LAMXO640LUTSC-3FTN256E [LATTICE]

LA-MachXO Automotive Family Data Sheet; LA-汽车的MachXO系列数据手册
LAMXO640LUTSC-3FTN256E
型号: LAMXO640LUTSC-3FTN256E
厂家: LATTICE SEMICONDUCTOR    LATTICE SEMICONDUCTOR
描述:

LA-MachXO Automotive Family Data Sheet
LA-汽车的MachXO系列数据手册

石英晶振
文件: 总77页 (文件大小:875K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LA-MachXO Automotive Family Data Sheet  
DS1003 Version 01.5, November 2007  
LA-MachXO Automotive Family Data Sheet  
Introduction  
April 2006  
Data Sheet DS1003  
• Programmable sysIO™ buffer supports wide  
range of interfaces:  
Features  
Non-volatile, Infinitely Reconfigurable  
• Instant-on – powers up in microseconds  
• Single chip, no external configuration memory  
required  
LVCMOS 3.3/2.5/1.8/1.5/1.2  
LVTTL  
PCI  
LVDS, Bus-LVDS, LVPECL, RSDS  
• Excellent design security, no bit stream to  
intercept  
• Reconfigure SRAM based logic in milliseconds  
• SRAM and non-volatile memory programmable  
through JTAG port  
sysCLOCK™ PLLs  
• Up to two analog PLLs per device  
• Clock multiply, divide, and phase shifting  
System Level Support  
• IEEE Standard 1149.1 Boundary Scan  
• Onboard oscillator  
• Supports background programming of  
non-volatile memory  
• Devices operate with 3.3V, 2.5V, 1.8V or 1.2V  
power supply  
• IEEE 1532 compliant in-system programming  
AEC-Q100 Tested and Qualified  
Sleep Mode  
• Allows up to 100x static current reduction  
TransFR™ Reconfiguration (TFR)  
Introduction  
• In-field logic update while system operates  
The LA-MachXO automotive device family is optimized  
to meet the requirements of applications traditionally  
addressed by CPLDs and low capacity FPGAs: glue  
logic, bus bridging, bus interfacing, power-up control,  
and control logic. These devices bring together the best  
features of CPLD and FPGA devices on a single chip in  
AEC-Q100 tested and qualified versions.  
High I/O to Logic Density  
• 256 to 2280 LUT4s  
• 73 to 271 I/Os with extensive package options  
• Density migration supported  
• Lead free/RoHS compliant packaging  
Embedded and Distributed Memory  
• Up to 27.6 Kbits sysMEM™ Embedded Block  
RAM  
The devices use look-up tables (LUTs) and embedded  
block memories traditionally associated with FPGAs for  
flexible and efficient logic implementation. Through non-  
volatile technology, the devices provide the single-chip,  
• Up to 7.5 Kbits distributed RAM  
• Dedicated FIFO control logic  
Flexible I/O Buffer  
Table 1-1. LA-MachXO Automotive Family Selection Guide  
Device  
LAMXO256E/C  
LAMXO640E/C  
LAMXO1200E  
LAMXO2280E  
LUTs  
256  
640  
1200  
6.25  
9.2  
1
2280  
7.5  
27.6  
3
Dist. RAM (Kbits)  
EBR SRAM (Kbits)  
2.0  
6.0  
0
0
Number of EBR SRAM Blocks (9 Kbits)  
Voltage  
0
0
V
1.2/1.8/2.5/3.3V  
1.2/1.8/2.5/3.3V  
1.2  
1
1.2  
2
CC  
Number of PLLs  
0
0
Max. I/O  
78  
159  
211  
271  
Packages  
100-pin Lead-Free TQFP (14x14 mm)  
144-pin Lead-Free TQFP (20x20 mm)  
256-ball Lead-Free ftBGA (17x17 mm)  
324-ball Lead-Free ftBGA (19x19 mm)  
78  
74  
73  
73  
113  
159  
113  
211  
113  
211  
271  
© 2006 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand  
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
www.latticesemi.com  
1-1  
DS1003 Introduction_01.0  
Introduction  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
high-security, instant-on capabilities traditionally associated with CPLDs. Finally, advanced process technology and  
careful design will provide the high pin-to-pin performance also associated with CPLDs.  
The ispLEVER® design tools from Lattice allow complex designs to be efficiently implemented using the LA-  
MachXO automotive family of devices. Popular logic synthesis tools provide synthesis library support for LA-  
MachXO. The ispLEVER tools use the synthesis tool output along with the constraints from its floor planning tools  
to place and route the design in the LA-MachXO device. The ispLEVER tool extracts the timing from the routing  
and back-annotates it into the design for timing verification.  
1-2  
LA-MachXO Automotive Family Data Sheet  
Architecture  
February 2007  
Data Sheet DS1003  
Architecture Overview  
The LA-MachXO family architecture contains an array of logic blocks surrounded by Programmable I/O (PIO).  
Some devices in this family have sysCLOCK PLLs and blocks of sysMEM™ Embedded Block RAM (EBRs). Fig-  
ures 2-1, 2-2, and 2-3 show the block diagrams of the various family members.  
The logic blocks are arranged in a two-dimensional grid with rows and columns. The EBR blocks are arranged in a  
column to the left of the logic array. The PIO cells are located at the periphery of the device, arranged into Banks.  
The PIOs utilize a flexible I/O buffer referred to as a sysIO interface that supports operation with a variety of inter-  
face standards. The blocks are connected with many vertical and horizontal routing channel resources. The place  
and route software tool automatically allocates these routing resources.  
There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and the Programmable Functional  
unit without RAM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM, ROM, and register func-  
tions. The PFF block contains building blocks for logic, arithmetic, ROM, and register functions. Both the PFU and  
PFF blocks are optimized for flexibility, allowing complex designs to be implemented quickly and effectively. Logic  
blocks are arranged in a two-dimensional array. Only one type of block is used per row.  
In the LA-MachXO family, the number of sysIO Banks varies by device. There are different types of I/O Buffers on  
different Banks. See the details in later sections of this document. The sysMEM EBRs are large, dedicated fast  
memory blocks; these blocks are found only in the larger devices. These blocks can be configured as RAM, ROM  
or FIFO. FIFO support includes dedicated FIFO pointer and flag “hard” control logic to minimize LUT use.  
The LA-MachXO architecture provides up to two sysCLOCK™ Phase Locked Loop (PLL) blocks on larger devices.  
These blocks are located at either end of the memory blocks. The PLLs have multiply, divide, and phase shifting  
capabilities that are used to manage the frequency and phase relationships of the clocks.  
Every device in the family has a JTAG Port that supports programming and configuration of the device as well as  
access to the user logic.The LA-MachXO devices are available for operation from 3.3V, 2.5V, 1.8V, and 1.2V power  
supplies, providing easy integration into the overall system.  
© 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand  
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
www.latticesemi.com  
2-1  
DS1003 Architecture_01.2  
Architecture  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
Figure 2-1. Top View of the LA-MachXO1200 Device1  
PIOs Arranged into  
sysIO Banks  
Programmable  
Functional Units  
with RAM (PFUs)  
sysMEM Embedded  
Block RAM (EBR)  
Programmable  
Functional Units  
without RAM (PFFs)  
sysCLOCK  
PLL  
JTAG Port  
1. Top view of the LA-MachXO2280 device is similar but with higher LUT count, two PLLs, and three EBR blocks.  
Figure 2-2. Top View of the LA-MachXO640 Device  
PIOs Arranged into  
sysIO Banks  
Programmable  
Function Units  
without RAM (PFFs)  
Programmable  
Function Units  
with RAM (PFUs)  
JTAG Port  
2-2  
Architecture  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
Figure 2-3. Top View of the LA-MachXO256 Device  
Programmable Function  
Units without RAM (PFFs)  
JTAG Port  
PIOs Arranged  
into sysIO Banks  
Programmable  
Function  
Units with  
RAM (PFUs)  
PFU Blocks  
The core of the LA-MachXO devices consists of PFU and PFF blocks. The PFUs can be programmed to perform  
Logic, Arithmetic, Distributed RAM, and Distributed ROM functions. PFF blocks can be programmed to perform  
Logic, Arithmetic, and Distributed ROM functions. Except where necessary, the remainder of this data sheet will  
use the term PFU to refer to both PFU and PFF blocks.  
Each PFU block consists of four interconnected Slices, numbered 0-3 as shown in Figure 2-4. There are 53 inputs  
and 25 outputs associated with each PFU block.  
Figure 2-4. PFU Diagram  
From  
Routing  
LUT4 &  
CARRY  
LUT4 &  
CARRY  
LUT4 &  
CARRY  
LUT4 &  
CARRY  
LUT4 &  
CARRY  
LUT4 &  
CARRY  
LUT4 &  
CARRY  
LUT4 &  
CARRY  
FCIN  
FCO  
Slice 3  
Slice 0  
Slice 1  
Slice 2  
D
D
D
D
FF/  
D
D
FF/  
D
D
FF/  
FF/  
FF/  
FF/  
FF/  
FF/  
Latch  
Latch  
Latch  
Latch  
Latch  
Latch  
Latch  
Latch  
To  
Routing  
Slice  
Each Slice contains two LUT4 lookup tables feeding two registers (programmed to be in FF or Latch mode), and  
some associated logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7, and  
LUT8. There is control logic to perform set/reset functions (programmable as synchronous/asynchronous), clock  
select, chip-select, and wider RAM/ROM functions. Figure 2-5 shows an overview of the internal logic of the Slice.  
The registers in the Slice can be configured for positive/negative and edge/level clocks.  
2-3  
Architecture  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
There are 14 input signals: 13 signals from routing and one from the carry-chain (from the adjacent Slice/PFU).  
There are 7 outputs: 6 to the routing and one to the carry-chain (to the adjacent Slice/PFU). Table 2-1 lists the sig-  
nals associated with each Slice.  
Figure 2-5. Slice Diagram  
To Adjacent Slice/PFU  
Slice  
OFX1  
F1  
A1  
B1  
C1  
D1  
CO  
F
Fast Connection  
to I/O Cell*  
LUT4 &  
CARRY  
D
SUM  
FF/  
Latch  
Q1  
CI  
To  
From  
Routing  
Routing  
M1  
M0  
OFX0  
LUT  
Expansion  
Mux  
Fast Connection  
to I/O Cell*  
CO  
A0  
B0  
F0  
C0  
LUT4 &  
CARRY  
F
D0  
OFX0  
SUM  
D
FF/  
Latch  
Q0  
CI  
Control Signals  
selected and  
inverted per  
CE  
CLK  
LSR  
Slice in routing  
From Adjacent Slice/PFU  
Notes:  
Some inter-Slice signals are not shown.  
* Only PFUs at the edges have fast connections to the I/O cell.  
Table 2-1. Slice Signal Descriptions  
Function  
Input  
Type  
Signal Names  
Description  
Data signal  
A0, B0, C0, D0 Inputs to LUT4  
A1, B1, C1, D1 Inputs to LUT4  
Input  
Data signal  
Input  
Multi-purpose  
Control signal  
Control signal  
Control signal  
Inter-PFU signal  
Data signals  
Data signals  
Data signals  
Data signals  
Inter-PFU signal  
M0/M1  
CE  
Multipurpose Input  
Clock Enable  
Input  
Input  
LSR  
Local Set/Reset  
System Clock  
Fast Carry In1  
Input  
CLK  
Input  
FCIN  
F0, F1  
Q0, Q1  
OFX0  
OFX1  
FCO  
Output  
Output  
Output  
Output  
Output  
LUT4 output register bypass signals  
Register Outputs  
Output of a LUT5 MUX  
Output of a LUT6, LUT7, LUT82 MUX depending on the Slice  
Fast Carry Out1  
1. See Figure 2-4 for connection details.  
2. Requires two PFUs.  
2-4  
Architecture  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
Modes of Operation  
Each Slice is capable of four modes of operation: Logic, Ripple, RAM, and ROM. The Slice in the PFF is capable of  
all modes except RAM. Table 2-2 lists the modes and the capability of the Slice blocks.  
Table 2-2. Slice Modes  
Logic  
Ripple  
RAM  
SP 16x2  
N/A  
ROM  
PFU Slice  
PFF Slice  
LUT 4x2 or LUT 5x1  
LUT 4x2 or LUT 5x1  
2-bit Arithmetic Unit  
2-bit Arithmetic Unit  
ROM 16x1 x 2  
ROM 16x1 x 2  
Logic Mode: In this mode, the LUTs in each Slice are configured as 4-input combinatorial lookup tables (LUT4). A  
LUT4 can have 16 possible input combinations. Any logic function with four inputs can be generated by program-  
ming this lookup table. Since there are two LUT4s per Slice, a LUT5 can be constructed within one Slice. Larger  
lookup tables such as LUT6, LUT7, and LUT8 can be constructed by concatenating other Slices.  
Ripple Mode: Ripple mode allows the efficient implementation of small arithmetic functions. In ripple mode, the fol-  
lowing functions can be implemented by each Slice:  
• Addition 2-bit  
• Subtraction 2-bit  
• Add/Subtract 2-bit using dynamic control  
• Up counter 2-bit  
• Down counter 2-bit  
• Ripple mode multiplier building block  
• Comparator functions of A and B inputs  
- A greater-than-or-equal-to B  
- A not-equal-to B  
- A less-than-or-equal-to B  
Two additional signals, Carry Generate and Carry Propagate, are generated per Slice in this mode, allowing fast  
arithmetic functions to be constructed by concatenating Slices.  
RAM Mode: In this mode, distributed RAM can be constructed using each LUT block as a 16x2-bit memory.  
Through the combination of LUTs and Slices, a variety of different memories can be constructed.  
The ispLEVER design tool supports the creation of a variety of different size memories. Where appropriate, the  
software will construct these using distributed memory primitives that represent the capabilities of the PFU.  
Table 2-3 shows the number of Slices required to implement different distributed RAM primitives. Figure 2-6 shows  
the distributed memory primitive block diagrams. Dual port memories involve the pairing of two Slices. One Slice  
functions as the read-write port, while the other companion Slice supports the read-only port. For more information  
on RAM mode in LA-MachXO devices, please see details of additional technical documentation at the end of this  
data sheet.  
Table 2-3. Number of Slices Required For Implementing Distributed RAM  
SPR16x2  
DPR16x2  
Number of Slices  
1
2
Note: SPR = Single Port RAM, DPR = Dual Port RAM  
2-5  
Architecture  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
Figure 2-6. Distributed Memory Primitives  
SPR16x2  
DPR16x2  
AD0  
AD1  
AD2  
AD3  
RAD0  
RAD1  
RAD2  
RAD3  
WAD0  
WAD1  
WAD2  
WAD3  
DO0  
DO1  
DI0  
DI1  
WRE  
DI0  
DI1  
WCK  
WRE  
RDO0  
RDO1  
WDO0  
WDO1  
CK  
ROM16x1  
AD0  
AD1  
AD2  
AD3  
DO0  
ROM Mode:The ROM mode uses the same principal as the RAM modes, but without the Write port. Pre-loading is  
accomplished through the programming interface during configuration.  
PFU Modes of Operation  
Slices can be combined within a PFU to form larger functions. Table 2-4 tabulates these modes and documents the  
functionality possible at the PFU level.  
Table 2-4. PFU Modes of Operation  
Logic  
Ripple  
RAM  
ROM  
LUT 4x8 or  
MUX 2x1 x 8  
SPR16x2 x 4  
DPR16x2 x 2  
2-bit Add x 4  
ROM16x1 x 8  
LUT 5x4 or  
MUX 4x1 x 4  
SPR16x4 x 2  
DPR16x4 x 1  
2-bit Sub x 4  
2-bit Counter x 4  
2-bit Comp x 4  
ROM16x2 x 4  
ROM16x4 x 2  
ROM16x8 x 1  
LUT 6x 2 or  
MUX 8x1 x 2  
SPR16x8 x 1  
LUT 7x1 or  
MUX 16x1 x 1  
Routing  
There are many resources provided in the LA-MachXO devices to route signals individually or as buses with  
related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing)  
segments.  
The inter-PFU connections are made with three different types of routing resources: x1 (spans two PFUs), x2  
(spans three PFUs) and x6 (spans seven PFUs). The x1, x2, and x6 connections provide fast and efficient connec-  
tions in the horizontal and vertical directions.  
2-6  
Architecture  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
The ispLEVER design tool takes the output of the synthesis tool and places and routes the design. Generally, the  
place and route tool is completely automatic, although an interactive routing editor is available to optimize the  
design.  
Clock/Control Distribution Network  
The LA-MachXO automotive family of devices provides global signals that are available to all PFUs. These signals  
consist of four primary clocks and four secondary clocks. Primary clock signals are generated from four 16:1 muxes  
as shown in Figure 2-7 and Figure 2-8. The available clock sources for the LA-MachXO256 and LA-MachXO640  
devices are four dual function clock pins and 12 internal routing signals. The available clock sources for the LA-  
MachXO1200 and LA-MachXO2280 devices are four dual function clock pins, up to nine internal routing signals  
and up to six PLL outputs.  
Figure 2-7. Primary Clocks for LA-MachXO256 and LA-MachXO640 Devices  
12  
4
Primary Clock 0  
Primary Clock 1  
16:1  
16:1  
Primary Clock 2  
Primary Clock 3  
16:1  
16:1  
Routing Clock  
Pads  
2-7  
Architecture  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
Figure 2-8. Primary Clocks for LA-MachXO1200 and LA-MachXO2280 Devices  
Up to 9  
Up to 6  
4
Primary Clock 0  
Primary Clock 1  
16:1  
16:1  
16:1  
Primary Clock 2  
Primary Clock 3  
16:1  
Routing Clock  
PLL  
Pads Outputs  
Four secondary clocks are generated from four 16:1 muxes as shown in Figure 2-9. Four of the secondary clock  
sources come from dual function clock pins and 12 come from internal routing.  
Figure 2-9. Secondary Clocks for LA-MachXO Devices  
12  
4
16:1  
16:1  
Secondary (Control)  
Clocks  
16:1  
16:1  
Routing Clock  
Pads  
2-8  
Architecture  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
sysCLOCK Phase Locked Loops (PLLs)  
The LA-MachXO1200 and LA-MachXO2280 provide PLL support. The source of the PLL input divider can come  
from an external pin or from internal routing. There are four sources of feedback signals to the feedback divider:  
from CLKINTFB (internal feedback port), from the global clock nets, from the output of the post scalar divider, and  
from the routing (or from an external pin).There is a PLL_LOCK signal to indicate that the PLL has locked on to the  
input clock signal. Figure 2-10 shows the sysCLOCK PLL diagram.  
The setup and hold times of the device can be improved by programming a delay in the feedback or input path of  
the PLL which will advance or delay the output clock with reference to the input clock. This delay can be either pro-  
grammed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after  
adjustment and not relock until the t  
parameter has been satisfied. Additionally, the phase and duty cycle block  
LOCK  
allows the user to adjust the phase and duty cycle of the CLKOS output.  
The sysCLOCK PLLs provide the ability to synthesize clock frequencies. Each PLL has four dividers associated  
with it: input clock divider, feedback divider, post scalar divider, and secondary clock divider. The input clock divider  
is used to divide the input clock signal, while the feedback divider is used to multiply the input clock signal.The post  
scalar divider allows the VCO to operate at higher frequencies than the clock output, thereby increasing the fre-  
quency range. The secondary divider is used to derive lower frequency outputs.  
Figure 2-10. PLL Diagram  
Dynamic Delay Adjustment  
LOCK  
RST  
Input Clock  
Divider  
(CLKI)  
Post Scalar  
Divider  
(CLKOP)  
Phase/Duty  
Select  
Voltage  
Controlled  
Oscillator  
CLKOS  
Delay  
Adjust  
CLKI  
(from routing or  
external pin)  
CLKOP  
CLKOK  
Secondary  
Clock  
Divider  
Feedback  
Divider  
(CLKFB)  
CLKFB  
(from Post Scalar  
Divider output,  
clock net,  
(CLKOK)  
routing/external  
pin or CLKINTFB  
port  
CLKINTFB  
(internal feedback)  
Figure 2-11 shows the available macros for the PLL. Table 2-5 provides signal description of the PLL Block.  
Figure 2-11. PLL Primitive  
RST  
CLKOP  
CLKI  
CLKFB  
CLKOS  
CLKOK  
LOCK  
DDA MODE  
DDAIZR  
EHXPLLC  
DDAILAG  
CLKINTFB  
DDAIDEL[2:0]  
2-9  
Architecture  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
Table 2-5. PLL Signal Descriptions  
Signal  
I/O  
Description  
CLKI  
I
I
Clock input from external pin or routing  
PLL feedback input from PLL output, clock net, routing/external pin or internal feedback from  
CLKINTFB port  
CLKFB  
RST  
I
O
O
O
O
O
I
“1” to reset the input clock divider  
CLKOS  
PLL output clock to clock tree (phase shifted/duty cycle changed)  
PLL output clock to clock tree (No phase shift)  
PLL output to clock tree through secondary clock divider  
“1” indicates PLL LOCK to CLKI  
CLKOP  
CLKOK  
LOCK  
CLKINTFB  
DDAMODE  
DDAIZR  
DDAILAG  
DDAIDEL[2:0]  
Internal feedback source, CLKOP divider output before CLOCKTREE  
Dynamic Delay Enable. “1”: Pin control (dynamic), “0”: Fuse Control (static)  
Dynamic Delay Zero. “1”: delay = 0, “0”: delay = on  
Dynamic Delay Lag/Lead. “1”: Lag, “0”: Lead  
I
I
I
Dynamic Delay Input  
For more information on the PLL, please see details of additional technical documentation at the end of this data  
sheet.  
sysMEM Memory  
The LA-MachXO1200 and LA-MachXO2280 devices contain sysMEM Embedded Block RAMs (EBRs). The EBR  
consists of a 9-Kbit RAM, with dedicated input and output registers.  
sysMEM Memory Block  
The sysMEM block can implement single port, dual port, pseudo dual port, or FIFO memories. Each block can be  
used in a variety of depths and widths as shown in Table 2-6.  
Table 2-6. sysMEM Block Configurations  
Memory Mode  
Configurations  
8,192 x 1  
4,096 x 2  
2,048 x 4  
1,024 x 9  
512 x 18  
256 x 36  
Single Port  
8,192 x 1  
4,096 x 2  
2,048 x 4  
1,024 x 9  
512 x 18  
True Dual Port  
8,192 x 1  
4,096 x 2  
2,048 x 4  
1,024 x 9  
512 x 18  
256 x 36  
Pseudo Dual Port  
8,192 x 1  
4,096 x 2  
2,048 x 4  
1,024 x 9  
512 x 18  
256 x 36  
FIFO  
2-10  
Architecture  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
Bus Size Matching  
All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB  
word 0 to MSB word 0, LSB word 1 to MSB word 1 and so on. Although the word size and number of words for  
each port varies, this mapping scheme applies to each port.  
RAM Initialization and ROM Operation  
If desired, the contents of the RAM can be pre-loaded during device configuration. By preloading the RAM block  
during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a  
ROM.  
Memory Cascading  
Larger and deeper blocks of RAMs can be created using EBR sysMEM Blocks. Typically, the Lattice design tools  
cascade memory transparently, based on specific design inputs.  
Single, Dual, Pseudo-Dual Port and FIFO Modes  
Figure 2-12 shows the five basic memory configurations and their input/output names. In all the sysMEM RAM  
modes, the input data and address for the ports are registered at the input of the memory array. The output data of  
the memory is optionally registered at the memory array output.  
Figure 2-12. sysMEM Memory Primitives  
ADA[12:0]  
DIA[17:0]  
CLKA  
CEA  
RSTA  
WEA  
CSA[2:0]  
DOA[17:0]  
ADB[12:0]  
DIB[17:0]  
CEB  
CLKB  
RSTB  
WEB  
CSB[2:0]  
DOB[17:0]  
AD[12:0]  
DI[35:0]  
CLK  
DO[35:0]  
CE  
EBR  
EBR  
RST  
WE  
CS[2:0]  
True Dual Port RAM  
Single Port RAM  
ADW[12:0]  
DI[35:0]  
CLKW  
CEW  
ADR[12:0]  
DO[35:0]  
AD[12:0]  
CLK  
DO[35:0]  
CE  
EBR  
ROM  
EBR  
WE  
RST  
CS[2:0]  
CER  
RST  
CS[2:0]  
CLKR  
Pseudo-Dual Port RAM  
DO[35:0]  
CLKR  
RSTB  
RE  
RCE  
FF  
DI[35:0]  
CLKW  
RSTA  
WE  
EBR  
CEW  
AF  
EF  
AE  
FIFO  
2-11  
Architecture  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
The EBR memory supports three forms of write behavior for single or dual port operation:  
1. Normal – data on the output appears only during the read cycle. During a write cycle, the data (at the current  
address) does not appear on the output. This mode is supported for all data widths.  
2. WriteThrough – a copy of the input data appears at the output of the same port.This mode is supported for all  
data widths.  
3. Read-Before-Write – when new data is being written, the old contents of the address appears at the output.  
This mode is supported for x9, x18 and x36 data widths.  
FIFO Configuration  
The FIFO has a write port with Data-in, CEW, WE and CLKW signals. There is a separate read port with Data-out,  
RCE, RE and CLKR signals. The FIFO internally generates Almost Full, Full, Almost Empty and Empty Flags. The  
Full and Almost Full flags are registered with CLKW. The Empty and Almost Empty flags are registered with CLKR.  
The range of programming values for these flags are in Table 2-7.  
Table 2-7. Programmable FIFO Flag Ranges  
Flag Name  
Programming Range  
1 to (up to 2N-1)  
1 to Full-1  
Full (FF)  
Almost Full (AF)  
Almost Empty (AE)  
Empty (EF)  
1 to Full-1  
0
N = Address bit width  
The FIFO state machine supports two types of reset signals: RSTA and RSTB. The RSTA signal is a global reset  
that clears the contents of the FIFO by resetting the read/write pointer and puts the FIFO flags in their initial reset  
state. The RSTB signal is used to reset the read pointer. The purpose of this reset is to retransmit the data that is in  
the FIFO. In these applications it is important to keep careful track of when a packet is written into or read from the  
FIFO.  
Memory Core Reset  
The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchro-  
nously. RSTA and RSTB are local signals, which reset the output latches associated with Port A and Port B respec-  
tively. The Global Reset (GSRN) signal resets both ports. The output data latches and associated resets for both  
ports are as shown in Figure 2-13.  
2-12  
Architecture  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
Figure 2-13. Memory Core Reset  
SET  
Q
Memory Core  
Port A[17:0]  
Port B[17:0]  
LCLR  
Output Data  
Latches  
SET  
D
Q
LCLR  
RSTA  
RSTB  
GSRN  
Programmable Disable  
For further information on the sysMEM EBR block, see the details of additional technical documentation at the end  
of this data sheet.  
EBR Asynchronous Reset  
EBR asynchronous reset or GSR (if used) can only be applied if all clock enables are low for a clock cycle before the  
reset is applied and released a clock cycle after the reset is released, as shown in Figure 2-14. The GSR input to the  
EBR is always asynchronous.  
Figure 2-14. EBR Asynchronous Reset (Including GSR) Timing Diagram  
Reset  
Clock  
Clock  
Enable  
If all clock enables remain enabled, the EBR asynchronous reset or GSR may only be applied and released after  
the EBR read and write clock inputs are in a steady state condition for a minimum of 1/f  
(EBR clock). The reset  
MAX  
release must adhere to the EBR synchronous reset setup time before the next active read or write clock edge.  
If an EBR is pre-loaded during configuration, the GSR input must be disabled or the release of the GSR during  
device Wake Up must occur before the release of the device I/Os becoming active.  
These instructions apply to all EBR RAM, ROM and FIFO implementations. For the EBR FIFO mode, the GSR sig-  
nal is always enabled and the WE and RE signals act like the clock enable signals in Figure 2-14. The reset timing  
rules apply to the RPReset input vs the RE input and the RST input vs. the WE and RE inputs. Both RST and  
RPReset are always asynchronous EBR inputs.  
Note that there are no reset restrictions if the EBR synchronous reset is used and the EBR GSR input is disabled.  
2-13  
Architecture  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
PIO Groups  
On the LA-MachXO devices, PIO cells are assembled into two different types of PIO groups, those with four PIO  
cells and those with six PIO cells. PIO groups with four IOs are placed on the left and right sides of the device while  
PIO groups with six IOs are placed on the top and bottom. The individual PIO cells are connected to their respec-  
tive sysIO buffers and PADs.  
On all LA-MachXO devices, two adjacent PIOs can be joined to provide a complementary Output driver pair. The I/  
O pin pairs are labeled as "T" and "C" to distinguish between the true and complement pins.  
The LA-MachXO1200 and LA-MachXO2280 devices contain enhanced I/O capability. All PIO pairs on these larger  
devices can implement differential receivers. In addition, half of the PIO pairs on the left and right sides of these  
devices can be configured as LVDS transmit/receive pairs. PIOs on the top of these larger devices also provide PCI  
support.  
Figure 2-15. Group of Four Programmable I/O Cells  
This structure is used on the  
left and right of MachXO devices  
PADA "T"  
PIO A  
PADB "C"  
PIO B  
Four PIOs  
PADC "T"  
PIO C  
PADD "C"  
PIO D  
Figure 2-16. Group of Six Programmable I/O Cells  
This structure is used on the top  
and bottom of MachXO devices  
PADA "T"  
PIO A  
PADB "C"  
PIO B  
PADC "T"  
PIO C  
Six PIOs  
PADD "C"  
PIO D  
PADE "T"  
PIO E  
PADF "C"  
PIO F  
PIO  
The PIO blocks provide the interface between the sysIO buffers and the internal PFU array blocks. These blocks  
receive output data from the PFU array and a fast output data signal from adjacent PFUs. The output data and fast  
2-14  
Architecture  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
output data signals are multiplexed and provide a single signal to the I/O pin via the sysIO buffer. Figure 2-17  
shows the LA-MachXO PIO logic.  
The tristate control signal is multiplexed from the output data signals and their complements. In addition a global  
signal (TSALL) from a dedicated pad can be used to tristate the sysIO buffer.  
The PIO receives an input signal from the pin via the sysIO buffer and provides this signal to the core of the device.  
In addition there are programmable elements that can be utilized by the design tools to avoid positive hold times.  
Figure 2-17. LA-MachXO PIO Block Diagram  
From Routing  
From Routing  
TS  
TSALL  
TO  
sysIO  
Buffer  
Fast Output  
Data signal  
DO  
PAD  
1
Input  
Data Signal  
2
3
Programmable  
Delay Elements  
4+-  
Note: Buffer 1 tracks with V  
Buffer 2 tracks with V  
CCAUX  
CCIO.  
From Complementary  
Pad  
Buffer 3 tracks with internal 1.2V V  
Buffer 4 is available in MachXO1200 and MachXO2280 devices only.  
.
REF  
sysIO Buffer  
Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the  
periphery of the device in groups referred to as Banks. The sysIO buffers allow users to implement the wide variety  
of standards that are found in today’s systems including LVCMOS, TTL, BLVDS, LVDS and LVPECL.  
In the LA-MachXO devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS and PCI) are  
powered using V  
. In addition to the Bank V  
supplies, the LA-MachXO devices have a V core logic power  
CCIO  
CCIO CC  
supply, and a V  
input buffers.  
supply that powers up a variety of internal circuits including all the differential and referenced  
CCAUX  
LA-MachXO256 and LA-MachXO640 devices contain single-ended input buffers and single-ended output buffers  
with complementary outputs on all the I/O Banks.  
LA-MachXO1200 and LA-MachXO2280 devices contain two types of sysIO buffer pairs.  
1. Top and Bottom sysIO Buffer Pairs  
The sysIO buffer pairs in the top and bottom Banks of the device consist of two single-ended output drivers and  
two sets of single-ended input buffers (for ratioed or absolute input levels). The I/O pairs on the top and bottom  
2-15  
Architecture  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
of the devices also support differential input buffers. PCI clamps are available on the top Bank I/O buffers. The  
PCI clamp is enabled after V , V , and V are at valid operating levels and the device has been con-  
CC CCAUX  
CCIO  
figured.  
The two pads in the pair are described as “true” and “comp”, where the true pad is associated with the positive  
side of the differential input buffer and the comp (complementary) pad is associated with the negative side of  
the differential input buffer.  
2. Left and Right sysIO Buffer Pairs  
The sysIO buffer pairs in the left and right Banks of the device consist of two single-ended output drivers and  
two sets of single-ended input buffers (supporting ratioed and absolute input levels). The devices also have a  
differential driver per output pair. The referenced input buffer can also be configured as a differential input  
buffer. In these Banks the two pads in the pair are described as “true” and “comp”, where the true pad is asso-  
ciated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the  
negative side of the differential I/O.  
Typical I/O Behavior During Power-up  
The internal power-on-reset (POR) signal is deactivated when V and V  
have reached satisfactory levels.  
CC  
CCAUX  
After the POR signal is deactivated, the FPGA core logic becomes active. It is the user’s responsibility to ensure  
that all V Banks are active with valid input logic levels to properly control the output logic states of all the I/O  
CCIO  
Banks that are critical to the application. The default configuration of the I/O pins in a blank device is tri-state with a  
weak pull-up to VCCIO. The I/O pins will maintain the blank configuration until VCC, VCCAUX and VCCIO have  
reached satisfactory levels at which time the I/Os will take on the user-configured settings.  
The V and V  
supply the power to the FPGA core fabric, whereas the V  
supplies power to the I/O buff-  
CC  
CCAUX  
CCIO  
ers. In order to simplify system design while providing consistent and predictable I/O behavior, the I/O buffers  
should be powered up along with the FPGA core fabric. Therefore, V supplies should be powered up before or  
CCIO  
together with the V and V  
supplies  
CC  
CCAUX  
Supported Standards  
The LA-MachXO sysIO buffer supports both single-ended and differential standards. Single-ended standards can  
be further subdivided into LVCMOS and LVTTL. The buffer supports the LVTTL, LVCMOS 1.2, 1.5, 1.8, 2.5, and  
3.3V standards. In the LVCMOS and LVTTL modes, the buffer has individually configurable options for drive  
strength, bus maintenance (weak pull-up, weak pull-down, bus-keeper latch or none) and open drain. BLVDS and  
LVPECL output emulation is supported on all devices.The LA-MachXO1200 and LA-MachXO2280 support on-chip  
LVDS output buffers on approximately 50% of the I/Os on the left and right Banks. Differential receivers for LVDS,  
BLVDS and LVPECL are supported on all Banks of LA-MachXO1200 and LA-MachXO2280 devices. PCI support is  
provided in the top Banks of the LA-MachXO1200 and LA-MachXO2280 devices. Table 2-8 summarizes the I/O  
characteristics of the devices in the LA-MachXO family.  
Tables 2-9 and 2-10 show the I/O standards (together with their supply and reference voltages) supported by the  
LA-MachXO devices. For further information on utilizing the sysIO buffer to support a variety of standards please  
see the details of additional technical documentation at the end of this data sheet.  
2-16  
Architecture  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
Table 2-8. I/O Support Device by Device  
LA-MachXO256  
LA-MachXO640  
LA-MachXO1200  
LA-MachXO2280  
Number of I/O Banks  
Type of Input Buffers  
2
4
8
8
Single-ended  
(all I/O Banks)  
Single-ended  
(all I/O Banks)  
Single-ended  
(all I/O Banks)  
Single-ended  
(all I/O Banks)  
Differential Receivers  
(all I/O Banks)  
Differential Receivers  
(all I/O Banks)  
Single-ended buffers  
with complementary  
Single-ended buffers  
with complementary  
Single-ended buffers  
with complementary  
Single-ended buffers  
with complementary  
outputs (all I/O Banks) outputs (all I/O Banks) outputs (all I/O Banks) outputs (all I/O Banks)  
Types of Output Buffers  
Differential buffers with Differential buffers with  
true LVDS outputs (50% true LVDS outputs (50%  
on left and right side)  
on left and right side)  
Differential Output  
Emulation Capability  
All I/O Banks  
No  
All I/O Banks  
No  
All I/O Banks  
All I/O Banks  
PCI Support  
Top side only  
Top side only  
Table 2-9. Supported Input Standards  
VCCIO (Typ.)  
Input Standard  
3.3V  
2.5V  
1.8V  
1.5V  
1.2V  
Single Ended Interfaces  
LVTTL  
LVCMOS33  
LVCMOS25  
LVCMOS18  
LVCMOS15  
LVCMOS12  
PCI1  
Differential Interfaces  
BLVDS2, LVDS2, LVPECL2, RSDS2  
1. Top Banks of LA-MachXO1200 and LA-MachXO2280 devices only.  
2. LA-MachXO1200 and LA-MachXO2280 devices only.  
2-17  
Architecture  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
Table 2-10. Supported Output Standards  
Output Standard  
Single-ended Interfaces  
LVTTL  
Drive  
V
(Typ.)  
CCIO  
4mA, 8mA, 12mA, 16mA  
4mA, 8mA, 12mA, 14mA  
4mA, 8mA, 12mA, 14mA  
4mA, 8mA, 12mA, 14mA  
4mA, 8mA  
3.3  
LVCMOS33  
3.3  
2.5  
1.8  
1.5  
1.2  
LVCMOS25  
LVCMOS18  
LVCMOS15  
LVCMOS12  
2mA, 6mA  
LVCMOS33, Open Drain  
LVCMOS25, Open Drain  
LVCMOS18, Open Drain  
LVCMOS15, Open Drain  
LVCMOS12, Open Drain  
PCI333  
4mA, 8mA, 12mA, 14mA  
4mA, 8mA, 12mA, 14mA  
4mA, 8mA, 12mA, 14mA  
4mA, 8mA  
2mA, 6mA  
N/A  
3.3  
Differential Interfaces  
LVDS1, 2  
BLVDS, RSDS2  
N/A  
N/A  
N/A  
2.5  
2.5  
3.3  
LVPECL2  
1. LA-MachXO1200 and LA-MachXO2280 devices have dedicated LVDS buffers.  
2. These interfaces can be emulated with external resistors in all devices.  
3. Top Banks of LA-MachXO1200 and LA-MachXO2280 devices only.  
sysIO Buffer Banks  
The number of Banks vary between the devices of this family. Eight Banks surround the two larger devices, the LA-  
MachXO1200 and LA-MachXO2280 (two Banks per side). The LA-MachXO640 has four Banks (one Bank per  
side). The smallest member of this family, the LA-MachXO256, has only two Banks.  
Each sysIO buffer Bank is capable of supporting multiple I/O standards. Each Bank has its own I/O supply voltage  
(V  
) which allows it to be completely independent from the other Banks. Figure 2-18, Figure 2-18, Figure 2-20  
CCIO  
and Figure 2-21 shows the sysIO Banks and their associated supplies for all devices.  
2-18  
Architecture  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
Figure 2-18. LA-MachXO2280 Banks  
1
1
35  
1
36  
1
Bank 0  
Bank 1  
VCCIO2  
GND  
VCCIO7  
GND  
34  
1
34  
1
VCCIO6  
GND  
VCCIO3  
GND  
33  
1
33  
Bank 5  
Bank 4  
31  
1
35  
Figure 2-19. LA-MachXO1200 Banks  
1
1
24  
1
30  
1
Bank 0  
Bank 1  
VCCIO2  
GND  
VCCIO7  
GND  
26  
1
26  
1
VCCIO6  
GND  
VCCIO3  
GND  
28  
1
28  
Bank 5  
Bank 4  
20  
1
29  
2-19  
Architecture  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
Figure 2-20. LA-MachXO640 Banks  
1
1
42  
1
Bank 0  
VCCO3  
GND  
VCCO1  
GND  
40  
1
40  
37  
Bank 2  
Figure 2-21. LA-MachXO256 Banks  
VCCO0  
GND  
1
1
Bank 0  
41  
37  
Bank 1  
GND  
V CCO1  
Hot Socketing  
The LA-MachXO automotive devices have been carefully designed to ensure predictable behavior during power-  
up and power-down. Leakage into I/O pins is controlled to within specified limits. This allows for easy integration  
2-20  
Architecture  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
with the rest of the system. These capabilities make the LA-MachXO ideal for many multiple power supply and  
hot-swap applications.  
Sleep Mode  
The LA-MachXO “C” devices (V  
= 1.8/2.5/3.3V) have a sleep mode that allows standby current to be reduced  
CC  
dramatically during periods of system inactivity. Entry and exit to Sleep mode is controlled by the SLEEPN pin.  
During Sleep mode, the logic is non-operational, registers and EBR contents are not maintained, and I/Os are tri-  
stated. Do not enter Sleep mode during device programming or configuration operation. In Sleep mode, power sup-  
plies are in their normal operating range, eliminating the need for external switching of power supplies. Table 2-11  
compares the characteristics of Normal, Off and Sleep modes.  
Table 2-11. Characteristics of Normal, Off and Sleep Modes  
Characteristic  
SLEEPN Pin  
Normal  
High  
Off  
Sleep  
Low  
0
Static Icc  
Typical <10mA  
<10µA  
Typical <100uA  
<10µA  
I/O Leakage  
<1mA  
Power Supplies VCC/VCCIO/VCCAUX  
Logic Operation  
Normal Range  
User Defined  
User Defined  
Operational  
Maintained  
0
Normal Range  
Non operational  
Tri-state  
Non Operational  
Tri-state  
I/O Operation  
JTAG and Programming circuitry  
EBR Contents and Registers  
Non-operational  
Non-maintained  
Non-operational  
Non-maintained  
SLEEPN Pin Characteristics  
The SLEEPN pin behaves as an LVCMOS input with the voltage standard appropriate to the VCC supply for the  
device. This pin also has a weak pull-up, along with a Schmidt trigger and glitch filter to prevent false triggering. An  
external pull-up to VCC is recommended when Sleep Mode is not used to ensure the device stays in normal oper-  
ation mode. Typically, the device enters sleep mode several hundred nanoseconds after SLEEPN is held at a valid  
low and restarts normal operation as specified in the Sleep Mode Timing table. The AC and DC specifications por-  
tion of this data sheet shows a detailed timing diagram.  
Oscillator  
Every LA-MachXO device has an internal CMOS oscillator. The oscillator can be routed as an input clock to the  
clock tree or to general routing resources. The oscillator frequency can be divided by internal logic. There is a ded-  
icated programming bit to enable/disable the oscillator. The oscillator frequency ranges from 16MHz to 26MHz.  
Configuration and Testing  
The following section describes the configuration and testing features of the LA-MachXO automotive family of  
devices.  
IEEE 1149.1-Compliant Boundary Scan Testability  
All LA-MachXO devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant test  
access port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a  
serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to  
be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification.The test  
access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port shares its power supply with  
one of the VCCIO Banks (LA-MachXO256: V  
; LA-MachXO640: V  
; LA-MachXO1200 and LA-  
CCIO1  
CCIO2  
MachXO2280: V  
) and can operate with LVCMOS3.3, 2.5, 1.8, 1.5, and 1.2 standards.  
CCIO5  
For more details on boundary scan test, please see information regarding additional technical documentation at  
the end of this data sheet.  
2-21  
Architecture  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
Device Configuration  
All LA-MachXO devices contain a test access port that can be used for device configuration and programming.  
The non-volatile memory in the LA-MachXO can be configured in two different modes:  
• In IEEE 1532 mode via the IEEE 1149.1 port. In this mode, the device is off-line and I/Os are controlled by  
BSCAN registers.  
• In background mode via the IEEE 1149.1 port. This allows the device to remain operational in user mode  
while reprogramming takes place.  
The SRAM configuration memory can be configured in three different ways:  
• At power-up via the on-chip non-volatile memory.  
• After a refresh command is issued via the IEEE 1149.1 port.  
• In IEEE 1532 mode via the IEEE 1149.1 port.  
Figure 2-22 provides a pictorial representation of the different programming modes available in the LA-MachXO  
devices. On power-up, the SRAM is ready to be configured with IEEE 1149.1 serial TAP port using IEEE 1532 pro-  
tocols.  
Leave Alone I/O  
When using IEEE 1532 mode for non-volatile memory programming, SRAM configuration, or issuing a refresh  
command, users may specify I/Os as high, low, tristated or held at current value. This provides excellent flexibility  
for implementing systems where reconfiguration or reprogramming occurs on-the-fly.  
TransFR (Transparent Field Reconfiguration)  
TransFR (TFR) is a unique Lattice technology that allows users to update their logic in the field without interrupting  
system operation using a single ispVM command. See Lattice technical note #TN1087, Minimizing System Inter-  
ruption During Configuration Using TransFR Technology, for details.  
Security  
The LA-MachXO automotive devices contain security bits that, when set, prevent the readback of the SRAM con-  
figuration and non-volatile memory spaces. Once set, the only way to clear the security bits is to erase the memory  
space.  
For more information on device configuration, please see details of additional technical documentation at the end  
of this data sheet.  
AEC-Q100 Tested and Qualified  
The Automotive Electronics Council (AEC) consists of two committees: the Quality Systems Committee and the  
Component Technical Committee. These committees are composed of representatives from sustaining and other  
associate members. The AEC Component Technical Committee is the standardization body for establishing stan-  
dards for reliable, high quality electronic components. In particular, the AEC-Q100 specification “Stress Test for  
Qualification for Integrated Circuits” defines qualification and re-qualification requirements for electronic compo-  
nents. Components meeting these specifications are suitable for use in the harsh automotive environment without  
additional component-level qualification testing. Lattice's LA-ispMACH 4000V and LA-MachXO devices completed  
and passed the requirements of the AEC-Q100 specification.  
2-22  
Architecture  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
Figure 2-22. LA-MachXO Configuration and Programming  
ISP 1149.1 TAP Port  
Port  
Background  
1532  
Mode  
Configure in milliseconds  
Program in seconds  
Power-up  
Refresh  
Non-Volatile  
Memory Space  
SRAM Memory  
Space  
Download in  
microseconds  
Density Shifting  
The LA-MachXO family has been designed to enable density migration in the same package. Furthermore, the  
architecture ensures a high success rate when performing design migration from lower density parts to higher den-  
sity parts. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a  
lower density device. However, the exact details of the final resource utilization will impact the likely success in  
each case.  
2-23  
LA-MachXO Automotive Family Data Sheet  
DC and Switching Characteristics  
November 2007  
Data Sheet DS1003  
Absolute Maximum Ratings1, 2, 3  
LCMXO E (1.2V)  
LCMXO C (1.8V/2.5V/3.3V)  
Supply Voltage V . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to 1.32V . . . . . . . . . . . . . . . -0.5 to 3.75V  
CC  
Supply Voltage V  
. . . . . . . . . . . . . . . . . . . . . -0.5 to 3.75V . . . . . . . . . . . . . . . -0.5 to 3.75V  
CCAUX  
Output Supply Voltage V  
. . . . . . . . . . . . . . . . -0.5 to 3.75V . . . . . . . . . . . . . . . -0.5 to 3.75V  
CCIO  
I/O Tristate Voltage Applied 4 . . . . . . . . . . . . . . . . . -0.5 to 3.75V . . . . . . . . . . . . . . . -0.5 to 3.75V  
Dedicated Input Voltage Applied4 . . . . . . . . . . . . . -0.5 to 3.75V . . . . . . . . . . . . . . . -0.5 to 4.25V  
Storage Temperature (ambient). . . . . . . . . . . . . . . -65 to 150°C . . . . . . . . . . . . . . . -65 to 150°C  
Junction Temp. (Tj) . . . . . . . . . . . . . . . . . . . . . . . . . . +125°C . . . . . . . . . . . . . . . . . . . +125°C  
1. Stress above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. Functional operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
2. Compliance with the Lattice Thermal Management document is required.  
3. All voltages referenced to GND.  
4. Overshoot and undershoot of -2V to (V  
+ 2) volts is permitted for a duration of <20ns.  
IHMAX  
Recommended Operating Conditions1  
Symbol  
Parameter  
Min.  
1.14  
1.71  
3.135  
1.14  
-40  
Max.  
1.26  
Units  
V
Core Supply Voltage for 1.2V Devices  
V
CC  
Core Supply Voltage for 1.8V/2.5V/3.3V Devices  
Auxiliary Supply Voltage  
3.465  
3.465  
3.465  
125  
V
3
V
V
t
V
CCAUX  
2
I/O Driver Supply Voltage  
V
CCIO  
Junction Temperature Automotive Operation  
Junction Temperature, Flash Programming, Automotive  
oC  
oC  
JAUTO  
t
-40  
125  
JFLASHAUTO  
1. Like power supplies must be tied together. For example, if V  
and V are both 2.5V, they must also be the same supply. 3.3V V  
CC CCIO  
CCIO  
and 1.2V V  
should be tied to V  
or 1.2V V respectively.  
CCIO  
CCAUX CC  
2. See recommended voltages by I/O standard in subsequent table.  
3. V must reach minimum V value before V reaches 2.5V.  
CC  
CC  
CCAUX  
LA-MachXO256 and LA-MachXO640 Hot Socketing Specifications1, 2, 3  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max  
Units  
I
Input or I/O leakage Current  
0 V V (MAX)  
+/-1000  
µA  
DK  
IN  
IH  
1. Insensitive to sequence of V  
V
and V  
. However, assumes monotonic rise/fall rates for V  
V
and V  
CC, CCAUX,  
CCIO  
CC, CCAUX, CCIO.  
2. 0 V V (MAX), 0 V  
V  
(MAX) and 0 V  
V  
(MAX).  
CC  
CC  
CCIO  
CCIO  
CCAUX  
CCAUX  
3. I is additive to I  
I
or I  
.
DK  
PU, PD  
BH  
© 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand  
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
www.latticesemi.com  
3-1  
DS1003 DC and Switching_01.3  
DC and Switching Characteristics  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
LA-MachXO1200 and LA-MachXO2280 Hot Socketing Specifications1, 2, 3, 4  
Symbol  
Non-LVDS General Purpose sysIOs  
Input or I/O Leakage Current  
LVDS General Purpose sysIOs  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
I
0 V V (MAX.)  
+/-1000  
µA  
DK  
IN  
IH  
V
V
V  
+/-1000  
µA  
IN  
IN  
CCIO  
I
Input or I/O Leakage Current  
DK_LVDS  
> V  
35  
mA  
CCIO  
1. Insensitive to sequence of V  
V
and V  
. However, assumes monotonic rise/fall rates for V  
V
and V  
CC, CCAUX,  
CCIO  
CC, CCAUX, CCIO.  
2. 0 V V (MAX), 0 V  
V  
(MAX), and 0 V  
V  
(MAX).  
CC  
CC  
CCIO  
CCIO  
CCAUX  
CCAUX  
3. I is additive to I  
I
or I  
.
DK  
PU, PW  
BH  
4. LVCMOS and LVTTL only.  
DC Electrical Characteristics  
Over Recommended Operating Conditions  
Symbol  
Parameter  
Condition  
- 0.2V)  
CCIO  
Min.  
Typ.  
Max.  
Units  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
V
0 V (V  
10  
40  
IN  
1, 4, 5  
I
I
Input or I/O Leakage  
IL, IH  
(V  
- 0.2V) < V 3.6V  
CCIO  
IN  
CCIO  
I
I
I
I
I
I
I/O Active Pull-up Current  
0 V 0.7 V  
-30  
30  
-150  
150  
PU  
IN  
I/O Active Pull-down Current  
Bus Hold Low sustaining current  
Bus Hold High sustaining current  
V
V
V
(MAX) V V (MAX)  
IN IH  
PD  
IL  
= V (MAX)  
30  
BHLS  
BHHS  
BHLO  
IN  
IN  
IL  
= 0.7V  
-30  
CCIO  
Bus Hold Low Overdrive current 0 V V (MAX)  
150  
-150  
IN  
IH  
Bus Hold High Overdrive current 0 V V (MAX)  
BHHO  
IN  
IH  
3
V
Bus Hold trip Points  
I/O Capacitance2  
0 V V (MAX)  
V
(MAX)  
V
(MIN)  
BHT  
IN  
IH  
IL  
IH  
V
V
= 3.3V, 2.5V, 1.8V, 1.5V, 1.2V,  
CCIO  
CC  
C1  
C2  
8
8
pf  
pf  
= Typ., V = 0 to V (MAX)  
IO  
IH  
V
V
= 3.3V, 2.5V, 1.8V, 1.5V, 1.2V,  
Dedicated Input Capacitance2  
CCIO  
CC  
= Typ., V = 0 to V (MAX)  
IO  
IH  
1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured  
with the output driver active. Bus maintenance circuits are disabled.  
2. T 25°C, f = 1.0MHz  
A
3. Please refer to V and V in the sysIO Single-Ended DC Electrical Characteristics table of this document.  
IL  
IH  
4. Not applicable to SLEEPN pin.  
5. When V is higher than V , a transient current typically of 30ns in duration or less with a peak current of 6mA can occur on the high-to-  
IH  
CCIO  
low transition. For LA-MachXO1200 and LA-MachXO2280 true LVDS output pins, V must be less than or equal to V  
.
IH  
CCIO  
3-2  
DC and Switching Characteristics  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
Supply Current (Sleep Mode)1, 2  
Symbol  
Parameter  
Device  
Typ.3  
12  
12  
1
Max.  
25  
Units  
µA  
LCMXO256C  
LCMXO640C  
LCMXO256C  
LCMXO640C  
I
Core Power Supply  
CC  
25  
µA  
15  
µA  
I
I
Auxiliary Power Supply  
Bank Power Supply4  
CCAUX  
1
25  
µA  
All LCMXO ‘C’ Devices  
2
30  
µA  
CCIO  
1. Assumes all inputs are configured as LVCMOS and held at the VCCIO or GND.  
2. Frequency = 0MHz.  
3. T = 25°C, power supplies at nominal voltage.  
A
4. Per Bank.  
Supply Current (Standby)1, 2, 3, 4  
Over Recommended Operating Conditions  
Symbol  
Parameter  
Device  
LCMXO256C  
Typ.5  
7
Units  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
LCMXO640C  
LCMXO256E  
LCMXO640E  
LCMXO1200E  
LCMXO2280E  
LCMXO256E/C  
LCMXO640E/C  
LCMXO1200E  
LCMXO2280E  
All devices  
9
4
I
Core Power Supply  
CC  
6
10  
12  
5
7
Auxiliary Power Supply  
= 3.3V  
I
I
CCAUX  
V
12  
13  
2
CCAUX  
Bank Power Supply6  
CCIO  
1. For further information on supply current, please see details of additional technical documentation at the end of this data sheet.  
2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at V  
or GND.  
CCIO  
3. Frequency = 0MHz.  
4. User pattern = blank.  
5. T = 25oC, power supplies at nominal voltage.  
J
6. Per Bank. V  
= 2.5V. Does not include pull-up/pull-down.  
CCIO  
3-3  
DC and Switching Characteristics  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
Initialization Supply Current1, 2, 3, 4  
Over Recommended Operating Conditions  
Symbol  
Parameter  
Device  
Typ.5  
13  
17  
10  
14  
18  
20  
10  
13  
24  
25  
2
Units  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
LCMXO256C  
LCMXO640C  
LCMXO256E  
LCMXO640E  
LCMXO1200E  
LCMXO2280E  
LCMXO256E/C  
LCMXO640E/C  
LCMXO1200E  
LCMXO2280E  
All devices  
I
Core Power Supply  
CC  
Auxiliary Power Supply  
I
I
CCAUX  
V
= 3.3V  
CCAUX  
Bank Power Supply6  
CCIO  
1. For further information on supply current, please see details of additional technical documentation at the end of this data sheet.  
2. Assumes all I/O pins are held at V  
3. Frequency = 0MHz.  
or GND.  
CCIO  
4. Typical user pattern.  
5. T = 25oC, power supplies at nominal voltage.  
J
6. Per Bank, V  
= 2.5V. Does not include pull-up/pull-down.  
CCIO  
3-4  
DC and Switching Characteristics  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
Programming and Erase Flash Supply Current1, 2, 3, 4  
Symbol  
Parameter  
Device  
LCMXO256C  
Typ.5  
9
Units  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
LCMXO640C  
LCMXO256E  
LCMXO640E  
LCMXO1200E  
LCMXO2280E  
LCMXO256E/C  
LCMXO640E/C  
LCMXO1200E  
LCMXO2280E  
All devices  
11  
6
I
Core Power Supply  
CC  
8
12  
14  
8
10  
15  
16  
2
Auxiliary Power Supply  
I
I
CCAUX  
V
= 3.3V  
CCAUX  
Bank Power Supply6  
CCIO  
1. For further information on supply current, please see details of additional technical documentation at the end of this data sheet.  
2. Assumes all I/O pins are held at V  
3. Typical user pattern.  
or GND.  
CCIO  
4. JTAG programming is at 25MHz.  
5. T = 25°C, power supplies at nominal voltage.  
J
6. Per Bank. V  
= 2.5V. Does not include pull-up/pull-down.  
CCIO  
3-5  
DC and Switching Characteristics  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
sysIO Recommended Operating Conditions  
V
(V)  
CCIO  
Standard  
LVCMOS 3.3  
LVCMOS 2.5  
LVCMOS 1.8  
LVCMOS 1.5  
LVCMOS 1.2  
LVTTL  
PCI3  
LVDS1, 2  
LVPECL1  
BLVDS1  
Min.  
3.135  
2.375  
1.71  
Typ.  
3.3  
2.5  
1.8  
1.5  
1.2  
3.3  
3.3  
2.5  
3.3  
2.5  
2.5  
Max.  
3.465  
2.625  
1.89  
1.425  
1.14  
1.575  
1.26  
3.135  
3.135  
2.375  
3.135  
2.375  
2.375  
3.465  
3.465  
2.625  
3.465  
2.625  
2.625  
RSDS1  
1. Inputs on chip. Outputs are implemented with the addition of external resistors.  
2. MachXO1200 and MachXO2280 devices have dedicated LVDS buffers  
3. Input on the top bank of the MachXO1200 and MachXO2280 only.  
3-6  
DC and Switching Characteristics  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
sysIO Single-Ended DC Electrical Characteristics  
V
V
IH  
1
1
IL  
Input/Output  
Standard  
V
Max.  
V
Min.  
I
I
OH  
OL  
OH  
(V)  
OL  
Min. (V) Max. (V)  
Min. (V)  
Max. (V)  
(V)  
(mA)  
(mA)  
-14, -12, -8, -4  
-0.1  
0.4  
0.2  
0.4  
0.4  
0.2  
0.4  
0.2  
0.4  
0.2  
0.4  
0.2  
0.4  
0.2  
0.4  
0.2  
V
V
- 0.4 16, 12, 8, 4  
CCIO  
CCIO  
LVCMOS 3.3  
-0.3  
0.8  
0.8  
0.7  
2.0  
2.0  
1.7  
3.6  
- 0.2  
0.1  
16  
2.4  
-16  
LVTTL  
-0.3  
3.6  
V
V
V
V
V
V
V
V
V
V
V
V
- 0.4  
- 0.2  
12, 8, 4  
0.1  
-12, -8, -4  
-0.1  
CCIO  
CCIO  
CCIO  
CCIO  
CCIO  
CCIO  
CCIO  
CCIO  
CCIO  
CCIO  
CCIO  
CCIO  
- 0.4 16, 12, 8, 4  
- 0.2 0.1  
- 0.4 16, 12, 8, 4  
-14, -12, -8, -4  
-0.1  
LVCMOS 2.5  
LVCMOS 1.8  
LVCMOS 1.5  
-0.3  
-0.3  
-0.3  
-0.3  
3.6  
3.6  
3.6  
3.6  
-14, -12, -8, -4  
-0.1  
0.35V  
0.65V  
CCIO  
CCIO  
- 0.2  
- 0.4  
- 0.2  
- 0.4  
- 0.2  
- 0.4  
- 0.2  
0.1  
8, 4  
0.1  
6, 2  
0.1  
6, 2  
0.1  
1.5  
-8, -4  
0.35V  
0.65V  
CCIO  
CCIO  
-0.1  
-6, -2  
LVCMOS 1.2  
(“C” Version)  
0.42  
0.78  
-0.1  
-6, -2  
LVCMOS 1.2  
(“E” Version)  
-0.3  
-0.3  
0.35V  
0.65V  
3.6  
3.6  
CC  
CC  
-0.1  
PCI  
0.3V  
0.5V  
0.1V  
0.9V  
-0.5  
CCIO  
CCIO  
CCIO  
CCIO  
1. The average DC current drawn by I/Os between GND connections, or between the last GND in an I/O Bank and the end of an I/O Bank, as  
shown in the logic signal connections table shall not exceed n * 8mA. Where n is the number of I/Os between Bank GND connections or  
between the last GND in a Bank and the end of a Bank.  
3-7  
DC and Switching Characteristics  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
sysIO Differential Electrical Characteristics  
LVDS  
Over Recommended Operating Conditions  
Parameter  
Symbol  
Parameter Description  
Input Voltage  
Test Conditions  
Min.  
0
Typ.  
Max.  
2.4  
Units  
V
V
V
V
INP, INM  
Differential Input Threshold  
Input Common Mode Voltage  
Input current  
+/-100  
mV  
V
THD  
100mV V  
V
V
V
/2  
/2  
/2  
1.2  
1.2  
1.2  
1.8  
THD  
THD  
THD  
THD  
THD  
V
200mV V  
350mV V  
Power on  
1.9  
V
CM  
2.0  
V
THD  
I
+/-10  
1.60  
µA  
V
IN  
V
V
V
Output high voltage for V or V  
R = 100 Ohm  
1.38  
1.03  
350  
OH  
OL  
OD  
OP  
OM  
T
Output low voltage for V or V  
R = 100 Ohm  
0.9V  
250  
V
OP  
OM  
T
Output voltage differential  
(V - V ), R = 100 Ohm  
450  
mV  
OP  
OM  
T
Change in V between high and  
low  
OD  
ΔV  
50  
mV  
OD  
V
Output voltage offset  
(V - V )/2, R = 100 Ohm  
1.125  
1.25  
1.375  
50  
V
OS  
OP  
OM  
T
ΔV  
Change in V between H and L  
mV  
OS  
OS  
V
= 0V Driver outputs  
OD  
I
Output short circuit current  
6
mA  
OSD  
shorted  
LVDS Emulation  
LA-MachXO automotive devices can support LVDS outputs via emulation (LVDS25E), in addition to the LVDS sup-  
port that is available on-chip on certain devices. The output is emulated using complementary LVCMOS outputs in  
conjunction with resistors across the driver outputs on all devices. The scheme shown in Figure 3-1 is one possible  
solution for LVDS standard implementation. Resistor values in Figure 3-1 are industry standard values for 1% resis-  
tors.  
Figure 3-1. LVDS Using External Resistors (LVDS25E)  
VCCIO = 2.5  
158  
8mA  
Zo = 100  
+
100  
VCCIO = 2.5  
8mA  
140  
-
158  
On-chip  
Off-chip  
Off-chip  
On-chip  
Emulated  
LVDS  
Buffer  
Note: All resistors are 1%.  
The LVDS differential input buffers are available on certain devices in the LA-MachXO family.  
3-8  
DC and Switching Characteristics  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
Table 3-1. LVDS DC Conditions  
Over Recommended Operating Conditions  
Parameter  
Description  
Typical  
20  
Units  
Ω
Z
Output impedance  
OUT  
R
R
R
Driver series resistor  
Driver parallel resistor  
Receiver termination  
Output high voltage  
Output low voltage  
294  
Ω
S
121  
Ω
P
100  
Ω
T
V
V
V
V
1.43  
1.07  
0.35  
1.25  
100  
V
OH  
OL  
OD  
CM  
BACK  
V
Output differential voltage  
Output common mode voltage  
Back impedance  
V
V
Z
Ω
I
DC output current  
3.66  
mA  
DC  
BLVDS  
The LA-MachXO automotive family supports the BLVDS standard through emulation. The output is emulated using  
complementary LVCMOS outputs in conjunction with a parallel external resistor across the driver outputs. The  
input standard is supported by the LVDS differential input buffer on certain devices. BLVDS is intended for use  
when multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is  
one possible solution for bi-directional multi-point differential signals.  
Figure 3-2. BLVDS Multi-point Output Example  
Heavily loaded backplane, effective Zo ~ 45 to 90 ohms differential  
2.5V  
16mA  
2.5V  
16mA  
80  
80  
45-90 ohms  
45-90 ohms  
80  
2.5V  
16mA  
2.5V  
16mA  
80  
80  
80  
80  
. . .  
+
-
+
-
-
-
2.5V  
2.5V  
2.5V  
16mA  
2.5V  
16mA  
16mA  
16mA  
3-9  
DC and Switching Characteristics  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
Table 3-2. BLVDS DC Conditions1  
Over Recommended Operating Conditions  
Nominal  
Symbol  
Description  
Output impedance  
Zo = 45 Zo = 90  
Units  
ohm  
ohm  
ohm  
V
Z
100  
45  
100  
90  
OUT  
R
R
Left end termination  
Right end termination  
Output high voltage  
TLEFT  
TRIGHT  
OH  
45  
90  
V
V
V
V
1.375  
1.125  
0.25  
1.25  
11.2  
1.48  
1.02  
0.46  
1.25  
10.2  
Output low voltage  
V
OL  
Output differential voltage  
Output common mode voltage  
DC output current  
V
OD  
V
CM  
I
mA  
DC  
1. For input buffer, see LVDS table.  
LVPECL  
The LA-MachXO automotive family supports the differential LVPECL standard through emulation. This output stan-  
dard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver  
outputs on all the devices. The LVPECL input standard is supported by the LVDS differential input buffer on certain  
devices. The scheme shown in Figure 3-3 is one possible solution for point-to-point signals.  
Figure 3-3. Differential LVPECL  
VCCIO = 3.3V  
100 ohms  
16mA  
+
VCCIO = 3.3V  
150 ohms  
100 ohms  
-
100 ohms  
Off-chip  
16mA  
Transmission line, Zo = 100 ohm differential  
Off-chip  
On-chip  
On-chip  
Table 3-3. LVPECL DC Conditions1  
Over Recommended Operating Conditions  
Symbol  
Description  
Output impedance  
Nominal  
100  
Units  
Z
ohm  
ohm  
ohm  
V
OUT  
R
R
Driver parallel resistor  
Receiver termination  
Output high voltage  
Output low voltage  
150  
P
T
100  
V
V
V
V
2.03  
1.27  
0.76  
1.65  
85.7  
12.7  
OH  
V
OL  
Output differential voltage  
Output common mode voltage  
Back impedance  
V
OD  
V
CM  
Z
ohm  
mA  
BACK  
I
DC output current  
DC  
1. For input buffer, see LVDS table.  
3-10  
DC and Switching Characteristics  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
For further information on LVPECL, BLVDS and other differential interfaces please see details of additional techni-  
cal documentation at the end of the data sheet.  
RSDS  
The LA-MachXO automotive family supports the differential RSDS standard. The output standard is emulated  
using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs on all the  
devices. The RSDS input standard is supported by the LVDS differential input buffer on certain devices. The  
scheme shown in Figure 3-4 is one possible solution for RSDS standard implementation. Use LVDS25E mode with  
suggested resistors for RSDS operation. Resistor values in Figure 3-4 are industry standard values for 1% resis-  
tors.  
Figure 3-4. RSDS (Reduced Swing Differential Standard)  
VCCIO = 2.5V  
294  
8mA  
Zo = 100  
+
VCCIO = 2.5V  
121  
100  
-
294  
8mA  
On-chip  
Off-chip  
Off-chip  
On-chip  
Emulated  
RSDS Buffer  
Table 3-4. RSDS DC Conditions  
Parameter  
Description  
Typical  
20  
Units  
ohm  
ohm  
ohm  
ohm  
V
Z
Output impedance  
OUT  
R
R
R
Driver series resistor  
Driver parallel resistor  
Receiver termination  
Output high voltage  
Output low voltage  
294  
S
121  
P
100  
T
V
V
V
V
1.35  
1.15  
0.20  
1.25  
101.5  
3.66  
OH  
OL  
OD  
CM  
BACK  
V
Output differential voltage  
Output common mode voltage  
Back impedance  
V
V
Z
ohm  
mA  
I
DC output current  
DC  
3-11  
DC and Switching Characteristics  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
Typical Building Block Function Performance1  
Pin-to-Pin Performance (LVCMOS25 12mA Drive)  
Function  
Basic Functions  
-3 Timing  
Units  
16-bit decoder  
4:1 MUX  
9.4  
6.3  
7.1  
ns  
ns  
ns  
16:1 MUX  
Register-to-Register Performance  
Function  
Basic Functions  
16:1 MUX  
-3 Timing  
Units  
348  
209  
277  
143  
MHz  
MHz  
MHz  
MHz  
16-bit adder  
16-bit counter  
64-bit counter  
Embedded Memory Functions (1200 and 2280 Devices Only)  
256x36 Single Port RAM  
512x18 True-Dual Port RAM  
Distributed Memory Functions  
16x2 Single Port RAM  
203  
203  
MHz  
MHz  
310  
229  
186  
224  
194  
MHz  
MHz  
MHz  
MHz  
MHz  
64x2 Single Port RAM  
128x4 Single Port RAM  
32x2 Pseudo-Dual Port RAM  
64x4 Pseudo-Dual Port RAM  
1. The above timing numbers are generated using the ispLEVER design tool. Exact performance may vary with device and  
tool version. The tool uses internal parameters that have been characterized but are not tested on every device.  
Rev. A 0.19  
Derating Logic Timing  
Logic Timing provided in the following sections of the data sheet and the ispLEVER design tools are worst case  
numbers in the operating range. Actual delays may be much faster.The ispLEVER design tool from Lattice can pro-  
vide logic timing numbers at a particular temperature and voltage.  
3-12  
DC and Switching Characteristics  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
LA-MachXO External Switching Characteristics1  
Over Recommended Operating Conditions  
-3  
Parameter  
Description  
Device  
Min. Max. Units  
General I/O Pin Parameters (Using Global Clock without PLL)1  
LCMXO256  
LCMXO640  
1.8  
1.5  
4.9  
4.9  
5.1  
5.1  
5.6  
5.7  
6.1  
6.1  
ns  
ns  
t
t
t
t
f
t
Best Case t Through 1 LUT  
PD  
PD  
LCMXO1200  
LCMXO2280  
LCMXO256  
LCMXO640  
LCMXO1200  
LCMXO2280  
LCMXO256  
LCMXO640  
ns  
ns  
ns  
ns  
Best Case Clock to Output - From PFU  
Clock to Data Setup - To PFU  
CO  
ns  
ns  
ns  
ns  
SU  
LCMXO1200 1.6  
LCMXO2280 1.5  
ns  
ns  
LCMXO256  
LCMXO640  
-0.3  
-0.1  
ns  
ns  
Clock to Data Hold - To PFU  
H
LCMXO1200 0.0  
LCMXO2280 -0.4  
ns  
ns  
LCMXO256  
LCMXO640  
LCMXO1200  
LCMXO2280  
LCMXO256  
LCMXO640  
LCMXO1200  
LCMXO2280  
500  
500  
500  
500  
240  
240  
260  
260  
MHz  
MHz  
MHz  
MHz  
ps  
Clock Frequency of I/O and PFU Register  
Global Clock Skew Across Device  
MAX_IO  
ps  
SKEW_PRI  
ps  
ps  
1. General timing numbers based on LVCMOS2.5V, 12 mA.  
Rev. A 0.19  
3-13  
DC and Switching Characteristics  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
LA-MachXO Internal Timing Parameters1  
Over Recommended Operating Conditions  
-3  
Parameter  
Description  
Min. Max. Units  
PFU/PFF Logic Mode Timing  
t
t
t
t
t
t
t
t
t
t
LUT4 delay (A to D inputs to F output)  
LUT6 delay (A to D inputs to OFX output)  
Set/Reset to output of PFU  
0.39  
0.62  
1.26  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LUT4_PFU  
LUT6_PFU  
LSR_PFU  
SUM_PFU  
HM_PFU  
Clock to Mux (M0,M1) input setup time  
Clock to Mux (M0,M1) input hold time  
Clock to D input setup time  
0.15  
-0.07  
0.18  
-0.04  
SUD_PFU  
HD_PFU  
Clock to D input hold time  
Clock to Q delay, D-type register configuration  
Clock to Q delay latch configuration  
D to Q throughput delay when latch is enabled  
0.56  
0.74  
0.77  
CK2Q_PFU  
LE2Q_PFU  
LD2Q_PFU  
PFU Dual Port Memory Mode Timing  
t
t
t
t
t
t
t
Clock to Output  
0.56  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CORAM_PFU  
SUDATA_PFU  
HDATA_PFU  
Data Setup Time  
-0.25  
0.39  
-0.65  
0.99  
-0.30  
0.47  
Data Hold Time  
Address Setup Time  
Address Hold Time  
SUADDR_PFU  
HADDR_PFU  
SUWREN_PFU  
HWREN_PFU  
Write/Read Enable Setup Time  
Write/Read Enable Hold Time  
PIO Input/Output Buffer Timing  
t
t
Input Buffer Delay  
Output Buffer Delay  
1.06  
1.80  
ns  
ns  
IN_PIO  
OUT_PIO  
EBR Timing (1200 and 2280 Devices Only)  
Clock to output from Address or Data with no output  
register  
t
3.14  
ns  
CO_EBR  
t
t
t
t
t
t
t
t
t
Clock to output from EBR output Register  
Setup Data to EBR Memory  
0.75  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
COO_EBR  
-0.37  
0.57  
-0.37  
0.57  
-0.23  
0.36  
0.27  
-0.18  
SUDATA_EBR  
HDATA_EBR  
SUADDR_EBR  
HADDR_EBR  
SUWREN_EBR  
HWREN_EBR  
SUCE_EBR  
Hold Data to EBR Memory  
Setup Address to EBR Memory  
Hold Address to EBR Memory  
Setup Write/Read Enable to EBR Memory  
Hold Write/Read Enable to EBR Memory  
Clock Enable Setup Time to EBR Output Register  
Clock Enable Hold Time to EBR Output Register  
HCE_EBR  
Reset To Output Delay Time from EBR Output Regis-  
ter  
t
1.44  
ns  
RSTO_EBR  
PLL Parameters (1200 and 2280 Devices Only)  
t
t
Reset Recovery to Rising Clock  
Reset Signal Setup Time  
1.00  
ns  
ns  
RSTREC  
1.00  
RSTSU  
1. Internal parameters are characterized but not tested on every device.  
Rev. A 0.19  
3-14  
DC and Switching Characteristics  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
LA-MachXO Family Timing Adders1, 2, 3  
Over Recommended Operating Conditions  
Buffer Type  
Input Adjusters  
Description  
-3  
Units  
LVDS254  
BLVDS254  
LVPECL334  
LVDS  
0.61  
0.61  
0.59  
0.01  
0.01  
0.00  
0.10  
0.19  
0.56  
0.01  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BLVDS  
LVPECL  
LVTTL  
LVTTL33  
LVCMOS33  
LVCMOS 3.3  
LVCMOS 2.5  
LVCMOS 1.8  
LVCMOS 1.5  
LVCMOS 1.2  
PCI  
LVCMOS25  
LVCMOS18  
LVCMOS15  
LVCMOS12  
PCI334  
Output Adjusters  
LVDS25E  
LVDS254  
LVDS 2.5 E  
-0.18  
-0.30  
-0.04  
0.05  
0.05  
0.08  
-0.01  
0.70  
0.05  
0.08  
-0.01  
0.70  
0.07  
0.13  
0.00  
0.47  
0.15  
0.06  
-0.08  
0.09  
0.22  
0.07  
0.36  
0.07  
2.59  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LVDS 2.5  
BLVDS25  
BLVDS 2.5  
LVPECL33  
LVPECL 3.3  
LVTTL33_4mA  
LVTTL33_8mA  
LVTTL33_12mA  
LVTTL33_16mA  
LVCMOS33_4mA  
LVCMOS33_8mA  
LVCMOS33_12mA  
LVCMOS33_14mA  
LVCMOS25_4mA  
LVCMOS25_8mA  
LVCMOS25_12mA  
LVCMOS25_14mA  
LVCMOS18_4mA  
LVCMOS18_8mA  
LVCMOS18_12mA  
LVCMOS18_14mA  
LVCMOS15_4mA  
LVCMOS15_8mA  
LVCMOS12_2mA  
LVCMOS12_6mA  
PCI334  
LVTTL 4mA drive  
LVTTL 8mA drive  
LVTTL 12mA drive  
LVTTL 16mA drive  
LVCMOS 3.3 4mA drive  
LVCMOS 3.3 8mA drive  
LVCMOS 3.3 12mA drive  
LVCMOS 3.3 14mA drive  
LVCMOS 2.5 4mA drive  
LVCMOS 2.5 8mA drive  
LVCMOS 2.5 12mA drive  
LVCMOS 2.5 14mA drive  
LVCMOS 1.8 4mA drive  
LVCMOS 1.8 8mA drive  
LVCMOS 1.8 12mA drive  
LVCMOS 1.8 14mA drive  
LVCMOS 1.5 4mA drive  
LVCMOS 1.5 8mA drive  
LVCMOS 1.2 2mA drive  
LVCMOS 1.2 6mA drive  
PCI33  
1. Timing adders are characterized but not tested on every device.  
2. LVCMOS timing is measured with the load specified in Switching Test Conditions table.  
3. All other standards tested according to the appropriate specifications.  
4. I/O standard only available in LCMXO1200 and LCMXO2280 devices.  
Rev. A 0.19  
3-15  
DC and Switching Characteristics  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
sysCLOCK PLL Timing  
Over Recommended Operating Conditions  
Parameter  
Descriptions  
Input Clock Frequency (CLKI, CLKFB)  
Conditions  
Min.  
25  
Max.  
420  
420  
210  
840  
Units  
MHz  
MHz  
MHz  
MHz  
MHz  
f
f
f
f
f
IN  
Output Clock Frequency (CLKOP, CLKOS)  
K-Divider Output Frequency (CLKOK)  
PLL VCO Frequency  
25  
OUT  
OUT2  
VCO  
PFD  
0.195  
420  
25  
Phase Detector Input Frequency  
AC Characteristics  
t
t
Output Clock Duty Cycle  
Default duty cycle selected3  
45  
55  
0.05  
+/-120  
0.02  
+/-200  
%
UI  
DT  
PH  
4
Output Phase Accuracy  
Fout 100MHz  
ps  
1
t
Output Clock Period Jitter  
OPJIT  
Fout < 100MHz  
UIPP  
ps  
t
t
t
t
t
t
t
t
t
Input Clock to Output Clock Skew  
Output Clock Pulse Width  
PLL Lock-in Time  
Divider ratio = integer  
At 90% or 10%3  
SK  
1
ns  
W
2
150  
450  
+/-200  
10  
µs  
LOCK  
PA  
Programmable Delay Unit  
Input Clock Period Jitter  
External Feedback Delay  
Input Clock High Time  
Input Clock Low Time  
RST Pulse Width  
100  
ps  
ps  
IPJIT  
ns  
FBKDLY  
HI  
90% to 90%  
10% to 10%  
0.5  
0.5  
10  
ns  
ns  
LO  
ns  
RST  
1. Jitter sample is taken over 10,000 samples of the primary PLL output with a clean reference clock.  
2. Output clock is valid after t for PLL reset and dynamic delay adjustment.  
LOCK  
3. Using LVDS output buffers.  
4. CLKOS as compared to CLKOP output.  
Rev. A 0.19  
LA-MachXO “C” Sleep Mode Timing  
Symbol  
Parameter  
Device  
Min.  
Typ.  
Max  
Units  
t
t
SLEEPN Low to Power Down  
All  
400  
400  
600  
ns  
µs  
µs  
ns  
ns  
PWRDN  
LCMXO256  
LCMXO640  
All  
SLEEPN High to Power Up  
PWRUP  
t
t
SLEEPN Pulse Width  
400  
WSLEEPN  
SLEEPN Pulse Rejection  
All  
100  
WAWAKE  
Rev. A 0.19  
Power Down Mode  
I/O  
tPWRUP  
tPWRDN  
SLEEPN  
tWSLEEPN or tWAWAKE  
3-16  
DC and Switching Characteristics  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
Flash Download Time  
Symbol  
Parameter  
LCMXO256  
Min.  
Typ.  
Max.  
0.4  
Units  
ms  
Minimum V or V  
(later of the two supplies)  
to Device I/O Active  
CC  
CCAUX  
LCMXO640  
LCMXO1200  
LCMXO2280  
0.6  
ms  
t
REFRESH  
0.8  
ms  
1.0  
ms  
JTAG Port Timing Specifications  
Over Recommended Operating Conditions  
Symbol  
Parameter  
Min.  
40  
20  
20  
8
Max.  
Units  
MHz  
ns  
f
t
t
t
t
t
t
t
t
t
t
t
t
t
t
TCK [BSCAN] clock frequency  
25  
10  
10  
10  
25  
25  
25  
MAX  
TCK [BSCAN] clock pulse width  
BTCP  
TCK [BSCAN] clock pulse width high  
ns  
BTCPH  
BTCPL  
BTS  
TCK [BSCAN] clock pulse width low  
ns  
TCK [BSCAN] setup time  
ns  
TCK [BSCAN] hold time  
10  
50  
8
ns  
BTH  
TCK [BSCAN] rise/fall time  
mV/ns  
ns  
BTRF  
TAP controller falling edge of clock to output valid  
TAP controller falling edge of clock to output disabled  
TAP controller falling edge of clock to output enabled  
BSCAN test capture register setup time  
BTCO  
ns  
BTCODIS  
BTCOEN  
BTCRS  
BTCRH  
BUTCO  
BTUODIS  
BTUPOEN  
ns  
ns  
BSCAN test capture register hold time  
25  
ns  
BSCAN test update register, falling edge of clock to output valid  
BSCAN test update register, falling edge of clock to output disabled  
BSCAN test update register, falling edge of clock to output enabled  
ns  
ns  
ns  
Rev. A 0.19  
Figure 3-5. JTAG Port Timing Waveforms  
TMS  
TDI  
t
t
BTH  
BTS  
t
t
BTCP  
t
BTCPL  
BTCPH  
TCK  
TDO  
t
t
BTCODIS  
t
BTCO  
BTCOEN  
Valid Data  
Valid Data  
t
BTCRH  
t
BTCRS  
Data to be  
captured  
from I/O  
Data Captured  
t
t
t
BTUPOEN  
BUTCO  
BTUODIS  
Data to be  
driven out  
to I/O  
Valid Data  
Valid Data  
3-17  
DC and Switching Characteristics  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
Switching Test Conditions  
Figure 3-6 shows the output test load that is used for AC testing. The specific values for resistance, capacitance,  
voltage, and other test conditions are shown in Figure 3-5.  
Figure 3-6. Output Test Load, LVTTL and LVCMOS Standards  
VT  
R1  
DUT  
Test Point  
CL  
Table 3-5. Test Fixture Required Components, Non-Terminated Interfaces  
Test Condition  
R
C
Timing Ref.  
V
T
1
L
LVTTL, LVCMOS 3.3 = 1.5V  
LVCMOS 2.5 = V  
LVCMOS 1.8 = V  
LVCMOS 1.5 = V  
LVCMOS 1.2 = V  
/2  
/2  
/2  
/2  
CCIO  
CCIO  
CCIO  
CCIO  
LVTTL and LVCMOS settings (L -> H, H -> L)  
0pF  
0pF  
LVTTL and LVCMOS 3.3 (Z -> H)  
LVTTL and LVCMOS 3.3 (Z -> L)  
Other LVCMOS (Z -> H)  
V
OL  
1.5  
V
OH  
V
V
/2  
/2  
V
OL  
CCIO  
188  
Other LVCMOS (Z -> L)  
V
OH  
CCIO  
LVTTL + LVCMOS (H -> Z)  
LVTTL + LVCMOS (L -> Z)  
V
- 0.15  
- 0.15  
V
OL  
OH  
V
V
OH  
OL  
Note: Output test conditions for all other interfaces are determined by the respective standards.  
3-18  
LA-MachXO Automotive Family Data Sheet  
Pinout Information  
November 2007  
Data Sheet DS1003  
Signal Descriptions  
Signal Name  
I/O  
Descriptions  
General Purpose  
[Edge] indicates the edge of the device on which the pad is located. Valid edge designa-  
tions are L (Left), B (Bottom), R (Right), T (Top).  
[Row/Column Number] indicates the PFU row or the column of the device on which the  
PIO Group exists. When Edge is T (Top) or (Bottom), only need to specify Row Number.  
When Edge is L (Left) or R (Right), only need to specify Column Number.  
P[Edge] [Row/Column  
Number]_[A/B/C/D/E/F]  
[A/B/C/D/E/F] indicates the PIO within the group to which the pad is connected.  
I/O  
Some of these user programmable pins are shared with special function pins. When not  
used as special function pins, these pins can be programmed as I/Os for user logic.  
During configuration of the user-programmable I/Os, the user has an option to tri-state the  
I/Os and enable an internal pull-up resistor. This option also applies to unused pins (or  
those not bonded to a package pin). The default during configuration is for user-program-  
mable I/Os to be tri-stated with an internal pull-up resistor enabled.  
Global RESET signal (active low). Dedicated pad, when not in use it can be used as an I/O  
pin.  
GSRN  
TSALL  
I
I
TSALL is a dedicated pad for the global output enable signal. When TSALL is high all the  
outputs are tristated. It is a dual function pin. When not in use, it can be used as an I/O pin.  
NC  
No connect.  
GND  
GND - Ground. Dedicated pins.  
VCC - The power supply pins for core logic. Dedicated pins.  
V
V
V
CC  
VCCAUX - the Auxiliary power supply pin. This pin powers up a variety of internal circuits  
including all the differential and referenced input buffers. Dedicated pins.  
CCAUX  
CCIOx  
V
- The power supply pins for I/O Bank x. Dedicated pins.  
CCIO  
Sleep Mode pin - Active low sleep pin. When this pin is held high, the device operates nor-  
SLEEPN1  
I
mally. This pin has a weak internal pull-up, but when unused, an external pull-up to V is  
CC  
recommended. When driven low, the device moves into Sleep mode after a specified time.  
PLL and Clock Functions (Used as user programmable I/O pins when not used for PLL or clock pins)  
Reference clock (PLL) input Pads: [LOC] indicates location. Valid designations are ULM  
(Upper PLL) and LLM (Lower PLL). T = true and C = complement.  
[LOC][0]_PLL[T, C]_IN  
Optional feedback (PLL) input Pads: [LOC] indicates location. Valid designations are ULM  
(Upper PLL) and LLM (Lower PLL). T = true and C = complement.  
[LOC][0]_PLL[T, C]_FB  
PCLK [n]_[1:0]  
Primary Clock Pads, n per side.  
Test and Programming (Dedicated pins)  
TMS  
TCK  
TDI  
I
I
Test Mode Select input pin, used to control the 1149.1 state machine.  
Test Clock input pin, used to clock the 1149.1 state machine.  
I
Test Data input pin, used to load data into the device using an 1149.1 state machine.  
Output pin -Test Data output pin used to shift data out of the device using 1149.1.  
TDO  
O
1. Applies to LA-MachXO “C” devices only. NC for “E” devices.  
© 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand  
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
www.latticesemi.com  
4-1  
DS1003 Pinouts_01.3  
Pinout Information  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
Pin Information Summary  
LAMXO256C/E  
LAMXO640C/E  
Pin Type  
100 TQFP  
100 TQFP  
144 TQFP  
256 ftBGA  
Single Ended User I/O  
Differential Pair User I/O1  
78  
38  
6
74  
17  
6
113  
159  
43  
79  
Muxed  
6
6
TAP  
4
4
4
4
Dedicated (Total Without Supplies)  
5
5
5
5
4
VCC  
2
2
4
2
VCCAUX  
1
1
2
Bank0  
3
2
2
4
Bank1  
3
2
2
4
VCCIO  
Bank2  
8
2
2
4
Bank3  
2
2
4
GND  
NC  
10  
0
12  
18  
0
0
52  
Bank0  
41/20  
37/18  
18/5  
21/4  
14/2  
21/6  
29/10  
30/11  
24/9  
30/13  
42/21  
40/20  
36/18  
40/20  
Bank1  
Single Ended/Differential I/O  
per Bank  
Bank2  
Bank3  
1. These devices support emulated LVDS outputs. LVDS inputs are not supported.  
LAMXO1200E  
LAMXO2280E  
Pin Type  
100 TQFP  
144 TQFP  
256 ftBGA  
100 TQFP  
144 TQFP  
256 ftBGA  
324 ftBGA  
Single Ended User I/O  
Differential Pair User I/O1  
73  
27  
6
113  
48  
6
211  
73  
30  
6
113  
47  
6
211  
271  
105  
105  
134  
Muxed  
6
6
6
TAP  
4
4
4
4
4
4
4
Dedicated (Total Without Supplies)  
5
5
5
5
5
5
5
VCC  
4
4
4
2
4
4
6
VCCAUX  
2
2
2
2
2
2
2
2
2
2
Bank0  
1
1
1
1
Bank1  
Bank2  
Bank3  
Bank4  
Bank5  
Bank6  
Bank7  
1
1
2
1
1
2
2
1
1
2
1
1
2
2
1
1
2
1
1
2
2
VCCIO  
1
1
2
1
1
2
2
1
1
2
1
1
2
2
1
1
2
1
1
2
2
1
1
2
1
1
2
2
GND  
NC  
8
12  
0
18  
8
12  
0
18  
24  
0
0
0
0
0
Bank0  
Bank1  
Bank2  
Bank3  
Bank4  
Bank5  
Bank6  
Bank7  
10/3  
8/2  
10/4  
11/5  
8/3  
5/2  
10/3  
11/5  
14/6  
15/7  
15/7  
15/7  
14/5  
10/4  
15/6  
15/6  
26/13  
28/14  
26/13  
28/14  
27/13  
22/11  
28/14  
26/13  
9/3  
9/3  
10/4  
11/5  
8/3  
5/2  
10/4  
11/5  
13/6  
16/7  
15/7  
15/7  
14/4  
10/4  
15/6  
15/6  
24/12  
30/15  
26/13  
28/14  
29/14  
20/10  
28/14  
26/13  
34/17  
36/18  
34/17  
34/17  
35/17  
30/15  
34/17  
34/17  
Single Ended/Differential I/O  
per Bank  
1. These devices support on-chip LVDS buffers for left and right I/O Banks.  
4-2  
Pinout Information  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
Power Supply and NC  
Signal  
100 TQFP1  
144 TQFP1  
VCC  
LAMXO256/640: 35, 90  
LAMXO1200/2280: 17, 35, 66, 91  
21, 52, 93, 129  
VCCIO0  
LAMXO256: 60, 74, 92  
LAMXO640: 80, 92  
LAMXO1200/2280: 94  
LAMXO640: 117, 135  
LAMXO1200/2280: 135  
VCCIO1  
VCCIO2  
VCCIO3  
LAMXO256: 10, 24, 41  
LAMXO640: 60, 74  
LAMXO640: 82, 98  
LAMXO1200/2280: 117  
LAMXO1200/2280: 80  
LAMXO256: None  
LAMXO640: 29, 41  
LAMXO1200/2280: 70  
LAMXO640: 38, 63  
LAMXO1200/2280: 98  
LAMXO256: None  
LAMXO640: 10, 24  
LAMXO1200/2280: 56  
LAMXO640: 10, 26  
LAMXO1200/2280: 82  
VCCIO4  
VCCIO5  
VCCIO6  
VCCIO7  
VCCAUX  
GND2  
LAMXO256/640: None  
LAMXO1200/2280: 44  
LAMXO640: None  
LAMXO1200/2280: 63  
LAMXO256/640: None  
LAMXO1200/2280: 27  
LAMXO640: None  
LAMXO1200/2280: 38  
LAMXO256/640: None  
LAMXO1200/2280: 20  
LAMXO640: None  
LAMXO1200/2280: 26  
LAMXO256/640: None  
LAMXO1200/2280: 6  
LAMXO640: None  
LAMXO1200/2280: 10  
LAMXO256/640: 88  
LAMXO1200/2280: 36, 90  
53, 128  
LAMXO256: 40, 84, 62, 75, 93, 12, 25, 42  
LAMXO640: 40, 84, 81, 93, 62, 75, 30, 42, 12, 25  
LAMXO1200/2280: 9, 41, 59, 83, 100, 76, 50, 26  
16, 59, 88, 123, 118, 136, 83, 99, 37, 64, 11, 27  
NC3  
1. Pin orientation follows the conventional order from pin 1 marking of the top side view and counter-clockwise.  
2. All grounds must be electrically connected at the board level. For fpBGA and ftBGA packages, the total number of GND balls is less than the actual number of  
GND logic connections from the die to the common package GND plane.  
3. NC pins should not be connected to any active signals, VCC or GND.  
4-3  
Pinout Information  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
Power Supply and NC (Cont.)  
Signal  
256 ftBGA1  
324 ftBGA1  
F14, G11, G9, H7, L7, M9  
G8, G7  
VCC  
G7, G10, K7, K10  
VCCIO0  
VCCIO1  
VCCIO2  
VCCIO3  
VCCIO4  
VCCIO5  
VCCIO6  
VCCIO7  
LAMXO640: F8, F7, F9, F10  
LAMXO1200/2280: F8, F7  
LAMXO640: H11, G11, K11, J11  
LAMXO1200/2280: F9, F10  
G12, G10  
J12, H12  
L12, K12  
M12, M11  
M8, R9  
LAMXO640: L9, L10, L8, L7  
LAMXO1200/2280: H11, G11  
LAMXO640: K6, J6, H6, G6  
LAMXO1200/2280: K11, J11  
LAMXO640: None  
LAMXO1200/2280: L9, L10  
LAMXO640: None  
LAMXO1200/2280: L8, L7  
LAMXO640: None  
LAMXO1200/2280: K6, J6  
M7, K7  
LAMXO640: None  
LAMXO1200/2280: H6, G6  
H6, J7  
VCCAUX  
GND2  
T9, A8  
M10, F9  
A1, A16, F11, G8, G9, H7, H8, H9, H10, J7, J8, J9, E14, F16, H10, H11, H8, H9, J10, J11, J4, J8, J9,  
J10, K8, K9, L6, T1, T16  
K10, K11, K17, K8, K9, L10, L11, L8, L9, N2, P14,  
P5, R7  
NC3  
LAMXO640: E4, E5, F5, F6, C3, C2, G4, G5, H4, H5, —  
K5, K4, M5, M4, P2, P3, N5, N6, M7, M8, N10, N11,  
R15, R16, P15, P16, M11, L11, N12, N13, M13, M12,  
K12, J12, F12, F13, E12, E13, D13, D14, B15, A15,  
C14, B14, E11, E10, E7, E6, D4, D3, B3, B2  
LAMXO1200: None  
LAMXO2280: None  
1. Pin orientation A1 starts from the upper left corner of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally.  
2. All grounds must be electrically connected at the board level. For fpBGA and ftBGA packages, the total number of GND balls is less than the actual number of  
GND logic connections from the die to the common package GND plane.  
3. NC pins should not be connected to any active signals, VCC or GND.  
4-4  
Pinout Information  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
LA-MachXO256 and LA-MachXO640 Logic Signal Connections:  
100 TQFP  
LAMXO256  
LAMXO640  
Ball  
Dual  
Ball  
Dual  
Pin Number Function  
Bank  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
-
Function  
Differential  
Function  
Bank  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
2
2
2
2
2
2
2
2
-
Function  
Differential  
1
PL2A  
PL2B  
PL3A  
PL3B  
PL3C  
PL3D  
PL4A  
PL4B  
PL5A  
VCCIO1  
PL5B  
GNDIO1  
PL5C  
PL5D  
PL6A  
PL6B  
PL7A  
PL7B  
PL7C  
PL7D  
PL8A  
PL8B  
PL9A  
VCCIO1  
GNDIO1  
TMS  
T
C
T
C
T
C
T
C
T
PL2A  
PL2C  
PL2B  
T
T
2
3
C
C
T
4
PL2D  
PL3A  
5
6
PL3B  
C
T
7
PL3C  
PL3D  
PL4A  
8
C
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
VCCIO3  
PL4C  
GNDIO3  
PL4D  
PL5B  
C
T
T
C
T
C
T
C
T
C
T
C
T
C
GSRN  
TSALL  
GSRN  
TSALL  
PL7B  
PL8C  
PL8D  
PL9A  
T
C
PL9C  
PL10A  
PL10C  
PL11A  
PL11C  
VCCIO3  
GNDIO3  
TMS  
TMS  
TCK  
TMS  
TCK  
PL9B  
TCK  
C
PB2C  
TCK  
PB2A  
PB2B  
TDO  
T
VCCIO2  
GNDIO2  
TDO  
C
TDO  
TDI  
TDO  
TDI  
PB2C  
TDI  
T
PB4C  
TDI  
PB2D  
VCC  
C
PB4E  
VCC  
PB3A  
PB3B  
PB3C  
PB3D  
GND  
1
1
1
1
-
PCLK1_1**  
PCLK1_0**  
T
C
T
PB5B  
PB5D  
PB6B  
PB6C  
GND  
2
2
2
2
-
PCLK2_1**  
PCLK2_0**  
C
VCCIO1  
1
VCCIO2  
2
4-5  
Pinout Information  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
LA-MachXO256 and LA-MachXO640 Logic Signal Connections:  
100 TQFP (Cont.)  
LAMXO256  
LAMXO640  
Ball  
Dual  
Ball  
Dual  
Pin Number Function  
Bank  
1
1
1
1
1
1
-
Function  
Differential  
Function  
Bank  
2
2
2
2
2
2
-
Function  
Differential  
42  
43  
44  
45  
46  
47  
48*  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
GNDIO1  
PB4A  
PB4B  
PB4C  
PB4D  
PB5A  
SLEEPN  
PB5C  
PB5D  
PR9B  
PR9A  
PR8B  
PR8A  
PR7D  
PR7C  
PR7B  
PR7A  
PR6B  
VCCIO0  
PR6A  
GNDIO0  
PR5D  
PR5C  
PR5B  
PR5A  
PR4B  
PR4A  
PR3D  
PR3C  
PR3B  
PR3A  
PR2B  
VCCIO0  
GNDIO0  
PR2A  
PT5C  
PT5B  
GNDIO2  
PB8B  
T
C
T
PB8C  
T
PB8D  
C
C
PB9A  
PB9C  
T
SLEEPN  
SLEEPN  
PB9D  
SLEEPN  
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
T
C
C
T
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
C
PB9F  
PR11D  
PR11B  
PR11C  
PR11A  
PR10D  
PR10C  
PR10B  
PR10A  
PR9D  
C
C
T
T
C
T
C
T
C
T
C
T
C
T
C
VCCIO1  
PR9B  
T
GNDIO1  
PR7B  
C
T
C
T
C
T
C
T
C
T
C
PR6C  
PR6B  
PR5D  
PR5B  
PR4D  
PR4B  
PR3D  
PR3B  
PR2D  
PR2B  
VCCIO1  
GNDIO1  
PT9F  
T
C
T
PT9E  
C
T
PT9C  
PT5A  
PT9A  
PT4F  
C
T
VCCIO0  
GNDIO0  
PT7E  
PT4E  
PT4D  
C
4-6  
Pinout Information  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
LA-MachXO256 and LA-MachXO640 Logic Signal Connections:  
100 TQFP (Cont.)  
LAMXO256  
LAMXO640  
Ball  
Dual  
Function  
Ball  
Function  
Dual  
Function  
Pin Number Function  
Bank  
Differential  
Bank  
Differential  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
PT4C  
GND  
0
-
T
PT7A  
GND  
0
-
PT4B  
PT4A  
PT3D  
VCCAUX  
PT3C  
VCC  
0
0
0
-
PCLK0_1**  
PCLK0_0**  
C
T
PT6B  
PT5B  
PT5A  
VCCAUX  
PT4F  
0
0
0
-
PCLK0_1**  
PCLK0_0**  
C
T
C
0
-
T
0
-
VCC  
PT3B  
VCCIO0  
GNDIO0  
PT3A  
PT2F  
0
0
0
0
0
0
0
0
0
0
C
PT3F  
0
0
0
0
0
0
0
0
0
0
VCCIO0  
GNDIO0  
PT3B  
PT3A  
PT2F  
T
C
T
C
T
C
T
C
T
PT2E  
PT2D  
PT2C  
PT2B  
PT2A  
C
T
PT2E  
PT2B  
PT2C  
PT2A  
C
T
* NC for “E” devices.  
** Primary clock inputs are single-ended.  
4-7  
Pinout Information  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
LA-MachXO1200 and LA-MachXO2280 Logic Signal Connections:  
100 TQFP  
LAMXO1200  
LAMXO2280  
Pin  
Ball  
Dual  
Ball  
Dual  
Number  
Function  
Bank  
7
7
7
7
7
7
7
7
-
Function  
Differential  
Function  
Bank  
7
7
7
7
7
7
7
7
-
Function  
Differential  
1
PL2A  
PL2B  
T
C
T
PL2A  
PL2B  
LUM0_PLLT_FB_A  
LUM0_PLLC_FB_A  
LUM0_PLLT_IN_A  
LUM0_PLLC_IN_A  
T
C
T
2
3
PL3C  
PL3C  
4
PL3D  
C
PL3D  
C
5
PL4B  
PL4B  
6
VCCIO7  
PL6A  
VCCIO7  
PL7A  
7
T*  
T*  
8
PL6B  
GSRN  
C*  
PL7B  
GSRN  
C*  
9
GND  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
PL7C  
7
7
7
7
6
6
6
-
T
C
T
PL9C  
7
7
7
7
6
6
6
-
T
C
T
PL7D  
PL9D  
PL8C  
PL10C  
PL10D  
PL11C  
PL13A  
PL13B  
VCC  
PL8D  
C
C
PL9C  
PL10A  
PL10B  
VCC  
T*  
T*  
C*  
C*  
PL11B  
PL11C  
VCCIO6  
PL13C  
PL14A  
PL14B  
PL15A  
PL15B  
6
6
6
6
6
6
6
6
PL14D  
PL14C  
VCCIO6  
PL16C  
PL17A  
PL17B  
PL18A  
PL18B  
6
6
6
6
6
6
6
6
C
T
TSALL  
TSALL  
LLM0_PLLT_FB_A  
LLM0_PLLC_FB_A  
LLM0_PLLT_IN_A  
LLM0_PLLC_IN_A  
T*  
C*  
T*  
C*  
LLM0_PLLT_FB_A  
LLM0_PLLC_FB_A  
LLM0_PLLT_IN_A  
LLM0_PLLC_IN_A  
T*  
C*  
T*  
C*  
GNDIO6  
GNDIO5  
GNDIO6  
GNDIO5  
26**  
-
-
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
VCCIO5  
TMS  
5
5
5
5
5
5
5
5
-
VCCIO5  
TMS  
5
5
5
5
5
5
5
5
-
TMS  
TCK  
TMS  
TCK  
TCK  
TCK  
PB3B  
PB4A  
PB4B  
TDO  
PB3B  
PB4A  
PB4B  
TDO  
T
T
C
C
TDO  
TDI  
TDO  
TDI  
TDI  
TDI  
VCC  
VCC  
VCCAUX  
PB6E  
PB6F  
PB7B  
PB7F  
-
VCCAUX  
PB8E  
PB8F  
PB10F  
PB10B  
-
5
5
4
4
T
5
5
4
4
T
C
C
PCLK4_1***  
PCLK4_0***  
PCLK4_1***  
PCLK4_0***  
4-8  
Pinout Information  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
LA-MachXO1200 and LA-MachXO2280 Logic Signal Connections:  
100 TQFP (Cont.)  
LAMXO1200  
LAMXO2280  
Pin  
Number  
Ball  
Function  
Dual  
Function  
Ball  
Function  
Dual  
Function  
Bank  
Differential  
Bank  
Differential  
41  
42  
43  
44  
45  
46  
47  
48  
49  
GND  
PB9A  
-
GND  
PB12A  
PB12B  
VCCIO4  
PB13A  
PB13B  
NC  
-
4
4
4
4
4
-
T
4
4
4
4
4
-
T
PB9B  
C
C
VCCIO4  
PB10A  
PB10B  
NC  
T
T
C
C
NC  
NC  
PB11A  
PB11B  
4
4
T
PB16A  
PB16B  
4
4
T
C
C
GNDIO3  
GNDIO4  
GNDIO3  
GNDIO4  
50**  
-
-
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
PR16B  
PR15B  
PR15A  
PR14B  
PR14A  
VCCIO3  
PR12B  
PR12A  
GND  
3
3
3
3
3
3
3
3
-
PR19B  
PR18B  
PR18A  
PR17B  
PR17A  
VCCIO3  
PR15B  
PR15A  
GND  
3
3
3
3
3
3
3
3
-
C*  
T*  
C*  
T*  
C*  
T*  
C*  
T*  
C*  
T*  
C*  
T*  
PR10B  
PR10A  
PR9B  
3
3
3
3
2
2
-
C*  
T*  
C*  
T*  
C*  
T*  
PR13B  
PR13A  
PR11B  
PR11A  
PR10B  
PR10A  
VCC  
3
3
3
3
2
2
-
C*  
T*  
C*  
T*  
C*  
T*  
PR9A  
PR8B  
PR8A  
VCC  
PR6C  
PR6B  
2
2
2
2
2
2
2
2
2
PR8C  
2
2
2
2
2
2
2
2
2
C*  
T*  
PR8B  
C*  
T*  
PR6A  
PR8A  
VCCIO2  
PR4D  
PR4B  
VCCIO2  
PR5D  
C*  
T*  
C
PR5B  
C*  
T*  
C*  
T*  
PR4A  
PR5A  
PR2B  
PR3B  
PR2A  
T
PR3A  
GNDIO1  
GNDIO2  
GNDIO1  
GNDIO2  
76**  
-
-
77  
78  
79  
PT11C  
PT11B  
PT11A  
1
1
1
PT15C  
PT14B  
PT14A  
1
1
1
C
T
C
T
4-9  
Pinout Information  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
LA-MachXO1200 and LA-MachXO2280 Logic Signal Connections:  
100 TQFP (Cont.)  
LAMXO1200  
LAMXO2280  
Pin  
Number  
Ball  
Function  
Dual  
Function  
Ball  
Function  
Dual  
Function  
Bank  
Differential  
Bank  
Differential  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
VCCIO1  
PT9E  
PT9A  
GND  
1
1
1
-
VCCIO1  
PT12D  
PT12C  
GND  
1
1
1
-
C
T
PT8B  
PT8A  
PT7D  
PT6F  
1
1
1
0
0
0
-
C
T
PT11B  
PT11A  
PT10B  
PT9B  
1
1
1
1
0
0
-
C
T
PCLK1_1***  
PCLK1_0***  
PCLK1_1***  
PCLK1_0***  
PT6D  
PT6C  
VCCAUX  
VCC  
C
T
PT8F  
C
T
PT8E  
VCCAUX  
VCC  
-
-
PT5B  
PT4B  
VCCIO0  
PT3D  
PT3C  
PT3B  
PT2B  
PT2A  
0
0
0
0
0
0
0
0
PT6D  
0
0
0
0
0
0
0
0
PT6F  
VCCIO0  
PT4B  
C
T
C
T
PT4A  
PT3B  
C
T
PT2B  
C
T
PT2A  
GNDIO0  
GNDIO7  
GNDIO0  
GNDIO7  
100**  
-
-
*Supports true LVDS outputs.  
**Double bonded to the pin.  
*** Primary clock inputs are single-ended.  
4-10  
Pinout Information  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
LA-MachXO640, LA-MachXO1200 and LA-MachXO2280 Logic Signal  
Connections: 144 TQFP  
LAMXO640  
LAMXO1200  
LAMXO2280  
Pin  
Ball  
Dual  
Function  
Ball  
Dual  
Function  
Ball  
Dual  
Function  
Number Function Bank  
Differential Function Bank  
Differential Function Bank  
Differential  
1
PL2A  
PL2C  
PL2B  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
-
T
T
PL2A  
PL2B  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
-
T
C
PL2A  
PL2B  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
-
LUM0_PLLT_FB_A  
LUM0_PLLC_FB_A  
T
C
2
3
C
T
PL3A  
T*  
C*  
T
PL3A  
T*  
C*  
T
4
PL3A  
PL3B  
PL3B  
5
PL2D  
PL3B  
C
C
T
PL3C  
PL3C  
LUM0_PLLT_IN_A  
LUM0_PLLC_IN_A  
6
PL3D  
C
PL3D  
C
7
PL3C  
PL3D  
PL4A  
PL4A  
T*  
C*  
PL4A  
T*  
C*  
8
C
PL4B  
PL4B  
9
PL4C  
PL4C  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
VCCIO3  
GNDIO3  
PL4D  
PL5A  
VCCIO7  
GNDIO7  
PL5C  
VCCIO7  
GNDIO7  
PL6C  
T
PL6A  
T*  
PL7A  
T*  
PL5B  
GSRN  
C
PL6B  
GSRN  
C*  
PL7B  
GSRN  
C*  
PL5D  
GND  
PL6D  
PL7D  
GND  
GND  
PL6C  
PL6D  
PL7A  
3
3
3
3
-
T
C
T
PL7C  
7
7
6
6
-
T
C
PL9C  
7
7
6
6
-
T
C
PL7D  
PL9D  
PL10A  
PL10B  
VCC  
T*  
C*  
PL13A  
PL13B  
VCC  
T*  
C*  
PL7B  
C
VCC  
PL8A  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
T
PL11A  
PL11B  
PL11C  
PL12B  
VCCIO6  
GNDIO6  
PL13D  
PL14A  
PL14B  
PL14C  
PL14D  
PL15A  
PL15B  
PL16A  
PL16B  
GNDIO5  
VCCIO5  
TMS  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
5
5
5
5
5
5
5
5
5
5
5
5
5
5
T*  
PL13D  
PL14D  
PL14C  
PL15B  
VCCIO6  
GNDIO6  
PL16D  
PL17A  
PL17B  
PL17C  
PL17D  
PL18A  
PL18B  
PL19A  
PL19B  
GNDIO5  
VCCIO5  
TMS  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
5
5
5
5
5
5
5
5
5
5
5
5
5
5
PL8B  
C
C*  
C
T
PL8C  
PL9C  
VCCIO3  
GNDIO3  
PL9D  
PL10A  
PL10B  
PL10C  
PL11A  
PL10D  
PL11C  
PL11B  
PL11D  
GNDIO2  
VCCIO2  
TMS  
TSALL  
TSALL  
TSALL  
T
C
T
LLM0_PLLT_FB_A  
LLM0_PLLC_FB_A  
T*  
C*  
T
LLM0_PLLT_FB_A  
LLM0_PLLC_FB_A  
T*  
C*  
T
C
T
T
C
C
C
T
LLM0_PLLT_IN_A  
LLM0_PLLC_IN_A  
T*  
C*  
T
LLM0_PLLT_IN_A  
LLM0_PLLC_IN_A  
T*  
C*  
T
C
C
C
C
TMS  
TCK  
TMS  
TCK  
TMS  
TCK  
PB2C  
PB3A  
TCK  
PB2C  
PB2D  
TCK  
T
PB2A  
PB2B  
TCK  
T
T
C
C
PB3B  
PB3C  
PB3D  
PB4A  
TDO  
C
T
C
T
PB3A  
PB3B  
PB4A  
PB4B  
TDO  
T
C
T
PB3A  
PB3B  
PB4A  
PB4B  
TDO  
T
C
T
C
C
TDO  
TDO  
TDO  
PB4B  
PB4C  
PB4D  
C
T
PB4D  
PB5A  
PB5B  
PB4D  
PB5A  
PB5B  
T
T
C
C
C
4-11  
Pinout Information  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
LA-MachXO640, LA-MachXO1200 and LA-MachXO2280 Logic Signal  
Connections: 144 TQFP (Cont.)  
LAMXO640  
LAMXO1200  
LAMXO2280  
Pin  
Ball  
Dual  
Function  
Ball  
Dual  
Function  
Ball  
Dual  
Function  
Number Function Bank  
Differential Function Bank  
Differential Function Bank  
Differential  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70**  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
TDI  
VCC  
2
-
TDI  
TDI  
VCC  
5
-
TDI  
TDI  
VCC  
5
-
TDI  
VCCAUX  
PB5A  
-
VCCAUX  
PB6F  
-
VCCAUX  
PB8F  
-
2
2
2
2
2
-
T
5
4
4
4
4
-
5
4
4
4
4
-
PB5B  
PCLKT2_1***  
PCLKT2_0***  
C
PB7B  
PCLK4_1***  
PCLK4_0***  
PB10F  
PB10C  
PB10D  
PB10B  
GND  
PCLK4_1***  
PCLK4_0***  
PB5D  
PB6A  
PB7C  
T
T
T
PB7D  
C
C
PB6B  
C
PB7F  
GND  
GND  
PB7C  
PB7E  
2
2
2
2
2
2
2
2
2
2
-
PB9A  
4
4
4
4
4
4
4
4
4
4
-
T
PB12A  
PB12B  
PB12E  
VCCIO4  
GNDIO4  
PB13A  
PB13B  
PB13C  
PB13D  
PB14D  
NC  
4
4
4
4
4
4
4
4
4
4
-
T
PB9B  
C
C
PB8A  
PB9E  
VCCIO2  
GNDIO2  
PB8C  
PB8D  
PB9A  
VCCIO4  
GNDIO4  
PB10A  
PB10B  
PB10C  
PB10D  
PB10F  
NC  
T
C
T
T
C
T
C
T
T
C
T
PB9C  
PB9B  
C
C
SLEEPN  
PB9D  
PB9F  
SLEEPN  
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
-
C
PB11C  
PB11D  
PR16B  
PR16A  
PR15B  
PR15A  
PR14D  
PR14C  
PR14B  
PR14A  
PR13D  
VCCIO3  
GNDIO3  
PR12B  
PR12A  
PR11B  
PR11A  
GND  
4
4
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
-
T
C
PB16C  
PB16D  
PR20B  
PR20A  
PR19B  
PR19A  
PR17D  
PR17C  
PR17B  
PR17A  
PR16D  
VCCIO3  
GNDIO3  
PR15B  
PR15A  
PR14B  
PR14A  
GND  
4
4
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
-
T
C
C
T
PR11D  
PR11B  
PR11C  
PR10D  
PR11A  
PR10B  
PR10C  
PR10A  
PR9D  
VCCIO1  
GNDIO1  
PR9A  
PR8C  
PR8A  
PR7D  
GND  
C
C
T
C
T
C
T
T
C
T
C*  
T*  
C
C
T
C
T
T
C*  
T*  
C*  
T*  
C*  
T*  
C*  
T*  
C*  
T*  
C*  
T*  
PR7B  
PR7A  
PR6D  
PR6C  
VCC  
1
1
1
1
-
C
T
C
T
PR10B  
PR10A  
PR8B  
3
3
2
2
-
C*  
T*  
C*  
T*  
PR13B  
PR13A  
PR10B  
PR10A  
VCC  
3
3
2
2
-
C*  
T*  
C*  
T*  
PR8A  
VCC  
PR5D  
PR5B  
PR4D  
PR4B  
VCCIO1  
GNDIO1  
PR4A  
1
1
1
1
1
1
1
PR6B  
2
2
2
2
2
2
2
C*  
T*  
C*  
T*  
PR8B  
2
2
2
2
2
2
2
C*  
T*  
C*  
T*  
PR6A  
PR8A  
PR5B  
PR7B  
C
T
PR5A  
PR7A  
VCCIO2  
GNDIO2  
PR4C  
VCCIO2  
GNDIO2  
PR5C  
4-12  
Pinout Information  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
LA-MachXO640, LA-MachXO1200 and LA-MachXO2280 Logic Signal  
Connections: 144 TQFP (Cont.)  
LAMXO640  
LAMXO1200  
LAMXO2280  
Pin  
Ball  
Dual  
Function  
Ball  
Dual  
Function  
Ball  
Dual  
Function  
Number Function Bank  
Differential Function Bank  
Differential Function Bank  
Differential  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
PR3D  
PR3C  
PR3B  
PR2D  
PR3A  
PR2B  
PR2C  
PR2A  
PT9F  
PT9D  
PT9E  
PT9B  
PT9C  
PT9A  
PT8C  
PT8B  
VCCIO0  
GNDIO0  
PT8A  
PT7E  
PT7C  
PT7A  
GND  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
C
T
C
C
T
C
T
T
C
C
T
C
T
T
PR4B  
PR4A  
PR3D  
PR3C  
PR3B  
PR3A  
PR2B  
PR2A  
PT11D  
PT11C  
PT11B  
PT11A  
PT10F  
PT10E  
PT10D  
PT10C  
VCCIO1  
GNDIO1  
PT9F  
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
-
C*  
T*  
C
T
PR5B  
PR5A  
PR4D  
PR4C  
PR4B  
PR4A  
PR3B  
PR3A  
PT16D  
PT16C  
PT16B  
PT16A  
PT15D  
PT15C  
PT14B  
PT14A  
VCCIO1  
GNDIO1  
PT12F  
PT12E  
PT12D  
PT12C  
GND  
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
-
C*  
T*  
C
T
C*  
T*  
C
T
C*  
T*  
C*  
T*  
C
C
T
T
C
T
C
T
C
T
C
T
C
T
C
C
T
T
C
T
C
T
C
T
C
T
PT9E  
PT9B  
PT9A  
GND  
PT6B  
PT6A  
PT5C  
PT5B  
VCCAUX  
VCC  
0
0
0
0
-
PCLK0_1***  
PCLK0_0***  
C
T
PT7D  
PT7B  
1
1
1
0
-
PCLK1_1***  
PCLK1_0***  
PT10B  
PT9D  
1
1
1
1
-
PCLK1_1***  
PCLK1_0***  
C
T
C
T
PT7A  
PT9C  
PT6F  
PT9B  
VCCAUX  
VCC  
VCCAUX  
VCC  
-
-
-
PT4D  
PT4B  
PT4A  
PT3F  
PT3D  
VCCIO0  
GNDIO0  
PT3B  
PT2F  
PT3A  
PT2D  
PT2E  
PT2B  
PT2C  
PT2A  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PT5D  
PT5C  
PT5B  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
C
T
C
T
PT7B  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
C
T
C
T
PT7A  
PT6D  
PT5A  
PT6E  
T
PT4B  
PT6F  
C
VCCIO0  
GNDIO0  
PT3D  
PT3C  
PT3B  
VCCIO0  
GNDIO0  
PT4B  
C
C
T
C
T
C
T
T
C
T
C
T
C
T
C
T
T
C
C
T
PT4A  
PT3B  
PT3A  
PT3A  
PT2D  
PT2C  
PT2B  
PT2D  
C
T
PT2C  
PT2B  
C
T
PT2A  
PT2A  
*Supports true LVDS outputs.  
**NC for “E” devices.  
***Primary clock inputs arer single-ended.  
4-13  
Pinout Information  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
LA-MachXO640, LA-MachXO1200 and LA-MachXO2280 Logic Signal  
Connections: 256 ftBGA  
LAMXO640  
LAMXO1200  
LAMXO2280  
Ball  
Ball  
Dual  
Function  
Ball  
Ball  
Dual  
Function  
Ball  
Ball  
Dual  
Function  
Number Function Bank  
Differential Number Function Bank  
Differential Number Function Bank  
Differential  
GND  
GNDIO3  
3
3
GND GNDIO7  
VCCIO7 VCCIO7  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
-
GND GNDIO7  
VCCIO7 VCCIO7  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
-
VCCIO3 VCCIO3  
E4  
E5  
F5  
F6  
F3  
F4  
E3  
E2  
C3  
C2  
B1  
C1  
NC  
NC  
E4  
E5  
F5  
F6  
F3  
F4  
E3  
E2  
C3  
C2  
B1  
C1  
PL2A  
PL2B  
PL3A  
PL3B  
PL3C  
PL3D  
PL4A  
PL4B  
PL4C  
PL4D  
PL5A  
PL5B  
T
C
E4  
E5  
F5  
F6  
F3  
F4  
E3  
E2  
C3  
C2  
B1  
C1  
PL2A  
PL2B  
PL3A  
PL3B  
PL3C  
PL3D  
PL4A  
PL4B  
PL4C  
PL4D  
PL5A  
PL5B  
LUM0_PLLT_FB_A  
LUM0_PLLC_FB_A  
T
C
NC  
T**  
C**  
T
T**  
C**  
T
NC  
PL3A  
PL3B  
PL2C  
PL2D  
NC  
3
3
3
3
T
C
T
LUM0_PLLT_IN_A  
LUM0_PLLC_IN_A  
C
C
T**  
C**  
T
T**  
C**  
T
C
NC  
C
C
PL2A  
PL2B  
3
3
3
3
3
3
3
3
3
3
T
T**  
C**  
T**  
C**  
C
VCCIO3 VCCIO3  
VCCIO7 VCCIO7  
VCCIO7 VCCIO7  
GND  
D2  
D1  
F2  
G2  
E1  
F1  
G4  
G5  
GND  
G3  
H3  
H4  
H5  
-
GNDIO3  
PL3C  
PL3D  
PL5A  
PL5B  
PL4A  
PL4B  
NC  
GND  
D2  
GNDIO7  
PL5C  
PL5D  
PL6A  
PL6B  
PL6C  
PL6D  
PL7A  
PL7B  
GND  
GND  
D2  
GNDIO7  
PL6C  
PL6D  
PL7A  
PL7B  
PL7C  
PL7D  
PL8A  
PL8B  
GND  
T
C
T
T
C
T
C
D1  
D1  
F2  
T**  
C**  
T
F2  
T**  
C**  
T
GSRN  
C
T
G2  
E1  
GSRN  
G2  
E1  
GSRN  
C
F1  
C
F1  
C
G4  
G5  
GND  
G3  
H3  
T**  
C**  
G4  
G5  
GND  
G3  
H3  
T**  
C**  
NC  
GND  
PL4C  
PL4D  
NC  
-
3
3
T
PL7C  
PL7D  
PL8A  
PL8B  
7
7
7
7
7
7
7
7
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
T
PL8C  
PL8D  
PL9A  
PL9B  
7
7
7
7
7
7
7
7
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
T
C
C
C
H4  
T**  
C**  
H4  
T**  
C**  
NC  
H5  
H5  
-
VCCIO7 VCCIO7  
VCCIO7 VCCIO7  
-
-
GND  
G1  
H1  
H2  
J2  
GNDIO7  
PL8C  
PL8D  
PL9A  
GND  
G1  
H1  
H2  
J2  
GNDIO7  
PL10C  
PL10D  
PL11A  
PL11B  
PL11C  
PL11D  
PL12A  
G1  
H1  
H2  
J2  
PL5C  
PL5D  
PL6A  
PL6B  
PL7C  
PL7D  
PL6C  
-
3
3
3
3
3
3
3
T
C
T
C
T
C
T
T
C
T
C
T**  
C**  
T
T**  
C**  
T
PL9B  
J3  
J3  
PL9C  
PL9D  
PL10A  
J3  
K3  
J1  
K3  
J1  
C
K3  
J1  
C
T**  
T**  
-
VCCIO6 VCCIO6  
VCCIO6 VCCIO6  
-
-
GND  
K1  
K2  
L2  
GNDIO6  
PL10B  
PL10C  
PL10D  
PL11A  
PL11B  
PL11D  
PL11C  
PL12A  
PL12B  
PL12C  
PL12D  
GND  
K1  
K2  
L2  
GNDIO6  
PL12B  
PL12C  
PL12D  
PL13A  
PL13B  
PL14D  
PL14C  
PL15A  
PL15B  
PL15C  
PL15D  
K1  
K2  
L2  
L1  
M1  
P1  
N1  
L3  
M3  
M2  
N2  
PL6D  
PL9A  
PL9B  
PL7A  
PL7B  
PL8D  
PL8C  
PL10A  
PL10B  
PL9C  
PL9D  
3
3
3
3
3
3
3
3
3
3
3
3
3
C
T
C
T
C
C
T
T
C
T
C
C**  
T
C**  
T
C
C
L1  
T**  
C**  
C
L1  
T**  
C**  
C
M1  
P1  
N1  
L3  
M1  
P1  
N1  
L3  
TSALL  
TSALL  
T
TSALL  
T
T**  
C**  
T
T**  
C**  
T
M3  
M2  
N2  
M3  
M2  
N2  
C
C
VCCIO3 VCCIO3  
GND GNDIO3  
VCCIO6 VCCIO6  
GND GNDIO6  
VCCIO6 VCCIO6  
GND GNDIO6  
4-14  
Pinout Information  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
LA-MachXO640, LA-MachXO1200 and LA-MachXO2280 Logic Signal  
Connections: 256 ftBGA (Cont.)  
LAMXO640  
LAMXO1200  
LAMXO2280  
Ball  
Ball  
Dual  
Function  
Ball  
Ball  
Dual  
Function  
Ball  
Ball  
Dual  
Function  
Number Function Bank  
Differential Number Function Bank  
Differential Number Function Bank  
Differential  
J4  
J5  
PL8A  
PL8B  
PL11A  
PL11B  
-
3
3
3
3
-
T
C
T
J4  
J5  
PL13A  
PL13B  
PL13C  
PL13D  
-
6
6
6
6
-
T**  
C**  
T
J4  
J5  
PL16A  
PL16B  
PL16C  
PL16D  
GND  
6
6
6
6
-
T**  
C**  
T
R1  
R2  
-
R1  
R2  
-
R1  
R2  
GND  
K5  
K4  
L5  
C
C
C
K5  
K4  
L5  
L4  
M5  
M4  
N4  
N3  
NC  
K5  
K4  
L5  
L4  
M5  
M4  
N4  
N3  
PL14A  
PL14B  
PL14C  
PL14D  
PL15A  
PL15B  
PL16A  
PL16B  
6
6
6
6
6
6
6
6
6
6
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
-
LLM0_PLLT_FB_A  
LLM0_PLLC_FB_A  
T**  
C**  
T
PL17A  
PL17B  
PL17C  
PL17D  
PL18A  
PL18B  
PL19A  
PL19B  
6
6
6
6
6
6
6
6
6
6
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
-
LLM0_PLLT_FB_A  
LLM0_PLLC_FB_A  
T**  
C**  
T
NC  
PL10C  
PL10D  
NC  
3
3
T
C
C
L4  
C
LLM0_PLLT_IN_A  
LLM0_PLLC_IN_A  
T**  
C**  
T
M5  
M4  
N4  
N3  
LLM0_PLLT_IN_A  
LLM0_PLLC_IN_A  
T**  
C**  
T
NC  
PL11C  
PL11D  
3
3
3
3
2
2
2
T
C
C
C
VCCIO3 VCCIO3  
VCCIO6 VCCIO6  
VCCIO6 VCCIO6  
GND  
GND  
GNDIO3  
GNDIO2  
GND  
GND  
GNDIO6  
GNDIO5  
GND  
GND  
GNDIO6  
GNDIO5  
VCCIO2 VCCIO2  
VCCIO5 VCCIO5  
VCCIO5 VCCIO5  
P4  
P2  
P3  
N5  
R3  
N6  
T2  
TMS  
NC  
TMS  
TCK  
P4  
P2  
P3  
N5  
R3  
N6  
T2  
TMS  
PB2A  
PB2B  
PB2C  
TCK  
TMS  
TCK  
P4  
P2  
P3  
N5  
R3  
N6  
T2  
TMS  
PB2A  
PB2B  
PB2C  
TCK  
TMS  
TCK  
T
C
T
T
C
T
NC  
NC  
TCK  
2
NC  
PB2D  
PB3A  
PB3B  
PB3C  
PB3D  
PB4A  
PB4B  
PB4C  
TDO  
C
T
C
T
C
T
C
T
PB2D  
PB3A  
PB3B  
PB3C  
PB3D  
PB4A  
PB4B  
PB4C  
TDO  
C
T
C
T
C
T
C
T
PB2A  
PB2B  
PB2C  
PB2D  
PB3A  
PB3B  
PB3C  
TDO  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
T
C
T
C
T
C
T
T3  
T3  
T3  
R4  
R5  
P5  
P6  
T5  
R4  
R5  
P5  
P6  
T5  
R4  
R5  
P5  
P6  
T5  
M6  
T4  
TDO  
M6  
T4  
TDO  
M6  
T4  
TDO  
PB3D  
PB4A  
GNDIO2  
C
T
PB4D  
PB5A  
GNDIO5  
C
T
PB4D  
PB5A  
GNDIO5  
C
T
R6  
GND  
R6  
GND  
R6  
GND  
VCCIO2 VCCIO2  
VCCIO5 VCCIO5  
VCCIO5 VCCIO5  
T6  
N7  
T8  
T7  
M7  
M8  
T9  
R7  
R8  
-
PB4B  
TDI  
C
T6  
N7  
T8  
T7  
M7  
M8  
T9  
R7  
R8  
PB5B  
TDI  
C
T6  
N7  
T8  
T7  
M7  
M8  
T9  
R7  
R8  
PB5B  
TDI  
C
TDI  
TDI  
TDI  
PB4C  
PB4D  
NC  
T
PB5C  
PB5D  
PB6A  
PB6B  
VCCAUX  
PB6C  
PB6D  
T
C
T
PB6A  
PB6B  
PB7C  
PB7D  
VCCAUX  
PB8C  
PB8D  
T
C
T
C
NC  
C
C
VCCAUX  
PB4E  
PB4F  
-
-
2
2
T
5
5
5
5
5
5
4
4
4
4
4
T
5
5
5
5
4
4
4
4
4
4
4
T
C
C
C
VCCIO5 VCCIO5  
VCCIO5 VCCIO5  
-
-
GND  
P7  
GNDIO5  
PB6E  
PB6F  
PB7A  
PB7B  
PB7D  
PB7C  
PB7F  
GND  
P7  
GNDIO5  
PB9A  
P7  
P8  
N8  
N9  
P10  
P9  
M9  
PB5C  
PB5D  
PB5A  
PB5B  
PB7B  
PB7A  
PB6B  
2
2
2
2
2
2
2
T
C
T
T
C
T
T
C
T
P8  
P8  
PB9B  
N8  
N8  
PB10E  
PB10F  
PB10D  
PB10C  
PB10B  
PCLK2_1****  
PCLK2_0****  
C
C
T
N9  
PCLK4_1****  
PCLK4_0****  
4-15  
C
C
T
N9  
PCLK4_1****  
PCLK4_0****  
C
C
T
P10  
P9  
P10  
P9  
C
M9  
C
M9  
C
Pinout Information  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
LA-MachXO640, LA-MachXO1200 and LA-MachXO2280 Logic Signal  
Connections: 256 ftBGA (Cont.)  
LAMXO640  
LAMXO1200  
LAMXO2280  
Ball  
Ball  
Dual  
Function  
Ball  
Ball  
Dual  
Function  
Ball  
Ball  
Dual  
Function  
Number Function Bank  
Differential Number Function Bank  
Differential Number Function Bank  
Differential  
-
-
VCCIO4 VCCIO4  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
-
VCCIO4 VCCIO4  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
-
-
-
GND  
M10  
R9  
GNDIO4  
PB7E  
PB8A  
PB8B  
PB8C  
PB8D  
PB8E  
PB8F  
GND  
M10  
R9  
GNDIO4  
PB10A  
PB11C  
PB11D  
PB12A  
PB12B  
PB12C  
PB12D  
M10  
R9  
PB6A  
PB6C  
PB6D  
PB7C  
PB7D  
NC  
2
2
2
2
2
T
T
C
T
C
T
T
C
T
C
T
C
T
T
C
T
C
T
C
R10  
T10  
T11  
N10  
N11  
R10  
T10  
T11  
N10  
N11  
R10  
T10  
T11  
N10  
N11  
NC  
VCCIO2 VCCIO2  
2
2
2
2
2
2
2
2
2
-
VCCIO4 VCCIO4  
VCCIO4 VCCIO4  
GND  
R11  
R12  
P11  
P12  
T13  
T12  
R13  
R14  
GND  
T14  
T15  
GNDIO2  
PB7E  
PB7F  
PB8A  
PB8B  
PB8C  
PB8D  
PB9A  
PB9B  
GND  
GND  
R11  
R12  
P11  
P12  
T13  
T12  
R13  
R14  
GND  
T14  
T15  
P13  
P14  
R15  
R16  
P15  
P16  
GNDIO4  
PB9A  
GND  
R11  
R12  
P11  
P12  
T13  
T12  
R13  
R14  
GND  
T14  
T15  
P13  
P14  
R15  
R16  
P15  
P16  
GNDIO4  
PB13A  
PB13B  
PB13C  
PB13D  
PB14A  
PB14B  
PB14C  
PB14D  
GND  
T
C
T
T
C
T
T
C
T
PB9B  
PB9C  
PB9D  
PB9E  
C
T
C
T
C
T
C
T
PB9F  
C
T
C
T
PB10A  
PB10B  
GND  
C
C
C
-
PB9C  
PB9D  
2
2
-
T
PB10C  
PB10D  
NC  
4
4
-
T
PB15A  
PB15B  
NC  
4
4
-
T
C
C
C
P13*** SLEEPN  
SLEEPN  
P14  
R15  
R16  
P15  
P16  
PB9F  
NC  
2
PB10F  
PB11A  
PB11B  
PB11C  
PB11D  
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
PB15D  
PB16A  
PB16B  
PB16C  
PB16D  
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
T
C
T
T
C
T
NC  
NC  
NC  
C
C
VCCIO2 VCCIO2  
2
2
1
1
VCCIO4 VCCIO4  
VCCIO4 VCCIO4  
GND  
GND  
GNDIO2  
GNDIO1  
GND  
GND  
GNDIO4  
GNDIO3  
GND  
GND  
GNDIO4  
GNDIO3  
VCCIO1 VCCIO1  
VCCIO3 VCCIO3  
VCCIO3 VCCIO3  
M11  
L11  
N12  
N13  
M13  
M12  
N14  
N15  
L13  
L12  
M14  
NC  
NC  
M11  
L11  
N12  
N13  
M13  
M12  
N14  
N15  
L13  
L12  
M14  
PR16B  
PR16A  
PR15B  
PR15A  
PR14D  
PR14C  
PR14B  
PR14A  
PR13D  
PR13C  
PR13B  
C
T
M11  
L11  
N12  
N13  
M13  
M12  
N14  
N15  
L13  
L12  
M14  
PR20B  
PR20A  
PR18B  
PR18A  
PR17D  
PR17C  
PR17B  
PR17A  
PR16D  
PR16C  
PR16B  
C
T
NC  
C**  
T**  
C
C**  
T**  
C
NC  
NC  
NC  
T
T
PR11D  
PR11C  
PR11B  
PR11A  
PR10B  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C
T
C**  
T**  
C
C**  
T**  
C
C
T
T
T
C
C**  
C**  
VCCIO1 VCCIO1  
VCCIO3 VCCIO3  
VCCIO3 VCCIO3  
GND  
L14  
N16  
M16  
M15  
L15  
L16  
K16  
K13  
GNDIO1  
PR10A  
PR10D  
PR10C  
PR9D  
GND  
L14  
N16  
M16  
M15  
L15  
L16  
K16  
K13  
GNDIO3  
PR13A  
PR12D  
PR12C  
PR12B  
PR12A  
PR11D  
PR11C  
PR11B  
GND  
L14  
N16  
M16  
M15  
L15  
L16  
K16  
K13  
GNDIO3  
PR16A  
PR15D  
PR15C  
PR15B  
PR15A  
PR14D  
PR14C  
PR14B  
T
C
T
T**  
C
T**  
C
T
T
C
T
C**  
T**  
C
C**  
T**  
C
PR9C  
PR9B  
C
T
PR9A  
T
T
PR8D  
C
C**  
C**  
4-16  
Pinout Information  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
LA-MachXO640, LA-MachXO1200 and LA-MachXO2280 Logic Signal  
Connections: 256 ftBGA (Cont.)  
LAMXO640  
LAMXO1200  
LAMXO2280  
Ball  
Ball  
Dual  
Function  
Ball  
Ball  
Dual  
Function  
Ball  
Ball  
Dual  
Function  
Number Function Bank  
Differential Number Function Bank  
Differential Number Function Bank  
Differential  
J13  
GND  
K14  
J14  
K15  
J15  
-
PR8C  
GND  
PR8B  
PR8A  
PR7D  
PR7C  
-
1
-
T
J13  
GND  
K14  
J14  
PR11A  
GND  
3
-
T**  
J13  
GND  
K14  
J14  
PR14A  
GND  
3
-
T**  
1
1
1
1
C
T
C
T
PR10D  
PR10C  
PR10B  
PR10A  
GNDIO3  
3
3
3
3
3
3
3
3
3
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
-
C
T
PR13D  
PR13C  
PR13B  
PR13A  
GNDIO3  
3
3
3
3
3
3
3
3
3
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
-
C
T
K15  
J15  
C**  
T**  
K15  
J15  
C**  
T**  
GND  
GND  
-
-
VCCIO3 VCCIO3  
VCCIO3 VCCIO3  
K12  
J12  
J16  
H16  
H15  
G15  
H14  
G14  
GND  
NC  
K12  
J12  
PR9D  
PR9C  
PR9B  
PR9A  
PR8D  
PR8C  
PR8B  
PR8A  
GNDIO2  
C
T
K12  
J12  
PR11D  
PR11C  
PR11B  
PR11A  
PR10D  
PR10C  
PR10B  
PR10A  
GNDIO2  
C
T
NC  
PR7B  
PR7A  
PR6B  
PR6A  
PR5D  
PR5C  
GNDIO1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
-
C
T
C
T
C
T
J16  
C**  
T**  
C
J16  
C**  
T**  
C
H16  
H15  
G15  
H14  
G14  
GND  
H16  
H15  
G15  
H14  
G14  
GND  
T
T
C**  
T**  
C**  
T**  
VCCIO1 VCCIO1  
VCCIO2 VCCIO2  
VCCIO2 VCCIO2  
H13  
H12  
G13  
G12  
G16  
F16  
F15  
E15  
E16  
D16  
PR6D  
PR6C  
PR4D  
PR4C  
PR5B  
PR5A  
PR4B  
PR4A  
PR3B  
PR3A  
C
T
C
T
C
T
C
T
C
T
H13  
H12  
G13  
G12  
G16  
F16  
F15  
E15  
E16  
D16  
PR7D  
PR7C  
PR7B  
PR7A  
PR6D  
PR6C  
PR6B  
PR6A  
PR5D  
PR5C  
C
T
H13  
H12  
G13  
G12  
G16  
F16  
F15  
E15  
E16  
D16  
PR9D  
PR9C  
PR9B  
PR9A  
PR7D  
PR7C  
PR7B  
PR7A  
PR6D  
PR6C  
C
T
C**  
T**  
C
C**  
T**  
C
T
T
C**  
T**  
C
C**  
T**  
C
T
T
VCCIO1 VCCIO1  
VCCIO2 VCCIO2  
VCCIO2 VCCIO2  
GND  
D15  
C15  
C16  
B16  
F14  
E14  
-
GNDIO1  
PR2D  
PR2C  
PR2B  
PR2A  
PR3D  
PR3C  
-
GND  
D15  
C15  
C16  
B16  
F14  
E14  
-
GNDIO2  
PR5B  
PR5A  
PR4D  
PR4C  
PR4B  
PR4A  
-
GND  
D15  
C15  
C16  
B16  
F14  
E14  
GND  
F12  
F13  
E12  
E13  
D13  
D14  
GNDIO2  
PR6B  
PR6A  
PR5D  
PR5C  
PR5B  
PR5A  
GND  
C
T
C
T
C
T
C**  
T**  
C
C**  
T**  
C
T
T
C**  
T**  
C**  
T**  
F12  
F13  
E12  
E13  
D13  
D14  
NC  
F12  
F13  
E12  
E13  
D13  
D14  
PR3D  
PR3C  
PR3B  
PR3A  
PR2B  
PR2A  
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
C
T
PR4D  
PR4C  
PR4B  
PR4A  
PR3B  
PR3A  
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
C
NC  
T
NC  
C**  
T**  
C
C**  
T**  
C**  
T**  
NC  
NC  
NC  
T
VCCIO0 VCCIO0  
0
0
0
0
VCCIO2 VCCIO2  
VCCIO2 VCCIO2  
GND  
GND  
GNDIO0  
GNDIO0  
GND  
GND  
GNDIO2  
GNDIO1  
GND  
GND  
GNDIO2  
GNDIO1  
VCCIO0 VCCIO0  
VCCIO1 VCCIO1  
VCCIO1 VCCIO1  
B15  
A15  
C14  
B14  
C13  
B13  
NC  
NC  
B15  
A15  
C14  
B14  
C13  
B13  
PT11D  
PT11C  
PT11B  
PT11A  
PT10F  
PT10E  
C
T
C
T
C
T
B15  
A15  
C14  
B14  
C13  
B13  
PT16D  
PT16C  
PT16B  
PT16A  
PT15D  
PT15C  
C
T
C
T
C
T
NC  
NC  
PT9F  
PT9E  
0
0
C
T
4-17  
Pinout Information  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
LA-MachXO640, LA-MachXO1200 and LA-MachXO2280 Logic Signal  
Connections: 256 ftBGA (Cont.)  
LAMXO640  
LAMXO1200  
LAMXO2280  
Ball  
Ball  
Dual  
Function  
Ball  
Ball  
Dual  
Function  
Ball  
Ball  
Dual  
Function  
Number Function Bank  
Differential Number Function Bank  
Differential Number Function Bank  
Differential  
E11  
E10  
D12  
D11  
A14  
A13  
C12  
C11  
-
NC  
NC  
E11  
E10  
D12  
D11  
A14  
A13  
C12  
C11  
PT10D  
PT10C  
PT10B  
PT10A  
PT9F  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
-
C
T
C
T
C
T
C
T
E11  
E10  
D12  
D11  
A14  
A13  
C12  
C11  
PT15B  
PT15A  
PT14D  
PT14C  
PT14B  
PT14A  
PT13D  
PT13C  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
-
C
T
C
T
C
T
C
T
PT9D  
PT9C  
PT7F  
PT7E  
PT8B  
PT8A  
-
0
0
0
0
0
0
C
T
C
T
C
T
PT9E  
PT9D  
PT9C  
VCCIO1 VCCIO1  
VCCIO1 VCCIO1  
-
-
GND  
B12  
B11  
A12  
A11  
GND  
B10  
B9  
GNDIO1  
PT9B  
PT9A  
PT8F  
PT8E  
GND  
GND  
B12  
B11  
A12  
A11  
GND  
B10  
B9  
GNDIO1  
PT12D  
PT12C  
PT12B  
PT12A  
GND  
B12  
B11  
A12  
A11  
GND  
B10  
B9  
PT7B  
PT7A  
PT7D  
PT7C  
GND  
PT5D  
PT5C  
PT8D  
PT8C  
-
0
0
0
0
-
C
T
C
T
C
T
C
T
C
T
C
T
0
0
0
0
C
T
C
T
PT8D  
PT8C  
PT8B  
PT8A  
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
-
C
T
C
T
PT11B  
PT11A  
PT10F  
PT10E  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
-
C
T
C
T
D10  
D9  
D10  
D9  
D10  
D9  
-
VCCIO1 VCCIO1  
VCCIO1 VCCIO1  
-
-
GND  
C10  
C9  
GNDIO1  
PT7F  
PT7E  
PT7D  
PT7C  
PT7B  
PT7A  
PT6F  
PT6E  
GND  
C10  
C9  
GNDIO1  
PT10D  
PT10C  
PT10B  
PT10A  
PT9D  
C10  
C9  
PT6D  
PT6C  
PT6B  
PT6A  
PT9B  
PT9A  
PT5B  
PT5A  
0
0
0
0
0
0
0
0
0
0
0
0
-
C
T
C
T
C
T
C
T
C
T
C
T
C
T
C
T
C
T
C
T
C
T
C
T
A9  
PCLK0_1****  
PCLK0_0****  
A9  
PCLK1_1****  
PCLK1_0****  
A9  
PCLK1_1****  
PCLK1_0****  
A10  
E9  
A10  
E9  
A10  
E9  
E8  
E8  
E8  
PT9C  
D7  
D7  
D7  
PT9B  
D8  
D8  
D8  
PT9A  
VCCIO0 VCCIO0  
VCCIO0 VCCIO0  
VCCIO0 VCCIO0  
GND  
C8  
B8  
A8  
A7  
A6  
B7  
B6  
C6  
C7  
A5  
A4  
E7  
E6  
B5  
B4  
D5  
D6  
C4  
C5  
-
GNDIO0  
PT4F  
PT4E  
VCCAUX  
PT4D  
PT4C  
PT4B  
PT4A  
PT3C  
PT3D  
PT3E  
PT3F  
NC  
GND  
C8  
B8  
A8  
A7  
A6  
B7  
B6  
C6  
C7  
A5  
A4  
E7  
E6  
B5  
B4  
D5  
D6  
C4  
C5  
-
GNDIO0  
PT6D  
PT6C  
VCCAUX  
PT6B  
PT6A  
PT5F  
PT5E  
PT5C  
PT5D  
PT5A  
PT5B  
PT4C  
PT4D  
PT3F  
PT3E  
PT3D  
PT3C  
PT4A  
PT4B  
-
GND  
C8  
B8  
A8  
A7  
A6  
B7  
B6  
C6  
C7  
A5  
A4  
E7  
E6  
B5  
B4  
D5  
D6  
C4  
C5  
GND  
D4  
D3  
GNDIO0  
PT8D  
PT8C  
VCCAUX  
PT7D  
PT7C  
PT7B  
PT7A  
PT6A  
PT6B  
PT6C  
PT6D  
PT6E  
PT6F  
PT5D  
PT5C  
PT5B  
PT5A  
PT4A  
PT4B  
GND  
C
T
C
T
C
T
0
0
0
0
0
0
0
0
C
T
C
T
T
C
T
C
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
C
T
C
T
T
C
T
C
T
C
C
T
C
T
T
C
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
C
T
C
T
T
C
T
C
T
C
C
T
C
T
T
C
NC  
PT3B  
PT3A  
PT2D  
PT2C  
PT2E  
PT2F  
-
0
0
0
0
0
0
-
C
T
C
T
T
C
D4  
D3  
NC  
D4  
D3  
PT2D  
PT2C  
0
0
C
T
PT3D  
PT3C  
0
0
C
T
NC  
4-18  
Pinout Information  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
LA-MachXO640, LA-MachXO1200 and LA-MachXO2280 Logic Signal  
Connections: 256 ftBGA (Cont.)  
LAMXO640  
LAMXO1200  
LAMXO2280  
Ball  
Ball  
Dual  
Function  
Ball  
Ball  
Dual  
Function  
Ball  
Ball  
Dual  
Function  
Number Function Bank  
Differential Number Function Bank  
Differential Number Function Bank  
Differential  
A3  
A2  
B3  
B2  
PT2B  
PT2A  
NC  
0
0
C
T
A3  
A2  
B3  
B2  
PT3B  
PT3A  
PT2B  
PT2A  
0
0
0
0
0
0
-
C
T
C
T
A3  
A2  
B3  
B2  
PT3B  
PT3A  
PT2D  
PT2C  
0
0
0
0
0
0
-
C
T
C
T
NC  
VCCIO0 VCCIO0  
0
0
-
VCCIO0 VCCIO0  
VCCIO0 VCCIO0  
GND  
A1  
GNDIO0  
GND  
GND  
A1  
GNDIO0  
GND  
GND  
A1  
GNDIO0  
GND  
A16  
F11  
G8  
G9  
H7  
GND  
-
A16  
F11  
G8  
G9  
H7  
GND  
-
A16  
F11  
G8  
G9  
H7  
GND  
-
GND  
-
GND  
-
GND  
-
GND  
-
GND  
-
GND  
-
GND  
-
GND  
-
GND  
-
GND  
-
GND  
-
GND  
-
H8  
GND  
-
H8  
GND  
-
H8  
GND  
-
H9  
GND  
-
H9  
GND  
-
H9  
GND  
-
H10  
J7  
GND  
-
H10  
J7  
GND  
-
H10  
J7  
GND  
-
GND  
-
GND  
-
GND  
-
J8  
GND  
-
J8  
GND  
-
J8  
GND  
-
J9  
GND  
-
J9  
GND  
-
J9  
GND  
-
J10  
K8  
GND  
-
J10  
K8  
GND  
-
J10  
K8  
GND  
-
GND  
-
GND  
-
GND  
-
K9  
GND  
-
K9  
GND  
-
K9  
GND  
-
L6  
GND  
-
L6  
GND  
-
L6  
GND  
-
T1  
GND  
-
T1  
GND  
-
T1  
GND  
-
T16  
G7  
G10  
K7  
GND  
-
T16  
G7  
G10  
K7  
GND  
-
T16  
G7  
G10  
K7  
GND  
-
VCC  
-
VCC  
-
VCC  
-
VCC  
-
VCC  
-
VCC  
-
VCC  
-
VCC  
-
VCC  
-
K10  
H6  
VCC  
-
K10  
H6  
VCC  
-
K10  
H6  
VCC  
-
VCCIO3  
VCCIO3  
VCCIO3  
VCCIO3  
VCCIO2  
VCCIO2  
VCCIO2  
VCCIO2  
VCCIO1  
VCCIO1  
VCCIO1  
VCCIO1  
VCCIO0  
VCCIO0  
VCCIO0  
VCCIO0  
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
0
VCCIO7  
VCCIO7  
VCCIO6  
VCCIO6  
VCCIO5  
VCCIO5  
VCCIO4  
VCCIO4  
VCCIO3  
VCCIO3  
VCCIO2  
VCCIO2  
VCCIO1  
VCCIO1  
VCCIO0  
VCCIO0  
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
VCCIO7  
VCCIO7  
VCCIO6  
VCCIO6  
VCCIO5  
VCCIO5  
VCCIO4  
VCCIO4  
VCCIO3  
VCCIO3  
VCCIO2  
VCCIO2  
VCCIO1  
VCCIO1  
VCCIO0  
VCCIO0  
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
G6  
K6  
G6  
K6  
G6  
K6  
J6  
J6  
J6  
L8  
L8  
L8  
L7  
L7  
L7  
L9  
L9  
L9  
L10  
K11  
J11  
H11  
G11  
F9  
L10  
K11  
J11  
H11  
G11  
F9  
L10  
K11  
J11  
H11  
G11  
F9  
F10  
F8  
F10  
F8  
F10  
F8  
F7  
F7  
F7  
* LCMXO640 only.  
** Supports true LVDS outputs.  
*** NC for “E” devices.  
**** Primary clock inputs are single-ended.  
4-19  
Pinout Information  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
LA-MachXO2280 Logic Signal Connections: 324 ftBGA  
LAMXO2280  
Ball Number  
GND  
VCCIO7  
D4  
Ball Function  
GNDIO7  
VCCIO7  
PL2A  
Bank  
7
7
7
7
7
7
7
7
7
7
7
-
Dual Function  
Differential  
LUM0_PLLT_FB_A  
LUM0_PLLC_FB_A  
T
C
F5  
PL2B  
B3  
PL3A  
T*  
C*  
T
C3  
PL3B  
E4  
PL3C  
LUM0_PLLT_IN_A  
LUM0_PLLC_IN_A  
G6  
PL3D  
C
A1  
PL4A  
T*  
C*  
T
B1  
PL4B  
F4  
PL4C  
VCC  
E3  
VCC  
PL4D  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
-
C
T*  
C*  
T
D2  
PL5A  
D3  
PL5B  
G5  
PL5C  
F3  
PL5D  
C
C2  
PL6A  
T*  
VCCIO7  
GND  
C1  
VCCIO7  
GNDIO7  
PL6B  
C*  
T
H5  
PL6C  
G4  
PL6D  
C
E2  
PL7A  
T*  
C*  
T
D1  
PL7B  
GSRN  
J6  
PL7C  
H4  
PL7D  
C
F2  
PL8A  
T*  
C*  
E1  
PL8B  
GND  
J3  
GND  
PL8C  
7
7
7
7
7
7
7
7
7
7
7
7
T
C
J5  
PL8D  
G3  
PL9A  
T*  
C*  
T
H3  
PL9B  
K3  
PL9C  
K5  
PL9D  
C
F1  
PL10A  
VCCIO7  
GNDIO7  
PL10B  
PL10C  
PL10D  
T*  
VCCIO7  
GND  
G1  
C*  
T
K4  
K6  
C
4-20  
Pinout Information  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
LA-MachXO2280 Logic Signal Connections: 324 ftBGA (Cont.)  
LAMXO2280  
Ball Number  
G2  
Ball Function  
PL11A  
PL11B  
PL11C  
PL11D  
PL12A  
VCCIO6  
GNDIO6  
PL12B  
PL12C  
PL12D  
PL13A  
PL13B  
PL13C  
VCC  
Bank  
6
6
6
6
6
6
6
6
6
6
6
6
6
-
Dual Function  
Differential  
T*  
C*  
T
H2  
L3  
L5  
C
H1  
T*  
VCCIO6  
GND  
J2  
C*  
T
L4  
L6  
C
K2  
T*  
C*  
T
K1  
J1  
VCC  
L2  
PL13D  
PL14D  
PL14C  
PL14B  
PL14A  
PL15A  
PL15B  
PL15C  
PL15D  
VCCIO6  
GNDIO6  
PL16A  
PL16B  
PL16C  
PL16D  
GND  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
-
C
C
M5  
M3  
TSALL  
T
L1  
C*  
T*  
T*  
C*  
T
M2  
M1  
N1  
M6  
M4  
C
VCCIO6  
GND  
P1  
T*  
C*  
T
P2  
N3  
N4  
C
GND  
T1  
PL17A  
PL17B  
PL17C  
PL17D  
PL18A  
PL18B  
PL19A  
PL19B  
PL20A  
VCCIO6  
GNDIO6  
GNDIO5  
VCCIO5  
6
6
6
6
6
6
6
6
6
6
6
5
5
LLM0_PLLT_FB_A  
LLM0_PLLC_FB_A  
T*  
C*  
T
R1  
P3  
N5  
C
R3  
LLM0_PLLT_IN_A  
LLM0_PLLC_IN_A  
T*  
C*  
T
R2  
P4  
N6  
C
U1  
T
VCCIO6  
GND  
GND  
VCCIO5  
4-21  
Pinout Information  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
LA-MachXO2280 Logic Signal Connections: 324 ftBGA (Cont.)  
LAMXO2280  
Ball Number  
T2  
Ball Function  
PL20B  
TMS  
Bank  
6
5
5
5
5
5
5
5
5
-
Dual Function  
Differential  
C
P6  
TMS  
V1  
PB2A  
PB2B  
PB2C  
TCK  
T
C
T
U2  
T3  
N7  
TCK  
R4  
PB2D  
PB3A  
PB3B  
VCC  
C
T
R5  
T4  
C
VCC  
R6  
PB3C  
PB3D  
PB4A  
PB4B  
PB4C  
TDO  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
-
T
C
T
C
T
P7  
U3  
T5  
V2  
N8  
TDO  
V3  
PB4D  
PB5A  
GNDIO5  
VCCIO5  
PB5B  
PB5C  
PB5D  
TDI  
C
T
T6  
GND  
VCCIO5  
U4  
C
T
P8  
T7  
C
V4  
TDI  
R8  
PB6A  
PB6B  
PB6C  
PB6D  
PB7A  
VCC  
T
C
T
C
T
N9  
U5  
V5  
U6  
VCC  
V6  
PB7B  
PB7C  
PB7D  
PB8A  
PB8B  
VCCAUX  
PB8C  
PB8D  
VCCIO5  
GNDIO5  
PB8E  
PB8F  
PB9A  
5
5
5
5
5
-
C
T
P9  
T8  
C
T
U7  
V7  
C
M10  
U8  
5
5
5
5
5
5
4
T
V8  
C
VCCIO5  
GND  
T9  
T
C
T
U9  
V9  
4-22  
Pinout Information  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
LA-MachXO2280 Logic Signal Connections: 324 ftBGA (Cont.)  
LAMXO2280  
Ball Number  
V10  
Ball Function  
PB9B  
Bank  
4
4
4
4
4
4
4
4
4
4
4
4
4
-
Dual Function  
PCLK4_1**  
Differential  
C
T
N10  
PB9C  
R10  
PB9D  
C
C
T
P10  
PB10F  
PB10E  
PB10D  
PB10C  
PB10B  
VCCIO4  
GNDIO4  
PB10A  
PB11A  
PB11B  
GND  
T10  
U10  
C
T
V11  
U11  
PCLK4_0**  
C
VCCIO4  
GND  
T11  
T
T
C
U12  
R11  
GND  
T12  
PB11C  
PB11D  
PB12A  
PB12B  
PB12C  
PB12D  
PB12E  
VCCIO4  
GNDIO4  
PB12F  
PB13A  
PB13B  
PB13C  
PB13D  
PB14A  
PB14B  
PB14C  
GND  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
-
T
C
T
C
T
C
T
P11  
V12  
V13  
R12  
N11  
U13  
VCCIO4  
GND  
V14  
C
T
C
T
C
T
C
T
T13  
P12  
R13  
N12  
V15  
U14  
V16  
GND  
T14  
PB14D  
PB15A  
PB15B  
NC  
4
4
4
-
C
T
U15  
V17  
C
P13  
T15  
PB15D  
PB16A  
PB16B  
PB16C  
PB16D  
VCCIO4  
GNDIO4  
4
4
4
4
4
4
4
U16  
T
C
T
V18  
N13  
R14  
C
VCCIO4  
GND  
4-23  
Pinout Information  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
LA-MachXO2280 Logic Signal Connections: 324 ftBGA (Cont.)  
LAMXO2280  
Ball Number  
GND  
VCCIO3  
P15  
Ball Function  
GNDIO3  
VCCIO3  
PR20B  
PR20A  
PR19B  
PR19A  
PR18B  
PR18A  
PR17D  
PR17C  
PR17B  
VCC  
Bank  
3
3
3
3
3
3
3
3
3
3
3
-
Dual Function  
Differential  
C
T
N14  
N15  
C
M13  
R15  
T
C*  
T*  
C
T16  
N16  
M14  
U17  
T
C*  
VCC  
U18  
PR17A  
PR16D  
PR16C  
PR16B  
VCCIO3  
GNDIO3  
PR16A  
PR15D  
PR15C  
PR15B  
PR15A  
PR14D  
PR14C  
PR14B  
PR14A  
GND  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
-
T*  
C
R17  
R16  
T
P16  
C*  
VCCIO3  
GND  
P17  
T*  
C
L13  
M15  
T17  
T
C*  
T*  
C
T18  
L14  
L15  
T
R18  
C*  
T*  
P18  
GND  
K15  
PR13D  
PR13C  
PR13B  
PR13A  
PR12D  
PR12C  
PR12B  
PR12A  
GNDIO3  
VCCIO3  
PR11D  
PR11C  
PR11B  
PR11A  
PR10D  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
C
T
K13  
N17  
C*  
T*  
C
N18  
K16  
K14  
T
M16  
L16  
C*  
T*  
GND  
VCCIO3  
J16  
C
T
J14  
M17  
L17  
C*  
T*  
C
J15  
4-24  
Pinout Information  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
LA-MachXO2280 Logic Signal Connections: 324 ftBGA (Cont.)  
LAMXO2280  
Ball Number  
J13  
Ball Function  
PR10C  
PR10B  
PR10A  
GNDIO2  
VCCIO2  
PR9D  
Bank  
2
2
2
2
2
2
2
2
2
2
-
Dual Function  
Differential  
T
M18  
L18  
C*  
T*  
GND  
VCCIO2  
H16  
C
T
H14  
PR9C  
K18  
PR9B  
C*  
T*  
C
J18  
PR9A  
J17  
PR8D  
VCC  
H18  
VCC  
PR8C  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
-
T
C*  
T*  
C
H17  
PR8B  
G17  
PR8A  
H13  
PR7D  
H15  
PR7C  
T
G18  
PR7B  
C*  
T*  
C
F18  
PR7A  
G14  
PR6D  
G16  
PR6C  
T
VCCIO2  
GND  
E18  
VCCIO2  
GNDIO2  
PR6B  
C*  
T*  
C
F17  
PR6A  
G13  
PR5D  
G15  
PR5C  
T
E17  
PR5B  
C*  
T*  
E16  
PR5A  
GND  
F15  
GND  
PR4D  
2
2
2
2
2
2
2
2
2
2
2
2
1
1
C
T
E15  
PR4C  
D17  
PR4B  
C*  
T*  
C
D18  
PR4A  
B18  
PR3D  
C18  
PR3C  
T
C16  
PR3B  
C*  
T*  
C
D16  
PR3A  
C17  
PR2B  
D15  
PR2A  
T
VCCIO2  
GND  
GND  
VCCIO1  
VCCIO2  
GNDIO2  
GNDIO1  
VCCIO1  
4-25  
Pinout Information  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
LA-MachXO2280 Logic Signal Connections: 324 ftBGA (Cont.)  
LAMXO2280  
Ball Number  
E13  
Ball Function  
PT16D  
PT16C  
PT16B  
PT16A  
PT15D  
PT15C  
PT15B  
PT15A  
VCC  
Bank  
1
1
1
1
1
1
1
1
-
Dual Function  
Differential  
C
T
C
T
C
T
C
T
C15  
F13  
D14  
A18  
B17  
A16  
A17  
VCC  
D13  
F12  
PT14D  
PT14C  
PT14B  
PT14A  
PT13D  
PT13C  
PT13B  
PT13A  
VCCIO1  
GNDIO1  
PT12F  
PT12E  
PT12D  
PT12C  
PT12B  
PT12A  
PT11D  
GND  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
-
C
T
C
T
C
T
C
T
C14  
E12  
C13  
B16  
B15  
A15  
VCCIO1  
GND  
B14  
C
T
A14  
D12  
F11  
C
T
B13  
C
T
A13  
C12  
GND  
B12  
C
PT11C  
PT11B  
PT11A  
PT10F  
PT10E  
VCCIO1  
GNDIO1  
PT10D  
PT10C  
PT10B  
PT10A  
PT9D  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
T
C
T
C
T
E11  
D11  
C11  
A12  
VCCIO1  
GND  
F10  
C
T
D10  
B11  
PCLK1_1***  
PCLK1_0***  
C
T
A11  
E10  
C
T
C10  
D9  
PT9C  
PT9B  
C
T
E9  
PT9A  
B10  
PT8F  
C
4-26  
Pinout Information  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
LA-MachXO2280 Logic Signal Connections: 324 ftBGA (Cont.)  
LAMXO2280  
Ball Number  
A10  
VCCIO0  
GND  
A9  
Ball Function  
PT8E  
Bank  
0
0
0
0
0
0
-
Dual Function  
Differential  
T
VCCIO0  
GNDIO0  
PT8D  
PT8C  
PT8B  
C
T
C9  
B9  
C
F9  
VCCAUX  
PT8A  
A8  
0
0
0
-
T
C
T
B8  
PT7D  
PT7C  
VCC  
C8  
VCC  
A7  
PT7B  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
C
T
B7  
PT7A  
A6  
PT6A  
T
B6  
PT6B  
C
T
D8  
PT6C  
PT6D  
PT6E  
F8  
C
T
C7  
E8  
PT6F  
C
C
D7  
PT5D  
VCCIO0  
GNDIO0  
PT5C  
PT5B  
VCCIO0  
GND  
E7  
T
C
T
T
C
T
C
T
A5  
C6  
PT5A  
B5  
PT4A  
A4  
PT4B  
D6  
PT4C  
PT4D  
PT4E  
F7  
B4  
GND  
C5  
GND  
PT4F  
0
0
0
0
0
0
0
0
0
0
0
-
C
C
T
F6  
PT3D  
PT3C  
PT3B  
E5  
E6  
C
T
D5  
PT3A  
A3  
PT2D  
PT2C  
PT2B  
C
T
C4  
A2  
C
T
B2  
PT2A  
VCCIO0  
GND  
E14  
VCCIO0  
GNDIO0  
GND  
4-27  
Pinout Information  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
LA-MachXO2280 Logic Signal Connections: 324 ftBGA (Cont.)  
LAMXO2280  
Ball Number  
F16  
H10  
H11  
H8  
Ball Function  
GND  
Bank  
Dual Function  
Differential  
-
-
GND  
GND  
-
GND  
-
H9  
GND  
-
J10  
J11  
J4  
GND  
-
GND  
-
GND  
-
J8  
GND  
-
J9  
GND  
-
K10  
K11  
K17  
K8  
GND  
-
GND  
-
GND  
-
GND  
-
K9  
GND  
-
L10  
L11  
L8  
GND  
-
GND  
-
GND  
-
L9  
GND  
-
N2  
GND  
-
P14  
P5  
GND  
-
GND  
-
R7  
GND  
-
F14  
G11  
G9  
VCC  
-
VCC  
-
VCC  
-
H7  
VCC  
-
L7  
VCC  
-
M9  
VCC  
-
H6  
VCCIO7  
VCCIO7  
VCCIO6  
VCCIO6  
VCCIO5  
VCCIO5  
VCCIO4  
VCCIO4  
VCCIO3  
VCCIO3  
VCCIO2  
VCCIO2  
VCCIO1  
VCCIO1  
7
7
6
6
5
5
4
4
3
3
2
2
1
1
J7  
M7  
K7  
M8  
R9  
M12  
M11  
L12  
K12  
J12  
H12  
G12  
G10  
4-28  
Pinout Information  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
LA-MachXO2280 Logic Signal Connections: 324 ftBGA (Cont.)  
LAMXO2280  
Ball Number  
Ball Function  
VCCIO0  
Bank  
Dual Function  
Differential  
G8  
0
0
G7  
VCCIO0  
* Supports true LVDS outputs.  
** Primary clock inputs are single-ended.  
4-29  
Pinout Information  
LA-MachXO Automotive Family Data Sheet  
Lattice Semiconductor  
Thermal Management  
Thermal management is recommended as part of any sound FPGA design methodology. To assess the thermal  
characteristics of a system, Lattice specifies a maximum allowable junction temperature in all device data sheets.  
Designers must complete a thermal analysis of their specific design to ensure that the device and package do not  
exceed the junction temperature limits. Refer to the Thermal Management document to find the device/package  
specific thermal values.  
For Further Information  
For further information regarding Thermal Management, refer to the following located on the Lattice website at  
www.latticesemi.com.  
• Thermal Management document  
Technical Note TN1090 - Power Estimation and Management for MachXO Devices  
• Power Calculator tool included with Lattice’s ispLEVER design tool, or as a standalone download from  
www.latticesemi.com/software  
4-30  
LA-MachXO Automotive Family Data Sheet  
Ordering Information  
April 2006  
Data Sheet DS1003  
Part Number Description  
LAMXO XXXX X – X XXXXXX X  
Device Family  
LA-MachXO Automotive Crossover PLD  
Grade  
E = Automotive  
Logic Capacity  
256 LUTs = 256  
640 LUTs = 640  
1200 LUTs = 1200  
2280 LUTs = 2280  
Package  
TN100 = 100-pin Lead-Free TQFP  
TN144 = 144-pin Lead-Free TQFP  
FTN256 = 256-ball Lead-Free ftBGA  
FTN324 = 324-ball Lead-Free ftBGA  
Supply Voltage  
C = 1.8V/2.5V/3.3V  
E = 1.2V  
Speed  
3 = -3 Speed Grade  
Note: Parts dual marked as described.  
Ordering Information  
Part Number  
LUTs  
Supply Voltage  
1.8V/2.5V/3.3V  
1.8V/2.5V/3.3V  
1.8V/2.5V/3.3V  
1.8V/2.5V/3.3V  
1.2V  
I/Os  
78  
Grade  
-3  
Package  
Pins  
100  
100  
144  
256  
100  
100  
144  
256  
100  
144  
256  
100  
144  
256  
324  
Temp.  
AUTO  
AUTO  
AUTO  
AUTO  
AUTO  
AUTO  
AUTO  
AUTO  
AUTO  
AUTO  
AUTO  
AUTO  
AUTO  
AUTO  
AUTO  
LAMXO256C-3TN100E  
LAMXO640C-3TN100E  
LAMXO640C-3TN144E  
LAMXO640C-3FTN256E  
LAMXO256E-3TN100E  
LAMXO640E-3TN100E  
LAMXO640E-3TN144E  
LAMXO640E-3FTN256E  
LAMXO1200E-3TN100E  
LAMXO1200E-3TN144E  
LAMXO1200E-3FTN256E  
LAMXO2280E-3TN100E  
LAMXO2280E-3TN144E  
LAMXO2280E-3FTN256E  
LAMXO2280E-3FTN324E  
256  
Lead-Free TQFP  
Lead-Free TQFP  
Lead-Free TQFP  
Lead-Free ftBGA  
Lead-Free TQFP  
Lead-Free TQFP  
Lead-Free TQFP  
Lead-Free ftBGA  
Lead-Free TQFP  
Lead-Free TQFP  
Lead-Free ftBGA  
Lead-Free TQFP  
Lead-Free TQFP  
Lead-Free ftBGA  
Lead-Free ftBGA  
640  
74  
-3  
640  
113  
159  
78  
-3  
640  
-3  
256  
-3  
640  
1.2V  
74  
-3  
640  
1.2V  
113  
159  
73  
-3  
640  
1.2V  
-3  
1200  
1200  
1200  
2280  
2280  
2280  
2280  
1.2V  
-3  
1.2V  
113  
211  
73  
-3  
1.2V  
-3  
1.2V  
-3  
1.2V  
113  
211  
271  
-3  
1.2V  
-3  
1.2V  
-3  
© 2006 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand  
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
www.latticesemi.com  
5-1  
DS1003 Ordering Information_01.0  
LA-MachXO Automotive Family Data Sheet  
Supplemental Information  
November 2007  
Data Sheet DS1003  
For Further Information  
A variety of technical notes for the LA-MachXO family are available on the Lattice web site at www.latticesemi.com.  
• MachXO sysIO Usage Guide (TN1091)  
• MachXO sysCLOCK PLL Design and Usage Guide (TN1089)  
• MachXO Memory Usage Guide (TN1092)  
• Power Estimation and Management for MachXO Devices (TN1090)  
• MachXO JTAG Programming and Configuration User’s Guide (TN1086)  
• Minimizing System Interruption During Configuration Using TransFR Technology (TN1087)  
• MachXO Density Migration (TN1097)  
• IEEE 1149.1 Boundary Scan Testability in Lattice Devices  
For further information on interface standards refer to the following web sites:  
• JEDEC Standards (LVTTL, LVCMOS): www.jedec.org  
• PCI: www.pcisig.com  
© 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand  
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
www.latticesemi.com  
6-1  
DS1003 Further Information_01.1  
LA-MachXO Automotive Family Data Sheet  
Revision History  
November 2007  
Data Sheet DS1003  
Revision History  
Date  
Version  
Section  
Change Summary  
April 2006  
May 2006  
01.0  
Initial release.  
01.1  
Pinout Information  
Removed [LOC][0]_PLL_RST from Signal Descriptions table.  
PCLK footnote added to appropriate pins in Logic Signal Connections  
tables.  
November 2006  
01.2  
DC and Switching  
Characteristics  
Corrections to MachXO “C” Sleep Mode Timing table - value for  
t
(400ns) changed from max. to min. Value for t  
WSLEEPN  
WAWAKE  
(100ns) changed from min. to max.  
Added Flash Download Time table.  
EBR Asynchronous Reset section added.  
December 2006  
01.3  
Architecture  
Pinout Information  
Architecture  
Power Supply and NC table: Pin/Ball orientation footnotes added.  
Updated EBR Asynchronous Reset section.  
February 2007  
November 2007  
01.4  
01.5  
DC and Switching  
Characteristics  
Updated sysIO Single-Ended DC Electrical Characteristics table.  
Added JTAG Port Timing Waveforms diagram.  
Added Thermal Management text section.  
Updated title list.  
Pinout Information  
Supplemental  
Information  
© 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand  
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
www.latticesemi.com  
7-1  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY