GAL26CV12B-10LJ [LATTICE]

High Performance E2CMOS PLD Generic Array Logic; 高性能E2CMOS PLD通用阵列逻辑
GAL26CV12B-10LJ
型号: GAL26CV12B-10LJ
厂家: LATTICE SEMICONDUCTOR    LATTICE SEMICONDUCTOR
描述:

High Performance E2CMOS PLD Generic Array Logic
高性能E2CMOS PLD通用阵列逻辑

文件: 总17页 (文件大小:256K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GAL26CV12  
High Performance E2CMOS PLD  
Generic Array Logic™  
Features  
Functional Block Diagram  
• HIGH PERFORMANCE E2CMOS® TECHNOLOGY  
— 7.5 ns Maximum Propagation Delay  
— Fmax = 142.8 MHz  
I/CLK  
INPUT  
I/O/Q  
RESET  
8
— 4.5ns Maximum from Clock Input to Data Output  
OLMC  
OLMC  
OLMC  
OLMC  
OLMC  
OLMC  
OLMC  
OLMC  
OLMC  
OLMC  
OLMC  
OLMC  
I
I
I
I
I
I
I
I
I
I
I
I
— TTL Compatible 16 mA Outputs  
— UltraMOS® Advanced CMOS Technology  
8
8
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
• ACTIVE PULL-UPS ON ALL PINS  
• LOW POWER CMOS  
— 90 mA Typical Icc  
• E2 CELL TECHNOLOGY  
— Reconfigurable Logic  
— Reprogrammable Cells  
— 100% Tested/100% Yields  
— High Speed Electrical Erasure (<100ms)  
— 20 Year Data Retention  
8
10  
12  
12  
10  
8
• TWELVE OUTPUT LOGIC MACROCELLS  
— Uses Standard 22V10 Macrocells  
— Maximum Flexibility for Complex Logic Designs  
• PRELOAD AND POWER-ON RESET OF REGISTERS  
— 100% Functional Testability  
• APPLICATIONS INCLUDE:  
— DMA Control  
— State Machine Control  
— High Speed Graphics Processing  
— Standard Logic Speed Upgrade  
8
8
8
• ELECTRONIC SIGNATURE FOR IDENTIFICATION  
PRESET  
Description  
The GAL26CV12, at 7.5 ns maximum propagation delay time,  
combines a high performance CMOS process with Electrically  
Erasable (E2) floating gate technology to provide the highest  
performance 28-pin PLD available on the market. E2 technology  
offers high speed (<100ms) erase times, providing the ability to  
reprogram or reconfigure the device quickly and efficiently.  
Pin Configuration  
DIP  
1
28  
I
I/CLK  
PLCC  
I/O/Q  
I
Expanding upon the industry standard 22V10 architecture, the  
GAL26CV12 eliminates the learning curve typically associated with  
using a new device architecture. The generic architecture provides  
maximum design flexibility by allowing the Output Logic Macrocell  
(OLMC) to be configured by the user. The GAL26CV12 OLMC is  
fully compatible with the OLMC in standard bipolar and CMOS  
22V10 devices.  
I
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
GND  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
I
GAL  
4
2
28  
26  
25  
I
26CV12  
5
7
I
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
GND  
I/O/Q  
I/O/Q  
I
I
Vcc  
7
VCC  
23  
GAL26CV12  
Top View  
I
I
I
I
21  
I
I
I
I
9
21  
19  
Unique test circuitry and reprogrammable cells allow completeAC,  
DC, and functional testing during manufacture. As a result, Lattice  
Semiconductor delivers100% field programmability and functionality  
of all GAL products. In addition, 100 erase/write cycles and data  
retention in excess of 20 years are specified.  
11  
12  
14  
16  
18  
I
I
14  
15 I/O/Q  
I
Copyright © 2000 Lattice Semiconductor Corp. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject  
to change without notice.  
LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A.  
Tel. (503) 268-8000; 1-800-LATTICE; FAX (503) 268-8556; http://www.latticesemi.com  
June 2000  
26cv12_03  
1
Specifications GAL26CV12  
GAL26CV12 Ordering Information  
Commercial Grade Specifications  
Tpd (ns) Tsu (ns) Tco (ns) Icc (mA)  
Ordering #  
Package  
7.5  
10  
15  
20  
6
4.5  
130  
130  
130  
130  
130  
130  
130  
130  
GAL26CV12C-7LP  
28-Pin Plastic DIP  
28-Lead PLCC  
GAL26CV12C-7LJ  
GAL26CV12B-10LP  
GAL26CV12B-10LJ  
GAL26CV12B-15LP  
GAL26CV12B-15LJ  
GAL26CV12B-20LP  
GAL26CV12B-20LJ  
7
7
28-Pin Plastic DIP  
28-Lead PLCC  
10  
12  
8
28-Pin Plastic DIP  
28-Lead PLCC  
12  
28-Pin Plastic DIP  
28-Lead PLCC  
Industrial Grade Specifications  
Tpd (ns) Tsu (ns) Tco (ns) Icc (mA)  
Ordering #  
Package  
10  
15  
20  
7
7
150  
150  
150  
150  
150  
150  
GAL26CV12C-10LPI  
GAL26CV12C-10LJI  
GAL26CV12B-15LPI  
GAL26CV12B-15LJI  
GAL26CV12B-20LPI  
GAL26CV12B-20LJI  
28-Pin Plastic DIP  
28-Lead PLCC  
10  
12  
8
28-Pin Plastic DIP  
28-Lead PLCC  
12  
28-Pin Plastic DIP  
28-Lead PLCC  
Part Number Description  
_
XXXXXXXX XX  
X X X  
GAL26CV12C Device Name  
GAL26CV12B  
Grade  
Blank = Commercial  
I = Industrial  
Speed (ns)  
L = Low Power Power  
Package P = Plastic DIP  
J = PLCC  
2
Specifications GAL26CV12  
Output Logic Macrocell (OLMC)  
The GAL26CV12 has a variable number of product terms per The GAL26CV12 has a product term forAsynchronous Reset (AR)  
OLMC. Of the twelve available OLMCs, two OLMCs have access and a product term for Synchronous Preset (SP). These two prod-  
to twelve product terms (pins 20 and 22), two have access to ten uct terms are common to all registered OLMCs. TheAsynchronous  
product terms (pins 19 and 23), and the other eight OLMCs have Reset sets all registered outputs to zero any time this dedicated  
eight product terms each. In addition to the product terms available product term is asserted. The Synchronous Preset sets all registers  
for logic, each OLMC has an additional product term dedicated to to a logic one on the rising edge of the next clock pulse after this  
output enable control.  
product term is asserted.  
The output polarity of each OLMC can be individually programmed NOTE: TheAR and SP product terms will force the Q output of the  
to be true or inverting, in either combinatorial or registered mode. flip-flop into the same state regardless of the polarity of the output.  
This allows each output to be individually configured as either active Therefore, a reset operation, which sets the register output to a zero,  
high or active low.  
may result in either a high or low at the output pin, depending on  
the pin polarity chosen.  
A R  
D
4 T O  
1
Q
Q
M U X  
C L K  
S P  
2 T O  
1
M U X  
GAL26CV12 OUTPUT LOGIC MACROCELL (OLMC)  
Output Logic Macrocell Configurations  
Each of the Macrocells of the GAL26CV12 has two primary NOTE: In registered mode, the feedback is from the /Q output of  
functional modes: registered, and combinatorial I/O. The modes the register, and not from the pin; therefore, a pin defined as  
and the output polarity are set by two bits (SO and S1), which are registered is an output only, and cannot be used for dynamic  
normally controlled by the logic compiler. Each of these two primary I/O, as can the combinatorial pins.  
modes, and the bit settings required to enable them, are described  
below and on the the following page.  
COMBINATORIAL I/O  
In combinatorial mode the pin associated with an individual OLMC  
is driven by the output of the sum term gate. Logic polarity of the  
REGISTERED  
In registered mode the output pin associated with an individual output signal at the pin may be selected by specifying that the output  
OLMC is driven by the Q output of that OLMC’s D-type flip-flop. buffer drive either true (active high) or inverted (active low). Output  
Logic polarity of the output signal at the pin may be selected by tri-state control is available as an individual product term for each  
specifying that the output buffer drive either true (active high) or output, and may be individually set by the compiler as either on”  
inverted (active low). Output tri-state control is available as an (dedicated output), off(dedicated input), or product term driven”  
individual product term for each OLMC, and can therefore be (dynamic I/O). Feedback into theAND array is from the pin side of  
defined by a logic equation. The D flip-flop’s /Q output is fed back the output enable buffer. Both polarities (true and inverted) of the  
into the AND array, with both the true and complement of the pin are fed back into the AND array.  
feedback available as inputs to the AND array.  
3
Specifications GAL26CV12  
Registered Mode  
A R  
A R  
D
Q
Q
D
Q
Q
C L K  
C L K  
S P  
S P  
ACTIVE LOW  
ACTIVE HIGH  
S0 = 0  
S1 = 0  
S0 = 1  
S1 = 0  
Combinatorial Mode  
ACTIVE LOW  
ACTIVE HIGH  
S0 = 0  
S1 = 1  
S0 = 1  
S1 = 1  
4
Specifications GAL26CV12  
GAL26CV12 Logic Diagram/JEDEC Fuse Map  
DIP & PLCC Package Pinouts  
1
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
44  
48  
28  
ASYNCHRONOUS RESET  
(TO ALL REGISTERS)  
0000  
0052  
.
.
.
8
OLMC  
6344  
S1  
27  
S0  
0468  
6345  
2
3
4
5
0520  
.
8
.
.
OLMC  
26  
S0  
0936  
6346  
S1  
6347  
0988  
.
.
.
8
OLMC  
25  
S0  
1404  
6348  
S1  
6349  
1456  
.
.
.
8
OLMC  
24  
S0  
1872  
6350  
S1  
6351  
1924  
.
.
OLMC  
10  
12  
.
.
23  
22  
S0  
6352  
S1  
2444  
6353  
6
8
9
2496  
.
.
OLMC  
.
S0  
6354  
S1  
.
.
3120  
6355  
3172  
.
.
OLMC  
12  
10  
.
20  
19  
S0  
6356  
S1  
.
.
3796  
6357  
3848  
.
.
OLMC  
.
.
S0  
6358  
S1  
4368  
6359  
10  
11  
4420  
.
8
8
8
8
.
.
OLMC  
18  
17  
16  
15  
S0  
6360  
S1  
4836  
6361  
4888  
.
.
.
OLMC  
S0  
6362  
S1  
5304  
6363  
12  
13  
5356  
.
.
.
OLMC  
S0  
6364  
S1  
5772  
6365  
5824  
.
.
.
OLMC  
S0  
6366  
S1  
6240  
6367  
14  
6292  
SYNCHRONOUS PRESET  
(TO ALL REGISTERS)  
6368, 6369 ... Electronic Signature ... 6430, 6431  
Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0  
M
S
B
L
S
B
5
SpecificationsGAL26CV12C
(1)  
Absolute Maximum Ratings  
Recommended Operating Conditions  
Supply voltage VCC ...................................... 0.5 to +7V  
Input voltage applied .......................... 2.5 to VCC +1.0V  
Off-state output voltage applied ......... 2.5 to VCC +1.0V  
Storage Temperature ................................ 65 to 150°C  
Ambient Temperature with  
Commercial Devices:  
Ambient Temperature (TA) ............................. 0 to +75°C  
Supply voltage (VCC)  
with Respect to Ground ..................... +4.75 to +5.25V  
Power Applied ........................................... 55 to 125°C  
Industrial Devices:  
1. Stresses above those listed under the Absolute Maximum  
Ratingsmay cause permanent damage to the device. These  
are stress only ratings and functional operation of the device at  
these or at any other conditions above those indicated in the op-  
erational sections of this specification is not implied (while pro-  
gramming, follow the programming specifications).  
Ambient Temperature (TA) ........................... 40 to 85°C  
Supply voltage (VCC)  
with Respect to Ground ......................... +4.5 to +5.5V  
DC Electrical Characteristics  
Over Recommended Operating Conditions (Unless Otherwise Specified)  
SYMBOL  
PARAMETER  
CONDITION  
MIN.  
TYP.3  
MAX. UNITS  
VIL  
VIH  
IIL1  
Input Low Voltage  
Vss 0.5  
2.0  
0.8  
Vcc+1  
100  
10  
V
V
Input High Voltage  
Input or I/O Low Leakage Current  
0V VIN VIL (MAX.)  
µA  
µA  
V
IIH  
Input or I/O High Leakage Current 3.5V VIN VCC  
VOL  
VOH  
IOL  
Output Low Voltage  
IOL = MAX. Vin = VIL or VIH  
0.5  
Output High Voltage  
IOH = MAX. Vin = VIL or VIH  
2.4  
V
Low Level Output Current  
High Level Output Current  
Output Short Circuit Current  
16  
mA  
mA  
mA  
IOH  
IOS2  
3.2  
130  
VCC = 5V VOUT = 0.5V TA = 25°C  
30  
COMMERCIAL  
ICC  
Operating Power  
Supply Current  
VIL = 0.5V VIH = 3.0V ftoggle = 15MHz  
L-7  
90  
90  
130  
150  
mA  
mA  
Outputs Open  
INDUSTRIAL  
ICC  
Operating Power  
Supply Current  
VIL = 0.5V VIH = 3.0V ftoggle = 15MHz  
L-10  
Outputs Open  
1) The leakage current is due to the internal pull-up on all pins. See Input Buffer section for more information.  
2) One output at a time for a maximum duration of one second. Vout = 0.5V was selected to avoid test problems caused by tester  
ground degradation. Characterized but not 100% tested.  
3) Typical values are at Vcc = 5V and TA = 25 °C.  
6
SpecificationsGAL26CV12C
AC Switching Characteristics  
Over Recommended Operating Conditions (Unless Otherwise Specified)  
COM  
-7  
IND  
-10  
TEST  
DESCRIPTION  
PARAM  
UNITS  
COND.1  
MIN. MAX.  
MIN. MAX.  
tpd  
tco  
tcf2  
tsu1  
tsu2  
th  
A
Input or I/O to Comb. Output  
Clock to Output Delay  
1
1
7.5  
4.5  
2.5  
1
1
10  
7
ns  
ns  
ns  
ns  
ns  
A
Clock to Feedback Delay  
6
7
2.5  
Setup Time, Input or Fdbk before Clk ↑  
Setup Time, SP before Clock ↑  
Hold Time, Input or Fdbk after Clk ↑  
6
7
0
0
ns  
A
Maximum Clock Frequency with  
External Feedback, 1/(tsu + tco)  
95.2  
71.4  
MHz  
fmax3  
A
A
Maximum Clock Frequency with  
Internal Feedback, 1/(tsu + tcf)  
117.6  
142.8  
105  
105  
MHz  
MHz  
Maximum Clock Frequency with  
No Feedback  
twh  
twl  
B
Clock Pulse Duration, High  
3.5  
3.5  
1
7.5  
7.5  
9
4
4
10  
9
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock Pulse Duration, Low  
ten  
tdis  
tar  
Input or I/O to Output Enabled  
Input or I/O to Output Disabled  
Input or I/O to Asynch. Reset of Reg.  
Asynchronous Reset Pulse Duration  
Asynch. Reset to ClkRecovery Time  
Synch. Preset to Clk Recovery Time  
1
C
1
1
A
1
1
13  
tarw  
tarr  
tspr  
7
8
5
8
5
10  
1) Refer to Switching Test Conditions section.  
2) Calculated from fmax with internal feedback. Refer to fmax Specification section.  
3) Refer to fmax Specification section.  
Capacitance (TA = 25°C, f = 1.0 MHz)  
SYMBOL  
PARAMETER  
Input Capacitance  
I/O Capacitance  
MAXIMUM*  
UNITS  
pF  
TEST CONDITIONS  
VCC = 5.0V, VI = 2.0V  
VCC = 5.0V, VI/O = 2.0V  
CI  
8
8
CI/O  
pF  
*Characterized but not 100% tested.  
7
SpecificationsGAL26CV12B
(1)  
Absolute Maximum Ratings  
Recommended Operating Conditions  
Supply voltage VCC ...................................... 0.5 to +7V  
Input voltage applied .......................... 2.5 to VCC +1.0V  
Off-state output voltage applied ......... 2.5 to VCC +1.0V  
Storage Temperature ................................ 65 to 150°C  
Ambient Temperature with  
Commercial Devices:  
Ambient Temperature (TA) ............................. 0 to +75°C  
Supply voltage (VCC)  
with Respect to Ground ..................... +4.75 to +5.25V  
Power Applied ........................................... 55 to 125°C  
Industrial Devices:  
1. Stresses above those listed under the Absolute Maximum  
Ratingsmay cause permanent damage to the device. These  
are stress only ratings and functional operation of the device at  
these or at any other conditions above those indicated in the op-  
erational sections of this specification is not implied (while pro-  
gramming, follow the programming specifications).  
Ambient Temperature (TA) ........................... 40 to 85°C  
Supply voltage (VCC)  
with Respect to Ground ......................... +4.5 to +5.5V  
DC Electrical Characteristics  
Over Recommended Operating Conditions (Unless Otherwise Specified)  
SYMBOL  
PARAMETER  
CONDITION  
MIN.  
TYP.3  
MAX. UNITS  
VIL  
VIH  
IIL1  
Input Low Voltage  
Vss 0.5  
2.0  
0.8  
Vcc+1  
100  
10  
V
V
Input High Voltage  
Input or I/O Low Leakage Current  
0V VIN VIL (MAX.)  
µA  
µA  
V
IIH  
Input or I/O High Leakage Current 3.5V VIN VCC  
VOL  
VOH  
IOL  
Output Low Voltage  
IOL = MAX. Vin = VIL or VIH  
0.5  
Output High Voltage  
IOH = MAX. Vin = VIL or VIH  
2.4  
V
Low Level Output Current  
High Level Output Current  
Output Short Circuit Current  
16  
mA  
mA  
mA  
IOH  
IOS2  
3.2  
130  
VCC = 5V VOUT = 0.5V TA = 25°C  
30  
COMMERCIAL  
ICC  
Operating Power  
Supply Current  
VIL = 0.5V VIH = 3.0V ftoggle = 15MHz  
L-10/-15/-20  
L-15/-20  
90  
90  
130  
150  
mA  
mA  
Outputs Open  
INDUSTRIAL  
ICC  
Operating Power  
Supply Current  
VIL = 0.5V VIH = 3.0V ftoggle = 15MHz  
Outputs Open  
1) The leakage current is due to the internal pull-up on all pins. See Input Buffer section for more information.  
2) One output at a time for a maximum duration of one second. Vout = 0.5V was selected to avoid test problems caused by tester  
ground degradation. Characterized but not 100% tested.  
3) Typical values are at Vcc = 5V and TA = 25 °C.  
8
SpecificationsGAL26CV12B
AC Switching Characteristics  
Over Recommended Operating Conditions  
COM / IND  
-20  
COM  
-10  
COM / IND  
-15  
TEST  
DESCRIPTION  
PARAMETER  
UNITS  
COND.1  
MIN. MAX.  
MIN. MAX.  
MIN. MAX.  
tpd  
tco  
tcf2  
tsu1  
tsu2  
th  
A
A
Input or I/O to Combinatorial Output  
Clock to Output Delay  
3
2
10  
7
3
15  
8
3
20  
12  
10  
ns  
ns  
ns  
ns  
ns  
2
2
Clock to Feedback Delay  
7
2.5  
10  
10  
2.5  
12  
12  
Setup Time, Input or Feedback before Clock ↑  
Setup Time, SP before Clock ↑  
Hold Time, Input or Feedback after Clock ↑  
10  
0
0
0
ns  
A
Maximum Clock Frequency with  
External Feedback, 1/(tsu + tco)  
71.4  
55.5  
41.6  
MHz  
fmax3  
A
A
Maximum Clock Frequency with  
Internal Feedback, 1/(tsu + tcf)  
105  
105  
80  
45.4  
62.5  
MHz  
MHz  
Maximum Clock Frequency with  
No Feedback  
83.3  
twh  
twl  
B
Clock Pulse Duration, High  
4
4
10  
10  
13  
6
6
15  
15  
20  
8
8
20  
20  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock Pulse Duration, Low  
ten  
tdis  
tar  
Input or I/O to Output Enabled  
3
3
3
C
Input or I/O to Output Disabled  
3
3
3
A
Input or I/O to Asynchronous Reset of Register  
Asynchronous Reset Pulse Duration  
Asynchronous Reset to Clock Recovery Time  
Synchronous Preset to Clock Recovery Time  
3
3
3
tarw  
tarr  
tspr  
8
10  
10  
10  
15  
15  
12  
8
10  
1) Refer to Switching Test Conditions section.  
2) Calculated from fmax with internal feedback. Refer to fmax Specification section.  
3) Refer to fmax Specification section.  
Capacitance (TA = 25°C, f = 1.0 MHz)  
SYMBOL  
PARAMETER  
Input Capacitance  
I/O Capacitance  
MAXIMUM*  
UNITS  
pF  
TEST CONDITIONS  
VCC = 5.0V, VI = 2.0V  
VCC = 5.0V, VI/O = 2.0V  
CI  
8
8
CI/O  
pF  
*Characterized but not 100% tested.  
9
Specifications GAL26CV12  
Switching Waveforms  
INPUT or  
I/O FEEDBACK  
INPUT or  
I/O FEEDBACK  
VALID INPUT  
s u  
VALID INPUT  
t
th  
t
pd  
CLK  
COMBINATORIAL  
OUTPUT  
t
c o  
REGISTERED  
OUTPUT  
Combinatorial Output  
1/  
fm a x  
(external fdbk)  
Registered Output  
INPUT or  
I/O FEEDBACK  
t
dis  
ten  
OUTPUT  
CLK  
1/  
f
max (internal fdbk)  
Input or I/O to Output Enable/Disable  
t
cf su  
t
REGISTERED  
FEEDBACK  
fmax with Feedback  
t
w l  
tw h  
CLK  
1/  
fm a x  
(w/o fdbk)  
Clock Width  
INPUT or  
I/O FEEDBACK  
DRIVING AR  
INPUT or  
I/O FEEDBACK  
DRIVING SP  
t
arw  
t
su  
t
h
tspr  
CLK  
CLK  
t
arr  
t
co  
REGISTERED  
OU TPUT  
REGISTERED  
OUTPUT  
t
ar  
Synchronous Preset  
Asynchronous Reset  
10  
Specifications GAL26CV12  
fmax Definitions  
C L K  
CLK  
LOGIC  
ARRAY  
LOGIC  
ARR AY  
REGISTER  
REGISTER  
t
su  
tco  
fmax with External Feedback 1/(tsu+tco)  
t
cf  
pd  
t
Note: fmax with external feedback is cal-  
culated from measured tsu and tco.  
CLK  
fmax with Internal Feedback 1/(tsu+tcf)  
Note: tcf is a calculated value, derived by sub-  
tracting tsu from the period of fmax w/internal  
feedback (tcf = 1/fmax - tsu). The value of tcf is  
used primarily when calculating the delay from  
clocking a register to a combinatorial output  
(through registered feedback), as shown above.  
For example, the timing from clock to a combi-  
natorial output is equal to tcf + tpd.  
LOGIC  
REGISTER  
ARRAY  
t
su + th  
fmax with No Feedback  
Note: fmax with no feedback may be less  
than 1/(twh + twl). This is to allow for a  
clock duty cycle of other than 50%.  
Switching Test Conditions  
Input Pulse Levels  
Input Rise and  
Fall Times  
GND to 3.0V  
1.5ns 10% 90%  
3ns 10% 90%  
+5V  
C-7/-10/-15  
B-10/-15/-20  
R
1
Input Timing Reference Levels  
Output Timing Reference Levels  
Output Load  
1.5V  
1.5V  
See Figure  
FROM OUTPUT (O/Q)  
UNDER TEST  
TEST POINT  
3-state levels are measured 0.5V from steady-state active  
level.  
C L*  
GAL26CV12 Output Load Conditions (see figure)  
R
2
Test Condition  
R1  
R2  
CL  
A
300Ω  
390Ω  
390Ω  
390Ω  
390Ω  
390Ω  
50pF  
50pF  
50pF  
5pF  
B
Active High  
Active Low  
Active High  
Active Low  
300Ω  
*C L INCLUDES TEST FIXTURE AND PROBE CAPACITANCE  
C
300Ω  
5pF  
11  
Specifications GAL26CV12  
Electronic Signature  
Output Register Preload  
An electronic signature is provided in every GAL26CV12 device. When testing state machine designs, all possible states and state  
It contains 64 bits of reprogrammable memory that can contain transitions must be verified in the design, not just those required  
user-defined data. Some uses include user ID codes, revision in normal machine operation. This is because certain events may  
numbers, or inventory control. The signature data is always avail- occur during system operation that throw the logic into an illegal  
able to the user independent of the state of the security cell.  
state (power-up, line voltage glitches, brown-outs, etc.). To test a  
design for proper treatment of these conditions, a way must be  
provided to break the feedback paths, and force any desired (i.e.,  
illegal) state into the registers. Then the machine can be sequenced  
and the outputs tested for correct next state conditions.  
Security Cell  
A security cell is provided in every GAL26CV12 device to prevent  
unauthorized copying of the array patterns. Once programmed,  
this cell prevents further read access to the functional bits in the  
device. This cell can only be erased by re-programming the de-  
vice, so the original configuration can never be examined once this  
cell is programmed. The Electronic Signature is always available  
to the user, regardless of the state of this control cell.  
The GAL26CV12 device includes circuitry that allows each regis-  
tered output to be synchronously set either high or low. Thus, any  
present state condition can be forced for test sequencing. If nec-  
essary, approved GAL programmers capable of executing test  
vectors perform output register preload automatically.  
Input Buffers  
Latch-Up Protection  
GAL26CV12 devices are designed with TTL level compatible in-  
put buffers. These buffers have a characteristically high impedance,  
and present a much lighter load to the driving logic than bipolar TTL  
logic.  
GAL26CV12 devices are designed with an on-board charge pump  
to negatively bias the substrate. The negative bias minimizes the  
potential for latch-up caused by negative input undershoots. Ad-  
ditionally, outputs are designed with n-channel pull-ups instead of  
the traditional p-channel pull-ups in order to eliminate latch-up due  
to output overshoots.  
The input and I/O pins also have built-in active pull-ups. As a result,  
floating inputs will float to a TTL high (logic 1). However, Lattice  
Semiconductor recommends that all unused inputs and tri-stated  
I/O pins be connected to an adjacent active input, Vcc, or ground.  
Doing so will tend to improve noise immunity and reduce Icc for the  
Device Programming  
GAL devices are programmed using a Lattice Semiconductor-  
approved Logic Programmer, available from a number of manu-  
facturers (see the the GAL Development Tools section). Complete  
programming of the device takes only a few seconds. Erasing of  
the device is transparent to the user, and is done automatically as  
part of the programming cycle.  
device.  
Typical Input Current  
0
- 2 0  
- 4 0  
- 6 0  
0
1 . 0  
2 . 0  
3 . 0  
4 . 0  
5 . 0  
Input Voltage (Volts)  
12  
Specifications GAL26CV12  
Power-Up Reset  
Vcc (min.)  
Vcc  
t
su  
CLK  
t
wl  
t
pr  
Internal Register  
Reset to Logic "0"  
INTERNAL REGISTER  
Q - OUTPUT  
ACTIVE LOW  
OUTPUT REGISTER  
Device Pin  
Reset to Logic "1"  
Device Pin  
Reset to Logic "0"  
ACTIVE HIGH  
OUTPUT REGISTER  
provide a valid power-up reset of the device. First, the VCC rise must  
be monotonic. Second, the clock input must be at static TTL level  
as shown in the diagram during power up. The registers will reset  
within a maximum of tpr time. As in normal system operation, avoid  
clocking the device until all input and feedback path setup times  
have been met. The clock must also meet the minimum pulse width  
requirements.  
Circuitry within the GAL26CV12 provides a reset signal to all reg-  
isters during power-up. All internal registers will have their Q outputs  
set low after a specified time (tpr, 1µs MAX). As a result, the state  
on the registered output pins (if they are enabled) will be either high  
or low on power-up, depending on the programmed polarity of the  
output pins. This feature can greatly simplify state machine design  
by providing a known state on power-up. Because of the asynchro-  
nous nature of system power-up, some conditions must be met to  
Input/Output Equivalent Schematics  
PIN  
PIN  
Feedback  
Vcc  
Active Pull-up  
Circuit  
Active Pull-up  
Circuit  
(Vref Typical = 3.2V)  
(Vref Typical = 3.2V)  
Vcc  
Tri-State  
Control  
Vref  
Vcc  
Vcc  
Vref  
ESD  
Protection  
Circuit  
Data  
Output  
PIN  
PIN  
ESD  
Protection  
Circuit  
Feedback  
(To Input Buffer)  
Typical Input  
Typical Output  
13  
Specifications GAL26CV12  
GAL26CV12C: Typical AC and DC Characteristic Diagrams  
Normalized Tpd vs Vcc  
Normalized Tsu vs Vcc  
Normalized Tco vs Vcc  
1.2  
1.1  
1
1.2  
1.1  
1
1.2  
1.1  
1
0.9  
0.8  
0.9  
0.9  
0.8  
0.8  
4.50  
4.75  
5.00  
5.25  
5.50  
4.50  
4.75  
5.00  
5.25  
5.50  
4.50  
4.75  
5.00  
5.25  
5.50  
Supply Voltage (V)  
Supply Voltage (V)  
Supply Voltage (V)  
Normalized Tsu vs Temp  
Normalized Tpd vs Temp  
Normalized Tco vs Temp  
1.4  
1.3  
1.2  
1.1  
1
1.3  
1.2  
1.1  
1
1.3  
1.2  
1.1  
1
0.9  
0.8  
0.7  
0.9  
0.8  
0.7  
0.9  
0.8  
0.7  
-55  
-25  
0
25  
50  
75  
100 125  
-55  
-25  
0
25  
50  
75  
100 125  
-55  
-25  
0
25  
50  
75  
100 125  
Temperature (deg. C)  
Temperature (deg. C)  
Temperature (deg. C)  
Delta Tpd vs # of Outputs  
Switching  
Delta Tco vs # of Outputs  
Switching  
0
-0.25  
-0.5  
0
-0.25  
-0.5  
-0.75  
-1  
-0.75  
-1  
1
2
3
4
5
6
7
8
9
10 11 12  
1
2
3
4
5
6
7
8
9
10 11 12  
Number of Outputs Switching  
Number of Outputs Switching  
Delta Tpd vs Output Loading  
Delta Tco vs Output Loading  
12  
10  
8
12  
10  
8
RISE  
FALL  
RISE  
FALL  
6
6
4
4
2
2
0
0
-2  
0
-2  
0
50  
100  
150  
200  
250  
300  
50  
100  
150  
200  
250  
300  
Output Loading (pF)  
Output Loading (pF)  
14  
Specifications GAL26CV12  
GAL26CV12C: Typical AC and DC Characteristic Diagrams  
Vol vs Iol  
Voh vs Ioh  
Voh vs Ioh  
3
2.5  
2
5
4
3
2
1
0
4
3.75  
3.5  
1.5  
1
3.25  
3
0.5  
0
0.00  
20.00  
40.00  
60.00  
80.00 100.00  
0.00 10.00 20.00 30.00 40.00 50.00 60.00  
0.00  
1.00  
2.00  
3.00  
4.00  
Iol (mA)  
Ioh(mA)  
Ioh(mA)  
Normalized Icc vs Vcc  
Normalized Icc vs Temp  
Normalized Icc vs Freq.  
1.3  
1.2  
1.1  
1
1.3  
1.50  
1.40  
1.30  
1.20  
1.10  
1.00  
0.90  
0.80  
1.2  
1.1  
1
0.9  
0.8  
0.7  
0.9  
0.8  
0.7  
4.50  
4.75  
5.00  
5.25  
5.50  
-55  
-25  
0
25  
50  
75  
100 125  
0
25  
50  
75  
100  
Supply Voltage (V)  
Temperature (deg. C)  
Frequency (MHz)  
Input Clamp (Vik)  
Delta Icc vs Vin (1 input)  
10  
0
10  
20  
30  
40  
50  
60  
8
6
4
2
0
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00  
-2.00  
-1.50  
-1.00  
-0.50  
0.00  
Vin (V)  
Vik (V)  
15  
Specifications GAL26CV12  
GAL26CV12B: Typical AC and DC Characteristic Diagrams  
Normalized Tpd vs Vcc  
Normalized Tsu vs Vcc  
Normalized Tco vs Vcc  
1.2  
1.1  
1
1.2  
1.1  
1
1.2  
1.1  
1
0.9  
0.8  
0.9  
0.8  
0.9  
0.8  
4.50  
4.75  
5.00  
5.25  
5.50  
4.50  
4.75  
5.00  
5.25  
5.50  
4.50  
4.75  
5.00  
5.25  
5.50  
Supply Voltage (V)  
Supply Voltage (V)  
Supply Voltage (V)  
Normalized Tsu vs Temp  
Normalized Tpd vs Temp  
Normalized Tco vs Temp  
1.4  
1.3  
1.2  
1.1  
1
1.3  
1.2  
1.1  
1
1.3  
1.2  
1.1  
1
0.9  
0.8  
0.7  
0.9  
0.8  
0.7  
0.9  
0.8  
0.7  
-55  
-25  
0
25  
50  
75  
100 125  
-55  
-25  
0
25  
50  
75  
100 125  
-55  
-25  
0
25  
50  
75  
100 125  
Temperature (deg. C)  
Temperature (deg. C)  
Temperature (deg. C)  
Delta Tpd vs # of Outputs  
Switching  
Delta Tco vs # of Outputs  
Switching  
0
-0.5  
-1  
0
-0.5  
-1  
-1.5  
-2  
-1.5  
-2  
1
2
3
4
5
6
7
8
9
10 11 12  
1
2
3
4
5
6
7
8
9
10 11 12  
Number of Outputs Switching  
Number of Outputs Switching  
Delta Tpd vs Output Loading  
Delta Tco vs Output Loading  
12  
10  
8
12  
10  
8
RISE  
FALL  
RISE  
FALL  
6
6
4
4
2
2
0
0
-2  
0
-2  
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
Output Loading (pF)  
Output Loading (pF)  
16  
Specifications GAL26CV12  
GAL26CV12B: Typical AC and DC Characteristic Diagrams  
Vol vs Iol  
Voh vs Ioh  
Voh vs Ioh  
3
2.5  
2
5
4
3
2
1
0
4.5  
4.25  
4
1.5  
1
3.75  
3.5  
0.5  
0
0.00  
20.00  
40.00  
60.00  
80.00 100.00  
0.00 10.00 20.00 30.00 40.00 50.00 60.00  
0.00  
1.00  
2.00  
3.00  
4.00  
Iol (mA)  
Ioh(mA)  
Ioh(mA)  
Normalized Icc vs Vcc  
Normalized Icc vs Temp  
Normalized Icc vs Freq.  
1.2  
1.1  
1
1.3  
1.20  
1.10  
1.00  
0.90  
0.80  
1.2  
1.1  
1
0.9  
0.8  
0.7  
0.9  
0.8  
4.50  
4.75  
5.00  
5.25  
5.50  
-55  
-25  
0
25  
50  
75  
100 125  
0
25  
50  
75  
100  
Supply Voltage (V)  
Temperature (deg. C)  
Frequency (MHz)  
Input Clamp (Vik)  
Delta Icc vs Vin (1 input)  
10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
8
6
4
2
0
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00  
-2.00  
-1.50  
-1.00  
-0.50  
0.00  
Vin (V)  
Vik (V)  
17  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY