LA-ISPMACH4064V [LATTICE]

3.3V/1.8V In-System Programmable SuperFAST High Density PLDs; 3.3V / 1.8V在系统可编程超快高密度可编程逻辑器件
LA-ISPMACH4064V
型号: LA-ISPMACH4064V
厂家: LATTICE SEMICONDUCTOR    LATTICE SEMICONDUCTOR
描述:

3.3V/1.8V In-System Programmable SuperFAST High Density PLDs
3.3V / 1.8V在系统可编程超快高密度可编程逻辑器件

可编程逻辑器件
文件: 总42页 (文件大小:240K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LA-ispMACH 4000V/Z  
Automotive Family  
3.3V/1.8V In-System Programmable  
TM  
SuperFAST High Density PLDs  
July 2008  
Data Sheet DS1017  
• 5V tolerant I/O for LVCMOS 3.3, LVTTL, and PCI  
interfaces  
• Hot-socketing  
Features  
High Performance  
• f  
= 168MHz maximum operating frequency  
MAX  
• Open-drain capability  
• t = 7.5ns propagation delay  
PD  
• Input pull-up, pull-down or bus-keeper  
• Programmable output slew rate  
• 3.3V PCI compatible  
• IEEE 1149.1 boundary scan testable  
• 3.3V/2.5V/1.8V In-System Programmable  
(ISP™) using IEEE 1532 compliant interface  
• I/O pins with fast setup path  
• Lead-free (RoHS) package  
• Up to four global clock pins with programmable  
clock polarity control  
• Up to 80 PTs per output  
Ease of Design  
• Enhanced macrocells with individual clock,  
reset, preset and clock enable controls  
• Up to four global OE controls  
• Individual local OE control per I/O pin  
• Excellent First-Time-FitTM and refit  
• Fast path, SpeedLockingTM Path, and wide-PT  
path  
Introduction  
The high performance LA-ispMACH 4000V/Z automo-  
tive family from Lattice offers a SuperFAST CPLD solu-  
tion that is tested and qualified to the AEC-Q100  
• Wide input gating (36 input logic blocks) for fast  
counters, state machines and address decoders standard. The family is a blend of Lattice’s two most  
popular architectures: the ispLSI® 2000 and ispMACH  
Zero Power (LA-ispMACH 4000Z)  
4A. Retaining the best of both families, the LA-ispMACH  
Typical static current 10µA (4032Z)  
4000V/Z architecture focuses on significant innovations  
• 1.8V core low dynamic power  
to combine the highest performance with low power in a  
• LA-ispMACH 4000Z operational down to 1.6V  
flexible CPLD family.  
AEC-Q100 Tested and Qualified  
The LA-ispMACH 4000V/Z automotive family combines  
high speed and low power with the flexibility needed for  
ease of design. With its robust Global Routing Pool and  
Output Routing Pool, this family delivers excellent First-  
Time-Fit, timing predictability, routing, pin-out retention  
and density migration.  
• Automotive: -40 to 125°C ambient (T )  
A
Easy System Integration  
• Superior solution for power sensitive consumer  
applications  
• Operation with 3.3V, 2.5V or 1.8V LVCMOS I/O  
• Operation with 3.3V (4000V) or 1.8V (4000Z)  
supplies  
Table 1. LA-ispMACH 4000V Automotive Family Selection Guide  
LA-ispMACH 4032V  
LA-ispMACH 4064V  
LA-ispMACH 4128V  
Macrocells  
32  
30+2/32+4  
7.5  
64  
128  
I/O + Dedicated Inputs  
30+2/32+4/64+10  
64+10/92+4/96+4  
t
(ns)  
7.5  
4.5  
7.5  
4.5  
PD  
t (ns)  
4.5  
S
t
f
(ns)  
4.5  
4.5  
4.5  
CO  
(MHz)  
168  
168  
3.3V  
168  
3.3V  
MAX  
Supply Voltage (V)  
Pins/Package  
3.3V  
44-pin Lead-Free TQFP  
48-pin Lead-Free TQFP  
44-pin Lead-Free TQFP  
48-pin Lead-Free TQFP  
100-pin Lead-Free TQFP  
100-pin Lead-Free TQFP  
128-pin Lead-Free TQFP  
144-pin Lead-Free TQFP  
© 2008 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand  
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
www.latticesemi.com  
1
DS1017_02.3  
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
Table 2. LA-ispMACH 4000Z Automotive Family Selection Guide  
LA-ispMACH 4032Z  
LA-ispMACH 4064Z  
LA-ispMACH 4128Z  
Macrocells  
32  
64  
32+4/64+10  
7.5  
128  
64+10  
7.5  
I/O + Dedicated Inputs  
32+4  
t
(ns)  
7.5  
PD  
t (ns)  
4.5  
4.5  
4.5  
S
t
f
(ns)  
4.5  
4.5  
4.5  
CO  
(MHz)  
168  
1.8V  
168  
168  
MAX  
Supply Voltage (V)  
Pins/Package  
1.8V  
1.8V  
48-pin Lead-Free TQFP  
48-pin Lead-Free TQFP  
100-pin Lead-Free TQFP  
100-pin Lead-Free TQFP  
The LA-ispMACH 4000V/Z automotive family offers densities ranging from 32 to 128 macrocells.There are multiple  
density-I/O combinations in Thin Quad Flat Pack (TQFP) packages ranging from 44 to 144 pins. Tables 1 and 2  
show the macrocell, package and I/O options, along with other key parameters.  
The LA-ispMACH 4000V/Z automotive family has enhanced system integration capabilities. It supports 3.3V (4000V  
and 1.8V (4000Z) supply voltages and 3.3V, 2.5V and 1.8V interface voltages. Additionally, inputs can be safely  
driven up to 5.5V when an I/O bank is configured for 3.3V operation, making this family 5V tolerant. The LA-  
ispMACH 4000V/Z also offers enhanced I/O features such as slew rate control, PCI compatibility, bus-keeper  
latches, pull-up resistors, pull-down resistors, open drain outputs and hot socketing. The LA-ispMACH 4000V/Z  
automotive family is in-system programmable through the IEEE Standard 1532 interface. IEEE Standard 1149.1  
boundary scan testing capability also allows product testing on automated test equipment. The 1532 interface sig-  
nals TCK, TMS, TDI and TDO are referenced to VCC (logic core).  
Overview  
The LA-ispMACH 4000V/Z automotive devices consist of multiple 36-input, 16-macrocell Generic Logic Blocks  
(GLBs) interconnected by a Global Routing Pool (GRP). Output Routing Pools (ORPs) connect the GLBs to the I/O  
Blocks (IOBs), which contain multiple I/O cells. This architecture is shown in Figure 1.  
Figure 1. Functional Block Diagram  
I/O  
Block  
I/O  
Block  
16  
36  
16  
36  
Generic  
Logic  
Block  
Generic  
Logic  
Block  
ORP  
ORP  
16  
16  
I/O  
Block  
I/O  
Block  
16  
36  
16  
36  
Generic  
Logic  
Block  
Generic  
Logic  
Block  
ORP 16  
16  
ORP  
2
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
The I/Os in the LA-ispMACH 4000V/Z automotive devices are split into two banks. Each bank has a separate I/O  
power supply. Inputs can support a variety of standards independent of the chip or bank power supply. Outputs  
support the standards compatible with the power supply provided to the bank. Support for a variety of standards  
helps designers implement designs in mixed voltage environments. In addition, 5V tolerant inputs are specified  
within an I/O bank that is connected to V  
of 3.0V to 3.6V for LVCMOS 3.3, LVTTL and PCI interfaces.  
CCO  
LA-ispMACH 4000V/Z Automotive Architecture  
There are a total of two GLBs in the LA-ispMACH 4032V/Z, increasing to 8 GLBs in the LA-ispMACH 4128V/Z.  
Each GLB has 36 inputs. All GLB inputs come from the GRP and all outputs from the GLB are brought back into  
the GRP to be connected to the inputs of any other GLB on the device. Even if feedback signals return to the same  
GLB, they still must go through the GRP. This mechanism ensures that GLBs communicate with each other with  
consistent and predictable delays. The outputs from the GLB are also sent to the ORP. The ORP then sends them  
to the associated I/O cells in the I/O block.  
Generic Logic Block  
The LA-ispMACH 4000V/Z Automotive GLB consists of a programmable AND array, logic allocator, 16 macrocells  
and a GLB clock generator. Macrocells are decoupled from the product terms through the logic allocator and the I/O  
pins are decoupled from macrocells through the ORP. Figure 2 illustrates the GLB.  
Figure 2. Generic Logic Block  
To GRP  
Clock  
Generator  
1+OE  
1+OE  
1+OE  
1+OE  
1+OE  
1+OE  
1+OE  
1+OE  
36 Inputs  
from GRP  
To  
Product Term  
Output Enable  
Sharing  
AND Array  
The programmable AND Array consists of 36 inputs and 83 output product terms. The 36 inputs from the GRP are  
used to form 72 lines in the AND Array (true and complement of the inputs). Each line in the array can be con-  
nected to any of the 83 output product terms via a wired-AND. Each of the 80 logic product terms feed the logic  
allocator with the remaining three control product terms feeding the Shared PT Clock, Shared PT Initialization and  
Shared PT OE. The Shared PT Clock and Shared PT Initialization signals can optionally be inverted before being  
fed to the macrocells.  
Every set of five product terms from the 80 logic product terms forms a product term cluster starting with PT0.  
There is one product term cluster for every macrocell in the GLB. Figure 3 is a graphical representation of the AND  
Array.  
3
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
Figure 3. AND Array  
In[0]  
In[34]  
In[35]  
PT0  
PT1  
PT2  
PT3  
PT4  
Cluster 0  
PT75  
PT76  
PT77  
PT78  
PT79  
Cluster 15  
PT80 Shared PT Clock  
PT81 Shared PT Initialization  
PT82 Shared PTOE  
Note:  
Indicates programmable fuse.  
Enhanced Logic Allocator  
Within the logic allocator, product terms are allocated to macrocells in product term clusters. Each product term  
cluster is associated with a macrocell. The cluster size for the LA-ispMACH 4000V/Z automotive family is 4+1 (total  
5) product terms. The software automatically considers the availability and distribution of product term clusters as it  
fits the functions within a GLB. The logic allocator is designed to provide three speed paths: 5-PT fast bypass path,  
20-PT Speed Locking path and an up to 80-PT path. The availability of these three paths lets designers trade tim-  
ing variability for increased performance.  
The enhanced Logic Allocator of the LA-ispMACH 4000V/Z automotive family consists of the following blocks:  
• Product Term Allocator  
• Cluster Allocator  
• Wide Steering Logic  
Figure 4 shows a macrocell slice of the Logic Allocator. There are 16 such slices in the GLB.  
Figure 4. Macrocell Slice  
to to  
n-1 n-2  
from from  
n-1 n-4  
Fast 5-PT  
Path  
From  
n-4  
1-80  
PTs  
5-PT  
n
To XOR (MC)  
Cluster  
to  
n+1  
from  
n+2  
from  
n+1  
To n+4  
Individual Product  
Term Allocator  
Cluster  
Allocator  
SuperWIDE™  
Steering Logic  
4
Lattice Semiconductor  
Product Term Allocator  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
The product term allocator assigns product terms from a cluster to either logic or control applications as required  
by the design being implemented. Product terms that are used as logic are steered into a 5-input OR gate associ-  
ated with the cluster. Product terms that used for control are steered either to the macrocell or I/O cell associated  
with the cluster. Table 3 shows the available functions for each of the five product terms in the cluster. The OR gate  
output connects to the associated I/O cell, providing a fast path for narrow combinatorial functions, and to the logic  
allocator.  
Table 3. Individual PT Steering  
Product Term  
PTn  
Logic  
Control  
Logic PT  
Logic PT  
Logic PT  
Logic PT  
Logic PT  
Single PT for XOR/OR  
PTn+1  
Individual Clock (PT Clock)  
PTn+2  
Individual Initialization or Individual Clock Enable (PT Initialization/CE)  
Individual Initialization (PT Initialization)  
PTn+3  
PTn+4  
Individual OE (PTOE)  
Cluster Allocator  
The cluster allocator allows clusters to be steered to neighboring macrocells, thus allowing the creation of functions  
with more product terms. Table 4 shows which clusters can be steered to which macrocells. Used in this manner,  
the cluster allocator can be used to form functions of up to 20 product terms. Additionally, the cluster allocator  
accepts inputs from the wide steering logic. Using these inputs, functions up to 80 product terms can be created.  
Table 4. Available Clusters for Each Macrocell  
Macrocell  
M0  
Available Clusters  
C0  
C0  
C1  
C1  
C2  
C2  
C3  
M1  
M2  
C1  
C2  
C3  
C4  
M3  
C2  
C3  
C4  
C5  
M4  
C3  
C4  
C5  
C6  
M5  
C4  
C5  
C6  
C7  
M6  
C5  
C6  
C7  
C8  
M7  
C6  
C7  
C8  
C9  
M8  
C7  
C8  
C9  
C10  
C11  
C12  
C13  
C14  
C15  
M9  
C8  
C9  
C10  
C11  
C12  
C13  
C14  
C15  
M10  
M11  
M12  
M13  
M14  
M15  
C9  
C10  
C11  
C12  
C13  
C14  
C15  
C10  
C11  
C12  
C13  
C14  
Wide Steering Logic  
The wide steering logic allows the output of the cluster allocator n to be connected to the input of the cluster alloca-  
tor n+4. Thus, cluster chains can be formed with up to 80 product terms, supporting wide product term functions  
and allowing performance to be increased through a single GLB implementation. Table 5 shows the product term  
chains.  
5
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
Table 5. Product Term Expansion Capability  
Expansion Chains  
Chain-0  
Macrocells Associated with Expansion Chain (with Wrap Around)  
Max PT/Macrocell  
M0 M4 M8 M12 M0  
M1 M5 M9 M13 M1  
M2 M6 M10 M14 M2  
M3 M7 M11 M15 M3  
75  
80  
75  
70  
Chain-1  
Chain-2  
Chain-3  
Every time the super cluster allocator is used, there is an incremental delay of t  
. When the super cluster alloca-  
EXP  
tor is used, all destinations other than the one being steered to, are given the value of ground (i.e., if the super clus-  
ter is steered to M (n+4), then M (n) is ground).  
Macrocell  
The 16 macrocells in the GLB are driven by the 16 outputs from the logic allocator. Each macrocell contains a pro-  
grammable XOR gate, a programmable register/latch, along with routing for the logic and control functions.  
Figure 5 shows a graphical representation of the macrocell. The macrocells feed the ORP and GRP. A direct input  
from the I/O cell allows designers to use the macrocell to construct high-speed input registers. A programmable  
delay in this path allows designers to choose between the fastest possible set-up time and zero hold time.  
Figure 5. Macrocell  
Power-up  
Initialization  
Shared PT Initialization  
PT Initialization (optional)  
PT Initialization/CE (optional)  
Delay  
From I/O Cell  
R
P
From Logic Allocator  
To ORP  
To GRP  
D/T/L  
Q
CE  
Block CLK0  
Block CLK1  
Block CLK2  
Block CLK3  
Single PT  
PT Clock (optional)  
Shared PT Clock  
Enhanced Clock Multiplexer  
The clock input to the flip-flop can select any of the four block clocks along with the shared PT clock, and true and  
complement forms of the optional individual term clock. An 8:1 multiplexer structure is used to select the clock. The  
eight sources for the clock multiplexer are as follows:  
• Block CLK0  
• Block CLK1  
• Block CLK2  
6
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
• Block CLK3  
• PT Clock  
• PT Clock Inverted  
• Shared PT Clock  
• Ground  
Clock Enable Multiplexer  
Each macrocell has a 4:1 clock enable multiplexer. This allows the clock enable signal to be selected from the fol-  
lowing four sources:  
• PT Initialization/CE  
• PT Initialization/CE Inverted  
• Shared PT Clock  
• Logic High  
Initialization Control  
The LA-ispMACH 4000V/Z automotive family architecture accommodates both block-level and macrocell-level set  
and reset capability. There is one block-level initialization term that is distributed to all macrocell registers in a GLB.  
At the macrocell level, two product terms can be “stolen” from the cluster associated with a macrocell to be used for  
set/reset functionality. A reset/preset swapping feature in each macrocell allows for reset and preset to be  
exchanged, providing flexibility.  
Note that the reset/preset swapping selection feature affects power-up reset as well. All flip-flops power up to a  
known state for predictable system initialization. If a macrocell is configured to SET on a signal from the block-level  
initialization, then that macrocell will be SET during device power-up. If a macrocell is configured to RESET on a  
signal from the block-level initialization or is not configured for set/reset, then that macrocell will RESET on power-  
up. To guarantee initialization values, the V rise must be monotonic, and the clock must be inactive until the reset  
CC  
delay time has elapsed.  
GLB Clock Generator  
Each LA-ispMACH 4000V/Z automotive device has up to four clock pins that are also routed to the GRP to be used  
as inputs. These pins drive a clock generator in each GLB, as shown in Figure 6. The clock generator provides four  
clock signals that can be used anywhere in the GLB.These four GLB clock signals can consist of a number of com-  
binations of the true and complement edges of the global clock signals.  
Figure 6. GLB Clock Generator  
CLK0  
Block CLK0  
CLK1  
Block CLK1  
CLK2  
Block CLK2  
CLK3  
Block CLK3  
7
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
Output Routing Pool (ORP)  
The Output Routing Pool allows macrocell outputs to be connected to any of several I/O cells within an I/O block.  
This provides greater flexibility in determining the pinout and allows design changes to occur without affecting the  
pinout. The output routing pool also provides a parallel capability for routing macrocell-level OE product terms. This  
allows the OE product term to follow the macrocell output as it is switched between I/O cells. Additionally, the out-  
put routing pool allows the macrocell output or true and complement forms of the 5-PT bypass signal to bypass the  
output routing multiplexers and feed the I/O cell directly. The enhanced ORP of the LA-ispMACH 4000V/Z family  
consists of the following elements:  
• Output Routing Multiplexers  
• OE Routing Multiplexers  
• Output Routing Pool Bypass Multiplexers  
Figure 7 shows the structure of the ORP from the I/O cell perspective. This is referred to as an ORP slice. Each  
ORP has as many ORP slices as there are I/O cells in the corresponding I/O block.  
Figure 7. ORP Slice  
OE Routing Multiplexer  
From PTOE  
To I/O  
Cell  
OE  
ORP  
Bypass  
Multiplexer  
5-PT Fast Path  
From Macrocell  
To I/O  
Cell  
Output  
Output Routing Multiplexer  
Output Routing Multiplexers  
The details of connections between the macrocells and the I/O cells vary across devices and within a device  
dependent on the maximum number of I/Os available. Tables 6-10 provide the connection details.  
Table 6. ORP Combinations for I/O Blocks with 8 I/Os  
I/O Cell  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
Available Macrocells  
M0, M1, M2, M3, M4, M5, M6, M7  
M2, M3, M4, M5, M6, M7, M8, M9  
M4, M5, M6, M7, M8, M9, M10, M11  
M6, M7, M8, M9, M10, M11, M12, M13  
M8, M9, M10, M11, M12, M13, M14, M15  
M10, M11, M12, M13, M14, M15, M0, M1  
M12, M13, M14, M15, M0, M1, M2, M3  
M14, M15, M0, M1, M2, M3, M4, M5  
8
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
Table 7. ORP Combinations for I/O Blocks with 16 I/Os  
I/O Cell  
Available Macrocells  
I/O 0  
I/O 1  
M0, M1, M2, M3, M4, M5, M6, M7  
M1, M2, M3, M4, M5, M6, M7, M8  
M2, M3, M4, M5, M6, M7, M8, M9  
M3, M4, M5, M6, M7, M8, M9, M10  
M4, M5, M6, M7, M8, M9, M10, M11  
M5, M6, M7, M8, M9, M10, M11, M12  
M6, M7, M8, M9, M10, M11, M12, M13  
M7, M8, M9, M10, M11, M12, M13, M14  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 8  
M8, M9, M10, M11, M12, M13, M14, M15  
M9, M10, M11, M12, M13, M14, M15, M0  
M10, M11, M12, M13, M14, M15, M0, M1  
M11, M12, M13, M14, M15, M0, M1, M2  
M12, M13, M14, M15, M0, M1, M2, M3  
M13, M14, M15, M0, M1, M2, M3, M4  
M14, M15, M0, M1, M2, M3, M4, M5  
M15, M0, M1, M2, M3, M4, M5, M6  
I/O 9  
I/O 10  
I/O 11  
I/O 12  
I/O 13  
I/O 14  
I/O 15  
Table 8. ORP Combinations for I/O Blocks with 12 I/Os  
I/O Cell  
Available Macrocells  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 8  
I/O 9  
I/O 10  
I/O 11  
M0, M1, M2, M3, M4, M5, M6, M7  
M1, M2, M3, M4, M5, M6, M7, M8  
M2, M3, M4, M5, M6, M7, M8, M9  
M4, M5, M6, M7, M8, M9, M10, M11  
M5, M6, M7, M8, M9, M10, M11, M12  
M6, M7, M8, M9, M10, M11, M12, M13  
M8, M9, M10, M11, M12, M13, M14, M15  
M9, M10, M11, M12, M13, M14, M15, M0  
M10, M11, M12, M13, M14, M15, M0, M1  
M12, M13, M14, M15, M0, M1, M2, M3  
M13, M14, M15, M0, M1, M2, M3, M4  
M14, M15, M0, M1, M2, M3, M4, M5  
ORP Bypass and Fast Output Multiplexers  
The ORP bypass and fast-path output multiplexer is a 4:1 multiplexer and allows the 5-PT fast path to bypass the  
ORP and be connected directly to the pin with either the regular output or the inverted output. This multiplexer also  
allows the register output to bypass the ORP to achieve faster t  
.
CO  
Output Enable Routing Multiplexers  
The OE Routing Pool provides the corresponding local output enable (OE) product term to the I/O cell.  
I/O Cell  
The I/O cell contains the following programmable elements: output buffer, input buffer, OE multiplexer and bus  
maintenance circuitry. Figure 8 details the I/O cell.  
9
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
Figure 8. I/O Cell  
GOE 0  
GOE 1  
GOE 2  
GOE 3  
From ORP  
VCC  
VCCO  
VCCO  
*
*
*
From ORP  
To Macrocell  
To GRP  
*Global fuses  
Each output supports a variety of output standards dependent on the V  
supplied to its I/O bank. Outputs can  
CCO  
also be configured for open drain operation. Each input can be programmed to support a variety of standards, inde-  
pendent of the V  
supplied to its I/O bank. The I/O standards supported are:  
CCO  
LVTTL  
LVCMOS 1.8  
LVCMOS 3.3  
LVCMOS 2.5  
• 3.3V PCI Compatible  
All of the I/Os and dedicated inputs have the capability to provide a bus-keeper latch, Pull-up Resistor or Pull-down  
Resistor. A fourth option is to provide none of these. The selection is done on a global basis. The default in both  
hardware and software is such that when the device is erased or if the user does not specify, the input structure is  
configured to be a Pull-up Resistor.  
Each LA-ispMACH 4000V/Z automotive device I/O has an individually programmable output slew rate control bit.  
Each output can be individually configured for fast slew or slow slew. The typical edge rate difference between fast  
and slow slew setting is 20%. For high-speed designs with long, unterminated traces, the slow-slew rate will intro-  
duce fewer reflections, less noise and keep ground bounce to a minimum. For designs with short traces or well ter-  
minated lines, the fast slew rate can be used to achieve the highest speed.  
Global OE Generation  
Most LA-ispMACH 4000V/Z automotive family devices have a 4-bit wide Global OE Bus, except the LA-ispMACH  
4032V and LA-ispMACH4032Z devices that have a 2-bit wide Global OE Bus. This bus is derived from a 4-bit inter-  
nal global OE PT bus and two dual purpose I/O or GOE pins. Each signal that drives the bus can optionally be  
inverted.  
Each GLB has a block-level OE PT that connects to all bits of the Global OE PT bus with four fuses. Hence, for a  
128-macrocell device (with 16 blocks), each line of the bus is driven from 8 OE product terms. Figures 9 and 10  
show a graphical representation of the global OE generation.  
10  
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
Figure 9. Global OE Generation for All Devices Except LA-ispMACH 4032V/Z  
Internal Global OE  
Global OE  
PT Bus  
(4 lines)  
4-Bit  
Global OE Bus  
Shared PTOE  
(Block 0)  
Shared PTOE  
(Block n)  
Global  
Fuses  
GOE (0:3)  
to I/O cells  
Fuse connection  
Hard wired  
Figure 10. Global OE Generation for LA-ispMACH 4032V/Z  
Internal Global OE  
PT Bus  
4-Bit  
Global OE Bus  
Global OE  
(2 lines)  
Shared PTOE  
(Block 0)  
Shared PTOE  
(Block 1)  
Global  
Fuses  
GOE (3:0)  
to I/O cells  
Fuse connection  
Hard wired  
Zero Power/Low Power and Power Management  
The LA-ispMACH 4000V/Z automotive family is designed with high speed low power design techniques to offer  
both high speed and low power. With an advanced E2 low power cell and non sense-amplifier design approach (full  
CMOS logic approach), the LA-ispMACH 4000V/Z automotive family offers SuperFAST pin-to-pin speeds, while  
simultaneously delivering low standby power without needing any “turbo bits” or other power management  
schemes associated with a traditional sense-amplifier approach.  
11  
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
The zero power LA-ispMACH 4000Z is based on the 1.8V ispMACH 4000C family. With innovative circuit design  
changes, the LA-ispMACH 4000Z family is able to achieve the industry’s “lowest static power”.  
IEEE 1149.1-Compliant Boundary Scan Testability  
All LA-ispMACH 4000V/Z automotive devices have boundary scan cells and are compliant to the IEEE 1149.1  
standard. This allows functional testing of the circuit board on which the device is mounted through a serial scan  
path that can access all critical logic notes. Internal registers are linked internally, allowing test data to be shifted in  
and loaded directly onto test nodes, or test node data to be captured and shifted out for verification. In addition,  
these devices can be linked into a board-level serial scan path for more board-level testing. The test access port  
operates with an LVCMOS interface that corresponds to the power supply voltage.  
I/O Quick Configuration  
To facilitate the most efficient board test, the physical nature of the I/O cells must be set before running any continu-  
ity tests. As these tests are fast, by nature, the overhead and time that is required for configuration of the I/Os’  
physical nature should be minimal so that board test time is minimized. The LA-ispMACH 4000V/Z automotive fam-  
ily of devices allows this by offering the user the ability to quickly configure the physical nature of the I/O cells. This  
quick configuration takes milliseconds to complete, whereas it takes seconds for the entire device to be pro-  
grammed. Lattice's ispVM™ System programming software can either perform the quick configuration through the  
PC parallel port, or can generate the ATE or test vectors necessary for a third-party test system.  
IEEE 1532-Compliant In-System Programming  
Programming devices in-system provides a number of significant benefits including: rapid prototyping, lower inven-  
tory levels, higher quality and the ability to make in-field modifications. The LA-ispMACH 4000V/Z automotive  
devices provide In-System Programming (ISP™) capability through the Boundary Scan Test Access Port. This  
capability has been implemented in a manner that ensures that the port remains complaint to the IEEE 1149.1  
standard. By using IEEE 1149.1 as the communication interface through which ISP is achieved, users get the ben-  
efit of a standard, well-defined interface. All LA-ispMACH 4000V/Z automotive devices are also compliant with the  
IEEE 1532 standard.  
The LA-ispMACH 4000V/Z automotive devices can be programmed across the commercial temperature and volt-  
age range. The PC-based Lattice software facilitates in-system programming of LA-ispMACH 4000V/Z automotive  
devices. The software takes the JEDEC file output produced by the design implementation software, along with  
information about the scan chain, and creates a set of vectors used to drive the scan chain. The software can use  
these vectors to drive a scan chain via the parallel port of a PC. Alternatively, the software can output files in for-  
mats understood by common automated test equipment. This equipment can then be used to program LA-  
ispMACH 4000V/Z automotive devices during the testing of a circuit board.  
User Electronic Signature  
The User Electronic Signature (UES) allows the designer to include identification bits or serial numbers inside the  
device, stored in E2CMOS memory.The LA-ispMACH 4000V/Z automotive device contains 32 UES bits that can be  
configured by the user to store unique data such as ID codes, revision numbers or inventory control codes.  
Security Bit  
A programmable security bit is provided on the LA-ispMACH 4000V/Z automotive devices as a deterrent to unau-  
thorized copying of the array configuration patterns. Once programmed, this bit defeats readback of the pro-  
grammed pattern by a device programmer, securing proprietary designs from competitors. Programming and  
verification are also defeated by the security bit. The bit can only be reset by erasing the entire device.  
Hot Socketing  
The LA-ispMACH 4000V/Z automotive devices are well-suited for applications that require hot socketing capability.  
Hot socketing a device requires that the device, during power-up and down, can tolerate active signals on the I/Os  
12  
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
and inputs without being damaged. Additionally, it requires that the effects of I/O pin loading be minimal on active  
signals. The LA-ispMACH 4000V/Z automotive devices provide this capability for input voltages in the range 0V to  
3.0V.  
Density Migration  
The LA-ispMACH 4000V/Z automotive family has been designed to ensure that different density devices in the  
same package have the same pin-out. Furthermore, the architecture ensures a high success rate when performing  
design migration from lower density parts to higher density parts. In many cases, it is possible to shift a lower utili-  
zation design targeted for a high density device to a lower density device. However, the exact details of the final  
resource utilization will impact the likely success in each case.  
AEC-Q100 Tested and Qualified  
The Automotive Electronics Council (AEC) consists of two committees: the Quality Systems Committee and the  
Component Technical Committee. These committees are composed of representatives from sustaining and other  
associate members. The AEC Component Technical Committee is the standardization body for establishing stan-  
dards for reliable, high quality electronic components. In particular, the AEC-Q100 specification “Stress Test for  
Qualification for Integrated Circuits” defines qualification and re-qualification requirements for electronic compo-  
nents. Components meeting these specifications are suitable for use in the harsh automotive environment without  
additional component-level qualification testing. Lattice's LA-ispMACH 4000V/Z and LA-MachXO devices com-  
pleted and passed the requirements of the AEC-Q100 specification.  
13  
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
Absolute Maximum Ratings1, 2, 3  
LA-ispMACH 4000V (3.3V)  
LA-ispMACH 4000Z (1.8V)  
Supply Voltage (V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to 5.5V . . . . . . . . . . . . . . . . -0.5 to 2.5V  
CC  
Output Supply Voltage (V  
) . . . . . . . . . . . . . . . . . . . . . . . -0.5 to 4.5V . . . . . . . . . . . . . . . . -0.5 to 4.5V  
CCO  
Input or I/O Tristate Voltage Applied4, 5 . . . . . . . . . . . . . . . . . -0.5 to 5.5V . . . . . . . . . . . . . . . . -0.5 to 5.5V  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -65 to 150°C . . . . . . . . . . . . . . . -65 to 150°C  
Junction Temperature (T ) with Power Applied . . . . . . . . . . -55 to 150°C . . . . . . . . . . . . . . . -55 to 150°C  
j
1. Stress above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. Functional  
operation of the device at these or any other conditions above those indicated in the operational sections of this specification  
is not implied.  
2. Compliance with Lattice Thermal Management document is required.  
3. All voltages referenced to GND.  
4. Undershoot of -2V and overshoot of (V (MAX) + 2V), up to a total pin voltage of 6.0V, is permitted for a duration of < 20ns.  
IH  
5. Maximum of 64 I/Os per device with VIN > 3.6V is allowed.  
Recommended Operating Conditions  
Symbol  
Parameter  
Min.  
3.0  
Max.  
3.6  
Units  
LA-ispMACH 4000V Supply Voltage  
LA-ispMACH 4000Z Supply Voltage  
V
V
V
C
V
1.7  
1.61  
1.9  
CC  
LA-ispMACH 4000Z, Extended Functional Voltage Operations  
Ambient Temperature (Automotive)  
1.9  
T
-40  
125  
A
1. Devices operating at 1.6V can expect performance degradation up to 35%.  
Erase Reprogram Specifications  
Parameter  
Min.  
Max.  
Units  
Erase/Reprogram Cycle  
1,000  
Cycles  
Note: Valid over commercial temperature range.  
Hot Socketing Characteristics1,2,3  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
30  
Max.  
150  
Units  
µA  
0 V 3.0V, Tj = 105°C  
IN  
I
Input or I/O Leakage Current  
DK  
0 V 3.0V, Tj = 130°C  
30  
200  
µA  
IN  
1. Insensitive to sequence of V or V  
However, assumes monotonic rise/fall rates for V and V  
provided (V - V  
) 3.6V.  
CCO  
CC  
CCO.  
CC  
CCO,  
IN  
2. 0 < V < V (MAX), 0 < V  
< V (MAX).  
CC  
CC  
CCO  
CCO  
3. I is additive to I , I or I . Device defaults to pull-up until fuse circuitry is active.  
DK  
PU PD  
BH  
14  
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
I/O Recommended Operating Conditions  
V
(V)1  
CCO  
Standard  
Min.  
3.0  
Max.  
3.6  
LVTTL  
LVCMOS 3.3  
Extended LVCMOS 3.32  
LVCMOS 2.5  
LVCMOS 1.8  
PCI 3.3  
3.0  
3.6  
2.7  
3.6  
2.3  
2.7  
1.65  
3.0  
1.95  
3.6  
1. Typical values for V  
are the average of the min. and max. values.  
CCO  
2. LA-ispMACH 4000Z only.  
DC Electrical Characteristics  
Over Recommended Operating Conditions  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
Input Leakage Current  
(LA-ispMACH 4000Z)  
1, 4  
I , I  
0 V < V  
0.5  
1
µA  
IL IH  
IN  
CCO  
3.6V < V 5.5V, T = 105°C  
IN  
CCO  
j
20  
50  
µA  
µA  
µA  
µA  
µA  
3.0V V  
3.6V  
Input High Leakage Current  
(LA-ispMACH 4000V)  
3.6V < V 5.5V, T = 130°C  
1, 2  
IN  
CCO  
j
I
IH  
3.0V V  
3.6V  
Input High Leakage Current  
(LA-ispMACH 4000Z)  
V
< V 5.5V  
10  
CCO  
IN  
I/O Weak Pull-up Resistor Current  
(LA-ispMACH 4000V)  
0 V 0.7V  
-30  
-30  
-200  
-150  
IN  
CCO  
CCO  
I
PU  
I/O Weak Pull-up Resistor Current  
(LA-ispMACH 4000Z)  
0 V 0.7V  
IN  
I
I
I
I
I
I/O Weak Pull-down Resistor Current V (MAX) V V (MIN)  
30  
30  
-30  
150  
µA  
µA  
µA  
µA  
µA  
V
PD  
IL  
IN  
IH  
Bus Hold Low Sustaining Current  
Bus Hold High Sustaining Current  
Bus Hold Low Overdrive Current  
Bus Hold High Overdrive Current  
Bus Hold Trip Points  
V
V
= V (MAX)  
IL  
BHLS  
BHHS  
BHLO  
BHHO  
IN  
IN  
= 0.7 V  
CCO  
0V V V  
150  
-150  
IN  
BHT  
V
V V  
CCO  
BHT  
IN  
V
V
* 0.35  
V
* 0.65  
CCO  
BHT  
CCO  
V
V
V
V
V
V
= 3.3V, 2.5V, 1.8V  
CCO  
C
C
C
I/O Capacitance3  
8
6
6
pf  
pf  
pf  
1
2
3
= 1.8V, V = 0 to V (MAX)  
CC  
IO  
IH  
= 3.3V, 2.5V, 1.8V  
CCO  
Clock Capacitance3  
Global Input Capacitance3  
= 1.8V, V = 0 to V (MAX)  
CC  
IO  
IH  
= 3.3V, 2.5V, 1.8V  
CCO  
= 1.8V, V = 0 to V (MAX)  
CC  
IO  
IH  
1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tristated. It is not  
measured with the output driver active. Bus maintenance circuits are disabled.  
2. 5V tolerant inputs and I/O should only be placed in banks where 3.0V V  
3.6V.  
CCO  
3. T = 25°C, f = 1.0MHz.  
A
4. I excursions of up to 1.5µA maximum per pin above the spec limit may be observed for certain voltage conditions on no more than 10% of  
IH  
the device’s I/O pins.  
15  
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
Supply Current, LA-ispMACH 4000V  
Over Recommended Operating Conditions  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
LA-ispMACH 4032V  
Operating Power Supply Current  
Standby Power Supply Current  
Vcc = 3.3V  
11.8  
11.3  
mA  
mA  
ICC  
Vcc = 3.3V  
LA-ispMACH 4064V  
Operating Power Supply Current  
Standby Power Supply Current  
LA-ispMACH 4128V  
Operating Power Supply Current  
Standby Power Supply Current  
Vcc = 3.3V  
Vcc = 3.3V  
12  
mA  
mA  
ICC  
11.5  
Vcc = 3.3V  
Vcc = 3.3V  
12  
mA  
mA  
ICC  
11.5  
16  
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
Supply Current, LA-ispMACH 4000Z  
Over Recommended Operating Conditions  
Symbol  
Parameter  
Condition  
Min. Typ. Max. Units  
LA-ispMACH 4032Z  
Vcc = 1.8V, T = 25°C  
50  
58  
60  
70  
10  
13  
15  
22  
20  
25  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
A
Vcc = 1.9V, T = 70°C  
A
ICC1, 2, 3, 5  
Operating Power Supply Current  
Standby Power Supply Current  
Vcc = 1.9V, T = 85°C  
A
Vcc = 1.9V, T = 125°C  
A
Vcc = 1.8V, T = 25°C  
A
Vcc = 1.9V, T = 70°C  
A
ICC4, 5  
Vcc = 1.9V, T = 85°C  
A
Vcc = 1.9V, T = 125°C  
A
LA-ispMACH 4064Z  
Vcc = 1.8V, T = 25°C  
80  
89  
92  
109  
11  
15  
18  
37  
25  
35  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
A
Vcc = 1.9V, T = 70°C  
A
ICC1, 2, 3, 5  
Operating Power Supply Current  
Vcc = 1.9V, T = 85°C  
A
Vcc = 1.9V, T = 125°C  
A
Vcc = 1.8V, T = 25°C  
A
Vcc = 1.9V, T = 70°C  
A
ICC4, 5  
Standby Power Supply Current  
Vcc = 1.9V, T = 85°C  
A
Vcc = 1.9V, T = 125°C  
A
LA-ispMACH 4128Z  
Vcc = 1.8V, T = 25°C  
168  
190  
195  
212  
12  
35  
50  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
A
Vcc = 1.9V, T = 70°C  
A
ICC1, 2, 3, 5  
Operating Power Supply Current  
Vcc = 1.9V, T = 85°C  
A
Vcc = 1.9V, T = 125°C  
A
Vcc = 1.8V, T = 25°C  
A
Vcc = 1.9V, T = 70°C  
16  
A
ICC4, 5  
Standby Power Supply Current  
Vcc = 1.9V, T = 85°C  
19  
A
Vcc = 1.9V, T = 125°C  
42  
A
1. T = 25°C, frequency = 1.0 MHz.  
A
2. Device configured with 16-bit counters.  
3. I varies with specific device configuration and operating frequency.  
CC  
4. V  
= 3.6V, V = 0V or V  
bus maintenance turned off. V above V  
will add transient current above the specified standby I  
.
CC  
CCO  
IN  
CCO,  
IN  
CCO  
5. Includes V  
current without output loading.  
CCO  
17  
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
I/O DC Electrical Characteristics  
Over Recommended Operating Conditions  
V
V
1
1
IL  
IH  
V
V
I
I
OH  
OL  
OH  
OL  
Standard  
LVTTL  
Min (V)  
Max (V)  
Min (V)  
Max (V) Max (V)  
Min (V)  
(mA) (mA)  
0.40  
V
V
V
V
V
V
V
V
V
V
- 0.40  
8.0  
0.1  
8.0  
0.1  
8.0  
0.1  
2.0  
0.1  
2.0  
0.1  
1.5  
1.5  
-4.0  
-0.1  
-4.0  
-0.1  
-4.0  
-0.1  
-2.0  
-0.1  
-2.0  
-0.1  
-0.5  
-0.5  
CCO  
CCO  
CCO  
CCO  
CCO  
CCO  
CCO  
CCO  
CCO  
CCO  
-0.3  
0.80  
0.80  
0.70  
0.63  
2.0  
5.5  
0.20  
- 0.20  
- 0.40  
- 0.20  
- 0.40  
- 0.20  
- 0.45  
- 0.20  
- 0.45  
- 0.20  
0.40  
LVCMOS 3.3  
LVCMOS 2.5  
-0.3  
-0.3  
-0.3  
-0.3  
2.0  
5.5  
0.20  
0.40  
1.70  
1.17  
3.6  
0.20  
0.40  
LVCMOS 1.8  
(4000V)  
3.6  
0.20  
0.40  
LVCMOS 1.8  
(4000Z)  
0.35 * V  
1.08  
0.65 * V  
1.5  
3.6  
CC  
CC  
0.20  
PCI 3.3 (4000V)  
PCI 3.3 (4000Z)  
-0.3  
-0.3  
5.5  
5.5  
0.1 V  
0.1 V  
0.9 V  
0.9 V  
CCO  
CCO  
0.3 * 3.3 * (V / 1.8) 0.5 * 3.3 * (V / 1.8)  
CC  
CC  
CCO  
CCO  
1. The average DC current drawn by I/Os between adjacent bank GND connections, or between the last GND in an I/O bank and the end of  
the I/O bank, as shown in the logic signals connection table, shall not exceed n*8mA. Where n is the number of I/Os between bank GND  
connections or between the last GND in a bank and the end of a bank.  
3.3V VCCO  
2.5V VCCO  
70  
60  
50  
40  
30  
20  
100  
80  
60  
40  
20  
0
IOL  
IOH  
IOL  
IOH  
10  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5  
VO Output Voltage (V)  
VO Output Voltage (V)  
1.8V VCCO  
60  
50  
IOL  
IOH  
40  
30  
20  
10  
0
0
0.5  
1.0  
1.5  
2.0  
VO Output Voltage (V)  
18  
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
LA-ispMACH 4000V/Z External Switching Characteristics  
Over Recommended Operating Conditions  
LA-ispMACH 4000V LA-ispMACH 4000Z  
-75 -75  
Parameter  
Description1, 2, 3  
Min.  
Max.  
Min.  
Max.  
Units  
t
5-PT bypass combinatorial propagation delay  
7.5  
7.5  
ns  
PD  
20-PT combinatorial propagation delay through macro-  
cell  
t
t
t
8.0  
8.0  
ns  
ns  
ns  
PD_MC  
S
GLB register setup time before clock  
4.5  
4.7  
4.5  
4.7  
GLB register setup time before clock with T-type regis-  
ter  
ST  
GLB register setup time before clock, input register  
path  
t
1.7  
1.4  
ns  
SIR  
t
t
t
t
GLB register setup time before clock with zero hold  
GLB register hold time after clock  
2.7  
0.0  
0.0  
1.0  
2.7  
0.0  
0.0  
1.3  
ns  
ns  
ns  
ns  
SIRZ  
H
GLB register hold time after clock with T-type register  
GLB register hold time after clock, input register path  
HT  
HIR  
GLB register hold time after clock, input register path  
with zero hold  
t
0.0  
0.0  
ns  
HIRZ  
t
t
t
GLB register clock-to-output delay  
External reset pin to output delay  
External reset pulse duration  
4.5  
9.0  
4.5  
9.0  
ns  
ns  
ns  
CO  
R
4.0  
4.0  
RW  
Input to output local product term output enable/dis-  
able  
t
t
9.0  
9.0  
ns  
ns  
PTOE/DIS  
Input to output global product term output enable/dis-  
able  
10.3  
10.5  
GPTOE/DIS  
t
t
Global OE input to output enable/disable  
Global clock width, high or low  
7.0  
7.0  
ns  
ns  
GOE/DIS  
3.3  
3.3  
CW  
Global gate width low (for low transparent) or high (for  
high transparent)  
t
3.3  
3.3  
ns  
GW  
t
f
f
Input register clock width, high or low  
Clock frequency with internal feedback  
3.3  
168  
111  
3.3  
168  
111  
ns  
WIR  
4
MHz  
MAX  
(Ext.) Clock frequency with external feedback, [1/ (t + t )]  
MHz  
MAX  
S
CO  
1. Timing numbers are based on default LVCMOS 1.8 I/O buffers. Use timing adjusters provided to calculate other standards.  
2. Measured using standard switching circuit, assuming GRP loading of 1 and 1 output switching.  
3. Pulse widths and clock widths less than minimum will cause unknown behavior.  
4. Standard 16-bit counter using GRP feedback.  
Timing v.3.2  
19  
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
Timing Model  
The task of determining the timing through the LA-ispMACH 4000V/Z automotive family, like any CPLD, is relatively  
simple. The timing model provided in Figure 11 shows the specific delay paths. Once the implementation of a given  
function is determined either conceptually or from the software report file, the delay path of the function can easily  
be determined from the timing model. The Lattice design tools report the timing delays based on the same timing  
model for a particular design. Note that the internal timing parameters are given for reference only, and are not  
tested. The external timing parameters are tested and guaranteed for every device. For more information on the  
timing model and usage, please refer to Technical Note TN1004: ispMACH 4000 Timing Model Design and Usage  
Guidelines.  
Figure 11. LA-ispMACH 4000V/Z Automotive Timing Model  
Routing/GLB Delays  
From  
Feedback  
tPDb  
tPDi  
Feedback  
Out  
tFBK  
tROUTE  
tBLA  
tMCELL  
tEXP  
tIN  
tBUF  
tIOO  
tEN  
DATA  
IN  
tORP  
tIOI  
Q
tINREG  
tINDIO  
tDIS  
tGCLK_IN  
tIOI  
In/Out  
Delays  
SCLK  
tPTCLK  
tBCLK  
C.E.  
S/R  
tPTSR  
tBSR  
Register/Latch  
Delays  
MC Reg.  
tGPTOE  
tPTOE  
Control  
Delays  
tGOE  
tIOI  
OE  
In/Out  
Delays  
Note: Italicized items are optional delay adders.  
20  
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
LA-ispMACH 4000V/Z Internal Timing Parameters  
Over Recommended Operating Conditions  
LA-ispMACH 4000V LA-ispMACH 4000Z  
-75 -75  
Parameter  
Description  
Input Buffer Delay  
Min.  
Max.  
Min.  
Max.  
Units  
In/Out Delays  
t
t
t
t
t
t
1.50  
6.04  
2.28  
1.50  
0.96  
0.96  
1.80  
4.30  
2.15  
1.30  
2.70  
2.70  
ns  
ns  
ns  
ns  
ns  
ns  
IN  
Global OE Pin Delay  
GOE  
GCLK_IN  
BUF  
EN  
Global Clock Input Buffer Delay  
Delay through Output Buffer  
Output Enable Time  
Output Disable Time  
DIS  
Routing/GLB Delays  
t
t
t
t
t
t
Delay through GRP  
2.26  
1.45  
0.96  
0.00  
2.24  
1.24  
2.50  
1.00  
1.00  
0.05  
1.90  
1.00  
ns  
ns  
ns  
ns  
ns  
ns  
ROUTE  
MCELL  
INREG  
FBK  
Macrocell Delay  
Input Buffer to Macrocell Register Delay  
Internal Feedback Delay  
5-PT Bypass Propagation Delay  
Macrocell Propagation Delay  
PDb  
PDi  
Register/Latch Delays  
t
t
t
t
t
t
t
t
D-Register Setup Time (Global Clock)  
D-Register Setup Time (Product Term Clock)  
T-Register Setup Time (Global Clock)  
T-Register Setup Time (Product Term Clock)  
D-Register Hold Time  
1.57  
1.32  
1.77  
1.32  
2.93  
2.93  
1.57  
1.45  
1.35  
2.45  
1.55  
2.75  
3.15  
3.15  
0.75  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
S
S_PT  
ST  
ST_PT  
H
T-Register Hold Time  
HT  
D-Input Register Setup Time (Global Clock)  
SIR  
D-Input Register Setup Time (Product Term  
Clock)  
SIR_PT  
1.45  
1.95  
1.18  
t
t
D-Input Register Hold Time (Global Clock)  
1.18  
1.18  
ns  
ns  
HIR  
D-Input Register Hold Time (Product Term  
Clock)  
HIR_PT  
t
t
t
t
t
t
t
t
Register Clock to Output/Feedback MUX Time  
Clock Enable Setup Time  
0.67  
1.05  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
COi  
2.25  
1.88  
1.57  
1.32  
1.17  
2.00  
0.00  
1.65  
2.15  
1.17  
CES  
CEH  
SL  
Clock Enable Hold Time  
Latch Setup Time (Global Clock)  
Latch Setup Time (Product Term Clock)  
Latch Hold Time  
SL_PT  
HL  
Latch Gate to Output/Feedback MUX Time  
0.33  
0.25  
0.33  
GOi  
PDLi  
Propagation Delay through Transparent Latch to  
Output/Feedback MUX  
0.25  
t
Asynchronous Reset or Set to Output/Feedback  
MUX Delay  
0.28  
1.67  
ns  
ns  
SRi  
0.28  
1.67  
t
Asynchronous Reset or Set Recovery Time  
SRR  
Control Delays  
t
t
GLB PT Clock Delay  
1.12  
0.87  
1.25  
1.25  
ns  
ns  
BCLK  
Macrocell PT Clock Delay  
PTCLK  
21  
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
LA-ispMACH 4000V/Z Internal Timing Parameters (Cont.)  
Over Recommended Operating Conditions  
LA-ispMACH 4000V LA-ispMACH 4000Z  
-75 -75  
Parameter  
Description  
GLB PT Set/Reset Delay  
Min.  
Max.  
1.83  
3.41  
5.58  
4.28  
Min.  
Max.  
1.83  
2.72  
3.50  
2.00  
Units  
ns  
t
t
t
t
BSR  
Macrocell PT Set/Reset Delay  
Global PT OE Delay  
ns  
PTSR  
ns  
GPTOE  
PTOE  
Macrocell PT OE Delay  
ns  
Timing v.3.2  
Note: Internal Timing Parameters are not tested and are for reference only. Refer to Timing Model in this data sheet for further details.  
22  
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
LA-ispMACH 4000V/Z Timing Adders1  
LA-ispMACH 4000V LA-ispMACH 4000Z  
-75 -75  
Adder Type  
Base Parameter  
Description  
Input register delay  
Min.  
Max.  
Min.  
Max.  
Units  
Optional Delay Adders  
t
t
t
t
t
t
1.00  
0.33  
0.05  
0.05  
1.30  
0.50  
0.40  
0.05  
ns  
ns  
ns  
ns  
INDIO  
INREG  
Product term expander delay  
Output routing pool delay  
EXP  
MCELL  
ORP  
BLA  
t
Additional block loading adder  
ROUTE  
t
Input Adjusters  
IOI  
LVTTL_in  
LVCMOS33_in t , t  
t , t  
, t  
Using LVTTL standard  
0.60  
0.60  
0.60  
0.00  
0.60  
0.60  
0.60  
0.60  
0.00  
0.60  
ns  
ns  
ns  
ns  
ns  
IN GCLK_IN GOE  
, t  
Using LVCMOS 3.3 standard  
Using LVCMOS 2.5 standard  
Using LVCMOS 1.8 standard  
Using PCI compatible input  
IN GCLK_IN GOE  
LVCMOS25_in t , t  
, t  
IN GCLK_IN GOE  
LVCMOS18_in t , t  
, t  
IN GCLK_IN GOE  
PCI_in  
t , t  
, t  
IN GCLK_IN GOE  
t
Output Adjusters  
IOO  
LVTTL_out  
t
, t , t  
Output configured as TTL buffer  
Output configured as 3.3V buffer  
Output configured as 2.5V buffer  
Output configured as 1.8V buffer  
0.20  
0.20  
0.10  
0.00  
0.20  
0.20  
0.10  
0.00  
ns  
ns  
ns  
ns  
BUF EN DIS  
LVCMOS33_out t  
LVCMOS25_out t  
LVCMOS18_out t  
, t , t  
BUF EN DIS  
, t , t  
BUF EN DIS  
, t , t  
BUF EN DIS  
Output configured as PCI  
compatible buffer  
PCI_out  
t
, t , t  
0.20  
1.00  
0.20  
1.00  
ns  
BUF EN DIS  
Output configured for slow slew  
rate  
Slow Slew  
t
, t  
ns  
BUF EN  
Note: Open drain timing is the same as corresponding LVCMOS timing.  
Timing v.3.2  
1. Refer to Technical Note TN1004: ispMACH 4000 Timing Model Design and Usage Guidelines for information regarding use of these adders.  
23  
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
Boundary Scan Waveforms and Timing Specifications  
Symbol  
Parameter  
Min.  
40  
20  
20  
8
Max.  
Units  
ns  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
TCK [BSCAN test] clock cycle  
BTCP  
TCK [BSCAN test] pulse width high  
ns  
BTCH  
BTCL  
TCK [BSCAN test] pulse width low  
ns  
TCK [BSCAN test] setup time  
ns  
BTSU  
BTH  
TCK [BSCAN test] hold time  
10  
50  
8
ns  
TCK [BSCAN test] rise and fall time  
mV/ns  
ns  
BRF  
TAP controller falling edge of clock to valid output  
TAP controller falling edge of clock to data output disable  
TAP controller falling edge of clock to data output enable  
BSCAN test Capture register setup time  
10  
10  
10  
BTCO  
BTOZ  
ns  
ns  
BTVO  
BTCPSU  
BTCPH  
BTUCO  
BTUOZ  
BTUOV  
ns  
BSCAN test Capture register hold time  
10  
ns  
BSCAN test Update reg, falling edge of clock to valid output  
BSCAN test Update reg, falling edge of clock to output disable  
BSCAN test Update reg, falling edge of clock to output enable  
25  
25  
25  
ns  
ns  
ns  
24  
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
Power Consumption  
LA-ispMACH 4000V  
LA-ispMACH 4000Z  
Typical I  
vs. Frequency  
Typical I  
vs. Frequency  
(Preliminary Information)  
CC  
CC  
100  
80  
60  
40  
20  
0
150  
100  
4128V  
4064V  
50  
4128Z  
4064Z  
4032V  
4032Z  
0
0
0
50  
100  
150  
200  
250  
300  
50  
100  
150  
200  
250  
300  
350  
400  
Frequency (MHz)  
Frequency (MHz)  
Note: The devices are configured with the maximum number  
Note: The devices are configured with the maximum number  
of 16-bit counters, typical current at 3.3V, 2.5V, 25°C.  
of 16-bit counters, typical current at 1.8V, 25°C.  
Power Estimation Coefficients1  
Device  
A
B
LA-ispMACH 4032V  
LA-ispMACH 4064V  
LA-ispMACH 4128V  
LA-ispMACH 4032Z  
LA-ispMACH 4064Z  
LA-ispMACH 4128Z  
11.3  
11.5  
0.010  
0.010  
0.011  
0.010  
0.010  
0.010  
11.5  
0.010  
0.011  
0.012  
1. For further information about the use of these coefficients, refer to Technical Note  
TN1005, Power Estimation in ispMACH 4000V/B/C/Z Devices.  
25  
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
Switching Test Conditions  
Figure 12 shows the output test load that is used for AC testing. The specific values for resistance, capacitance,  
voltage, and other test conditions are shown in Table 9.  
Figure 12. Output Test Load, LVTTL and LVCMOS Standards  
V
CCO  
R
1
2
Test  
Point  
DUT  
R
C
L
0213A/ispm4k  
Table 9. Test Fixture Required Components  
1
Test Condition  
R
R
C
Timing Ref.  
V
CCO  
1
2
L
LVCMOS 3.3 = 1.5V  
LVCMOS 3.3 = 3.0V  
LVCMOS I/O, (L -> H, H -> L)  
106Ω 106Ω  
35pF  
LVCMOS 2.5 = V  
LVCMOS 1.8 = V  
1.5V  
/2  
/2  
LVCMOS 2.5 = 2.3V  
CCO  
CCO  
LVCMOS 1.8 = 1.65V  
LVCMOS I/O (Z -> H)  
LVCMOS I/O (Z -> L)  
LVCMOS I/O (H -> Z)  
LVCMOS I/O (L -> Z)  
106Ω  
35pF  
35pF  
5pF  
3.0V  
3.0V  
3.0V  
3.0V  
106Ω  
1.5V  
106Ω  
V
V
- 0.3  
OH  
OL  
106Ω  
5pF  
+ 0.3  
1. C includes test fixtures and probe capacitance.  
L
26  
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
Signal Descriptions  
Signal Names  
Description  
TMS  
Input – This pin is the IEEE 1149.1 Test Mode Select input, which is used to control  
the state machine  
TCK  
Input – This pin is the IEEE 1149.1 Test Clock input pin, used to clock through the  
state machine  
TDI  
Input – This pin is the IEEE 1149.1 Test Data In pin, used to load data  
Output – This pin is the IEEE 1149.1 Test Data Out pin used to shift data out  
TDO  
GOE0/IO, GOE1/IO  
These pins are configured to be either Global Output Enable Input or as general I/O  
pins  
GND  
NC  
Ground  
Not Connected  
V
The power supply pins for the logic core and JTAG port  
These pins are configured to be either CLK input or as an input  
The power supply pins for each I/O bank  
CC  
CLK0/I, CLK1/I, CLK2/I, CLK3/I  
, V  
V
CCO0 CCO1  
Input/Output1 – These are the general purpose I/O used by the logic array. y is GLB  
reference (alpha) and z is macrocell reference (numeric). z: 0-15  
LA-ispMACH 4032V/Z  
LA-ispMACH 4064V/Z  
LA-ispMACH 4128V/Z  
y: A-B  
y: A-D  
y: A-H  
yzz  
1. In some packages, certain I/Os are only available for use as inputs. See the signal connections table for details.  
LA-ispMACH 4000V ORP Reference Table  
4032V  
4064V  
4128V  
Number of I/Os  
301  
2
32  
2
302  
4
32  
4
64  
4
64  
8
923  
96  
8
Number of GLBs  
8
Number of I/Os /GLB  
Reference ORP Table  
16  
16  
8
8
16  
8
12  
12  
16 I/Os / GLB  
8 I/Os / GLB  
16 I/Os / GLB 8 I/Os /GLB  
12 I/Os / GLB  
1. 32-macrocell device, 44 TQFP: 2 GLBs have 15 out of 16 I/Os bonded out.  
2. 64-macrocells device, 44 TQFP: 2 GLBs have 7 out of 8 I/Os bonded out.  
3. 128-macrocell device, 128 TQFP: 4 GLBs have 11 out of 12 I/Os  
LA-ispMACH 4000Z ORP Reference Table  
4032Z  
4064Z  
4128Z  
Number of I/Os  
32  
2
32  
4
64  
4
64  
8
Number of GLBs  
Number of I/Os / GLB  
16  
8
16  
8
16 I/Os /  
GLB  
8 I/Os /  
GLB  
16 I/Os /  
GLB  
8 I/Os /  
GLB  
Reference ORP Table  
27  
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
LA-ispMACH 4000V/Z Power Supply and NC Connections1  
Signal  
44 TQFP2  
48 TQFP2  
100 TQFP2  
128 TQFP2  
144 TQFP2  
36, 57, 108, 129  
3, 19, 34, 47, 136  
VCC  
11, 33  
12, 36  
25, 40, 75, 90  
32, 51, 96, 115  
VCCO0  
VCCO (Bank 0)  
6
6
13, 33, 95  
3, 17, 30, 41, 122  
VCCO1  
VCCO (Bank 1)  
64, 75, 91, 106, 119  
28  
30  
45, 63, 83  
58, 67, 81, 94, 105  
1, 33, 65, 97  
GND  
12, 34  
5
13, 37  
5
1, 26, 51, 76  
7, 18, 32, 96  
1, 37, 73, 109  
10, 186, 27, 46, 127,  
137  
GND (Bank 0)  
10, 24, 40, 113, 123  
GND (Bank 1)  
NC  
55, 65, 82, 906, 99,  
118  
27  
29  
46, 57, 68, 82  
None  
49, 59, 74, 88, 104  
None  
None  
None  
17, 20, 38, 45, 72,  
89, 92, 110, 117,  
144  
1. All grounds must be electrically connected at the board level. However, for the purposes of I/O current loading, grounds are associated with  
the bank shown.  
2. Pin orientation follows the conventional order from pin 1 marking of the top side view and counter-clockwise.  
28  
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
LA-ispMACH 4032V and 4064V Logic Signal Connections: 44-Pin TQFP  
LA-ispMACH 4032V  
LA-ispMACH 4064V  
Pin Number  
Bank Number  
GLB/MC/Pad  
ORP  
-
GLB/MC/Pad  
ORP  
-
1
-
TDI  
TDI  
2
0
0
0
0
0
0
0
0
-
A5  
A^5  
A^6  
A^7  
-
A10  
A^5  
A^6  
A^7  
-
3
A6  
A12  
4
A7  
A14  
5
GND (Bank 0)  
GND (Bank 0)  
6
VCCO (Bank 0)  
-
VCCO (Bank 0)  
-
7
A8  
A9  
A^8  
A^9  
A^10  
-
B0  
B2  
B^0  
B^1  
B^2  
-
8
9
A10  
B4  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
TCK  
TCK  
-
VCC  
GND  
A12  
-
VCC  
GND  
B8  
-
-
-
-
0
0
0
0
1
1
1
1
1
1
-
A^12  
A^13  
A^14  
A^15  
-
B^4  
B^5  
B^6  
B^7  
-
A13  
B10  
A14  
B12  
A15  
B14  
CLK2/I  
B0  
CLK2/I  
C0  
B^0  
B^1  
B^2  
B^3  
B^4  
-
C^0  
C^1  
C^2  
C^3  
C^4  
-
B1  
C2  
B2  
C4  
B3  
C6  
B4  
C8  
TMS  
B5  
TMS  
C10  
1
1
1
1
1
1
1
1
-
B^5  
B^6  
B^7  
-
C^5  
C^6  
C^7  
-
B6  
C12  
B7  
C14  
GND (Bank 1)  
VCCO (Bank 1)  
B8  
GND (Bank 1)  
VCCO (Bank 1)  
D0  
-
-
B^8  
B^9  
B^10  
-
D^0  
D^1  
D^2  
-
B9  
D2  
B10  
D4  
TDO  
VCC  
GND  
B12  
TDO  
VCC  
GND  
D8  
-
-
-
-
-
-
1
1
1
1
0
0
0
0
B^12  
B^13  
B^14  
B^15  
-
D^4  
D^5  
D^6  
D^7  
-
B13  
D10  
B14  
D12  
B15/GOE1  
CLK0/I  
A0/GOE0  
A1  
D14/GOE1  
CLK0/I  
A0/GOE0  
A2  
A^0  
A^1  
A^2  
A^0  
A^1  
A^2  
A2  
A4  
29  
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
LA-ispMACH 4032V and 4064V Logic Signal Connections: 44-Pin TQFP  
LA-ispMACH 4032V  
LA-ispMACH 4064V  
Pin Number  
Bank Number  
GLB/MC/Pad  
ORP  
A^3  
A^4  
GLB/MC/Pad  
ORP  
A^3  
A^4  
43  
44  
0
0
A3  
A4  
A6  
A8  
LA-ispMACH 4032V/Z and 4064V/Z Logic Signal Connections: 48-Pin TQFP  
LA-ispMACH 4032V/Z  
LA-ispMACH 4064V/Z  
Pin Number  
Bank Number  
GLB/MC/Pad ORP  
GLB/MC/Pad ORP  
1
-
TDI  
-
A^5  
A^6  
A^7  
-
TDI  
-
2
0
0
0
0
0
0
0
0
0
-
A5  
A10  
A^5  
A^6  
A^7  
-
3
A6  
A12  
4
A7  
A14  
5
GND (Bank 0)  
GND (Bank 0)  
6
VCCO (Bank 0)  
-
VCCO (Bank 0)  
-
7
A8  
A^8  
A^9  
A^10  
A^11  
-
B0  
B^0  
B^1  
B^2  
B^3  
-
8
A9  
B2  
9
A10  
B4  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
A11  
B6  
TCK  
TCK  
-
VCC  
-
VCC  
GND  
B8  
-
-
GND  
-
-
0
0
0
0
0
1
1
1
1
1
1
-
A12  
A^12  
A^13  
A^14  
A^15  
-
B^4  
B^5  
B^6  
B^7  
-
A13  
B10  
A14  
B12  
A15  
B14  
CLK1/I  
CLK1/I  
CLK2/I  
C0  
CLK2/I  
-
-
B0  
B^0  
B^1  
B^2  
B^3  
B^4  
-
C^0  
C^1  
C^2  
C^3  
C^4  
-
B1  
C2  
B2  
C4  
B3  
C6  
B4  
C8  
TMS  
TMS  
C10  
1
1
1
1
1
1
1
1
1
-
B5  
B^5  
B^6  
B^7  
-
C^5  
C^6  
C^7  
-
B6  
C12  
B7  
C14  
GND (Bank 1)  
GND (Bank 1)  
VCCO (Bank 1)  
D0  
VCCO (Bank 1)  
-
-
B8  
B9  
B^8  
B^9  
B^10  
B^11  
-
D^0  
D^1  
D^2  
D^3  
-
D2  
B10  
B11  
TDO  
D4  
D6  
TDO  
30  
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
LA-ispMACH 4032V/Z and 4064V/Z Logic Signal Connections: 48-Pin TQFP  
LA-ispMACH 4032V/Z  
LA-ispMACH 4064V/Z  
Pin Number  
Bank Number  
GLB/MC/Pad ORP  
GLB/MC/Pad ORP  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
-
VCC  
GND  
B12  
-
VCC  
GND  
D8  
-
-
-
-
1
1
1
1
1
0
0
0
0
0
0
B^12  
B^13  
B^14  
B^15  
-
D^4  
D^5  
D^6  
D^7  
-
B13  
D10  
B14  
D12  
B15/GOE1  
CLK3/I  
CLK0/I  
A0/GOE0  
A1  
D14/GOE1  
CLK3/I  
CLK0/I  
A0/GOE0  
A2  
-
-
A^0  
A^1  
A^2  
A^3  
A^4  
A^0  
A^1  
A^2  
A^3  
A^4  
A2  
A4  
A3  
A6  
A4  
A8  
LA-ispMACH 4064V/Z and 4128V/Z Logic Signal Connections: 100-Pin TQFP  
LA-ispMACH 4064V/Z  
LA-ispMACH 4128V/Z  
Pin Number  
Bank Number  
GLB/MC/Pad ORP  
GLB/MC/Pad ORP  
1
2
-
GND  
-
GND  
-
-
TDI  
-
TDI  
-
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
A8  
A^8  
A^9  
A^10  
A^11  
-
B0  
B^0  
B^1  
B^2  
B^3  
-
4
A9  
B2  
5
A10  
B4  
6
A11  
B6  
7
GND (Bank 0)  
GND (Bank 0)  
8
A12  
A^12  
A^13  
A^14  
A^15  
-
B8  
B^4  
B^5  
B^6  
B^7  
-
9
A13  
B10  
10  
11  
12*  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23*  
24  
A14  
B12  
A15  
B13  
I
I
VCCO (Bank 0)  
-
VCCO (Bank 0)  
-
B15  
B^15  
B^14  
B^13  
B^12  
-
C14  
C^7  
C^6  
C^5  
C^4  
-
B14  
C12  
B13  
C10  
B12  
C8  
GND (Bank 0)  
GND (Bank 0)  
B11  
B10  
B9  
B^11  
B^10  
B^9  
B^8  
-
C6  
C5  
C4  
C2  
I
C^3  
C^2  
C^1  
C^0  
-
B8  
I
TCK  
-
TCK  
-
31  
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
LA-ispMACH 4064V/Z and 4128V/Z Logic Signal Connections: 100-Pin TQFP  
LA-ispMACH 4064V/Z  
LA-ispMACH 4128V/Z  
Pin Number  
25  
Bank Number  
GLB/MC/Pad ORP  
GLB/MC/Pad ORP  
-
VCC  
-
-
VCC  
-
26  
-
GND  
GND  
-
27*  
28  
0
0
0
0
0
0
0
0
0
0
0
0
1
-
I
-
I
-
B7  
B^7  
B^6  
B^5  
B^4  
-
D13  
D^7  
D^6  
D^5  
D^4  
-
29  
B6  
D12  
30  
B5  
D10  
31  
B4  
D8  
32  
GND (Bank 0)  
GND (Bank 0)  
33  
VCCO (Bank 0)  
-
VCCO (Bank 0)  
-
34  
B3  
B^3  
B^2  
B^1  
B^0  
-
D6  
D^3  
D^2  
D^1  
D^0  
-
35  
B2  
D4  
36  
B1  
D2  
37  
B0  
D0  
38  
CLK1/I  
CLK1/I  
39  
CLK2/I  
-
CLK2/I  
-
40  
VCC  
-
VCC  
-
41  
1
1
1
1
1
1
1
1
1
1
-
C0  
C^0  
C^1  
C^2  
C^3  
-
E0  
E^0  
E^1  
E^2  
E^3  
-
42  
C1  
E2  
43  
C2  
E4  
44  
C3  
E6  
45  
VCCO (Bank 1)  
VCCO (Bank 1)  
46  
GND (Bank 1)  
-
GND (Bank 1)  
-
47  
C4  
C^4  
C^5  
C^6  
C^7  
-
E8  
E^4  
E^5  
E^6  
E^7  
-
48  
C5  
E10  
49  
C6  
E12  
50  
C7  
E14  
51  
GND  
GND  
52  
-
TMS  
-
TMS  
-
53  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C8  
C^8  
C^9  
C^10  
C^11  
-
F0  
F^0  
F^1  
F^2  
F^3  
-
54  
C9  
F2  
55  
C10  
F4  
56  
C11  
F6  
57  
GND (Bank 1)  
GND (Bank 1)  
58  
C12  
C^12  
C^13  
C^14  
C^15  
-
F8  
F^4  
F^5  
F^6  
F^7  
-
59  
C13  
F10  
60  
C14  
F12  
61  
C15  
F13  
62*  
63  
I
VCCO (Bank 1)  
D15  
I
-
VCCO (Bank 1)  
-
64  
D^15  
D^14  
D^13  
D^12  
G14  
G12  
G10  
G8  
G^7  
G^6  
G^5  
G^4  
65  
D14  
66  
D13  
67  
D12  
32  
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
LA-ispMACH 4064V/Z and 4128V/Z Logic Signal Connections: 100-Pin TQFP  
LA-ispMACH 4064V/Z  
LA-ispMACH 4128V/Z  
Pin Number  
Bank Number  
GLB/MC/Pad ORP  
GLB/MC/Pad ORP  
68  
1
1
1
1
1
1
-
GND (Bank 1)  
-
D^11  
D^10  
D^9  
D^8  
-
GND (Bank 1)  
-
69  
D11  
G6  
G^3  
G^2  
G^1  
G^0  
-
70  
D10  
G5  
71  
D9  
G4  
72  
D8  
G2  
73*  
I
I
74  
TDO  
-
TDO  
-
75  
-
VCC  
-
VCC  
-
76  
-
GND  
-
GND  
-
77*  
1
1
1
1
1
1
1
1
1
1
1
1
0
-
I
-
I
-
78  
D7  
D^7  
D^6  
D^5  
D^4  
-
H13  
H^7  
H^6  
H^5  
H^4  
-
79  
D6  
H12  
80  
D5  
H10  
81  
D4  
H8  
82  
GND (Bank 1)  
GND (Bank 1)  
83  
VCCO (Bank 1)  
-
VCCO (Bank 1)  
-
84  
D3  
D^3  
D^2  
D^1  
D^0  
-
H6  
H4  
H^3  
H^2  
H^1  
H^0  
-
85  
D2  
86  
D1  
H2  
87  
D0/GOE1  
H0/GOE1  
CLK3/I  
CLK0/I  
VCC  
88  
CLK3/I  
89  
CLK0/I  
-
-
90  
VCC  
-
-
91  
0
0
0
0
0
0
0
0
0
0
A0/GOE0  
A^0  
A^1  
A^2  
A^3  
-
A0/GOE0  
A2  
A^0  
A^1  
A^2  
A^3  
-
92  
A1  
93  
A2  
A4  
94  
A3  
A6  
95  
VCCO (Bank 0)  
VCCO (Bank 0)  
GND (Bank 0)  
A8  
96  
GND (Bank 0)  
-
-
97  
A4  
A5  
A6  
A7  
A^4  
A^5  
A^6  
A^7  
A^4  
A^5  
A^6  
A^7  
98  
A10  
99  
100  
A12  
A14  
*This pin is input only.  
33  
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
LA-ispMACH 4128V Logic Signal Connections: 128-Pin TQFP  
LA-ispMACH 4128V  
Pin Number  
Bank Number  
GLB/MC/Pad  
ORP  
-
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
GND  
2
TDI  
-
3
VCCO (Bank 0)  
-
4
B0  
B^0  
B^1  
B^2  
B^3  
B^4  
B^5  
-
5
B1  
6
B2  
7
B4  
8
B5  
9
B6  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
GND (Bank 0)  
B8  
B^6  
B^7  
B^8  
B^9  
B^10  
B^11  
-
B9  
B10  
B12  
B13  
B14  
VCCO (Bank 0)  
C14  
C^11  
C^10  
C^9  
C^8  
C^7  
C^6  
-
C13  
C12  
C10  
C9  
C8  
GND (Bank 0)  
C6  
C^5  
C^4  
C^3  
C^2  
C^0  
-
C5  
C4  
C2  
C0  
VCCO (Bank 0)  
TCK  
-
VCC  
-
GND  
-
D14  
D^11  
D^10  
D^9  
D^8  
D^7  
D^6  
-
D13  
D12  
D10  
D9  
D8  
GND (Bank 0)  
VCCO (Bank 0)  
D6  
-
D^5  
34  
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
LA-ispMACH 4128V Logic Signal Connections: 128-Pin TQFP (Cont.)  
LA-ispMACH 4128V  
Pin Number  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
Bank Number  
GLB/MC/Pad  
ORP  
D^4  
D^3  
D^2  
D^1  
D^0  
-
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
D5  
D4  
D2  
D1  
D0  
CLK1/I  
GND (Bank 1)  
-
CLK2/I  
-
VCC  
-
E0  
E^0  
E^1  
E^2  
E^3  
E^4  
E^5  
-
E1  
E2  
E4  
E5  
E6  
VCCO (Bank 1)  
GND (Bank 1)  
-
E8  
E^6  
E^7  
E^8  
E^9  
E^11  
-
E9  
E10  
E12  
E14  
GND  
TMS  
-
VCCO (Bank 1)  
-
F0  
F^0  
F^1  
F^2  
F^3  
F^4  
F^5  
-
F1  
F2  
F4  
F5  
F6  
GND (Bank 1)  
F8  
F^6  
F^7  
F^8  
F^9  
F^10  
F^11  
-
F9  
F10  
F12  
F13  
F14  
VCCO (Bank 1)  
G14  
G^11  
G^10  
G^9  
G^8  
G13  
G12  
G10  
35  
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
LA-ispMACH 4128V Logic Signal Connections: 128-Pin TQFP (Cont.)  
LA-ispMACH 4128V  
Pin Number  
86  
Bank Number  
GLB/MC/Pad  
ORP  
G^7  
G^6  
-
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
G9  
87  
G8  
88  
GND (Bank 1)  
89  
G6  
G^5  
G^4  
G^3  
G^2  
G^0  
-
90  
G5  
91  
G4  
92  
G2  
93  
G0  
94  
VCCO (Bank 1)  
95  
TDO  
-
96  
VCC  
-
97  
GND  
-
98  
H14  
H^11  
H^10  
H^9  
H^8  
H^7  
H^6  
-
99  
H13  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
H12  
H10  
H9  
H8  
GND (Bank 1)  
VCCO (Bank 1)  
-
H6  
H^5  
H^4  
H^3  
H^2  
H^1  
H^0  
-
H5  
H4  
H2  
H1  
H0/GOE1  
CLK3/I  
GND (Bank 0)  
-
CLK0/I  
-
VCC  
-
A0/GOE0  
A^0  
A^1  
A^2  
A^3  
A^4  
A^5  
-
A1  
A2  
A4  
A5  
A6  
VCCO (Bank 0)  
GND (Bank 0)  
-
A8  
A9  
A^6  
A^7  
A^8  
A^9  
A^11  
A10  
A12  
A14  
36  
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
LA-ispMACH 4128V Logic Signal Connections: 144-Pin TQFP  
LA-ispMACH 4128V  
Pin Number  
Bank Number  
GLB/MC/Pad  
ORP  
-
1
-
GND  
2
-
TDI  
-
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
VCCO (Bank 0)  
-
4
B0  
B^0  
B^1  
B^2  
B^3  
B^4  
B^5  
-
5
B1  
6
B2  
7
B4  
8
B5  
9
B6  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
GND (Bank 0)  
B8  
B^6  
B^7  
B^8  
B^9  
B^10  
B^11  
-
B9  
B10  
B12  
B13  
B14  
NC  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
GND (Bank 0)1  
-
VCCO (Bank 0)  
-
NC  
-
C14  
C^11  
C^10  
C^9  
C^8  
C^7  
C^6  
-
C13  
C12  
C10  
C9  
C8  
GND (Bank 0)  
C6  
C^5  
C^4  
C^3  
C^2  
C^1  
C^0  
-
C5  
C4  
C2  
C1  
C0  
VCCO (Bank 0)  
TCK  
-
-
VCC  
-
-
GND  
NC  
-
0
0
0
0
0
-
D14  
D^11  
D^10  
D^9  
D^8  
D13  
D12  
D10  
37  
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
LA-ispMACH 4128V Logic Signal Connections: 144-Pin TQFP (Cont.)  
LA-ispMACH 4128V  
Pin Number  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
Bank Number  
GLB/MC/Pad  
ORP  
D^7  
D^6  
-
0
0
0
0
0
0
0
0
0
0
0
0
1
1
-
D9  
D8  
NC  
GND (Bank 0)  
-
VCCO (Bank 0)  
-
D6  
D^5  
D^4  
D^3  
D^2  
D^1  
D^0  
-
D5  
D4  
D2  
D1  
D0  
CLK1/I  
GND (Bank 1)  
-
CLK2/I  
-
VCC  
-
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
-
E0  
E^0  
E^1  
E^2  
E^3  
E^4  
E^5  
-
E1  
E2  
E4  
E5  
E6  
VCCO (Bank 1)  
GND (Bank 1)  
-
E8  
E^6  
E^7  
E^8  
E^9  
E^10  
E^11  
-
E9  
E10  
E12  
E13  
E14  
NC  
GND  
-
-
TMS  
-
1
1
1
1
1
1
1
1
1
1
1
VCCO (Bank 1)  
-
F0  
F^0  
F^1  
F^2  
F^3  
F^4  
F^5  
-
F1  
F2  
F4  
F5  
F6  
GND (Bank 1)  
F8  
F9  
F^6  
F^7  
F^8  
F10  
38  
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
LA-ispMACH 4128V Logic Signal Connections: 144-Pin TQFP (Cont.)  
LA-ispMACH 4128V  
Pin Number  
86  
Bank Number  
GLB/MC/Pad  
ORP  
F^9  
F^10  
F^11  
-
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
-
F12  
87  
F13  
88  
F14  
89  
NC  
90  
GND (Bank 1)1  
-
91  
VCCO (Bank 1)  
-
92  
NC  
-
93  
G14  
G^11  
G^10  
G^9  
G^8  
G^7  
G^6  
-
94  
G13  
95  
G12  
96  
G10  
97  
G9  
98  
G8  
99  
GND (Bank 1)  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
G6  
G^5  
G^4  
G^3  
G^2  
G^1  
G^0  
-
G5  
G4  
G2  
G1  
G0  
VCCO (Bank 1)  
TDO  
-
-
VCC  
-
-
GND  
-
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
NC  
-
H14  
H^11  
H^10  
H^9  
H^8  
H^7  
H^6  
-
H13  
H12  
H10  
H9  
H8  
NC  
GND (Bank 1)  
VCCO (Bank 1)  
H6  
-
-
H^5  
H^4  
H^3  
H^2  
H^1  
H^0  
-
H5  
H4  
H2  
H1  
H0/GOE1  
CLK3/I  
GND (Bank 0)  
CLK0/I  
-
-
39  
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
LA-ispMACH 4128V Logic Signal Connections: 144-Pin TQFP (Cont.)  
LA-ispMACH 4128V  
Pin Number  
129  
Bank Number  
GLB/MC/Pad  
ORP  
-
-
VCC  
130  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A0/GOE0  
A^0  
A^1  
A^2  
A^3  
A^4  
A^5  
-
131  
A1  
132  
A2  
133  
A4  
134  
A5  
135  
A6  
136  
VCCO (Bank 0)  
137  
GND (Bank 0)  
-
138  
A8  
A^6  
A^7  
A^8  
A^9  
A^10  
A^11  
-
139  
A9  
140  
A10  
A12  
A13  
A14  
NC2  
141  
142  
143  
144  
1. For device migration considerations, these NC pins are GND pins for I/O banks in LA-ispMACH 4128V devices.  
40  
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
Part Number Description  
LA XXXX XX – XX XX XXX X  
Device Family  
Operating Temperature Range  
E = Automotive  
Device Number  
Pin/Ball Count  
4032 = 32 Macrocells  
4064 = 64 Macrocells  
4128 = 128 Macrocells  
44 (1.0mm thickness)  
48 (1.0mm thickness)  
100  
128  
144  
Power  
Blank = Low Power  
Z = Zero Power  
Package  
Supply Voltage  
V = 3.3V  
TN = Lead-free TQFP  
C = 1.8V  
Speed  
75 = 7.5ns  
Ordering Information  
Pin/Ball  
Device  
Part Number  
LA4032V-75TN48E  
LA4032V-75TN44E  
LA4064V-75TN100E  
LA4064V-75TN48E  
LA4064V-75TN44E  
LA4128V-75TN144E  
LA4128V-75TN128E  
LA4128V-75TN100E  
LA4032ZC-75TN48E  
LA4064ZC-75TN100E  
LA4064ZC-75TN48E  
LA4128ZC-75TN100E  
Macrocells Voltage  
t
Package  
Count  
I/O  
32  
30  
64  
32  
30  
96  
92  
64  
32  
64  
32  
64  
Grade  
PD  
32  
32  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
1.8  
1.8  
1.8  
1.8  
7.5 Lead-free TQFP  
7.5 Lead-free TQFP  
7.5 Lead-free TQFP  
7.5 Lead-free TQFP  
7.5 Lead-free TQFP  
7.5 Lead-free TQFP  
7.5 Lead-free TQFP  
7.5 Lead-free TQFP  
7.5 Lead-free TQFP  
7.5 Lead-free TQFP  
7.5 Lead-free TQFP  
7.5 Lead-free TQFP  
48  
E
E
E
E
E
E
E
E
E
E
E
E
LA4032V  
44  
64  
100  
48  
LA4064V  
LA4128V  
64  
64  
44  
128  
128  
128  
32  
144  
128  
100  
48  
LA4032Z  
LA4064Z  
LA4128Z  
64  
100  
48  
64  
128  
100  
Automotive Disclaimer  
Products are not designed, intended or warranted to be fail-safe and are not designed, intended or warranted for  
use in applications related to the deployment of airbags. Further, products are not intended to be used, designed or  
warranted for use in applications that affect the control of the vehicle unless there is a fail-safe or redundancy fea-  
ture and also a warning signal to the operator of the vehicle upon failure. Use of products in such applications is  
fully at the risk of the customer, subject to applicable laws and regulations governing limitations on product liability.  
For Further Information  
In addition to this data sheet, the following technical notes may be helpful when designing with the LA-ispMACH  
4000V/Z automotive family:  
ispMACH 4000 Timing Model Design and Usage Guidelines (TN1004)  
ispMACH 4000V/B/C/Z Power Consumption (TN1005)  
41  
Lattice Semiconductor  
LA-ispMACH 4000V/Z Automotive Family Data Sheet  
Revision History  
Date  
Version  
01.0  
Change Summary  
April 2006  
Initial release.  
October 2006  
March 2007  
02.0  
Added LA-ispMACH 4000Z support information throughout.  
Updated ispMACH 4000 Introduction section.  
02.1  
Updated Signal Descriptions table.  
September 2007  
July 2008  
02.2  
02.3  
DC Electrical Characteristics table, removed duplicate specifications.  
Lowered the maximum supply current at 85°C to match the commercial product values.  
Added automotive disclaimer.  
42  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY