A3684-M109  
B45194-A3105-M109  
B45194-A4104-M109  
B45194-A4154-M109  
B45194-A4224-M109  
B45194-A4334-M109  
B45194-A4474-M109  
B45194-A4684-M109  
2,2  
3,3  
6,3  
(4)  
1,5  
1,5  
2,2  
10  
(6,3)  
1,0  
1,0  
1,5  
16  
(10)  
0,47  
0,68  
0,68  
1,0  
20  
(13)  
0,10  
0,15  
0,22  
0,33  
0,47  
0,68  
Capacitance tolerance: M = ± 20 %  
1) Surge voltage V = 1,3 · V  
S
R
16  
Siemens Matsushita Components  
B 45 194  
Impedance Z and equivalent series resistance Impedance Z and equivalent series resistance  
ESR versus frequency f  
Typical behavior  
ESR versus frequency f  
Typical behavior  
Case size Z  
Case size P  
Siemens Matsushita Components  
17  
Chip Capacitors  
B 45 196, B 45 197  
B 45 198  
Construction  
Polar tantalum capacitors with solid electrolyte  
Flame-retardant plastic case (UL 94 V-0)  
Optionally tinned or gold-plated terminals  
(gold-plated terminals for case size A upon request)  
Features  
High volumetric efficiency  
Excellent solderability  
Stable temperature and frequency characteristics  
Low leakage current, low dissipation factor  
Low self-inductance  
High resistance to shock and vibration  
Suitable for use without series resistor  
Applications  
Telecommunications (e.g. mobile phones, private branch exchanges)  
Data processing (e.g. laptops, main frames)  
Measuring and control engineering  
Automotive electronics  
Medical engineering  
Switch-mode power supplies with very high clock frequencies (300 kHz)  
DC/DC converters  
Soldering  
Suitable for reflow soldering (IR and vapor phase) and wave soldering  
Delivery mode  
Taped and reeled in accordance with IEC 286-3  
Ordering code structure  
B45196-E1225-+10  
*
Reel diameter  
9 = 180 mm, 6 = 330 mm  
Passive component  
Case size  
10 = A, 20 = B, 30 = C, 40 = D, 50 = E  
Tantalum capacitor  
Capacitance tolerance  
M = ± 20 %, K = ± 10 %, J = ± 5 %  
Rated capacitance  
First two digits = significant figures  
Third digit = exponent  
Series  
196 = tinned terminals  
197 = tinned terminals  
198 = gold-plated terminals  
Voltage  
Code 0 is omitted  
18  
Siemens Matsushita Components  
B 45 196, B 45 197  
B 45 198  
Specifications and characteristics in brief  
Series  
B 45 196-E  
Standard  
B 45 196-H  
HighCap  
B 45 196-P  
Performance  
B 45 197  
SpeedPower  
(Low ESR)  
Overview of  
Page 22  
Page 23  
available types  
Rated voltage V 4 … 50 Vdc  
(up to 85 ˚C)  
4 … 50 Vdc  
4 … 50 Vdc  
0,10 … 150 µF  
± 10 %, ± 20 %  
6,3 … 50 Vdc  
3,3 … 330 µF  
± 10 %, ± 20 %  
R
Rated  
0,10 … 100 µF  
0,15 … 470 µF  
capacitance C  
R
Tolerance  
± 10 %, ± 20 %  
± 10 %, ± 20 %  
± 5% (on request) ± 5% (on request) ± 5% (on request) ± 5% (on request)  
.
at 40 ˚C; V , R 3/V (1 fit = 1 10 failures/h)  
R S  
-9  
Failure rate  
C ·V 330 µF·V 3 fit  
8 fit  
0,8 fit  
2,5 fit  
8 fit  
12 fit  
R
R
C ·V > 330 µF·V 10 fit  
24 fit  
R
R
Service life  
> 500 000 h  
> 500 000 h  
10 nA/µC  
> 500 000 h  
> 500 000 h  
10 nA/µC  
Leakage current 10 nA/µC  
10 nA/µC  
(V , 5 min, 20 ˚C)  
R
ESR  
100 … 600 mΩ  
Detail  
specification  
IEC-QC300801/  
US0001  
CECC30801-802 IEC-QC300801/  
US0001  
CECC30801-805  
(tinned terminals) CECC30801-801  
CECC30801-801  
Quality approval IECQ  
CECC  
IECQ  
CECC  
IEC climatic  
category  
in accordance with IEC 68-1  
55/125/56 (55/+125 ˚C; 56 days damp heat test)  
For types B 45 196-P, individual tests are carried out under more extreme conditions,  
supplementary to the tests specified by CECC.  
Examples:  
Damp heat  
85 (+2) ˚C, 85 90% relative humidity  
Rapid temperature change  
Surge voltage  
Impulse test  
100 cycles, – 55˚C/+ 125 ˚C, 30 min.  
4
10 charge cycles  
6
10 cycles  
Types B 45 196-P can be operated at temperatures up to 150 ˚C.  
Details for this operating condition must be agreed upon between supplier and customer.  
Siemens Matsushita Components  
19  
B 45 196, B 45 197  
B 45 198  
Dimensional drawing  
Positive pole marking  
Encapsulation: molded epoxy resin  
NiFe; surface Sn60/Pb40 or  
Sn90/Pb10 or  
Marking  
gold-plated  
Reduced slot length for case size A  
Positive pole marking  
Case size Dimensions in mm (inches)  
L
W
H
L typ.  
W ± 0,1  
H typ.  
p ± 0,3  
±(,012)  
2
2
2
±(,004)  
A
B
C
D
E
3,2 ± 0,2  
1,6 ± 0,2  
1,6 ± 0,2  
3,0  
1,2  
(,047)  
1,0  
(,039)  
0,8  
(,031)  
(,126±,008) (,063±,008) (,063±,008) (,118)  
3,5 ± 0,2 2,8 ± 0,2 1,9 ± 0,2 3,3  
(,138±,008) (,110±,008) (,075±,008) (,130)  
6,0 ± 0,3 3,2 ± 0,3 2,5 ± 0,3 5,8  
(,236±,012) (,126±,012) (,098±,012) (,228)  
7,3 ± 0,3 4,3 ± 0,3 2,8 ± 0,3 7,1  
(,287±,012) (,169±,012) (,110±,012) (,280)  
7,3 ± 0,3 4,3 ± 0,3 4,1 ± 0,3 7,1  
(,287±,012) (,169±,012) (,157±,012) (,280)  
2,2  
(,087)  
1,2  
(,047)  
0,8  
(,031)  
2,2  
(,087)  
1,5  
(,059)  
1,3  
(,051)  
2,4  
(,094)  
1,6  
(,062)  
1,3  
(,051)  
2,4  
(,094)  
1,6  
(,062)  
1,3  
(,051)  
20  
Siemens Matsushita Components  
B 45 196, B 45 197  
B 45 198  
Marking  
Case size A  
Case size B  
Positive  
pole (bar)  
Manufacturer’s  
logo  
Positive  
pole (bar)  
Manufacturer’s  
logo  
Rated voltage, (not  
coded) VR = 6,3 V  
is abbreviated as 6.  
Capacitance  
(in coded form)  
Rated voltage  
(in coded form)  
Capacitance  
(in coded form)  
Positive  
pole (bar)  
Manufacturer’s  
logo  
Internal code for  
production equipment  
Date code  
Capacitance  
(in coded form)  
Rated voltage, (not  
coded) VR = 6,3 V  
is abbreviated as 6.  
Case sizes C, D, E  
Voltage coding for case size A  
Rated voltage  
Code letter  
4
6,3 10 16 20 25 35 50  
G J  
A
C
D
E
V
T
Capacitance coding  
1st and 2nd digit  
3rd digit  
Capacitance in pF  
4
Multiplier: 4 = 10 pF  
5
5 = 10 pF  
6
6 = 10 pF  
7
7 = 10 pF  
Date coding  
Year  
Month  
1 = January  
H = 1996  
7 = July  
In addition to the year and month of manufac-  
ture, the stamp includes another two figures  
which internally allow us an assignment to  
concrete production equipment. Stamping of  
chips in case sizes A and B with date code is  
currently not possible for reasons of space.  
J = 1997  
K = 1998  
L = 1999  
M = 2000  
2 = February  
3 = March  
4 = April  
8 = August  
9 = September  
O = October  
N = November  
D = December  
5 = May  
6 = June  
Siemens Matsushita Components  
21  
B 45 196, B 45 197  
B 45 198  
Overview of available types  
Series  
B 45 196-E, tinned terminals  
B 45 198-E, gold-plated terminals1)  
Standard  
B 45 196-H, tinned terminals  
B 45 198-H, gold-plated terminals1)  
HighCap2)  
Page  
24  
27  
VR (Vdc)  
up to 85 °C  
CR (µF)  
4
6,3 10 16 20 25 35 50  
4
6,3 10 16 20 25 35 50  
0,10  
0,15  
0,22  
0,33  
0,47  
0,68  
1,0  
A
A
A
A
B
B
B
C
C
C
D
D
D
A
B
B
B
C
C
C
D
D
D
D
A
A
A
A
A
A
A
B
B
B
C
A
A
A
A
A
A
1,5  
A
A
B
B
C
C
D
D
D
A
A
2,2  
A
A
B
B
C
C
A
A
3,3  
A
B
B
C
C
A
A
A
B
B
C
C
4,7  
A
B
B
C
C
A
A
A
B A  
B
C
C
6,8  
B
B
C
C
A
A
B A  
B
E
E
10  
B
B
C
C
A
A
A
A B  
B
C B  
C
15  
D
D
A B  
B
C B  
C
D
E
E
22  
D
D
B A  
B
B C  
C
C
D
E D  
E
33  
D
D
B C  
C
D
47  
D
D
B C B C  
C
D
D E  
E
68  
D
D
C
C
D
D
E
E
C
C D  
D
D C  
D
D
100  
150  
220  
330  
D E  
E
E
D E  
D E E D  
E D  
E
470  
E
Features  
Standard version with IECQ  
and CECC approval.  
Particularly high  
volumetric efficiency.  
Upon request  
1) Gold-plated terminals available for case sizes B, C, D, E (A upon request), currently without CECC approval  
2) Additional ratings upon request  
22  
Siemens Matsushita Components  
B 45 196, B 45 197  
B 45 198  
Overview of available types  
Series  
B 45 196-P , tinned terminals  
B 45 197-A, tinned terminals  
1)  
1)  
B 45 198-P, gold-plated terminals  
B 45 198-R, gold-plated terminals  
2)  
2)  
Performance  
SpeedPower (Low ESR)  
Page  
31  
35  
V
(Vdc)  
4
6,3 10 16 20 25 35 50 6,3 10  
16  
20  
25  
35  
50  
R
up to 85 °C  
C
(µF)  
R
0,10  
0,15  
0,22  
0,33  
0,47  
0,68  
1,0  
A
A
A
A
B
B
B
C
C
C
D
D
D
A
B
B
B
C
C
C
D
D
D
D
A
A
A
A
A
B
B
C
C
C
D
D
D
A
A
A
1,5  
A
A
B
2,2  
A
A
A
B
3,3  
A
A
B
C
C
4,7  
A
A
B
B
C
C
C
D
D
D
A
B
B
C
C
D
D
6,8  
B
B
C
C
C
D E  
D E  
D E  
E
E
10  
B
B C  
C
C
C D  
D
C
C
15  
22  
C
C
C
C
C
D
D E  
E
C
C
C D  
D
D
C
C
D
D E  
E
33  
C
D
D
D
E
E
47  
C D  
D
D
D
D
D
68  
D
D
D
E
E
E
E
100  
150  
220  
D
D
D E  
E
E
330  
E
Features  
Outstanding reliability,  
Low ESR,  
e. g. for automotive electronics and  
medical applications,  
IECQ and CECC approval.  
for switch-mode power supplies with  
very high clock frequencies (e. g.  
telecom applications).  
1) Gold-plated terminals available for case sizes B, C, D, E (A upon request), currently without CECC approval  
2) Additional ratings upon request  
Siemens Matsushita Components  
23  
B 45 196-E  
Technical data and ordering codes  
For characteristic curves see page 37/38 ff  
1)  
V
C
Case  
size  
tan δ  
(20˚C,  
I
Z
max  
Ordering code  
R
R
max  
lk, max  
up to 85˚C  
(20˚C,V , (20˚C,  
R
(up to 125˚C)  
120 Hz)  
5 min)  
100 kHz)  
Vdc  
µF  
3,3  
4,7  
10  
µA  
Tinned terminals  
4
(2,5)  
A
A
B
B
C
C
D
D
A
A
B
B
C
C
D
D
A
A
B
B
C
C
D
D
A
A
B
B
C
C
D
D
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,08  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,04  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,5  
0,5  
0,5  
0,6  
0,9  
1,3  
2,7  
4,0  
0,5  
0,5  
0,5  
0,6  
1,0  
1,4  
3,0  
4,3  
0,5  
0,5  
0,5  
0,7  
1,0  
1,5  
3,3  
4,7  
0,5  
0,5  
0,6  
0,8  
1,1  
1,6  
3,6  
5,3  
9,0  
B45196-E335-+10  
B45196-E475-+10  
B45196-E106-+20  
B45196-E156-+20  
B45196-E226-+30  
B45196-E336-+30  
B45196-E686-+40  
B45196-E107-+40  
*
*
*
*
*
*
*
*
7,0  
4,5  
3,5  
2,4  
2,0  
1,1  
0,8  
15  
22  
33  
68  
100  
6,3  
(4)  
2,2  
10  
B45196-E1225-+10  
B45196-E1335-+10  
B45196-E1685-+20  
B45196-E1106-+20  
B45196-E1156-+30  
B45196-E1226-+30  
B45196-E1476-+40  
B45196-E1686-+40  
B45196-E2155-+10  
B45196-E2225-+10  
B45196-E2475-+20  
B45196-E2685-+20  
B45196-E2106-+30  
B45196-E2156-+30  
B45196-E2336-+40  
B45196-E2476-+40  
B45196-E3105-+10  
B45196-E3155-+10  
B45196-E3335-+20  
B45196-E3475-+20  
B45196-E3685-+30  
B45196-E3106-+30  
B45196-E3226-+40  
B45196-E3336-+40  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
3,3  
6,8  
7,0  
4,5  
3,5  
2,4  
2,0  
1,1  
0,8  
10  
15  
22  
47  
68  
10  
(6,3)  
1,5  
10  
2,2  
4,7  
6,8  
7,0  
4,5  
3,5  
2,4  
2,0  
1,1  
0,8  
10  
15  
33  
47  
16  
(10)  
1,0  
10  
1,5  
3,3  
4,7  
6,8  
8,0  
5,0  
3,5  
2,4  
2,0  
1,1  
1,0  
10  
22  
33  
1) Replace 196 by 198 for gold-plated terminals  
+
Insert code letter for required capacitance tolerance: M = ± 20 %, K = ± 10 % (J = ± 5 % upon request)  
Insert code number for required reel diameter: 9 = 180 mm, 6 = 330 mm  
*
24  
Siemens Matsushita Components  
B 45 196-E  
1)  
V
C
Case  
size  
tan δ  
(20˚C,  
I
Z
max  
Ordering code  
R
R
max  
lk, max  
up to 85˚C  
(20˚C,V , (20˚C,  
R
(up to 125˚C)  
120 Hz)  
5 min)  
100 kHz)  
Vdc  
µF  
0,68  
µA  
Tinned terminals  
20  
A
A
B
B
C
C
D
D
A
A
B
B
C
C
D
D
D
A
A
A
A
B
B
B
C
C
C
D
D
D
0,04  
0,04  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,04  
0,04  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,04  
0,04  
0,04  
0,04  
0,04  
0,04  
0,04  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,5  
0,5  
0,5  
0,7  
1,0  
1,4  
3,0  
4,4  
0,5  
0,5  
0,5  
0,6  
0,9  
1,2  
1,7  
2,5  
3,8  
0,5  
0,5  
0,5  
0,5  
0,5  
0,5  
0,5  
0,6  
0,8  
1,2  
1,7  
2,4  
3,5  
12  
B45196-E4684-+10  
B45196-E4105-+10  
B45196-E4225-+20  
B45196-E4335-+20  
B45196-E4475-+30  
B45196-E4685-+30  
B45196-E4156-+40  
B45196-E4226-+40  
B45196-E5474-+10  
B45196-E5684-+10  
B45196-E5155-+20  
B45196-E5225-+20  
B45196-E5335-+30  
B45196-E5475-+30  
B45196-E5685-+40  
B45196-E5106-+40  
B45196-E5156-+40  
B45196-E6104-+10  
B45196-E6154-+10  
B45196-E6224-+10  
B45196-E6334-+10  
B45196-E6474-+20  
B45196-E6684-+20  
B45196-E6105-+20  
B45196-E6155-+30  
B45196-E6225-+30  
B45196-E6335-+30  
B45196-E6475-+40  
B45196-E6685-+40  
B45196-E6106-+40  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
(13)  
1,0  
2,2  
3,3  
4,7  
6,8  
9,0  
6,0  
4,5  
2,4  
2,0  
1,2  
1,0  
15  
22  
25  
(16)  
0,47  
0,68  
1,5  
2,2  
3,3  
4,7  
6,8  
13  
10  
7,0  
5,0  
2,8  
2,3  
1,8  
1,2  
1,0  
10  
15  
0,10  
35  
(23)  
28  
0,15  
0,22  
0,33  
0,47  
0,68  
1,0  
23  
19  
15  
11  
8,0  
7,0  
4,8  
3,2  
2,4  
1,5  
1,2  
1,0  
1,5  
2,2  
3,3  
4,7  
6,8  
10  
1) Replace 196 by 198 for gold-plated terminals  
+
Insert code letter for required capacitance tolerance: M = ± 20 %, K = ± 10 % (J = ± 5 % upon request)  
Insert code number for required reel diameter: 9 = 180 mm, 6 = 330 mm  
*
Siemens Matsushita Components  
25  
B 45 196-E  
1)  
V
C
Case  
size  
tan δ  
(20˚C,  
I
Z
max  
Ordering code  
R
R
max  
lk, max  
up to 85˚C  
(20˚C,V , (20˚C,  
R
(up to 125˚C)  
120 Hz)  
5 min)  
100 kHz)  
Vdc  
µF  
0,10  
µA  
Tinned terminals  
50  
(33)  
A
B
B
B
C
C
C
D
D
D
D
0,04  
0,04  
0,04  
0,04  
0,04  
0,04  
0,04  
0,06  
0,06  
0,06  
0,06  
0,5  
0,5  
0,5  
0,5  
0,5  
0,5  
0,5  
0,8  
1,1  
1,7  
2,4  
27  
22  
18  
14  
B45196-E7104-+10  
B45196-E7154-+20  
B45196-E7224-+20  
B45196-E7334-+20  
B45196-E7474-+30  
B45196-E7684-+30  
B45196-E7105-+30  
B45196-E7155-+40  
B45196-E7225-+40  
B45196-E7335-+40  
B45196-E7475-+40  
*
*
*
*
*
*
*
*
*
*
*
0,15  
0,22  
0,33  
0,47  
0,68  
1,0  
7,2  
6,4  
4,8  
4,0  
2,8  
1,6  
1,2  
1,5  
2,2  
3,3  
4,7  
1) Replace 196 by 198 for gold-plated terminals  
+
Insert code letter for required capacitance tolerance: M = ± 20 %, K = ± 10 % (J = ± 5 % upon request)  
Insert code number for required reel diameter: 9 = 180 mm, 6 = 330 mm  
*
26  
Siemens Matsushita Components  
B 45 196-H  
Technical data and ordering codes  
For characteristic curves see page 37/38 ff  
1)  
V
C
Case  
size  
tan δ  
(20˚C,  
I
Z
max  
Ordering code  
R
R
max  
lk, max  
up to 85˚C  
(20˚C,V , (20˚C,  
R
(up to 125˚C)  
120 Hz)  
5 min)  
100 kHz)  
Vdc  
µF  
6,8  
10  
µA  
Tinned terminals  
4
(2,5)  
A
A
A
A
B
B
B
C
C
C
D
D
E
E
A
A
A
A
B
B
B
C
B
C
C
C
D
D
D
E
D
E
E
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,08  
0,08  
0,08  
0,08  
0,08  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,08  
0,08  
0,08  
0,08  
0,08  
0,08  
0,08  
0,08  
0,5  
0,5  
0,6  
0,9  
0,9  
1,3  
1,9  
1,9  
2,7  
4,0  
6,0  
8,8  
13,2  
18,8  
0,5  
0,5  
0,6  
0,9  
0,9  
1,4  
2,1  
2,1  
3,0  
3,0  
4,3  
6,3  
6,3  
9,5  
13,9  
13,9  
20,8  
20,8  
29,6  
6,0  
4,5  
4,0  
3,5  
3,0  
2,5  
2,3  
1,6  
1,5  
1,4  
0,8  
0,8  
0,8  
0,6  
5,5  
4,5  
4,0  
3,8  
3,0  
2,5  
2,2  
1,6  
2,0  
1,5  
1,4  
1,2  
0,8  
0,8  
0,8  
0,8  
0,8  
0,6  
0,6  
B45196-H685-+10  
B45196-H106-+10  
B45196-H156-+10  
B45196-H226-+10  
B45196-H226-+20  
B45196-H336-+20  
B45196-H476-+20  
B45196-H476-+30  
B45196-H686-+30  
B45196-H107-+30  
B45196-H157-+40  
B45196-H227-+40  
B45196-H337-+50  
B45196-H477-+50  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
15  
22  
2)  
22  
33  
47  
47  
68  
100  
150  
220  
330  
470  
6,3  
(4)  
4,7  
6,8  
B45196-H1475-+10  
B45196-H1685-+10  
B45196-H1106-+10  
B45196-H1156-+10  
B45196-H1156-+20  
B45196-H1226-+20  
B45196-H1336-+20  
B45196-H1336-+30  
B45196-H1476-+20  
B45196-H1476-+30  
B45196-H1686-+30  
B45196-H1107-+30  
B45196-H1107-+40  
B45196-H1157-+40  
B45196-H1227-+40  
B45196-H1227-+50  
B45196-H1337-+40  
B45196-H1337-+50  
B45196-H1477-+50  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
10  
15  
15  
22  
33  
33  
47  
47  
68  
100  
100  
150  
220  
220  
330  
330  
470  
1) Replace 196 by 198 for gold-plated terminals  
+
Insert code letter for required capacitance tolerance: M = ± 20 %, K = ± 10 % (J = ± 5 % upon request)  
Insert code number for required reel diameter: 9 = 180 mm, 6 = 330 mm  
2) Upon request  
*
Siemens Matsushita Components  
27  
B 45 196-H  
1)  
V
C
Case  
size  
tan δ  
(20˚C,  
I
Z
max  
Ordering code  
R
R
max  
lk, max  
up to 85˚C  
(20˚C,V , (20˚C,  
R
(up to 125˚C)  
120 Hz)  
5 min)  
100 kHz)  
Vdc  
µF  
3,3  
µA  
Tinned terminals  
10  
(6,3)  
A
A
A
A
B
B
B
C
C
C
C
D
D
D
E
D
E
E
A
A
A
A
B
B
B
C
C
C
D
D
D
E
E
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,08  
0,08  
0,08  
0,08  
0,08  
0,08  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,08  
0,08  
0,08  
0,5  
0,5  
0,7  
1,0  
1,0  
1,5  
2,2  
2,2  
3,0  
4,7  
6,8  
6,8  
10  
5,5  
4,5  
4,0  
3,8  
3,0  
2,5  
2,3  
1,6  
1,5  
1,4  
1,2  
0,8  
0,8  
0,8  
0,8  
0,8  
0,6  
0,6  
6,5  
5,0  
4,0  
3,8  
3,0  
2,5  
2,3  
1,6  
1,5  
1,4  
0,8  
0,8  
0,8  
0,8  
0,6  
B45196-H2335-+10  
B45196-H2475-+10  
B45196-H2685-+10  
B45196-H2106-+10  
B45196-H2106-+20  
B45196-H2156-+20  
B45196-H2226-+20  
B45196-H2226-+30  
B45196-H2336-+30  
B45196-H2476-+30  
B45196-H2686-+30  
B45196-H2686-+40  
B45196-H2107-+40  
B45196-H2157-+40  
B45196-H2157-+50  
B45196-H2227-+40  
B45196-H2227-+50  
B45196-H2337-+50  
B45196-H3225-+10  
B45196-H3335-+10  
B45196-H3475-+10  
B45196-H3685-+10  
B45196-H3685-+20  
B45196-H3106-+20  
B45196-H3156-+20  
B45196-H3156-+30  
B45196-H3226-+30  
B45196-H3336-+30  
B45196-H3476-+40  
B45196-H3686-+40  
B45196-H3107-+40  
B45196-H3107-+50  
B45196-H3157-+50  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
4,7  
6,8  
10  
10  
15  
22  
22  
33  
47  
2)  
2)  
68  
68  
100  
150  
150  
220  
220  
330  
15  
15  
22  
22  
33  
16  
(10)  
2,2  
3,3  
4,7  
6,8  
6,8  
0,5  
0,5  
0,8  
1,1  
1,1  
1,6  
2,4  
2,4  
3,5  
5,3  
7,5  
10,9  
16  
2)  
10  
2)  
15  
15  
22  
33  
47  
68  
2)  
100  
100  
150  
16  
2)  
24  
1) Replace 196 by 198 for gold-plated terminals  
+
Insert code letter for required capacitance tolerance: M = ± 20 %, K = ± 10 % (J = ± 5 % upon request)  
Insert code number for required reel diameter: 9 = 180 mm, 6 = 330 mm  
2) Upon request  
*
28  
Siemens Matsushita Components  
B 45 196-H  
1)  
V
C
Case  
size  
tan δ  
(20˚C,  
I
Z
max  
Ordering code  
R
R
max  
lk, max  
up to 85˚C  
(20˚C,V , (20˚C,  
R
(up to 125˚C)  
120 Hz)  
5 min)  
100 kHz)  
Vdc  
µF  
1,5  
µA  
Tinned terminals  
20  
A
A
A
A
B
B
B
C
C
C
D
D
E
E
E
A
A
B
B
C
C
D
D
E
E
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,08  
0,04  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,5  
0,5  
0,7  
0,9  
0,9  
1,4  
2,0  
2,0  
3,0  
4,4  
6,6  
9,4  
9,4  
13,6  
20,0  
0,5  
0,5  
0,8  
1,2  
1,7  
2,5  
5,5  
8,3  
8,3  
11,7  
8,0  
B45196-H4155-+10  
B45196-H4225-+10  
B45196-H4335-+10  
B45196-H4475-+10  
B45196-H4475-+20  
B45196-H4685-+20  
B45196-H4106-+20  
B45196-H4106-+30  
B45196-H4156-+30  
B45196-H4226-+30  
B45196-H4336-+40  
B45196-H4476-+40  
B45196-H4476-+50  
B45196-H4686-+50  
B45196-H4107-+50  
B45196-H5105-+10  
B45196-H5155-+10  
B45196-H5335-+20  
B45196-H5475-+20  
B45196-H5685-+30  
B45196-H5106-+30  
B45196-H5226-+40  
B45196-H5336-+40  
B45196-H5336-+50  
B45196-H5476-+50  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
(13)  
2,2  
3,3  
4,7  
4,7  
6,0  
4,0  
3,5  
3,0  
2,5  
2,3  
1,6  
1,5  
1,4  
0,8  
0,8  
0,8  
0,8  
0,8  
8,0  
7,0  
4,0  
3,2  
2,0  
1,6  
0,8  
0,8  
0,8  
0,8  
2)  
2)  
6,8  
2)  
10  
10  
15  
22  
33  
47  
47  
68  
2)  
100  
25  
(16)  
1,0  
1,5  
3,3  
4,7  
6,8  
10  
22  
33  
33  
47  
2)  
2)  
1) Replace 196 by 198 for gold-plated terminals  
+
Insert code letter for required capacitance tolerance: M = ± 20 %, K = ± 10 % (J = ± 5 % upon request)  
Insert code number for required reel diameter: 9 = 180 mm, 6 = 330 mm  
2) Upon request  
*
Siemens Matsushita Components  
29  
B 45 196-H  
1)  
V
C
Case  
size  
tan δ  
(20˚C,  
I
Z
max  
Ordering code  
R
R
max  
lk, max  
up to 85˚C  
(20˚C,V , (20˚C,  
R
(up to 125˚C)  
120 Hz)  
5 min)  
100 kHz)  
Vdc  
µF  
0,47  
µA  
Tinned terminals  
35  
(23)  
A
A
A
B
B
C
C
D
E
E
A
A
B
C
E
E
0,04  
0,04  
0,04  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,04  
0,04  
0,04  
0,06  
0,06  
0,06  
0,5  
0,5  
0,5  
0,5  
0,8  
1,6  
2,4  
5,3  
7,7  
11,6  
0,5  
0,5  
0,5  
0,8  
3,4  
5,0  
11  
B45196-H6474-+10  
B45196-H6684-+10  
B45196-H6105-+10  
B45196-H6155-+20  
B45196-H6225-+20  
B45196-H6475-+30  
B45196-H6685-+30  
B45196-H6156-+40  
B45196-H6226-+50  
B45196-H6336-+50  
B45196-H7154-+10  
B45196-H7224-+10  
B45196-H7474-+20  
B45196-H7155-+30  
B45196-H7685-+50  
B45196-H7106-+50  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
0,68  
1,0  
1,5  
2,2  
4,7  
6,8  
8,0  
7,0  
6,0  
4,0  
2,0  
1,8  
0,8  
0,8  
0,8  
15  
22  
33  
2)  
50  
(33)  
0,15  
0,22  
0,47  
1,5  
22  
18  
9,0  
4,4  
0,8  
0,8  
6,8  
2)  
10  
1) Replace 196 by 198 for gold-plated terminals  
+
Insert code letter for required capacitance tolerance: M = ± 20 %, K = ± 10 % (J = ± 5 % upon request)  
Insert code number for required reel diameter: 9 = 180 mm, 6 = 330 mm  
2) Upon request  
*
30  
Siemens Matsushita Components  
B 45 196-P  
Technical data and ordering codes  
For characteristic curves see page 37/38 ff  
1)  
V
C
Case  
size  
tan δ  
(20˚C,  
I
Z
max  
Ordering code  
R
R
max  
lk, max  
up to 85˚C  
(20˚C,V , (20˚C,  
R
(up to 125˚C)  
120 Hz)  
5 min)  
100 kHz)  
Vdc  
µF  
3,3  
µA  
Tinned teminals  
4
(2,5)  
A
A
A
B
B
C
C
C
D
D
D
A
A
A
B
B
C
C
C
C
D
D
D
0,045  
0,045  
0,045  
0,045  
0,045  
0,045  
0,045  
0,045  
0,045  
0,06  
0,5  
0,5  
0,5  
0,5  
0,6  
0,9  
1,3  
1,9  
2,7  
4,0  
6,0  
0,5  
0,5  
0,5  
0,5  
0,6  
1,0  
1,4  
2,1  
3,0  
3,0  
4,3  
6,3  
5,9  
4,6  
3,9  
2,7  
2,6  
1,7  
1,5  
1,1  
0,8  
0,6  
0,6  
6,5  
4,6  
3,6  
2,7  
2,1  
1,7  
1,3  
1,1  
0,8  
0,8  
0,6  
0,6  
B45196-P335-+10  
B45196-P475-+10  
B45196-P685-+10  
B45196-P106-+20  
B45196-P156-+20  
B45196-P226-+30  
B45196-P336-+30  
B45196-P476-+30  
B45196-P686-+40  
B45196-P107-+40  
B45196-P157-+40  
*
*
*
*
*
*
*
*
*
*
*
4,7  
6,8  
10  
15  
22  
33  
47  
68  
100  
150  
0,06  
6,3  
(4)  
2,2  
0,045  
0,045  
0,045  
0,045  
0,045  
0,045  
0,045  
0,045  
0,045  
0,045  
0,045  
0,06  
B45196-P1225-+10  
B45196-P1335-+10  
B45196-P1475-+10  
B45196-P1685-+20  
B45196-P1106-+20  
B45196-P1156-+30  
B45196-P1226-+30  
B45196-P1336-+30  
B45196-P1476-+30  
B45196-P1476-+40  
B45196-P1686-+40  
B45196-P1107-+40  
*
*
*
*
*
*
*
*
*
*
*
*
3,3  
4,7  
6,8  
10  
15  
22  
33  
47  
47  
68  
100  
Types B 45 196-P can be operated at temperatures up to 150 ˚C.  
Details for this operating condition must be agreed upon between supplier and customer.  
1) Replace 196 by 198 for gold-plated terminals  
+
Insert code letter for required capacitance tolerance: M = ± 20 %, K = ± 10 % (J = ± 5 % upon request)  
Insert code number for required reel diameter: 9 = 180 mm, 6 = 330 mm  
*
Siemens Matsushita Components  
31  
B 45 196-P  
1)  
V
C
Case  
size  
tan δ  
(20˚C,  
I
Z
max  
Ordering code  
R
R
max  
lk, max  
up to 85˚C  
(20˚C,V , (20˚C,  
R
(up to 125˚C)  
120 Hz)  
5 min)  
100 kHz)  
Vdc  
µF  
1,5  
µA  
Tinned teminals  
10  
(6,3)  
A
A
A
B
B
B
C
C
C
D
D
D
D
A
A
A
B
B
C
C
C
C
D
D
D
0,045  
0,045  
0,045  
0,045  
0,045  
0,045  
0,045  
0,045  
0,045  
0,045  
0,045  
0,045  
0,06  
0,5  
0,5  
0,5  
0,5  
0,7  
1,0  
1,0  
1,5  
2,2  
3,3  
4,7  
6,8  
10  
6,5  
4,6  
3,6  
2,7  
2,1  
1,8  
1,7  
1,4  
1,1  
0,8  
0,6  
0,6  
0,6  
6,5  
5,2  
4,3  
3,0  
2,1  
1,7  
1,4  
1,1  
1,0  
0,8  
0,7  
0,6  
B45196-P2155-+10  
B45196-P2225-+10  
B45196-P2335-+10  
B45196-P2475-+20  
B45196-P2685-+10  
B45196-P2106-+20  
B45196-P2106-+30  
B45196-P2156-+30  
B45196-P2226-+30  
B45196-P2336-+40  
B45196-P2476-+40  
B45196-P2686-+40  
B45196-P2107-+40  
B45196-P3105-+10  
B45196-P3155-+10  
B45196-P3225-+10  
B45196-P3335-+20  
B45196-P3475-+20  
B45196-P3685-+30  
B45196-P3106-+30  
B45196-P3156-+30  
B45196-P3226-+30  
B45196-P3226-+40  
B45196-P3336-+40  
B45196-P3476-+40  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
2,2  
3,3  
4,7  
6,8  
10  
10  
15  
22  
33  
47  
68  
100  
1,0  
1,5  
2,2  
3,3  
4,7  
6,8  
10  
16  
(10)  
0,030  
0,045  
0,045  
0,045  
0,045  
0,045  
0,045  
0,045  
0,045  
0,045  
0,045  
0,045  
0,5  
0,5  
0,5  
0,6  
0,8  
1,1  
1,6  
2,4  
3,6  
3,6  
5,3  
7,5  
15  
22  
22  
33  
47  
Types B 45 196-P can be operated at temperatures up to 150 ˚C.  
Details for this operating condition must be agreed upon between supplier and customer.  
1) Replace 196 by 198 for gold-plated terminals  
+
Insert code letter for required capacitance tolerance: M = ± 20 %, K = ± 10 % (J = ± 5 % upon request)  
Insert code number for required reel diameter: 9 = 180 mm, 6 = 330 mm  
*
32  
Siemens Matsushita Components  
B 45 196-P  
1)  
V
C
Case  
size  
tan δ  
(20˚C,  
I
Z
max  
Ordering code  
R
R
max  
lk, max  
up to 85˚C  
(20˚C,V , (20˚C,  
R
(up to 125˚C)  
120 Hz)  
5 min)  
100 kHz)  
Vdc  
µF  
0,68  
µA  
Tinned teminals  
20  
A
A
A
B
B
C
C
C
D
D
D
A
A
A
B
B
C
C
C
C
D
D
D
0,030  
0,030  
0,045  
0,045  
0,045  
0,045  
0,045  
0,045  
0,045  
0,045  
0,045  
0,030  
0,030  
0,030  
0,045  
0,045  
0,045  
0,045  
0,045  
0,045  
0,045  
0,045  
0,045  
0,5  
0,5  
0,5  
0,5  
0,7  
1,0  
1,4  
2,0  
3,0  
4,4  
6,6  
0,5  
0,5  
0,5  
0,5  
0,6  
0,9  
1,2  
1,7  
2,5  
2,5  
3,8  
5,5  
7,8  
5,9  
5,2  
3,6  
2,7  
1,7  
1,3  
1,1  
0,9  
0,7  
0,6  
8,5  
6,5  
5,2  
4,2  
3,0  
2,0  
1,6  
1,4  
1,1  
0,9  
0,7  
0,6  
B45196-P4684-+10  
B45196-P4105-+10  
B45196-P4155-+10  
B45196-P4225-+20  
B45196-P4335-+20  
B45196-P4475-+30  
B45196-P4685-+30  
B45196-P4106-+30  
B45196-P4156-+40  
B45196-P4226-+40  
B45196-P4336-+40  
B45196-P5474-+10  
B45196-P5684-+10  
B45196-P5105-+10  
B45196-P5155-+20  
B45196-P5225-+20  
B45196-P5335-+30  
B45196-P5475-+30  
B45196-P5685-+30  
B45196-P5106-+30  
B45196-P5106-+40  
B45196-P5156-+40  
B45196-P5226-+40  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
(13)  
1,0  
1,5  
2,2  
3,3  
4,7  
6,8  
10  
15  
22  
33  
25  
(16)  
0,47  
0,68  
1,0  
1,5  
2,2  
3,3  
4,7  
6,8  
10  
10  
15  
22  
Types B 45 196-P can be operated at temperatures up to 150 ˚C.  
Details for this operating condition must be agreed upon between supplier and customer.  
1) Replace 196 by 198 for gold-plated terminals  
+
Insert code letter for required capacitance tolerance: M = ± 20 %, K = ± 10 % (J = ± 5 % upon request)  
Insert code number for required reel diameter: 9 = 180 mm, 6 = 330 mm  
*
Siemens Matsushita Components  
33  
B 45 196-P  
1)  
V
C
Case  
size  
tan δ  
(20˚C,  
I
Z
max  
Ordering code  
R
R
max  
lk, max  
up to 85˚C  
(20˚C,V , (20˚C,  
R
(up to 125˚C)  
120 Hz)  
5 min)  
100 kHz)  
Vdc  
µF  
0,10  
µA  
Tinned teminals  
35  
(23)  
A
A
A
A
B
B
B
C
C
C
D
D
D
A
B
B
B
C
C
C
D
D
D
D
0,030  
0,030  
0,030  
0,030  
0,030  
0,030  
0,030  
0,045  
0,045  
0,045  
0,045  
0,045  
0,045  
0,030  
0,030  
0,030  
0,030  
0,030  
0,030  
0,030  
0,045  
0,045  
0,045  
0,045  
0,5  
0,5  
0,5  
0,5  
0,5  
0,5  
0,5  
0,6  
0,8  
1,2  
1,7  
2,4  
3,5  
0,5  
0,5  
0,5  
0,5  
0,5  
0,5  
0,5  
0,8  
1,1  
1,7  
2,4  
28  
23  
15  
11  
B45196-P6104-+10  
B45196-P6154-+10  
B45196-P6224-+10  
B45196-P6334-+10  
B45196-P6474-+20  
B45196-P6684-+20  
B45196-P6105-+20  
B45196-P6155-+30  
B45196-P6225-+30  
B45196-P6335-+30  
B45196-P6475-+40  
B45196-P6685-+40  
B45196-P6106-+40  
B45196-P7104-+10  
B45196-P7154-+20  
B45196-P7224-+20  
B45196-P7334-+20  
B45196-P7474-+30  
B45196-P7684-+30  
B45196-P7105-+30  
B45196-P7155-+40  
B45196-P7225-+40  
B45196-P7335-+40  
B45196-P7475-+40  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
0,15  
0,22  
0,33  
0,47  
0,68  
1,0  
8,0  
5,5  
4,4  
3,3  
2,2  
1,7  
1,0  
0,9  
0,7  
1,5  
2,2  
3,3  
4,7  
6,8  
10  
50  
(33)  
0,10  
0,15  
0,22  
0,33  
0,47  
0,68  
1,0  
27  
22  
15  
11  
6,5  
5,5  
3,3  
2,8  
2,0  
1,1  
0,9  
1,5  
2,2  
3,3  
4,7  
Types B 45 196-P can be operated at temperatures up to 150 ˚C.  
Details for this operating condition must be agreed upon between supplier and customer.  
1) Replace 196 by 198 for gold-plated terminals  
+
Insert code letter for required capacitance tolerance: M = ± 20 %, K = ± 10 % (J = ± 5 % upon request)  
Insert code number for required reel diameter: 9 = 180 mm, 6 = 330 mm  
*
34  
Siemens Matsushita Components  
B 45 197-A  
Technical data and ordering codes  
For characteristic curves see page 37/40 ff  
1)  
V
C
Case  
size  
tan δ  
I
ESR Iac  
max  
Ordering code  
R
R
max lk, max  
up to 85˚C  
(20˚C, (20˚C,V , (20˚C,  
(20˚C,  
R
(up to 125˚C)  
120 Hz) 5 min)  
100 kHz) 100 kHz)  
Vdc  
µF  
22  
µA  
mΩ  
A
Tinned terminals  
6,3  
(4)  
C
C
D
D
E
E
E
C
C
D
D
D
E
E
E
E
C
C
D
D
E
E
C
C
D
D
E
E
E
0,06  
0,06  
0,06  
0,08  
0,08  
0,08  
0,08  
0,06  
0,06  
0,06  
0,06  
0,08  
0,08  
0,08  
0,08  
0,08  
0,06  
0,06  
0,06  
0,06  
0,06  
0,08  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
1,4  
2,1  
4,3  
6,3  
9,5  
13,9  
20,8  
1,5  
2,2  
4,7  
6,8  
10  
375  
350  
175  
125  
100  
100  
100  
400  
375  
200  
150  
100  
100  
100  
100  
100  
450  
400  
200  
175  
150  
100  
475  
450  
200  
200  
200  
150  
150  
0,54  
0,56  
0,93  
1,10  
1,28  
1,28  
1,28  
0,52  
0,54  
0,87  
1,00  
1,22  
1,28  
1,28  
1,28  
1,28  
0,49  
0,52  
0,87  
0,93  
1,05  
1,28  
0,48  
0,49  
0,87  
0,87  
0,91  
1,05  
1,05  
B45197-A1226-+30  
B45197-A1336-+30  
B45197-A1686-+40  
B45197-A1107-+40  
B45197-A1157-+50  
B45197-A1227-+50  
B45197-A1337-+50  
B45197-A2156-+30  
B45197-A2226-+30  
B45197-A2476-+40  
B45197-A2686-+40  
B45197-A2107-+40  
B45197-A2107-+50  
B45197-A2157-+50  
B45197-A2227-+50  
B45197-A2337-+50  
B45197-A3106-+30  
B45197-A3156-+30  
B45197-A3336-+40  
B45197-A3476-+40  
B45197-A3686-+50  
B45197-A3107-+50  
B45197-A4685-+30  
B45197-A4106-+30  
B45197-A4226-+40  
B45197-A4336-+40  
B45197-A4336-+50  
B45197-A4476-+50  
B45197-A4686-+50  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
33  
68  
100  
150  
220  
330  
15  
10  
(6,3)  
22  
47  
68  
100  
100  
150  
220  
330  
10  
10  
15  
22  
33  
16  
(10)  
1,6  
2,4  
5,3  
7,5  
10,9  
16  
15  
33  
47  
68  
100  
20  
(13)  
6,8  
1,4  
2,0  
4,4  
6,6  
6,6  
9,4  
13,6  
10  
22  
33  
33  
47  
68  
1) Replace 197-A by 198-R for gold-plated terminals  
+
Insert code letter for required capacitance tolerance: M = ± 20 %, K = ± 10 % (J = ± 5 % upon request)  
Insert code number for required reel diameter: 9 = 180 mm, 6 = 330 mm  
*
Siemens Matsushita Components  
35  
B 45 197-A  
1)  
V
C
Case  
size  
tan δ  
I
ESR Iac  
max  
Ordering code  
R
R
max lk, max  
up to 85˚C  
(20˚C, (20˚C,V , (20˚C,  
(20˚C,  
R
(up to 125˚C)  
120 Hz) 5 min)  
100 kHz) 100 kHz)  
Vdc  
µF  
4,7  
15  
µA  
mΩ  
A
Tinned terminals  
25  
(16)  
C
D
D
E
E
C
D
D
E
D
E
D
E
E
D
E
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
0,06  
1,2  
3,8  
5,5  
5,5  
8,3  
1,2  
1,6  
2,4  
2,4  
3,5  
3,5  
5,3  
5,3  
7,7  
2,4  
3,4  
525  
230  
230  
230  
200  
550  
300  
300  
300  
260  
260  
260  
260  
260  
300  
300  
0,46  
0,81  
0,81  
0,85  
0,91  
0,45  
0,71  
0,71  
0,74  
0,76  
0,80  
0,76  
0,80  
0,80  
0,71  
0,74  
B45197-A5475-+30  
B45197-A5156-+40  
B45197-A5226-+40  
B45197-A5226-+50  
B45197-A5336-+50  
B45197-A6335-+30  
B45197-A6475-+40  
B45197-A6685-+40  
B45197-A6685-+50  
B45197-A6106-+40  
B45197-A6106-+50  
B45197-A6156-+40  
B45197-A6156-+50  
B45197-A6226-+50  
B45197-A7475-+40  
B45197-A7685-+50  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
22  
22  
33  
35  
(23)  
3,3  
4,7  
6,8  
6,8  
10  
10  
15  
15  
22  
50  
(33)  
4,7  
6,8  
1) Replace 197-A by 198-R for gold-plated terminals  
+
Insert code letter for required capacitance tolerance: M = ± 20 %, K = ± 10 % (J = ± 5 % upon request)  
Insert code number for required reel diameter: 9 = 180 mm, 6 = 330 mm  
*
36  
Siemens Matsushita Components  
B 45 196, B 45 197  
B 45 198  
Impedance Z and equivalent series resistance ESR versus temperature T  
Typical behavior  
Case sizes A to E  
Siemens Matsushita Components  
37  
B 45 196  
B 45 198  
Impedance Z and equivalent series resistance ESR versus frequency f  
Typical behavior  
Case size A  
Case size B  
Case size C  
Case size D  
38  
Siemens Matsushita Components  
B 45 196  
B 45 198  
Impedance Z and equivalent series resistance ESR versus frequency f  
Typical behavior  
Case size E  
Siemens Matsushita Components  
39  
B 45 197-A  
B 45 198-R  
Impedance Z and equivalent series resistance ESR versus frequency f  
Typical behavior  
Case size C  
Case size D  
Case size E  
40  
Siemens Matsushita Components  
B 45 197-A  
B 45 198-R  
Permissible ripple current  
versus temperature T  
Typical behavior  
Permissible ripple current  
versus frequency f  
Typical behavior  
Siemens Matsushita Components  
41  
S
+
M
Siemens Mats us hita Components  
COMPONENTS  
Ceramic chip capacitors from stock  
Small in  
size, big in  
performance  
Our selection of capacitors ranges  
from standard sizes down to a mini-  
ature highlight in 0402 style. Mea-  
suring only 1 x 0.5 x 0.5 mm, its an  
ideal solution for applications where  
space is tight, like in handies and  
cardiac pacemakers. At the same  
time all our chips can boast excellent  
soldering characteristics, with special  
terminal variants for conductive ad-  
hesion. And we also thought about  
the right packing for automatic place-  
ment. You get all sizes down to 1206  
in bulk case for example, plus voltage  
ratings from 16 to 500 V. By the way,  
our leaded models have CECC  
approval of course, in fact they  
were certified more than ten  
years ago.  
More in the new short form  
catalog!  
SCS – dependable, fast and com petent  
General Technical Information  
1
Basic construction  
Dielectric  
Cathode  
A
---  
d
C = ε0 εr  
Anode  
C
Capacitance  
F
ε
ε
A
d
Absolute permittivity  
Relative dielectric constant  
Capacitor electrode surface area  
Electrode spacing  
As/Vm  
0
(27 for Ta O )  
r
2
5
2
m
m
Graphite  
Semiconductor (e.g. MnO2)  
Fig. 1 Basic construction of a tantalum capacitor and calculation of capacitance  
Anode  
Body of sintered tantalum powder  
Dielectric  
Tantalum oxide, generated electrochemically by oxidation on the  
anode  
Cathode  
Semi-conducting metal oxide (manganese dioxide) deposited on the  
anodic oxide foil  
Contacts to the cathode  
Graphite and conducting silver layer that is applied on the  
semi-conducting coating and soldered or glued to the case or the  
terminals  
Molded epoxy encapsulation  
Negative terminal  
Marking  
PTFE washer  
Anode wire  
Anode body  
Positive terminal  
Tantalum pentoxide + MnO2  
Sintered tantalum powder  
Fig. 2 Mechanical construction  
Siemens Matsushita Components  
43  
General Technical Information  
2
Polarity  
Tantalum electrolytic capacitors are polar capacitors. The dielectric layers of polar electrolytic ca-  
pacitors are arranged so that the current is blocked only in one direction. It is important, therefore,  
to pay attention to the polarity marking (positive pole on anode, negative pole on cathode). Reverse  
polarity is permitted only up to the values indicated on page 47, otherwise the capacitor may be de-  
stroyed by the effects of the rapidly increasing current.  
I
Current  
V
V
V
V
V
Voltage  
Polarity reversal voltage  
Rated voltage  
Surge voltage  
Forming voltage  
(determines the dielectric strength)  
rev  
R
S
F
Fig. 3 Current/voltage curve of a tantalum electrolytic capacitor (qualitative depiction only)  
3
Standards  
The tantalum electrolytic capacitors described in this data book are all designed for enhanced ser-  
vice requirements. The mechanical and electrical characteristics, together with the corresponding  
tests and test procedures, are set down in the appropriate standards. With regard to the technical  
content, the general IEC, CECC and DIN standards are in line with each other.  
General standards for tantalum electrolytic capacitors  
IEC 384-1  
(identical with DIN IEC 384, part 1, CECC30000 and DIN 45 910)  
Generic specification:  
Fixed capacitors for use in electronic equipment  
IEC 384-3  
(identical with DIN IEC 384, part 3, CECC30800 and DIN 45 910 part 15)  
Sectional specification:  
Tantalum chip capacitors  
IEC 384 - 3-1  
(identical with DIN IEC 384, part 3-1 and CECC30801)  
Blank detail specification:  
Tantalum chip capacitors  
44  
Siemens Matsushita Components  
General Technical Information  
Assignment of tantalum electrolytic capacitors produced by S + M Components to existing  
detail specifications  
Detail specification  
Series  
CECC30801-801  
IEC-QC300801/US0001  
CECC30801-802  
CECC30801-011  
CECC30801-805  
B 45 196-E, B 45 196-P  
B 45 196-E, B 45 196-P  
B 45 196-H  
B 45 196-Q (special version)  
B45197  
4
Voltages  
4.1  
Rated voltage  
The rated voltage V is the dc voltage indicated upon the capacitor. It determines the thickness of  
R
the dielectric.  
4.2  
Maximum continuous voltage  
is the maximum permissible voltage at which the capacitor  
The maximum continuous voltage V  
cont  
can be continuously operated. It is a direct current voltage, or the sum of the basic dc voltage plus  
the peak value of the superimposed ac voltage (cf. chapter 7, on page 52).  
The maximum continuous voltage depends on the ambient temperature (cf. figure 4). Within the  
temperature range of 55 to + 85 ˚C, the rated voltage is equal to the maximum continuous voltage  
for tantalum electrolytic capacitors.  
In the temperature range between + 85 and + 125 ˚C, the maximum continuous voltage must be  
2
2
reduced linearily from the rated voltage to / of the rated voltage. 85 ˚C at V and 125 ˚C at / V  
3
R
3
R
constitute approximately the same load for the capacitor. Operation below the maximum continuous  
voltage has a positive effect on the capacitor’s service life.  
Siemens Matsushita Components  
45  
 
General Technical Information  
Fig. 4 Max. permissible continuous voltage (operating voltage) versus temperature  
4.3  
Operating voltage  
The operating voltage V is the voltage applied to the capacitor during continuous operation. It is  
op  
not allowed to exceed the max. continuous voltage.  
All unfavorable operating conditions (e.g. possible line overvoltages, unfavorable tolerances of the  
transformation ratio of the line transformer in the equipment, repeated overvoltages upon switching  
equipment on, high ambient temperatures etc.) have to be taken into account when determining the  
operating voltage.  
4.4  
Surge voltage  
The surge voltage V is the maximum voltage (peak value) which may be applied to the capacitor  
S
for short periods, at the most 5 times for a duration of up to 1 minute per hour. The surge voltage  
must not be applied for periodic charging and discharging in the course of normal operation.  
The permissible surge voltage for all capacitors in this data book is  
1,3 · V  
R
If voltage impulses (transient voltages) exceeding the surge voltage occur, this may lead to irrepa-  
rable damage.  
If applications of this kind are planned, please consult us first.  
46  
Siemens Matsushita Components  
General Technical Information  
4.5  
Polarity reversal voltage (incorrect polarity)  
Any incorrect polarity resulting from the sum of the direct voltage and the alternating voltage com-  
ponents must be smaller than or equal to the permitted polarity reversal voltage (see table below).  
To avoid reducing the reliability, this voltage may only occur for a short time, at most five times for  
a duration of one minute per hour.  
Permissible polarity reversal voltage for capacitors with a solid electrolyte:  
.
.
.
.
at  
at  
at  
20 ˚C:  
55 ˚C:  
85 ˚C:  
0,15  
0,10  
0,05  
0,03  
V
V
V
V
R
R
R
R
at 125 ˚C:  
4.6  
Series back-to-back connection  
For applications where higher polarity reversal voltages occur, two capacitors with identical rated  
voltage and identical rated capacitance can be connected back-to-back in series (e.g. cathode to  
cathode). In this way, blocking in each polarization direction is achieved. To avoid damage to the  
reversed polarity capacitors during charging, it is necessary to connect diodes in parallel to the ca-  
pacitors with the center of the diodes and the capacitors connected together.  
This non-polar or bi-polar version (which only has half the capacitance value as a result) can be  
operated at voltages of up to the rated direct voltage of any polarity or with double the superimposed  
alternating voltage of the value permitted for the individual capacitor.  
The capacitors connected back-to-back in this way can also be operated at a pure ac voltage. The  
surface temperature of the capacitor is not allowed to increase by more than max. 10 ˚C , while the  
upper temperature limit should not be exceeded.  
4.7  
Inherent voltage  
Occasionally, inherent voltages can occur in electrolytic capacitors (due to element formation be-  
tween anode and cathode). Since these inherent voltages are relatively low (< 0,5 V), with accord-  
6
ingly high internal resistance (several 10 ), they are of no importance for most applications.  
4.8  
Recharging  
In all conventional capacitors a recharging effect may occur. This effect causes a charged capacitor  
to generate a recharging voltage that is of the same polarity as the charging voltage after external  
bridges are removed from the capacitor’s layers. The recharging voltage is more or less indepen-  
dent of the capacitance of the capacitors and the thickness of the dielectric and can be considered  
to be a characteristic property of the dielectric material.  
The value of the recharging voltage depends on various factors (type, charging time, discharging  
-2  
time, time of measurement, ambient temperature) and can attain an order of magnitude of 10 up  
to several tenths of the operating voltage. Of all electrolytic capacitors, capacitors with solid elec-  
trolytes have the lowest recharging effect.  
Siemens Matsushita Components  
47  
General Technical Information  
5
Capacitance  
5.1  
Rated capacitance  
The rated capacitance C is the capacitance value by which the capacitor is identified. The actual  
R
capacitance of a capacitor can deviate from the rated capacitance by as much as the full magnitude  
of the tolerance at delivery.  
The capacitance of tantalum electrolytic capacitors is determined at a frequency of 120 Hz and a  
temperature of 20 ˚C as a series capacitance in an alternating current bridge circuit with measuring  
voltages < 0,5 V  
.
rms  
5.2  
Capacitance tolerance  
The capacitance tolerance (or tolerance at delivery) C/C is the maximum permitted deviation of  
R
the actual capacitance value from the specific rated capacitance.  
Where the capacitance tolerances are to be indicated on the components themselves,  
S + M Components uses code letters in accordance with IEC 68. This code letter also forms part of  
the ordering code.  
5.3  
Temperature dependence of the capacitance  
The capacitance of a tantalum electrolytic capacitor varies with the temperature (positive tempera-  
ture coefficient), cf. figure 5. The amount by which it varies depends on the voltage and capacitance  
value. Low voltages and high capacitance values cause greater variations than high voltages and  
low capacitance values.  
Fig. 5 Capacitance change versus temperature (typical values)  
48  
Siemens Matsushita Components  
General Technical Information  
55 ˚C  
10 %  
+ 85 ˚C  
+ 10 %  
+ 125 ˚C  
+ 12 %  
Maximum values for chip capacitors  
5.4  
Frequency dependence of the capacitance  
The capacitance decreases with increasing frequency. A typical curve is shown in figure 6.  
Fig. 6 Capacitance change versus frequency (typical behavior),  
reference temperature 20 ˚C  
Typical values of the effective capacitance can be derived from the impedance curve, as long as  
the impedance is still in the range where the capacitive component dominates.  
1
C =  
--------------------------  
2
π f Z  
C
f
Z
Capacitance  
Frequency  
Impedance  
F
Hz  
5.5  
Charge-discharge proof  
Tantalum electrolytic capacitors produced by S + M Components are charge-discharge proof. This  
8
means that the capacitance reduction after 10 charge-discharge cycles will be less than 3 %.  
Siemens Matsushita Components  
49  
General Technical Information  
6
Impedance / Equivalent series resistance (ESR)  
The impedance can also be described as the absolute value of the ac resistance.  
The impedance of tantalum electrolytic capacitors is represented in close approximation by a series  
circuit comprising the following individual resistance components:  
1. Effective reactance 1/ωC of the capacitance C  
2. Dielectric losses and the ohmic resistance of the electrolyte and/or the semiconductor layer  
(equivalent series resistance ESR)  
3. Effective reactance ωL of the inductance of the electrodes and the terminals.  
Fig. 7 Simplified equivalent circuit diagram of a tantalum electrolytic capacitor  
The frequency and temperature relationship of these components determine the impedance char-  
acteristics.  
ESR includes both R  
+ R : R  
represents the dielectric losses and decreases with 1/ω.  
Dielect  
Dielect  
Elyt  
R
represents the series resistance of the electrolyte and does not vary with frequency. R  
elyte  
Dielect  
is negligible at frequencies above approximately 10 kHz.  
In the higher and lower frequency ranges, the frequency characteristic of the impedance is mainly  
caused by both the reactances. The temperature characteristic is mainly determined by the resis-  
tance of the electrolyte.  
Because of the corrosion-resistance of tantalum, highly conductive electrolytes can be used for tan-  
talum electrolytic capacitors, so that these capacitors have low series resistances. A particularly  
high conductivity is achieved by the solid semiconductor layer used instead of a liquid electrolyte.  
Hence capacitors with solid electrolytes have the lowest series resistance of all electrolytic capaci-  
tors.  
The conductivity of the electrolyte varies only slightly, even at low temperatures. This means that  
the impedance of tantalum electrolyte capacitors displays favorable frequency and temperature  
characteristics.  
The following figures show the typical behavior of the impedance in relationship to frequency and  
temperature.  
The decrease in impedance at low frequencies down to a few kHz is determined by the capacitive  
reactance, whereas the following, almost horizontal course of the curve mainly shows the ohmic  
series resistance. Beyond the natural resonant frequency, the inductive reactance becomes in-  
creasingly predominant, so that the curves finally merge into straight lines.  
50  
Siemens Matsushita Components  
General Technical Information  
Fig. 8 Impedance Z versus frequency f  
Fig. 9 Impedance Z versus temperature T  
Capacitor 6,8 µF/35 Vdc  
Siemens Matsushita Components  
51  
General Technical Information  
7
AC power dissipation  
7.1  
Superimposed alternating voltage for capacitors with solid electrolyte  
The superimposed alternating voltage is the r.m.s. alternating voltage that may be applied to a  
capacitor in addition to a direct voltage. The sum of the direct voltage and the peak value of the  
superimposed alternating voltage must not exceed the maximum continuous voltage. The  
superimposed alternating voltage must be limited in such a way that no unpermitted incorrect  
polarity occurs (permissible incorrect polarity, cf. chapter 4.5).  
The alternating current flowing through the capacitor or the alternating voltage applied may not  
exceed a maximum value determined for the respective type and rated capacitance, since the  
capacitor might be damaged due to overheating or its service life may be reduced. The value of the  
permitted alternating voltage and/or the superimposed alternating current depends on the  
equivalent series resistance (ESR) and the permissible power dissipation. Here, the permitted  
inherent heating for the respective type is taken into consideration.  
The basis for the calculations are as follows:  
V
----  
Z
2
.
P = I ESR , with I =  
we obtain  
V 2 ESR  
P =  
-------------------------  
Z 2  
P
I
V
Z
Power dissipation  
W
A
Vac  
Effective ripple current  
Effective alternating voltage  
Impedance  
ESR  
Equivalent series resistance  
7.2  
Maximum permissible ripple current and alternating voltage loads  
from the following tables, the maximum permissible ripple current and alternating volt-  
Using P  
max  
age loads can be calculated.  
Pmax  
Pmax  
V max = Z -------------  
ESR  
I max  
=
-------------  
ESR  
52  
Siemens Matsushita Components  
General Technical Information  
7.2.1  
Maximum permissible power dissipation with ripple current load  
Case size  
in mW  
Z
P
A
B
C
D
E
P
28  
55  
75  
85  
110  
150  
165  
V max  
Reduction of the calculated values versus the ambient temperature, cf. figure 10.  
Fig. 10 Permissible ripple current Iac and permissible alternating voltage Vac versus  
temperature T  
Siemens Matsushita Components  
53  
General Technical Information  
8
Dissipation factor  
The dissipation factor tan δ increases with frequency and tends to very high values at near-  
resonance frequencies. The figures below show the typical frequency and temperature behavior of  
the dissipation factor.  
T
Fig. 11 Dissipation factor versus temperature  
at f = 120 Hz  
Fig. 12 Dissipation factor versus frequency  
at T = 20 ˚C  
54  
Siemens Matsushita Components  
General Technical Information  
9
Leakage current  
When a direct voltage is applied to electrolytic capacitors, a low, constant current will flow through any  
capacitor. This so-called leakage current I is a function of the voltage as well as of the temperature.  
lk  
(Graphs are shown in chapter 9.1).  
The value of the leakage current of an electrolytic capacitor is determined, above all, by the impurities  
(atoms of foreign substances that cannot be formed) in the carrier metal (anode). The use of high-pu-  
rity tantalum powder results in a low fault density in the dielectric and thus in a low leakage current.  
9.1  
Temperature and voltage dependence of the leakage current  
Fig. 13 Leakage current versus voltage  
Fig. 14 Leakagecurrentversustemperature  
Siemens Matsushita Components  
55  
General Technical Information  
9.2  
Time dependence of the leakage current  
As can be seen from figure 15 , the leakage current is high when the voltage is first applied (inrush  
current). This decreases rapidly, however, in the course of operation and finally achieves an almost  
constant “steady-state” value.  
Inrush current  
Steady-state  
leakage current  
Time  
Fig. 15 Leakage current versus time for which a voltage is applied  
9.3  
Leakage current measurement  
The leakage current is measured at 20 ˚C, after the rated voltage has been applied to the capacitors  
for five minutes. A stabilized power supply is required and a series resistor of 1000 should be  
connected in order to limit the charging current.  
Before the voltage is applied, the capacitors must be stabilized at the rated temperature for  
30 minutes.  
For tantalum capacitors with solid electrolyte, the following limit value at 20 ˚C is required by the  
applicable standards:  
CR V R  
Ilk 0,01 µA ·  
, minimum 0,5 µA.  
------- -------  
µF  
V
The following temperature factors apply  
at 85 ˚C: 10  
at 125 ˚C: 12,5  
56  
Siemens Matsushita Components  
General Technical Information  
9.4  
Leakage current behavior after storage without applied voltage  
Tantalum and its oxide are extremely resistant to chemical influences and are only attacked by very  
aggressive chemicals. They possess a high resistance to commonly used electrolytes and there is  
no deterioration of the oxide layer.  
Storage without an applied voltage at room temperature has no effect on the leakage current and  
only a slight effect at increased storage temperatures. This means that tantalum electrolytic capac-  
itors can be stored for at least 10 years without requiring subsequent regeneration.  
10  
Resistance to climatic stress  
Both for reasons of reliability and due to the fact that the electrical parameters vary with tempera-  
ture, limits must be set for the climatic conditions to which tantalum capacitors are subjected. The  
most important climatic factors are the permissible minimum and maximum temperatures and  
humidity conditions. The values for these three factors are coded as IEC climatic categories (cf.  
chapter 10.5). The IEC category applicable to each type is given in the corresponding data sheet.  
10.1  
Temperature range  
The temperature range of a capacitor is the range between the lower and upper category temper-  
atures within which the capacitor may be operated in accordance with its climatic category.  
The temperature range for tantalum electrolytic capacitors lies between 55 and + 125 ˚C.  
Within the 55 to + 85 ˚C range, the maximum continuous voltage V  
may be equal to the rated  
cont  
voltage V , provided that no other limiting conditions are specified. From 85 ˚C upwards, voltage  
R
reductions should be made (cf. chapter 4.2).  
10.2  
Minimum permissible operating temperature T  
(Lower category temperature)  
min  
The lower category temperature results from the capacitance decrease permitted for each individ-  
ual capacitor type or from the increase in impedance due to the reduced conductivity of the electro-  
lyte or the semiconductor layer. Temperatures down to the lower category temperature do not affect  
the service life.  
10.3  
Maximum permissible operating temperatureT  
(Upper category temperature)  
max  
The upper category temperature is the maximum permissible ambient temperature at which a  
capacitor may be continuously operated at the stated permissible electrical load. If this limit is  
exceeded, the capacitor may fail prematurely. It is possible to exceed the upper category tempera-  
ture for short periods. However, since the permissible period depends on the electrical load, it is  
essential to consult S + M Components before implementing such applications.  
10.4  
Damp heat conditions  
The permissible damp heat conditions for tantalum electrolytic capacitors are specified by the  
climatic categories in accordance with IEC 68-1 and are proved by tests in accordance  
with IEC 68-2-3.  
Siemens Matsushita Components  
57  
General Technical Information  
10.5  
IEC climatic category  
The permissible climatic stress on a capacitor is given by the respective IEC climatic category.  
According to IEC 68-1, the climatic category comprises 3 groups of numbers, separated by slashes.  
Example: 55/125/56  
1st group: Lower category temperature (temperature limit) denoting the test temperature for test  
A (cold) in accordance with IEC 68-2-1.  
2nd group: Upper category temperature (temperature limit) denoting the test temperature for test  
B (dry heat) in accordance with IEC 68-2-2.  
3rd group: Number of days, the duration of test Ca (damp heat, steady state) at a relative humidity  
of 93 +2/-3 % and an ambient temperature of 40 ˚C, in accordance with IEC 68-2-3.  
10.6  
Storage and transportation temperatures  
Tantalum capacitors with solid electrolyte may be stored at temperatures down to 80 ˚C.  
The upper storage temperature may not exceed the rated temperature range.  
11  
Notes on mounting  
For soldering tests, refer to the chapters “Measuring and Test Conditions” and “Soldering Condi-  
tions”. These chapters also include layout recommendations and soldering temperature profiles.  
11.1  
Cleaning agents  
The cleaning agents normally used nowadays for cleaning printed circuit boards after components  
have been soldered in can also be used, without restrictions, for tantalum electrolytic capacitors.  
Four-chamber ultrasonic cleaning processes with short individual stages and adequate subsequent  
drying provide good protection against damage.  
12  
Standard barcode label  
The standard product package label provides barcode information as well as the usual text infor-  
mation. This provides advantages in the internal goods flow, but above all, it allows fast and accu-  
rate identity monitoring by the customer.  
Due to our systematically constructed, unique marking on the packages, each component can be  
traced back to a certain production lot. This, in turn allows monitoring of the entire production pro-  
cedure right back to the purchasing of raw materials.  
The information includes the type, ordering code, quantity, date of manufacture, storage number,  
lot number and, where applicable, customer number. The barcode used is code 39 (medium  
density).  
58  
Siemens Matsushita Components  
General Technical Information  
Example:  
13  
Packing  
When packing our products, naturally we pay attention to the needs of the environment. This means  
that:  
– only environmentally compatible materials are used for packing, and  
– the amount of packing is kept to an absolute minimum.  
In observing these rules, we are also complying to German packaging legislation.  
In order to further comply to the aims of this legislation concerning the reduction of commercial  
waste, we have implemented the following measures:  
– Standardized “Euro” pallets are used.  
– Goods are secured on pallets using straps and edge protectors made of environmentally com-  
patible plastics (PE or PP). No stretch or shrink-wrap foils are used.  
– Shipping cartons (transport packaging) qualify for and carry the RESY logo.  
– Separating layers between pallets and cartons are of a single material type, preferably paper or  
cardboard.  
– Styrofoam (expanded polystyrene foam) chips are used as filler and padding materials. These  
can be re-used. They are expanded to a foam without using CFCs and halogens.  
– The shipping cartons are sealed with paper adhesive tape in order to ensure that only a single,  
uniform material needs to be disposed of.  
– We are prepared, in principle, to take back the packing material (especially product-specific pla-  
stic packages). However, we ask our customers to send cardboard cartons, corrugated card-  
board, paper etc. to recycling or disposal companies in order to avoid unnecessary transporta-  
tion of empty packing materials.  
Siemens Matsushita Components  
59  
General Technical Information  
14  
End of use and disposal  
All tantalum electrolytic capacitors produced by S + M Components are free of substances listed in  
German chemicals and CFC halogen prohibitive regulations. Nor do they contain any chemical sub-  
stances of groups I through VIII of the Montreal clean air agreement or mentioned in EC regulation  
3093/94.  
Tantalum electrolytic capacitors are not categorized as waste materials requiring special supervi-  
sion in recycling and waste disposal regulations. Consequently they may be left in electronic equip-  
ment and on circuit boards without any declaration or restriction and collected by an authorized dis-  
posal and recycling agency for electronic waste.  
Customers outside Germany are requested to observe the disposal regulations which apply in their  
respective country.  
15  
Structure of the ordering code (part number)  
All technical products produced by our company are identified by a part number (which is identical  
to the ordering code). This number is a unique identifier for any respective specific component that  
can be supplied by us. The customer can speed up and facilitate processing of his order by quoting  
the part number. All components are supplied in accordance with the part numbers ordered.  
The structure of the ordering code is explained in the data sheet section (pages 12 and 18 ).  
60  
Siemens Matsushita Components  
Quality Assurance  
1
General  
The high demands made of us by the world market for product and service quality make a compre-  
hensive, thorough and up-to-date quality management system indispensable.  
The QM system introduced in Capacitors Division was certified to EN ISO 9001 in June 1992.  
Numerous customer audits and awards are evidence of its efficiency and effectiveness.  
The QM system has been further developed and refined in line with the requirements of standards  
(EN ISO 9000 ff, CECC) and EFQM criteria. The next objective is certification to QS 9000 and  
VDA 6.1.  
Siemens Matsushita Components  
61  
Quality Assurance  
1.1  
Total quality management and zero defect concept  
The strategic aim of Total Quality Management (TQM) is to satisfy the demands made by customers  
on products or services in terms of function, quality, punctuality and price/performance.  
Based on the principle “quality from the very start”, all instances and persons at S+M Components  
are involved in implementing this aim. Systematic planning, careful selection of suppliers and sure  
mastery of design and manufacturing processes are the major guarantees of a constantly high qual-  
ity standard.  
Internal quality promotion measures, such as training, quality groups, quality assurance circles and  
Q audits strengthen the feeling of responsibility in all employees, helping them to realize the signif-  
icance of defects and thus avoid them.  
1)  
Modern quality tools such as FMEA, SPC and Zero-Defect Programs with CEDAC diagrams  
supplement and support measures for quality assurance and enhancement.  
1) FMEA  
SPC  
Failure Mode and Effects Analyses  
Statistical Process Control  
CEDAC  
Cause and Effect Diagram with Addition of Cards  
62  
Siemens Matsushita Components  
Quality Assurance  
1.2  
Quality assurance system  
In-house quality promotion  
measures  
Q promotion  
programs  
Quality  
group  
activities  
Basic  
Q circles  
Q audits  
and further experience  
training,  
interchange  
Q lectures  
International and  
In-house  
rules and  
guidelines on  
quality assurance  
national standards  
and regulations  
pertaining to  
quality assurance  
and QA systems  
according to:  
ISO  
Quality  
principles  
Quality  
policy  
Quality Assurance  
System  
IEC  
CECC  
DIN  
and others.  
Quality policy of  
the business  
division  
Quality  
manuals  
Special quality  
demands made  
by customers  
Procedural  
guidelines  
Product  
planning  
Acquisi-  
tion  
Develop-  
ment  
Procure-  
Production  
ment  
Inspection  
Testing  
Storage  
Dispatch  
Product  
applications  
Quality assurance measures in the creation of the product  
Global tasks  
Quality cost  
assessment  
Quality  
planning  
Quality  
reporting  
Quality  
promotion  
Documentation  
Siemens Matsushita Components  
63  
Quality Assurance  
2
Quality assurance procedure  
The quality department examines capacitors and releases them for production according to the  
following criteria:  
– compliance with type specifications  
– process capability of equipment  
– measuring and test technique.  
The entire production process – from procurement of parts and materials, through the fabrication  
process to final inspection – is accompanied by quality assurance measures. The flow chart (cf. 2.5)  
shows the quality inspections stipulated for each individual step.  
2.1  
Material procurement  
The high quality of parts and materials required in the manufacture of high-grade products is  
achieved through close co-operation with suppliers. Focal aspects of these quality assurance mea-  
sures are the choice and qualification of suppliers, harmonization of specifications, incoming-goods  
inspection, quality assessment and problem management.  
2.2  
Product quality assurance  
All essential manufacturing processes are subjected to permanent monitoring. Critical parameters,  
in particular, are subjected to statistical process control (SPC).  
So-called “QC gates” are planned into the manufacturing process, i.e. there is an inspection for re-  
lease at the end of the corresponding step. The continuous monitoring and evaluation of the test  
results are used to assess procedures and to determine how well the processes are mastered.  
2.3  
Final inspection  
The capacitors are subjected to a specification-based final inspection. The parameters capacitance  
tolerance, dissipation factor / equivalent series resistance, impedance, leakage current and proper-  
ties (i.e. mechanical finish) are checked.  
2.4  
Product monitoring  
Our quality assurance department periodically carries out tests on random samples taken from cur-  
rent production lots to check climatic resistance, operational reliability, solderability and resistance  
to soldering heat in accordance with DIN, CECC and IEC specifications.  
64  
Siemens Matsushita Components  
Quality Assurance  
2.5  
Manufacturing and quality assurance procedures for chip capacitors  
Manufacture  
Quality assurance  
Inspection of raw materials  
and parts  
Incoming goods  
Quality gate  
Quality gate  
Quality gate  
Pressing and sintering  
of anode  
Check of weight, length (SPC),  
vacuum temperature  
CV product grouping  
Welding of anode to metal bar  
Forming, tempering, pyrolysis  
Graphite and silver coating  
Mounting on lead frame  
Molding, deflashing  
Specific charge, leakage current  
Check of welding accuracy (SPC),  
properties  
Check of capacity,  
density, properties  
Check of immersion depth,  
density, viscosity  
Check of welding strength (SPC),  
properties  
Check of process parameters,  
properties, solderability  
Marking, burn-in 100 % tests of  
Check of identity,  
properties and electrical parameters  
test equipment, test results  
Quality gate  
Quality gate  
Sampling for conformance inspection, taping  
Sampling to specification,  
clearance (SPC), peel force  
with test of C and tan δ, packing  
Release for delivery,  
identity check  
Warehouse, dispatch  
Siemens Matsushita Components  
65  
Quality Assurance  
3
Delivery quality  
The term “delivery quality” is used to indicate conformance with the mutually agreed specifications  
at the time of delivery.  
This conformance is monitored and guaranteed by quality assurance through constant sampling  
tests. Their accumulated results produce the AOQ (average outgoing quality) figures.  
3.1  
Random sampling  
The AQL (AQL = acceptable quality level) figures given in section 3.3 are based on random sample  
inspection specification ISO 2859-1 single sampling plan for normal inspection, inspection level II.  
The contents of this standard correspond to MIL STD105 D and IEC 410.  
The sampling instructions of this standard are such that a delivered lot will be accepted with a prob-  
ability of 90 % if the percentage of non-conformancies does not exceed the stated AQL figure.  
As a rule, the percentage of non-conformancies in deliveries from S+M Components is significantly  
below the AQL figure. The acceptance figure we apply to inoperatives, i.e. unusable components  
is c =0.  
3.2  
Classification of inoperatives / non-conformancies  
A non-conformancy exists if a component characteristic fails to meet the data sheet specifications  
or an agreed delivery specification. Inoperatives are totally unusable components.  
Inoperatives:  
– short circuit or open circuit  
– breakage of terminals or encapsulation  
– wrong or missing marking  
– wrong marking of terminals  
– mixing with other components  
– alternating orientation in one tape  
Non-conformancies:  
– non-conformancies in electrical characteristics  
(electrical characteristics outside of specified limits)  
– non-conformancies in mechanical properties  
(e.g. wrong dimensions, damaged case, illegible marking, bent terminals).  
3.3  
AQL figures  
The following AQL figures apply to the non-conformancies listed above:  
– inoperatives (electrical and mechanical)  
– sum of electrical non-conformancies  
– sum of mechanical non-conformancies  
0,065  
0,25  
0,25  
3.4  
Incoming goods inspection  
We recommend the use of a random sampling plan according to ISO 2859-1 (the contents corre-  
spond to MIL STD 105 D and IEC 410) for incoming goods inspection.  
The test methods to be used are laid down in the relevant standards. Deviations must be agreed by  
the customer and the supplier. In case of complaints refer to section 7.  
66  
Siemens Matsushita Components  
 
Quality Assurance  
Single sampling plan for normal inspection – inspection level ll  
Excerpt from ISO 2859–1:  
Sampling plan  
AQL  
AQL  
0,10  
AQL  
0,15  
AQL  
0,25  
0,065  
N = Lot size  
2 …  
50  
90  
N-0  
N-0  
N-0  
N-0  
N-0  
N-0  
N-0  
50-0  
51 …  
N or 80-0  
80-0  
91 …  
150  
280  
500  
N or 125-0  
125-0  
50-0  
151 …  
281 …  
N or 200-0  
200-0  
80-0  
50-0  
125-0  
80-0  
50-0  
501 … 1 200  
1 201 … 3 200  
3 201 … 10 000  
10 001 … 35 000  
200-0  
125-0  
80-0  
50-0  
200-0  
125-0  
80-0  
200-1  
200-1  
315-2  
200-0  
125-0  
315-1  
315-1  
200-0  
500-1  
Columns 2 to 5:  
Left-hand figure = sample size  
Right-hand figure = acceptable inoperatives/non-conformancies  
Classification of  
inoperatives/non-conformancies: cf. paragraph 3.2  
Constant improvement of our performance is a primary objective, especially optimization of product  
quality in close cooperation between producer and user. For this purpose we offer our customers  
the possibility of quality assurance agreeements.  
4
Service life  
The service life is defined as the time that passes before a given failure percentage is attained for  
the respective component. The failure percentage is the ratio of the number of failures to the total  
number of inspected capacitors of the respective type. The service life depends on the defect crite-  
ria applied and on the operating conditions, i.e. on the electrical and thermal stress to which the ca-  
pacitor is subjected.  
The service life values stated in this data book have been established by carrying out endurance  
tests and accelerated tests (e.g. increased temperature). They refer to an ambient temperature of  
40 ˚C, rated voltage and a circuit resistance of 3 /V.  
The service life increases:  
– with decreasing ambient temperatures,  
– with decreasing superimposed ac voltage,  
– with decreasing operating voltage/rated voltage ratios  
– with increasing circuit resistance (cf. paragraphs 5.3, 5.4)  
– with decreasing operating temperature ( cf. paragraph 5.3 and figure 2)  
Siemens Matsushita Components  
67  
Quality Assurance  
4.1  
Failure criteria  
Inoperatives: short-circuit or open circuit  
Failure due to variation, i.e. unsatisfactory electrical characteristics:  
.
> 5 I + 5 µA  
lk  
I  
Z  
– tan δ  
C  
> 3 times the initial limit value  
> 1,5 times the initial limit value  
for V 16 V: + 10 … – 20 %  
for V > 16 V: + 10 … – 10 %  
beyond (initial) tolerances  
5
Reliability  
Data on long-term reliability under severe or moderate operating conditions are gained from endur-  
ance tests which are carried out continuously. The data are based on the failures registered for ca-  
pacitors under a defined load, and long-term reliability of the individual types tested is based on a  
confidence level of 60%. Our reliability data result from very large numbers of component operating  
hours.  
5.1  
Failure rate (long-term failure rate)  
The failure rate is defined as the failure percentage divided by a specified operating period. The  
9
failure rate is expressed in fit (failures in 10 component hours) or as percentage of failures in  
1000 hours.  
-9  
.
1 fit = 1 10 /h (fit = failure in time)  
Example of a failure rate λ  
determined by a useful life test:  
test  
1) Number of components tested  
2) Operating hours  
N = 8 000  
= 25 000 h  
t
b
3) Number of failures  
n = 2  
n
N
1
2
1
λtest  
=
=
= 10 fit = 0,001 %/1000 h.  
--- ----  
t b  
------------ -------------------  
8000 25000h  
Failure rate specifications must include failure criteria, operating conditions and ambient conditions.  
68  
Siemens Matsushita Components  
Quality Assurance  
Usually the failure rate of components, when plotted against time, shows a characteristic curve with  
the following two periods:  
I : early failure period, ll: service period  
Early failure period  
Period in which failure rate is constant  
Fig. 1 Failure rate periods  
Due to the 100 % burn-in tests, the early failure period (phase l) will coincide with the manufacturing  
process. Because of this, the failure rate relates to the service period (phase II). In phase II, an  
almost constant failure rate λ can be expected, with a slight tendency to decrease with time.  
0
5.2  
Failure rate values  
The failure rate (specified on page 19) refers to the following conditions.  
Electrical load:  
Operation at rated voltage  
Circuit resistance 3 /V  
Climatic conditions:  
Ambient temperature 40 ˚C, climatic class 3K3 in accordance with IEC 721,  
non-corrosive atmosphere  
Mechanical stress:  
Class 3M3 in accordance with IEC 721  
Service period:  
Phase II as shown in figure 1.  
Siemens Matsushita Components  
69  
Quality Assurance  
These reference conditions do not always correspond to actual application conditions. For real ap-  
plications, the failure rate must therefore be calculated as follows:  
λ = λref πV πT πRs  
λ
π
π
π
Failure rate under reference conditions  
Factor for voltage dependence  
Factor for temperature dependence  
Factor for dependence on circuit resistance  
ref  
V
T
Rs  
5.3  
Failure rate conversion factors  
The failure percentage and failure rate are affected by the ambient temperature, the V /V ratio,  
op  
R
and, for capacitors with solid electrolyte, by the circuit resistance. These values increase with incre-  
asing ambient temperatures, and they are decreased by lowering the V /V ratio and increasing  
op  
R
the circuit resistance.  
Conversion factors for taking into account the effects of ambient temperature and operating voltage  
on the failure rate within the service life can be deduced from the table below or from the graph in  
figure 2 (guideline values).  
V
/V  
0,2  
0,4  
0,5  
0,6  
0,8  
1
1
op  
R
-4  
-3  
-3  
-2  
π
3,5 · 10  
2,4 · 10  
6,5 · 10  
1,7 · 10  
0,13  
V
T/°C  
20  
40  
1
60  
85  
10  
105  
49  
125  
250  
π
0,5  
2,2  
T
Circuit resistance  
· V /µC  
/V  
3  
1
1
0,3  
3,5  
6,1  
0,1  
5
π
C
330  
> 330  
2
Rs  
R
R
1
2,8  
12  
70  
Siemens Matsushita Components  
Quality Assurance  
.
Vop  
VR  
Fig. 2 Conversion factors for the failure rate  
5.4  
Effect of the circuit resistance (series resistance) on the failure rate of tantalum  
electrolytic capacitors with solid electrolytes  
The employment of a certain series resistance is not a necessary condition for problem-free use of  
tantalum capacitors with solid electrolyte. However, it is possible to influence the service life by the  
series resistance value.  
The failure rates specified in this book are based on circuits containing a series resistance (circuit  
resistance). In addition to the temperature and applied voltage, the series resistance too has an ef-  
fect on the failure rate. The circuit resistance is defined as the total resistance as seen from the ca-  
pacitor in the direction of the voltage source. It is the sum of the internal resistance of the voltage  
source, the wiring resistance and any additional resistors connected in series.  
The circuit resistance is only of importance when there are localized dielectric breakdowns in the  
capacitor due to overloads. In such cases the circuit resistance limits the current and permits a self-  
healing of the capacitor. Tantalum capacitors with solid electrolyte have the ability to regenerate  
and heal internal defects.  
The self-healing effect can only be successful if the breakdown occurs in a small area and if the  
energy dissipation in that area is limited while regeneration is taking place. If these conditions are  
not given, localized overheating may occur, leading to an expansion of the defect area and thus ren-  
dering regeneration impossible. While this self-healing process is taking place, the circuit resistance  
keeps the energy supply to a tolerable level, since the highly conductive solid electrolyte can take  
over this function only to a certain extent.  
Thus the circuit resistance has a decisive effect on the self-healing process and, as a result, on the  
failure rate. The respective CECC standards contain corresponding information and data.  
Siemens Matsushita Components  
71  
 
Quality Assurance  
A current limit of approximately 300 mA (for limiting the energy dissipation) has been found to be  
suitable for enabling an effective self-healing process. This corresponds to a circuit resistance of  
3 /V. If the circuit resistance is lower, thus impairing the conditions for self-healing in the case of  
localized dielectric breakdown, then the failure rate increases, as expressed by the larger factors.  
In extreme cases, i.e. where the resistance approaches zero (0,1 /V), the failure rate may in-  
crease to factor of approximately ten, depending on the case size.  
5.5  
Example of how to calculate the failure rate  
Given:  
ambient temperature  
operating voltage  
circuit resistance  
T
V
R
= 60 ˚C  
= 25 Vdc  
0,1 /V  
A
op  
S
capacitor used (e. g. B 45 196-E):  
C
= 1 µF  
R
V
= 50 Vdc  
R
failure rate = 3 fit under reference conditions.  
V op  
For  
and T =60 ˚C, a conversion factor of approximately 0,015 is deduced from  
= 0, 5  
---------  
V R  
A
figure 2 on page 71. The same value is obtained from the table on page 70 by multiplying π · π .  
V
T
For a circuit resistance of 0,1 /V and C · V /µC 330 the table gives a conversion factor of 5.  
R
R
–9  
–9  
.
.
.
.
Calculated failure rate: λ = 3 10 failures/h 0,015 5 = 0,23 10 failures/h = 0,23 fit.  
5.6 Failure rate for B 45 194  
As already explained, the failure rate varies with the operating conditions (ambient temperature, ap-  
plied voltage, circuit resistance, application circuits etc.). Select the capacitors to obtain an ade-  
quate safety margin by fully examining the operating conditions.  
The failure rate of B 45194 capacitors is given as percentage in 1000 hours and refers to rated volt-  
age applied at 85 °C. Check the design objective with the following formula for the failure rate:  
λop = λ85oC K t K sr  
λ
λ
Predicted failure rate at operating conditions  
Failure rate level at rated voltage and 85 °C:  
1%/1000 h  
op  
85oC  
V op  
K
K
Multiplying factor of failure rate as a function of maximum temperature and  
see figure 3  
,
---------  
V R  
t
Multiplying factor of failure rate as a function of cicuit resistance (/V), see figure 4  
sr  
72  
Siemens Matsushita Components  
Quality Assurance  
Fig. 3 Multiplying factor of failure rate  
versus temperature and voltage  
Fig. 4 Multiplying factor of failure rate  
versus circuit resistance  
Always consider safety when designing equipment and circuits. Plan for worst case failure modes  
such as short circuits and open circuits which could occur during use.  
– Provide protection circuits and protection devices to allow safe failure modes.  
– Design redundant and secondary circuits where possible to assure continued operation in case  
of main circuit failure.  
6
Supplementary information  
The specification of quality data – which always refer to a fairly large number of components – does  
not constitute a guarantee of characteristics or properties in the legal sense. However, agreement  
on these specifications does not mean that the customer may not claim for replacement of individual  
defective capacitors within the terms of delivery. S + M Components cannot, however, assume any  
further liability beyond the replacement of defective components. This applies in particular to any  
further consequences of component failure.  
Furthermore, it must be taken into consideration that the figures stated for service life and failure  
rate refer to the average production status and are therefore to be understood as mean values (sta-  
tistical expectations) for a large number of delivery lots of identical capacitors. These figures are  
based on application experience and on data obtained from preceding tests under normal con-  
ditions, or – for purposes of accelerated aging – more severe conditions.  
Siemens Matsushita Components  
73  
Quality Assurance  
7
Handling of claims and complaints  
A main aim of our quality assurance system is to prevent any faults occurring. The following details  
will help us to respond quickly to any complaints which you may need to make:  
a) Non-conformancies (inoperatives) in incoming goods  
– Description of non-conformancy  
– Test method / circuit  
– Sample size  
– Number of non-conforming units found  
– Proof unit  
– Packing slip  
b) Non-conformancies (inoperatives) in production or operation  
– Description of non-conformancy  
– When and how was the non-conformancy detected  
– Operating conditions  
– Length of operation before non-conformancy occured  
– Details as under a) if possible and applicable.  
If transport damage has occurred, please describe it in detail and, if possible, mark it so that it can  
be distinguished from any other damage that may occur when the articles are returned. The original  
packing should also be examined and damage discovered should be described. To avoid further  
damage, please use the original packing, wherever possible, to return the articles being claimed for.  
74  
Siemens Matsushita Components  
Measuring and Test Conditions  
1
Test conditions selected from IEC 60-384-1  
Endurance  
lC/Cl  
tan δ  
10 % of initial value  
limit value  
2000 h at +85 ˚C or  
2000 h at +125 ˚C  
at reduced voltage  
.
(in part 1,5 limit value)  
.
I
1,25 initial limit value  
lk20˚C  
.
(in part 2 limit value)  
Of 25 tested capacitors, only one, at the most, may  
exceed the specified values.  
Storage at high temperature  
lC/Cl  
tan δ  
10 % of initial value  
1,5 limit value  
limit value  
.
without voltage applied  
5000 h at +85 ˚C  
I
lk20˚C  
*)  
Damp heat, steady state  
Severity 4:  
40 2) ˚C; 93 (+2/-3) % relative  
in accordance with IEC 68-2-3  
humidity;  
*) Increased test severity for chip capacitors  
B 45 196-P, see below  
Duration:  
56 days  
lC/Cl  
tan δ  
5 % of initial value  
1,2 limit value  
.
I
initial limit value  
lk20˚C  
Vibration  
Frequency range: 10 2000 Hz  
Amplitude:  
1,5 mm  
(max. 196 m/s i.e. 20 g)  
Test Fc in accordance with IEC 68-2-6  
2
Test duration: 6 h  
Peak load :  
2
Shock  
981 m/s i.e. 100 g  
Test Ea in accordance with IEC 68-2-27  
2
Tests with more stringent conditions than specified by CECC and IECQ  
for B 45 196-P  
Damp heat, steady state  
Parameter changes:  
85 (+2) ˚C, 85 90 % relative humidity,  
1000 h, at rated voltage  
lC/Cl  
tan δ  
10 % of initial value  
.
2 initial limit value  
.
I
10 initial limit value  
lk20˚C  
Rapid change of temperature  
100 cycles, 55 ˚C/+125 ˚C/30 min  
lC/Cl  
tan δ  
3 % of initial value  
initial limit value  
initial limit value  
I
lk20˚C  
Measuring and test conditions only apply to B 45 194 if explicitly stated.  
Please contact your nearest Siemens Office for Passive Components if you need further  
information.  
!
Siemens Matsushita Components  
75  
Soldering Conditions  
1
Tests  
Wetting  
Solder  
Bath temperature Immersion time  
in accordance with IEC 68-2-58  
SnPb 60/40  
SnPb 60/40  
235 (± 5) ˚C  
215 (± 3) ˚C  
2 (± 0,2) s  
3 (± 0,3) s  
Preconditioning:  
Immersion in F-SW 31 flux  
Assessment criterion:  
Wetting of terminals 95 %  
(except for cutting and bending edges)  
Resistance to soldering heat  
in accordance with IEC 68-2-58  
Solder  
Bath temperature Immersion time  
260 (± 5) ˚C 10 (± 0,5) s  
SnPb 60/40  
Preconditioning:  
Immersion in F-SW 32 flux  
Assessment criterion  
lC/Cl  
tan δ  
3 % of initial value  
initial limit value  
initial limit value  
I
lk20˚C  
Resistance to soldering heat  
of B 45 194  
Solder  
Bath temperature Immersion time  
260 (± 5) ˚C 5 (± 1) s  
SnPb 60/40  
76  
Siemens Matsushita Components  
Soldering Conditions  
2
Recommended solder pad layouts  
Case size  
Soldering process  
Dimensions (mm)  
R
S
T
U
Z
Wave soldering  
Reflow soldering  
1,2  
1,2  
1,1  
0,8  
1,0  
1,0  
3,2  
2,6  
P
A
B
C
D
E
Wave soldering  
Reflow soldering  
1,6  
1,6  
2,6  
1,5  
1,3  
1,3  
6,5  
4,3  
Wave soldering  
Reflow soldering  
1,6  
1,5  
1,9  
1,5  
1,2  
0,8  
5,0  
3,8  
Wave soldering  
Reflow soldering  
2,7  
2,5  
2,0  
1,5  
1,5  
1,1  
5,5  
4,1  
Wave soldering  
Reflow soldering  
2,7  
2,5  
2,8  
2,0  
3,0  
2,6  
8,6  
6,6  
Wave soldering  
Reflow soldering  
2,9  
2,7  
2,9  
2,0  
4,4  
3,9  
10,2  
7,9  
Wave soldering  
Reflow soldering  
2,9  
2,7  
2,9  
2,0  
4,4  
3,9  
10,2  
7,9  
Siemens Matsushita Components  
77  
Soldering Conditions  
3
Recommended soldering temperature profiles for chip capacitors  
(in accordance with CECC 00802 Edition 2)  
Vapor phase soldering  
Chamber (batch) process with preheating. Temperature at component terminal applies  
Temperature  
Normal curve  
Limit curves  
20 to 40 s  
External preheating  
Accelerated cooling  
Internal preheating  
(by secondary vapor)  
time  
Conveyor (continuous) process with preheating. Temperature at component terminal applies  
Temperature  
Normal curve  
Limit curves  
20 to 40 s  
Forced cooling  
External preheating  
100˚C  
Internal preheating  
e.g. infrared max. 2 K/s  
time  
78  
Siemens Matsushita Components  
Soldering Conditions  
Wave soldering  
Temperature curve at component terminal during dual wave soldering  
Temperature  
Normal curve  
Limit curves  
235 ˚C to 260 ˚C  
First wave  
Second wave  
100 ˚C to 130 ˚C  
Forced  
cooling  
approx. 200 K/s  
time  
Infrared reflow soldering  
Temperature curve at component terminal in infrared soldering  
Temperature  
approx.  
approx.40s  
Normal curve  
Limit curves  
time  
Siemens Matsushita Components  
79  
Soldering Conditions  
4
Recommended soldering temperature profiles for B 45 194  
Wave soldering  
The components are fixed to the board with adhesive, and are directly dipped into the solder bath.  
When component mounting density is high, solderability may be decreased.  
Take notice to drain gas.  
Preheat for 2 minutes at 160 °C.  
Cool after soldering  
80  
Siemens Matsushita Components  
Soldering Conditions  
Reflow soldering  
Time at 200°C or more  
(Main heating part)  
Temperature rising part I  
Ordinary temperature to preheating part  
Preheating part  
Temperature rising part II  
Preheating part to 200 °C  
Main heating part  
Refer to figure on next page  
Cooling part  
200 to 100 °C  
The components and the board are heated by an hot blast oven or an infrared radiation oven.  
Measure temperature at the component surface.  
Do not perform reflow more than twice.  
Please consult supplier for vapor phase soldering conditions.  
Siemens Matsushita Components  
81  
S
+
M
Siemens Mats us hita Components  
COMPONENTS  
Applications with a future  
We set  
your ideas  
in motion  
When it comes to implementing  
ideas, you couldnt choose a better  
partner. Our flexibility turns  
standard products into new ones  
with all the right features. Whether  
capacitors and converter filters for  
wind-driven power plants, ferrite  
antennas for radio wrist-watches  
or SAW filters for the new wide-  
screen TV generation. If you’ve  
got the application, weve got  
the component.  
SCS – dependable, fast and com petent  
Taping, Packing and Weights  
1
Taping  
Chip capacitors are taped and reeled in accordance with IEC 286-3. Sizes Z, P, A and B are sup-  
plied in 8-mm blister tapes, sizes C, D and E in 12-mm blister tapes. The tapes and reels are anti-  
static. The position of the positive pole is shown in the outline drawing below.  
Tape dimensions and tolerances  
Section A-A  
KTA0065-C  
Direction of unreeling  
Dimensions  
(mm)  
Case size  
Z
P
A
B
C
D
E
A
B
± 0,2  
1,35  
2,2  
1,9  
3,5  
1,9  
3,5  
3,3  
3,8  
3,7  
6,5  
4,7  
7,7  
4,7  
7,7  
1
1
± 0,2  
D
+ 0,1/0  
1,5  
1,0  
4,0  
4,0  
2,0  
1,5  
1,0  
4,0  
4,0  
2,0  
1,5  
1,0  
4,0  
4,0  
2,0  
1,5  
1,0  
4,0  
4,0  
2,0  
1,5  
1,5  
4,0  
8,0  
2,0  
1,5  
1,5  
4,0  
8,0  
2,0  
1,5  
1,5  
4,0  
8,0  
2,0  
0
D min.  
1
1)  
P
P
P
± 0,1  
± 0,1  
0
1
2
± 0,05  
W
E ± 0,1  
F
± 0,3  
8,0  
1,75  
3,5  
8,0  
1,75  
3,5  
8,0  
1,75  
3,5  
8,0  
1,75  
3,5  
12,0  
1,75  
5,5  
12,0  
1,75  
5,5  
12,0  
1,75  
5,5  
± 0,05  
G min.  
0,75  
0,75  
0,75  
0,75  
0,75  
0,75  
0,75  
T ± 0,05  
0,25  
1,9  
1,5  
0,25  
1,9  
1,5  
0,25  
2,3  
1,9  
0,25  
2,6  
2,2  
0,3  
3,3  
3,0  
0,3  
3,6  
3,3  
0,3  
4,8  
4,5  
1
T max.  
2
K
± 0,1  
0
1) 0,2 mm over 10 sprocket hole spaces  
Siemens Matsushita Components  
83  
Taping, Packing and Weights  
2
Packing  
Dimensions (mm)  
A
Reel  
180 mm diameter  
330 mm diameter  
180 ± 0,5  
330 ± 0,5  
B
C
D
E
62,5 – 2,5  
13,0 ± 0,5  
22,0 ± 1,0  
2,0 ± 0,5  
62,0 ± 1,5  
12,75 + 0,15/0  
21,0 ± 0,5  
2,0 + 0,5/0  
W
(8-mm tape)  
(12-mm tape)  
8,4 + 0,2/0  
12,4 + 0,2/0  
1
2
W
(8-mm tape)  
(12-mm tape)  
11,0 ± 0,1  
15,0 ± 0,1  
8,4 + 0,2/0  
12,4 + 0,2/0  
3
Packing units and weights  
Case size  
Taped; pieces/reel  
Approx. weight  
per capacitor  
1)  
180 mm diameter  
330 mm diameter  
g
Z
3000  
3000  
2000  
2000  
750  
0, 008  
0,02  
0,06  
0,09  
0,20  
0,35  
0,50  
P
A
B
C
D
E
9000  
8000  
3000  
2800  
1800  
750  
400  
1) Guideline values, possible deviations of up to approximately ± 30 %  
84  
Siemens Matsushita Components  
S
+
M
Siemens Mats us hita Components  
COMPONENTS  
Now twice as many  
2,000 PTC  
thermistors  
at once  
A hot tip in PTCs for overload  
protection: our new maximum order  
level of 2,000 pieces. And with  
more than 50 different models,  
weve got a lot more to offer too.  
Maximum operating voltages from  
12 to 550 V, rated currents up to 2.5  
A, maximum switching currents of  
15 A, plus a broad selection of lea-  
ded versions and SMDs.  
SCS – dependable, fast and com petent  
Subject Index  
final inspection  
fit  
FMEA  
64  
68  
62  
A
ac power dissipation  
anode  
AQL figures  
52  
43  
66  
I
B
IEC climatic category  
impedance  
incoming goods inspection  
incorrect polarity  
inherent voltage  
inoperatives  
58  
50  
66  
47  
47  
66  
61  
back-to-back circuit  
basic construction  
47  
43  
C
capacitance  
48  
49  
48  
48  
57  
43  
62  
49  
71  
74  
58  
ISO 9000  
frequency dependence  
temperature dependence  
capacitance tolerance  
category temperature  
cathode  
CEDAC diagram  
charge-discharge proof  
circuit resistance  
L
leakage current  
after storage  
measurement of ...  
temperature dependence  
time dependence  
voltage dependence  
55  
57  
56  
55  
56  
55  
claims and complaints  
cleaning agents  
M
D
material procurement  
maximum continuous voltage  
maximum ripple current  
mounting  
64  
45  
52  
58  
damp heat  
75  
57  
66  
43  
60  
54  
damp heat conditions  
delivery quality  
dielectric  
disposal of old capacitors  
dissipation factor  
N
non-conformancies  
66  
E
O
EN ISO 9001  
end of use  
endurance  
equivalent circuit diagram  
equivalent series resistance  
61  
60  
75  
50  
50  
operating voltage  
ordering code  
46  
60  
P
packing  
packing units  
59, 84  
84  
F
part number  
polarity  
polarity reversal voltage  
power dissipation  
product monitoring  
product quality assurance  
60  
44  
47  
53  
64  
64  
failure criteria  
failure percentage  
failure rate  
calculation examples  
conversion factors  
values  
68  
67  
68  
72  
70  
69  
86  
Siemens Matsushita Components  
Subject Index  
Q
W
weights  
84  
62  
quality assurance  
61  
64  
quality assurance procedure  
quality assurance procedures  
chip capacitors  
quality assurance system  
quality data  
Z
65  
63  
73  
zero defects concept  
R
random sampling  
rated capacitance  
rated voltage  
recharging  
reliability  
66  
48  
45  
47  
68  
57  
resistance to climatic stress  
S
series back-to-back connection  
series resistance  
service life  
shock  
solder pad layouts  
soldering tests  
47  
71  
67  
75  
77  
76  
62  
58  
44  
64  
58  
75  
52  
46  
SPC  
standard barcode label  
standards  
statistical process control  
storage and transportation temperatures  
storage test  
superimposed alternating voltage  
surge voltage  
T
taping  
83  
48  
57  
48  
62  
46  
temperature coefficient, positive  
temperature range  
tolerance at delivery  
total quality management  
transient voltages  
V
vibration  
voltages  
75  
45  
Siemens Matsushita Components  
87  
Symbols and Terms  
Symbol  
C
English  
German  
Capacitance  
Kapazität  
C
C  
C/C  
C
C
Rated capacitance  
Capacitance change  
Capacitance tolerance  
Series capacitance  
Capacitance at frequency f  
Nennkapazität  
R
Kapazitätsänderung  
Kapazitätstoleranz  
Serienkapazität  
Kapazität bei Frequenz f  
R
S
f
ESL  
ESR  
ESR  
Self-inductance  
Eigeninduktivität  
Equivalent series resistance  
Equivalent series resistance  
at temperature T  
Ersatz-Serienwiderstand  
Ersatz-Serienwiderstand  
bei Temperatur T  
T
f
Frequency  
Frequenz  
I
Current  
Strom  
Iac  
Alternating current  
Alternating current at frequency f  
Leakage current  
Wechselstrom  
Wechselstrom bei Frequenz f  
Reststrom  
I
I
f
lk  
P
R
T
Power dissipation  
Verlustleistung  
Series resistance (circuit resistance) Serienwiderstand (Schaltkreiswiderstand)  
S
Temperature  
Temperatur  
T
T
T
t
Upper category temperature  
Lower category temperature  
Ambient temperature  
Time  
Obere Grenztemperatur (Kategorietemperatur)  
Untere Grenztemperatur (Kategorietemperatur)  
Umgebungstemperatur  
Zeit  
max  
min  
A
t
Operating time  
Betriebszeit  
op  
V
Voltage  
Spannung  
Vac  
AC voltage  
Wechselspannung  
Dauergrenzspannung  
Formierspannung  
Betriebsspannung  
Nennspannung  
V
V
V
V
V
V
Max. continuous voltage  
Forming voltage  
Operating voltage  
Rated voltage  
Reverse voltage  
Surge voltage  
cont  
F
op  
R
Umpolspannung  
Spitzenspannung  
rev  
S
Z
Impedance  
Scheinwiderstand  
Z
Impedance at temperature T  
Scheinwiderstand bei Temperatur T  
T
tan δ  
tan δ  
tan δ  
Dissipation factor  
Dissipation factor at temperature T  
Dissipation factor at frequency f  
Verlustfaktor  
Verlustfaktor bei Temperatur T  
Verlustfaktor bei Frequenz f  
T
f
88  
Siemens Matsushita Components  
Symbols and Terms  
Symbol  
English  
German  
.
–9  
.
–9  
λ
Failure rate (1 fit = 1 10 failures/h) Ausfallrate (1 fit = 1 10 Ausfälle/h)  
Factors for failure rate calculation:  
Factor for voltage dependence  
Factor for temperature dependence  
Factor for dependence on circuit  
resistance  
Faktoren zur Berechnung der Ausfallrate:  
Faktor für Spannungsabhängigkeit  
Factor für Temperaturabhängigkeit  
Faktor für Abhängigkeit vom Schaltkreis-  
widerstand  
π
π
π
V
T
Rs  
Decimal points are indicated by commas.  
Siemens Matsushita Components  
89  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY