MC145407P [LANSDALE]

5 Volt Only Driver/Receiver RS232 EIA-232-E and CCITT V.28; 5伏只有驱动器/接收器RS232 EIA- 232 -E和CCITT V.28
MC145407P
型号: MC145407P
厂家: LANSDALE SEMICONDUCTOR INC.    LANSDALE SEMICONDUCTOR INC.
描述:

5 Volt Only Driver/Receiver RS232 EIA-232-E and CCITT V.28
5伏只有驱动器/接收器RS232 EIA- 232 -E和CCITT V.28

驱动器
文件: 总8页 (文件大小:678K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ML145407  
5 Volt Only Driver/Receiver  
RS232 EIA–232–E and CCITT V.28  
Legacy Device: Motorola MC145407  
The ML145407 is a silicon–gate CMOS IC that combines three  
drivers and three receivers to fulfill the electrical specifications of  
RS232 EIA–232–E and CCITT V.28 while operating from a single + 5  
V power supply. A voltage doubler and inverter convert the + 5V to  
10 V. This is accomplished through an on–board 20 kHz oscillator  
and four inexpensive external electrolytic capacitors. The three drivers  
and three receivers of the ML145407 are virtually identical to those of  
the ML145406. Therefore, for applications requiring more than three  
drivers and/or three receivers, an ML145406 can be powered from an  
ML145407, since the ML145407 charge pumps have been designed to  
guarantee 5 V at the output of up to six drivers. Thus, the  
ML145407 provides a high–performance, low–power, stand–alone  
solution or, with the ML145406, a + 5 V only, high–performance  
two–chip solution.  
P DIP 20 = RP  
PLASTIC DIP  
CASE 738  
20  
1
SOG 20 = -6P  
SOG PACKAGE  
CASE 751D  
20  
1
CROSS REFERENCE/ORDERING INFORMATION  
PACKAGE  
P DIP 20  
SOG 20  
MOTOROLA  
LANSDALE  
MC145407P  
ML145407RP  
MC145407DW ML145407-6P  
This device offers the following performance features:  
Note: Lansdale lead free (Pb) product, as it  
becomes available, will be identified by a part  
number prefix change from ML to MLE.  
• Operating Temperature Range = T –40° to +85°C  
A
Drivers  
7.5 V Output Swing  
• 300Power–Off Impedance  
• Output Current Limiting  
PIN ASSIGNMENT  
1
20  
• TTL and CMOS Compatible Inputs  
• Slew Rate Range Limited from 4 V/µs to 30 V/µs  
C2+  
C1+  
2
19  
GND  
V
CC  
Receivers  
• + 25 V Input Range  
• 3 to 7 kInput Impedance  
• 0.8 V Hysteresis for Enhanced Noise Immunity  
3
4
18  
17  
C2–  
C1–  
V
V
DD  
SS  
Charge Pumps  
5
6
7
16  
15  
14  
R
R
Rx1  
Tx1  
Rx2  
Tx2  
Rx3  
DO1  
DI1  
• + 5 V to 10 V Dual Charge Pump Architecture  
• Supply Outputs Capable of Driving Three On–Chip Drivers and  
Three Drivers on the ML145406 Simultaneously  
• Requires Four Inexpensive Electrolytic Capacitors  
• On–Chip 20 kHz Oscillator  
D
D
D
DO2  
DI2  
8
13  
12  
11  
9
R
DO3  
10  
Tx3  
DI3  
D = DRIVER  
R = RECEIVER  
Page 1 of 8  
www.lansdale.com  
Issue A  
ML145407  
LANSDALE Semiconductor, Inc.  
FUNCTION DIAGRAM  
CHARGE PUMPS  
OSC  
GND  
V
CC  
+
C4  
VOLTAGE  
DOUBLER  
VOLTAGE  
INVERTER  
C3  
+
V
C1  
C2  
SS  
V
DD  
+
+
C1 – C1 +  
C2 + C2 –  
RECEIVER  
DRIVER  
V
DD  
V
DD  
V
DD  
V
*
CC  
15 k  
V
CC  
Rx  
+
DO  
300  
+
DI  
LEVEL  
SHIFT  
Tx  
5.4 k  
1.4 V  
V
SS  
1.0 V  
1.8 V  
V
* Proctection circuit  
SS  
Page 2 of 8  
www.lansdale.com  
Issue A  
ML145407  
LANSDALE Semiconductor, Inc.  
MAXIMUM RATINGS (Voltage polarities referenced to GND)  
This device contains protection circuitry to  
Rating  
DC Supply Voltages  
Symbol  
Value  
Unit  
V
protect the inputs against damage due to high  
static voltages or electric fields; however, it is  
advised that normal precautions be taken to  
avoid application of any voltage higher than  
maximum rated voltages to this high imped-  
ance circuit. For proper operation, it is recom-  
mendedthatthevoltagesattheDIandDOpins  
V
CC  
– 0.5 to + 6.0  
Input Voltage Range  
V
IR  
V
Rx1 – Rx3 Inputs  
DI1 – DI3 Inputs  
V
– 15 to V  
+ 15  
+ 0.5)  
SS  
– 0.5 to (V  
DD  
CC  
DC Current per Pin  
Power Dissipation  
I
100  
1
mA  
W
be constrained to the range GND  
V
V
DI CC  
P
D
and GND V . Also, the voltage at  
V
DO  
CC  
the Rx pin should be constrained to (V  
Operating Temperature Range  
Storage Temperature Range  
T
A
– 40 to + 85  
°C  
°C  
SS  
+ 15 V), and Tx  
– 15 V) V  
Rx1 – Rx3  
(V  
DD  
T
stg  
– 85 to + 150  
should be constrained to V  
V
Tx1 – Tx3  
SS  
V
DD  
.
Unused inputs must always be tied to  
appropriate logic voltage level (e.g., GND or  
V
CC  
for DI, and GND for Rx).  
DC ELECTRICAL CHARACTERISTICS (All polarities referenced to GND = 0 V; C1, C2, C3, C4 = 10 µF; T = – 40 to + 85°C)  
A
Parameter  
Symbol  
Min  
4.5  
Typ  
5
Max  
5.5  
Unit  
V
DC Supply Voltage  
V
CC  
Quiescent Supply Current  
(Outputs unloaded, inputs low)  
I
1.2  
3.0  
mA  
CC  
Output Voltage  
I
I
= 0 mA  
= 5 mA  
= 10 mA  
V
8.5  
7.5  
6
10  
9.5  
9
11  
V
load  
load  
DD  
I
I
load  
I
I
= 0 mA  
= 5 mA  
= 10 mA  
V
– 8.5  
– 7.5  
– 6  
– 10  
– 9.2  
– 8.6  
–11  
load  
load  
SS  
load  
RECEIVER ELECTRICAL SPECIFICATIONS  
= + 5 V 10%; C1, C2, C3, C4 = 10 µF; T = – 40 to + 85°C)  
(Voltage polarities referenced to GND = 0 V; V  
CC  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Input Turn–on Threshold  
= V  
Rx1 – Rx3  
Rx1 – Rx3  
V
1.35  
1.8  
2.35  
V
on  
V
DO1 – DO3  
OL  
Input Turn–off Threshold  
= V  
V
off  
0.75  
1.0  
1.25  
V
V
DO1 – DO3  
OH  
Input Threshold Hysteresis (V – V  
)
Rx1 – Rx3  
Rx1 – Rx3  
DO1 – DO3  
V
0.6  
3.0  
0.8  
5.4  
V
kΩ  
V
on off  
hys  
Input Resistance  
R
7.0  
in  
High–Level Output Voltage  
V
OH  
V
= – 3 V to – 25 V  
= – 20 µA  
= – 1 mA  
Rx1 – Rx3  
I
I
V
V
– 0.1  
4.3  
OH  
OH  
CC  
CC  
– 0.7  
Low–Level Output Voltage  
= + 3 V to + 25 V  
DO1 – DO3  
V
OL  
V
V
Rx1 – Rx3  
I
I
= + 20 µA  
= + 1.6 mA  
0.01  
0.5  
0.1  
0.7  
OL  
OL  
Page 3 of 8  
www.lansdale.com  
Issue A  
ML145407  
LANSDALE Semiconductor, Inc.  
DRIVER ELECTRICAL SPECIFICATIONS  
(Voltage polarities referenced to GND = 0 V: V  
= +5 V 10%; C1, C2, C3, C4 = 10 µF; T = 40 to +85°C)  
A
CC  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Digital Input Voltage  
Logic 0  
Logic 1  
DI1 – DI3  
DI1 – DI3  
V
V
2.0  
0.8  
IL  
V
IH  
Input Current  
GND V  
DI1 – DI3  
I
in  
1.0  
µA  
V
V  
CC  
Output High Voltage  
= Logic 0, R = 3.0 kΩ  
Tx1 – Tx3  
Tx1 – Tx6*  
V
OH  
6
5
7.5  
6.5  
V
DI1 – DI3  
Output Low Voltage  
= Logic 1, R = 3.0 kΩ  
L
Tx1 – Tx3  
Tx1 – Tx6*  
V
OL  
– 6  
– 5  
– 7.5  
– 6.5  
V
V
DI1 – DI3  
L
Off Source Impedance (Figure 1)  
Tx1 – Tx3  
Tx1 – Tx3  
Tx1 – Tx3 shorted to GND**  
Tx1 – Tx3 shorted to 15 V***  
Z
300  
off  
Output Short–Circuit Current  
I
mA  
SC  
V
CC  
= + 5.5 V  
60  
100  
*Specifications for an ML145407 powering an ML145406 with three additional drivers/receivers.  
**Specificationis for one Tx output pin to be shorted at a time. Should all three driver outputs be shorted simultaneously, device power dissipation  
limits could be exceeded.  
***This condition could exceed package limitations.  
SWITCHING CHARACTERISTICS (V  
CC  
= + 5 V 10%; C1, C2, C3, C4 = 10 µF; T = – 40 to + 85°C; See Figures 2 and 3)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Drivers  
Propagation Delay Time  
Low–to–High  
Tx1 – Tx3  
t
µs  
PLH  
R
= 3 k, C = 50 pF or 2500 pF  
0.5  
0.5  
1
1
L
L
High–to–Low  
= 3 k, C = 50 pF or 2500 pF  
t
PHL  
SR  
R
L
L
Output Slew Rate  
Minimum Load: R = 7 k, C = 0 pF  
Tx1 – Tx3  
V/µs  
µs  
9.0  
30  
L
L
Maximum Load: R = 3 k, C = 2500 pF  
4.0  
L
L
Receivers (C = 50 pF)  
L
Propagation Delay Time  
Low–to–High  
DO1 – DO3  
t
t
1
PLH  
High–to–Low  
Output Rise Time  
Output Fall Time  
1
PHL  
DO1 – DO3  
DO1 – DO3  
t
r
250  
40  
400  
100  
ns  
ns  
t
f
Page 4 of 8  
www.lansdale.com  
Issue A  
ML145407  
LANSDALE Semiconductor, Inc.  
PIN DESCRIPTIONS  
17  
V
19  
V
CC  
V
CC  
DD  
Digital Power Supply (Pin 19)  
15  
13  
11  
6
DI1  
Tx1  
The digital supply pin, which is connected to the logic pow-  
er supply. This pin should have a 0.33 µF capacitor to ground.  
8
DI2  
Tx2  
V
GND  
in = 2 V  
Ground (Pin 2)  
Ground return pin is typically connected to the signal ground  
pin of the EIA–232–E connector (Pin 7) as well as to the logic  
power supply ground.  
10  
DI3  
Tx3  
V
4
V
V
DD  
SS GND  
2
in  
I
R
=
out  
Positive Power Supply (Pin 17)  
This is the positive output of the on–chip voltage doubler and  
the positive power supply input of the driver/receiver sections of  
the device. This pin requires an external storage capacitor to fil-  
ter the 50% duty cycle voltage generated by the charge pump.  
Figure 1. Power–Off Source Resistance  
V
SS  
Negative Power Supply (Pin 4)  
This is the negative output of the on–chip voltage  
doubler/inverter and the negative power supply input of the  
driver/receiver sections of the device. This pin requires an  
external storage capacitor to filter the 50% duty cycle voltage  
generated by the charge pump.  
DRIVERS  
3 V  
0 V  
DI1 – DI3  
50%  
t
t
C2+, C2–, C1–, C1+  
Voltage Doubler and Inverter (Pins 1, 3, 18, 20)  
f
r
V
OH  
90%  
Tx1 – Tx3  
These are the connections to the internal voltage doubler and  
inverter, which generate the VDD and VSS voltages.  
10%  
t
V
OL  
t
PLH  
PHL  
Rx1, Rx2, Rx3  
Receive Data Input (Pins 5, 7, 9)  
RECEIVERS  
These are the EIA–232–E receive signal inputs. A voltage  
between + 3 and + 25 V is decoded as a space and causes the  
corresponding DO pin to swing to ground (0 V). A voltage  
between – 3 and – 25 V is decoded as a mark, and causes the  
DO pin to swing up to VCC.  
+ 3 V  
0 V  
Rx1 – Rx3  
50%  
t
t
PLH  
PHL  
V
OH  
90%  
DO1, DO2, DO3  
50%  
10%  
DO1 – DO3  
Data Output (Pins 16, 14, 12)  
V
OL  
These are the receiver digital output pins, which swing from  
t
t
r
f
V
to GND. Each output pin is capable of driving one  
CC  
LSTTL input load.  
Figure 2. Switching Characteristics  
DI1, DI2, DI3  
Data Input (Pins 15, 13, 11)  
These are the high impedance digital input pins to the driv-  
ers. Input voltage levels on these pins must be between V  
and GND.  
CC  
DRIVERS  
3 V  
3 V  
Tx1 – Tx3  
Tx1, Tx2, Tx3  
Transmit Data Output (Pins 6, 8, 10)  
– 3 V  
SLH  
– 3 V  
t
t
SHL  
These are the EIA–232–E transmit signal output pins,which  
swing toward V and V . A logic 1 at a DI input causes the  
– 3 V – (3 V)  
3 V – ( – 3 V)  
DD SS  
SLEW RATE (SR) =  
OR  
corresponding Tx output to swing toward V . A logic 0 caus-  
t
t
SS  
SLH  
SHL  
es the output to swing toward V . The actual levels and slew  
DD  
rate achieved will depend on the output loading (RL\\CL).  
Figure 3. Slew Rate Characterization  
Page 5 of 8  
www.lansdale.com  
Issue A  
ML145407  
LANSDALE Semiconductor, Inc.  
ESD CONSIDERATIONS  
10 µF charge pump caps to illustrate its capability in driving a  
companion ML145406 or ML145403. If there is no require-  
ment to support a second interface device and/or the charge  
pump is not being used to power any other components, the  
ML145407 is capable of complying with EIA–232–E and V.28  
with smaller value charge pump caps.Table 1 summarizes driv-  
er performance with both 2.2 µF and1.0µF charge pump caps.  
ESD protection on IC devices that have their pins accessible  
to the outside world is essential. High static voltages applied to  
the pins when someone touches them either directly or indi-  
rectly can cause damage to gate oxides and transistor junctions  
by coupling a portion of the energy from the I/O pin to the  
power supply busses of the IC. This coupling will usually  
occur through the internal ESD protection diodes. The key to  
protecting the IC is to shunt as much of the energy to ground  
as possible before it enters the IC. Figure 7 shows a technique  
which will clamp the ESD voltage at approximately + 15 V  
using the MMBZ15VDLT1. Any residual voltage which  
appears on the supply pins is shunted to ground through the  
0.1 µF capacitors.  
Table 1. Typical Performance  
Parameter  
@ 25°C  
2.2 µF  
7.3  
1.0 µF  
7.2  
Tx V  
Tx V  
Tx V  
Tx V  
OH  
OH  
OL  
OL  
@ 85°C  
@ 25°C  
@ 85°C  
7.2  
7.1  
– 6.5  
– 6.4  
OPERATION WITH SMALLER VALUE CHARGE  
PUMP CAPS  
– 6.1  
– 6.0  
Tx Slew Rate @ 25°C  
Tx Slew Rate @ 85°C  
8.0 V/µs  
7.0 V/µs  
8.0 V/µs  
7.0 V/µs  
The ML145407 is characterized in the electrical tables using  
+ 5 V  
0.1 µF  
0.1  
X
µF  
0.1 µF  
1.0 µF  
17  
+
19  
6
20  
1
9
3
V
TLA  
DSI  
V
DD  
V
CC  
in  
C1 –  
DD  
C2 –  
C
RTLA  
DSI  
3.579  
MHz  
R
1.0 µF  
1.0 µF  
DSI  
DTMF  
INPUT  
1
8
3
X
C2 +  
DI1  
C1 +  
Tx1  
out  
17  
15  
20 kΩ  
15  
16  
13  
0.1 µF  
TxA  
RxA2  
CD  
6
5
11  
5
DO1  
DI2  
8
2
TxD  
RxD  
R
600  
Tx  
10 µF  
ML145442  
OR  
ML145443  
10 kΩ  
EIA–232–E  
DB–25  
CONNECTOR  
10 kΩ  
Rx1  
16  
+
ML145407  
RxA1  
TIP  
14  
2
8
7
9
SQT  
LB  
Tx2  
Rx2  
600:600  
3
7
*
10 kΩ  
RING  
18  
10  
DI3  
ExI  
FB  
V
DD  
C
FB  
10 kΩ  
0.1  
µ
F
Rx3  
13  
7
0.1 µF  
MODE  
CDA  
19  
4
V
BYPASS  
DD  
V
AG  
CDT  
V
GND  
V
SS  
SS  
C
4
2
CDA  
0.1  
µ
F
12  
0.1  
C
µF  
CDT  
1.0 µF  
0.1 µF  
V
BYPASS  
SS  
* Line protection circuit  
Figure 4. 5 V, 300 Baud Modem with EIA–232–E Interface  
Page 6 of 8  
www.lansdale.com  
Issue A  
ML145407  
LANSDALE Semiconductor, Inc.  
+ 5 V  
1
2
3
4
16  
15  
1
2
20  
10  
µF  
V
V
CC  
C1+  
DD  
C2+  
GND  
C2–  
19  
18  
10  
µF  
V
Rx1  
Tx1  
Rx2  
DO1  
DI1  
10 µF  
CC  
14  
13  
12  
11  
10  
9
3
4
5
6
7
C1–  
17  
16  
15  
14  
13  
12  
11  
V
V
DO2  
SS  
DD  
ML145406  
5
6
7
8
Tx2  
Rx3  
Tx3  
ML145407  
Rx1  
Tx1  
Rx2  
Tx2  
Rx3  
DI2  
DO1  
DI1  
DO3  
DI3  
DO2  
8
9
V
GND  
SS  
DI2  
DO3  
DI3  
10 µF  
10  
Tx3  
Figure 5. ML145406/ML145407 5 V Only Solution for up to Six EIA–232–E Drivers and Receivers  
+ 5 V  
+ 10 V  
C2  
C2+  
GND  
C2–  
C1+  
1
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
0.1  
0.1  
µ
µ
F
F
V
CC  
2
C1–  
3
V
V
DD  
SS  
4
C4  
5
6
7
8
9
10  
Figure 6. Two Supply Configuration (ML145407 Generates V  
Only)  
SS  
+ 5 V  
MMBZ15VDLT  
× 6  
C2  
C4  
C1  
C2+  
GND  
C2–  
C1+  
1
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
0.1  
µ
µ
F
F
V
CC  
2
C1–  
3
V
V
C3  
SS  
DD  
4
Rx1  
Tx1  
Rx2  
Tx2  
Rx3  
Tx3  
DO1  
DI1  
0.1  
5
6
DO2  
DI2  
TO  
7
CONNECTOR  
8
DO3  
DI3  
9
10  
Figure 7. ESD Protection Scheme  
Page 7 of 8  
www.lansdale.com  
Issue A  
ML145407  
LANSDALE Semiconductor, Inc.  
OUTLINE DIMENSIONS  
P DIP 20 = RP  
(ML145407RP)  
PLASTIC DIP  
CASE 738–03  
-A-  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
20  
1
11  
10  
B
4. DIMENSION B DOES NOT INCLUDE MOLD  
FLASH.  
C
L
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
E
F
G
J
K
L
M
N
1.010  
1.070  
0.260  
0.180  
0.022  
25.66  
6.10  
3.81  
0.39  
1.27 BSC  
1.27  
2.54 BSC  
0.21  
2.80  
27.17  
6.60  
4.57  
0.55  
0.240  
0.150  
0.015  
0.050 BSC  
0.050  
0.100 BSC  
0.008  
0.110  
-T-  
K
SEATING  
M
PLANE  
0.070  
1.77  
E
N
0.015  
0.140  
0.38  
3.55  
G
F
J 20 PL  
0.300 BSC  
15  
0.040  
7.62 BSC  
15  
0.51 1.01  
D 20 PL  
M
M
0.25 (0.010)  
T
B
0°  
°
0°  
°
0.020  
M
M
0.25 (0.010)  
T
A
SOG 20 = -6P  
(ML145407-6P)  
SOG PACKAGE  
CASE 751D–04  
NOTES:  
–A–  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
20  
11  
4. MAXIMUM MOLD PROTRUSION 0.150  
(0.006) PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.13  
(0.005) TOTAL IN EXCESS OF D DIMENSION  
AT MAXIMUM MATERIAL CONDITION.  
10X P  
–B–  
M
M
0.010 (0.25)  
B
1
10  
20X D  
DIM  
A
B
C
D
MIN  
12.65  
7.40  
2.35  
0.35  
0.50  
MAX  
12.95  
7.60  
2.65  
0.49  
0.90  
MIN  
0.499  
0.292  
0.093  
0.014  
0.020  
MAX  
0.510  
0.299  
0.104  
0.019  
0.035  
J
M
S
S
0.010 (0.25)  
T
A
B
F
F
G
J
K
M
P
R
1.27 BSC  
0.050 BSC  
0.25  
0.10  
0
0.32  
0.25  
7
0.010  
0.004  
0
0.012  
0.009  
7
R X 45  
10.05  
0.25  
10.55  
0.75  
0.395  
0.010  
0.415  
0.029  
C
SEATING  
PLANE  
–T–  
M
18X G  
K
Lansdale Semiconductor reserves the right to make changes without further notice to any products herein to improve reliabil-  
ity, function or design. Lansdale does not assume any liability arising out of the application or use of any product or circuit  
described herein; neither does it convey any license under its patent rights nor the rights of others. “Typical” parameters which  
may be provided in Lansdale data sheets and/or specifications can vary in different applications, and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by the cus-  
tomer’s technical experts. Lansdale Semiconductor is a registered trademark of Lansdale Semiconductor, Inc.  
Page 8 of 8  
www.lansdale.com  
Issue A  

相关型号:

MC145408

DRIVER / RECEIVERS
MOTOROLA

MC145408-6P

Drivers/Receivers RS 232/EIA–232–E and CCITT V.28
LANSDALE

MC145408D

IC,LINE TRANSCEIVER,CMOS,5 DRIVER,5 RCVR,SOP,24PIN,PLASTIC
MOTOROLA

MC145408DW

Drivers/Receivers
MOTOROLA

MC145408DW

Drivers/Receivers RS 232/EIA–232–E and CCITT V.28
LANSDALE

MC145408DWR2

LINE TRANSCEIVER, PDSO24, SOG-24
MOTOROLA

MC145408LP

Drivers/Receivers RS 232/EIA–232–E and CCITT V.28
LANSDALE

MC145408N

Line Driver/Receiver, 5 Driver, CMOS, PDIP24
MOTOROLA

MC145408P

Drivers/Receivers
MOTOROLA

MC145408P

Drivers/Receivers RS 232/EIA–232–E and CCITT V.28
LANSDALE

MC14541

Programmable Timer
ONSEMI

MC145412

Pulse/Tone Repertory Dialer Low Power SIilicon-Gate CMOS
MOTOROLA