LC4256ZE5TN48IES [LATTICE]

1.8V In-System Programmable Ultra Low Power PLDs; 1.8V在系统可编程超低功耗可编程逻辑器件
LC4256ZE5TN48IES
型号: LC4256ZE5TN48IES
厂家: LATTICE SEMICONDUCTOR    LATTICE SEMICONDUCTOR
描述:

1.8V In-System Programmable Ultra Low Power PLDs
1.8V在系统可编程超低功耗可编程逻辑器件

可编程逻辑器件
文件: 总54页 (文件大小:1258K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
ispMACH 4000ZE Family  
1.8V In-System Programmable  
Ultra Low Power PLDs  
August 2008  
Data Sheet DS1022  
Broad Device Offering  
• 32 to 256 macrocells  
Features  
High Performance  
• Multiple temperature range support  
– Commercial: 0 to 90°C junction (T )  
– Industrial: -40 to 105°C junction (T )  
• Space-saving packages  
• f  
= 260MHz maximum operating frequency  
MAX  
j
• t = 4.4ns propagation delay  
PD  
j
• Up to four global clock pins with programmable  
clock polarity control  
• Up to 80 PTs per output  
Easy System Integration  
• Operation with 3.3V, 2.5V, 1.8V or 1.5V  
LVCMOS I/O  
Ease of Design  
• Flexible CPLD macrocells with individual clock,  
reset, preset and clock enable controls  
• Up to four global OE controls  
• 5V tolerant I/O for LVCMOS 3.3, LVTTL, and PCI  
interfaces  
• Hot-socketing support  
• Open-drain output option  
• Programmable output slew rate  
• 3.3V PCI compatible  
• Individual local OE control per I/O pin  
• Excellent First-Time-FitTM and refit  
• Wide input gating (36 input logic blocks) for fast  
counters, state machines and address decoders  
• I/O pins with fast setup path  
Input hysteresis*  
• 1.8V core power supply  
• IEEE 1149.1 boundary scan testable  
• IEEE 1532 ISC compliant  
Ultra Low Power  
• Standby current as low as 10µA typical  
• 1.8V core; low dynamic power  
• Operational down to 1.6V V  
CC  
• 1.8V In-System Programmable (ISP™) using  
Boundary Scan Test Access Port (TAP)  
• Pb-free package options (only)  
On-chip user oscillator and timer*  
• Superior solution for power sensitive consumer  
applications  
• Per pin pull-up, pull-down or bus keeper  
control*  
Power Guard with multiple enable signals*  
*New enhanced features over original ispMACH 4000Z  
Table 1. ispMACH 4000ZE Family Selection Guide  
ispMACH 4032ZE  
ispMACH 4064ZE  
ispMACH 4128ZE  
ispMACH 4256ZE  
Macrocells  
(ns)  
32  
4.4  
64  
4.7  
128  
5.8  
256  
5.8  
t
PD  
t (ns)  
2.2  
2.5  
2.9  
2.9  
S
t
f
(ns)  
3.0  
3.2  
3.8  
3.8  
CO  
(MHz)  
260  
1.8V  
241  
1.8V  
200  
1.8V  
200  
1.8V  
MAX  
Supply Voltages (V)  
Packages1 (I/O + Dedicated Inputs)  
48-Pin TQFP (7 x 7mm)  
64-Ball csBGA (5 x 5mm)  
100-Pin TQFP (14 x 14mm)  
144-Pin TQFP (20 x 20mm)  
144-Ball csBGA (7 x 7mm)  
1. Pb-free only.  
32+4  
32+4  
32+4  
48+4  
64+10  
64+10  
96+4  
96+4  
64+10  
96+14  
108+4  
64+10  
© 2008 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand  
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
www.latticesemi.com  
1
DS1022_01.2  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
Introduction  
The high performance ispMACH 4000ZE family from Lattice offers an ultra low power CPLD solution. The new fam-  
ily is based on Lattice’s industry-leading ispMACH 4000 architecture. Retaining the best of the previous generation,  
the ispMACH 4000ZE architecture focuses on significant innovations to combine high performance with low power  
in a flexible CPLD family. For example, the family’s new Power Guard feature minimizes dynamic power consump-  
tion by preventing internal logic toggling due to unnecessary I/O pin activity.  
The ispMACH 4000ZE combines high speed and low power with the flexibility needed for ease of design. With its  
robust Global Routing Pool and Output Routing Pool, this family delivers excellent First-Time-Fit, timing predictabil-  
ity, routing, pin-out retention and density migration.  
The ispMACH 4000ZE family offers densities ranging from 32 to 256 macrocells. There are multiple density-I/O  
combinations in Thin Quad Flat Pack (TQFP) and Chip Scale BGA (csBGA) packages ranging from 32 to 176 pins/  
balls. Table 1 shows the macrocell, package and I/O options, along with other key parameters.  
A user programmable internal oscillator and a timer are included in the device for tasks like LED control, keyboard  
scanner and similar housekeeping type state machines. This feature can be optionally disabled to save power.  
The ispMACH 4000ZE family has enhanced system integration capabilities. It supports a 1.8V supply voltage and  
3.3V, 2.5V, 1.8V and 1.5V interface voltages. Additionally, inputs can be safely driven up to 5.5V when an I/O bank  
is configured for 3.3V operation, making this family 5V tolerant. The ispMACH 4000ZE also offers enhanced I/O  
features such as slew rate control, PCI compatibility, bus-keeper latches, pull-up resistors, pull-down resistors,  
open drain outputs and hot socketing. Pull-up, pull-down and bus-keeper features are controllable on a “per-pin”  
basis. The ispMACH 4000ZE family members are 1.8V in-system programmable through the IEEE Standard 1532  
interface. IEEE Standard 1149.1 boundary scan testing capability also allows product testing on automated test  
equipment. The 1532 interface signals TCK, TMS, TDI and TDO are referenced to V (logic core).  
CC  
Overview  
The ispMACH 4000ZE devices consist of multiple 36-input, 16-macrocell Generic Logic Blocks (GLBs) intercon-  
nected by a Global Routing Pool (GRP). Output Routing Pools (ORPs) connect the GLBs to the I/O Blocks (IOBs),  
which contain multiple I/O cells. This architecture is shown in Figure 1.  
Figure 1. Functional Block Diagram  
OSC  
I/O  
Block  
I/O  
Block  
16  
36  
16  
36  
Generic  
Logic  
Block  
Generic  
Logic  
Block  
ORP  
ORP  
16  
16  
I/O  
Block  
I/O  
Block  
16  
36  
16  
36  
Generic  
Logic  
Block  
Generic  
Logic  
Block  
ORP 16  
16  
ORP  
2
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
The I/Os in the ispMACH 4000ZE are split into two banks. Each bank has a separate I/O power supply. Inputs can  
support a variety of standards independent of the chip or bank power supply. Outputs support the standards com-  
patible with the power supply provided to the bank. Support for a variety of standards helps designers implement  
designs in mixed voltage environments. In addition, 5V tolerant inputs are specified within an I/O bank that is con-  
nected to a V  
of 3.0V to 3.6V for LVCMOS 3.3, LVTTL and PCI interfaces.  
CCO  
Architecture  
There are a total of two GLBs in the ispMACH 4032ZE, increasing to 16 GLBs in the ispMACH 4256ZE. Each GLB  
has 36 inputs. All GLB inputs come from the GRP and all outputs from the GLB are brought back into the GRP to  
be connected to the inputs of any other GLB on the device. Even if feedback signals return to the same GLB, they  
still must go through the GRP. This mechanism ensures that GLBs communicate with each other with consistent  
and predictable delays. The outputs from the GLB are also sent to the ORP. The ORP then sends them to the asso-  
ciated I/O cells in the I/O block.  
Generic Logic Block  
The ispMACH 4000ZE GLB consists of a programmable AND array, logic allocator, 16 macrocells and a GLB clock  
generator. Macrocells are decoupled from the product terms through the logic allocator and the I/O pins are decou-  
pled from macrocells through the ORP. Figure 2 illustrates the GLB.  
Figure 2. Generic Logic Block  
To GRP  
Clock  
Generator  
1+OE  
1+OE  
1+OE  
1+OE  
1+OE  
1+OE  
1+OE  
1+OE  
36 Inputs  
from GRP  
To Product Term  
Output Enable Sharing.  
Also, To Input Enable of  
Power Guard on I/Os  
in the block.  
AND Array  
The programmable AND Array consists of 36 inputs and 83 output product terms. The 36 inputs from the GRP are  
used to form 72 lines in the AND Array (true and complement of the inputs). Each line in the array can be con-  
nected to any of the 83 output product terms via a wired-AND. Each of the 80 logic product terms feed the logic  
allocator with the remaining three control product terms feeding the Shared PT Clock, Shared PT Initialization and  
Shared PT OE. The Shared PT Clock and Shared PT Initialization signals can optionally be inverted before being  
fed to the macrocells.  
Every set of five product terms from the 80 logic product terms forms a product term cluster starting with PT0.  
There is one product term cluster for every macrocell in the GLB. Figure 3 is a graphical representation of the AND  
Array.  
3
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
Figure 3. AND Array  
In[0]  
In[34]  
In[35]  
PT0  
PT1  
PT2  
PT3  
PT4  
Cluster 0  
PT75  
PT76  
PT77  
PT78  
PT79  
Cluster 15  
PT80 Shared PT Clock  
PT81 Shared PT Initialization  
PT82 Shared PTOE/BIE  
Note:  
Indicates programmable fuse.  
Enhanced Logic Allocator  
Within the logic allocator, product terms are allocated to macrocells in product term clusters. Each product term  
cluster is associated with a macrocell. The cluster size for the ispMACH 4000ZE family is 4+1 (total 5) product  
terms. The software automatically considers the availability and distribution of product term clusters as it fits the  
functions within a GLB. The logic allocator is designed to provide two speed paths: 20-PT Speed Locking path and  
an up to 80-PT path. The availability of these two paths lets designers trade timing variability for increased perfor-  
mance.  
The enhanced Logic Allocator of the ispMACH 4000ZE family consists of the following blocks:  
• Product Term Allocator  
• Cluster Allocator  
• Wide Steering Logic  
Figure 4 shows a macrocell slice of the Logic Allocator. There are 16 such slices in the GLB.  
Figure 4. Macrocell Slice  
to to  
from from  
n-1 n-2  
n-1 n-4  
From  
n-4  
1-80  
PTs  
5-PT  
n
To XOR (MC)  
Cluster  
to  
n+1  
from  
n+2  
from  
n+1  
To n+4  
Individual Product  
Term Allocator  
Cluster  
Allocator  
SuperWIDE™  
Steering Logic  
4
Lattice Semiconductor  
Product Term Allocator  
ispMACH 4000ZE Family Data Sheet  
The product term allocator assigns product terms from a cluster to either logic or control applications as required  
by the design being implemented. Product terms that are used as logic are steered into a 5-input OR gate associ-  
ated with the cluster. Product terms that used for control are steered either to the macrocell or I/O cell associated  
with the cluster. Table 2 shows the available functions for each of the five product terms in the cluster.  
Table 2. Individual PT Steering  
Product Term  
PTn  
Logic  
Control  
Logic PT  
Logic PT  
Logic PT  
Logic PT  
Logic PT  
Single PT for XOR/OR  
PTn+1  
Individual Clock (PT Clock)  
PTn+2  
Individual Initialization or Individual Clock Enable (PT Initialization/CE)  
Individual Initialization (PT Initialization)  
PTn+3  
PTn+4  
Individual OE (PTOE)  
Cluster Allocator  
The cluster allocator allows clusters to be steered to neighboring macrocells, thus allowing the creation of functions  
with more product terms. Table 3 shows which clusters can be steered to which macrocells. Used in this manner,  
the cluster allocator can be used to form functions of up to 20 product terms. Additionally, the cluster allocator  
accepts inputs from the wide steering logic. Using these inputs, functions up to 80 product terms can be created.  
Table 3. Available Clusters for Each Macrocell  
Macrocell  
M0  
Available Clusters  
C0  
C0  
C1  
C1  
C2  
C2  
C3  
M1  
M2  
C1  
C2  
C3  
C4  
M3  
C2  
C3  
C4  
C5  
M4  
C3  
C4  
C5  
C6  
M5  
C4  
C5  
C6  
C7  
M6  
C5  
C6  
C7  
C8  
M7  
C6  
C7  
C8  
C9  
M8  
C7  
C8  
C9  
C10  
C11  
C12  
C13  
C14  
C15  
M9  
C8  
C9  
C10  
C11  
C12  
C13  
C14  
C15  
M10  
M11  
M12  
M13  
M14  
M15  
C9  
C10  
C11  
C12  
C13  
C14  
C15  
C10  
C11  
C12  
C13  
C14  
Wide Steering Logic  
The wide steering logic allows the output of the cluster allocator n to be connected to the input of the cluster alloca-  
tor n+4. Thus, cluster chains can be formed with up to 80 product terms, supporting wide product term functions  
and allowing performance to be increased through a single GLB implementation. Table 4 shows the product term  
chains.  
5
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
Table 4. Product Term Expansion Capability  
Expansion  
Chains  
Macrocells Associated with Expansion Chain  
(with Wrap Around)  
Max PT/  
Macrocell  
Chain-0  
Chain-1  
Chain-2  
Chain-3  
M0 M4 M8 M12 M0  
M1 M5 M9 M13 M1  
M2 M6 M10 M14 M2  
M3 M7 M11 M15 M3  
75  
80  
75  
70  
Every time the super cluster allocator is used, there is an incremental delay of t  
. When the super cluster alloca-  
EXP  
tor is used, all destinations other than the one being steered to, are given the value of ground (i.e., if the super clus-  
ter is steered to M (n+4), then M (n) is ground).  
Macrocell  
The 16 macrocells in the GLB are driven by the 16 outputs from the logic allocator. Each macrocell contains a pro-  
grammable XOR gate, a programmable register/latch, along with routing for the logic and control functions.  
Figure 5 shows a graphical representation of the macrocell. The macrocells feed the ORP and GRP. A direct input  
from the I/O cell allows designers to use the macrocell to construct high-speed input registers. A programmable  
delay in this path allows designers to choose between the fastest possible set-up time and zero hold time.  
Figure 5. Macrocell  
Power-up  
Initialization  
Shared PT Initialization  
PT Initialization (optional)  
PT Initialization/CE (optional)  
Delay  
From I/O Cell  
R
P
From Logic Allocator  
To ORP  
To GRP  
D/T/L  
Q
CE  
Block CLK0  
Block CLK1  
Block CLK2  
Block CLK3  
Single PT  
PT Clock (optional)  
Shared PT Clock  
Enhanced Clock Multiplexer  
The clock input to the flip-flop can select any of the four block clocks along with the shared PT clock, and true and  
complement forms of the optional individual term clock. An 8:1 multiplexer structure is used to select the clock. The  
eight sources for the clock multiplexer are as follows:  
• Block CLK0  
• Block CLK1  
6
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
• Block CLK2  
• Block CLK3  
• PT Clock  
• PT Clock Inverted  
• Shared PT Clock  
• Ground  
Clock Enable Multiplexer  
Each macrocell has a 4:1 clock enable multiplexer. This allows the clock enable signal to be selected from the fol-  
lowing four sources:  
• PT Initialization/CE  
• PT Initialization/CE Inverted  
• Shared PT Clock  
• Logic High  
Initialization Control  
The ispMACH 4000ZE family architecture accommodates both block-level and macrocell-level set and reset capa-  
bility. There is one block-level initialization term that is distributed to all macrocell registers in a GLB. At the macro-  
cell level, two product terms can be “stolen” from the cluster associated with a macrocell to be used for set/reset  
functionality. A reset/preset swapping feature in each macrocell allows for reset and preset to be exchanged, pro-  
viding flexibility.  
Note that the reset/preset swapping selection feature affects power-up reset as well. All flip-flops power up to a  
known state for predictable system initialization. If a macrocell is configured to SET on a signal from the block-level  
initialization, then that macrocell will be SET during device power-up. If a macrocell is configured to RESET on a  
signal from the block-level initialization or is not configured for set/reset, then that macrocell will RESET on power-  
up. To guarantee initialization values, the V rise must be monotonic, and the clock must be inactive until the reset  
CC  
delay time has elapsed.  
GLB Clock Generator  
Each ispMACH 4000ZE device has up to four clock pins that are also routed to the GRP to be used as inputs.  
These pins drive a clock generator in each GLB, as shown in Figure 6. The clock generator provides four clock sig-  
nals that can be used anywhere in the GLB. These four GLB clock signals can consist of a number of combinations  
of the true and complement edges of the global clock signals.  
Figure 6. GLB Clock Generator  
CLK0  
Block CLK0  
CLK1  
Block CLK1  
CLK2  
Block CLK2  
CLK3  
Block CLK3  
7
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
Output Routing Pool (ORP)  
The Output Routing Pool allows macrocell outputs to be connected to any of several I/O cells within an I/O block.  
This provides greater flexibility in determining the pinout and allows design changes to occur without affecting the  
pinout. The output routing pool also provides a parallel capability for routing macrocell-level OE product terms. This  
allows the OE product term to follow the macrocell output as it is switched between I/O cells.The enhanced ORP of  
the ispMACH 4000ZE family consists of the following elements:  
• Output Routing Multiplexers  
• OE Routing Multiplexers  
Figure 7 shows the structure of the ORP from the I/O cell perspective. This is referred to as an ORP slice. Each  
ORP has as many ORP slices as there are I/O cells in the corresponding I/O block.  
Figure 7. ORP Slice  
OE Routing Multiplexer  
From PTOE  
To I/O  
Cell  
OE  
Output Routing Multiplexer  
From Macrocell  
To I/O  
Cell  
Output Routing Multiplexers  
The details of connections between the macrocells and the I/O cells vary across devices and within a device  
dependent on the maximum number of I/Os available. Tables 5-7 provide the connection details.  
Table 5. GLB/MC/ORP Combinations for ispMACH 4256ZE  
GLB/MC  
ORP Mux Input Macrocells  
[GLB] [MC 0]  
[GLB] [MC 1]  
[GLB] [MC 2]  
[GLB] [MC 3]  
[GLB] [MC 4]  
[GLB] [MC 5]  
[GLB] [MC 6]  
[GLB] [MC 7]  
M0, M1, M2, M3, M4, M5, M6, M7  
M2, M3, M4, M5, M6, M7, M8, M9  
M4, M5, M6, M7, M8, M9, M10, M11  
M6, M7, M8, M9, M10, M11, M12, M13  
M8, M9, M10, M11, M12, M13, M14, M15  
M10, M11, M12, M13, M14, M15, M0, M1  
M12, M13, M14, M15, M0, M1, M2, M3  
M14, M15, M0, M1, M2, M3, M4, M5  
8
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
Table 6. GLB/MC/ORP Combinations for ispMACH 4128ZE  
GLB/MC  
ORP Mux Input Macrocells  
[GLB] [MC 0]  
[GLB] [MC 1]  
[GLB] [MC 2]  
[GLB] [MC 3]  
[GLB] [MC 4]  
[GLB] [MC 5]  
[GLB] [MC 6]  
[GLB] [MC 7]  
[GLB] [MC 8]  
[GLB] [MC 9]  
[GLB] [MC 10]  
[GLB] [MC 11]  
M0, M1, M2, M3, M4, M5, M6, M7  
M1, M2, M3, M4, M5, M6, M7, M8  
M2, M3, M4, M5, M6, M7, M8, M9  
M4, M5, M6, M7, M8, M9, M10, M11  
M5, M6, M7, M8, M9, M10, M11, M12  
M6, M7, M8, M9, M10, M11, M12, M13  
M8, M9, M10, M11, M12, M13, M14, M15  
M9, M10, M11, M12, M13, M14, M15, M0  
M10, M11, M12, M13, M14, M15, M0, M1  
M12, M13, M14, M15, M0, M1, M2, M3  
M13, M14, M15, M0, M1, M2, M3, M4  
M14, M15, M0, M1, M2, M3, M4, M5  
Table 7. GLB/MC/ORP Combinations for ispMACH 4032ZE and 4064ZE  
GLB/MC  
ORP Mux Input Macrocells  
[GLB] [MC 0]  
[GLB] [MC 1]  
[GLB] [MC 2]  
[GLB] [MC 3]  
[GLB] [MC 4]  
[GLB] [MC 5]  
[GLB] [MC 6]  
[GLB] [MC 7]  
[GLB] [MC 8]  
[GLB] [MC 9]  
[GLB] [MC 10]  
[GLB] [MC 11]  
[GLB] [MC 12]  
[GLB] [MC 13]  
[GLB] [MC 14]  
[GLB] [MC 15]  
M0, M1, M2, M3, M4, M5, M6, M7  
M1, M2, M3, M4, M5, M6, M7, M8  
M2, M3, M4, M5, M6, M7, M8, M9  
M3, M4, M5, M6, M7, M8, M9, M10  
M4, M5, M6, M7, M8, M9, M10, M11  
M5, M6, M7, M8, M9, M10, M11, M12  
M6, M7, M8, M9, M10, M11, M12, M13  
M7, M8, M9, M10, M11, M12, M13, M14  
M8, M9, M10, M11, M12, M13, M14, M15  
M9, M10, M11, M12, M13, M14, M15, M0  
M10, M11, M12, M13, M14, M15, M0, M1  
M11, M12, M13, M14, M15, M0, M1, M2  
M12, M13, M14, M15, M0, M1, M2, M3  
M13, M14, M15, M0, M1, M2, M3, M4  
M14, M15, M0, M1, M2, M3, M4, M5  
M15, M0, M1, M2, M3, M4, M5, M6  
Output Enable Routing Multiplexers  
The OE Routing Pool provides the corresponding local output enable (OE) product term to the I/O cell.  
I/O Cell  
The I/O cell contains the following programmable elements: output buffer, input buffer, OE multiplexer, Power Guard  
and bus maintenance circuitry. Figure 8 details the I/O cell.  
9
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
Figure 8. I/O Cell  
GOE 0  
GOE 1  
GOE 2  
GOE 3  
I/O Bus Maintenance  
From ORP  
VCC  
VCCO  
From ORP  
Power Guard  
0
1
To Macrocell  
To GRP  
Power Guard Disable Fuse (PGDF)  
Block Input Enable (BIE)  
(From Block PT)  
Each output supports a variety of output standards dependent on the V  
supplied to its I/O bank. Outputs can  
CCO  
also be configured for open drain operation. Each input can be programmed to support a variety of standards, inde-  
pendent of the V  
supplied to its I/O bank. The I/O standards supported are:  
CCO  
LVTTL  
LVCMOS 1.8  
LVCMOS 3.3  
LVCMOS 2.5  
LVCMOS 1.5  
• 3.3V PCI Compatible  
All of the I/Os and dedicated inputs have the capability to provide a bus-keeper latch, pull-up resistor or pull-down  
resistor selectable on a “per-pin” basis. A fourth option is to provide none of these. The default in both hardware  
and software is such that when the device is erased or if the user does not specify, the input structure is configured  
to be a Pull-down Resistor.  
Each ispMACH 4000ZE device I/O has an individually programmable output slew rate control bit. Each output can  
be individually configured for fast slew or slow slew. The typical edge rate difference between fast and slow slew  
setting is 20%. For high-speed designs with long, unterminated traces, the slow-slew rate will introduce fewer  
reflections, less noise and keep ground bounce to a minimum. For designs with short traces or well terminated  
lines, the fast slew rate can be used to achieve the highest speed.  
The ispMACH 4000ZE family has an always on, 200mV typical hysteresis for each input operational at 3.3V and  
2.5V. This provides improved noise immunity for slow transitioning signals.  
Power Guard  
Power Guard allows easier achievement of standby current in the system. As shown in Figure 9, this feature con-  
sists of an enabling multiplexer between an I/O pin and input buffer, and its associated circuitry inside the device.  
If the enable signal (E) is held low, all inputs (D) can be optionally isolated (guarded), such that, if any of these were  
toggled, it would not cause any toggle on internal pins (Q), thus, a toggling I/O pin will not cause any internal  
dynamic power consumption.  
10  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
Figure 9. Power Guard  
Power Guard  
0
1
Q
D
E
All the I/O pins in a block share a common Power Guard Enable signal. For a block of I/Os, this signal is called a  
Block Input Enable (BIE) signal. BIE can be internally generated using MC logic, or could come from external  
sources using one of the user I/O or input pins.  
Any I/O pin in the block can be programmed to ignore the BIE signal. Thus, the feature can be enabled or disabled  
on a pin-by-pin basis.  
Figure 10 shows Power Guard and BIE across multiple I/Os in a block that has eight I/Os.  
Figure 10. Power Guard and BIE in a Block with 8 I/Os  
Power Guard  
0
To Macrocell  
To GRP  
1
I/O 0  
Power Guard  
0
1
I/O 1  
To Macrocell  
To GRP  
Block Input Enable (BIE)  
From Block PT. The Block PT  
is part of the block AND Array,  
and can be driven by signals  
from the GRP.  
Power Guard  
0
1
To Macrocell  
To GRP  
I/O 7  
11  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
The number of BIE inputs, thus the number of Power Guard “Blocks” that can exist in a device, depends on the  
device size. Table 8 shows the number of BIE signals available in the ispMACH 4000ZE family. The number of I/Os  
available in each block is shown in the Ordering Information section of this data sheet.  
Table 8. Number of BIE Signals Available in ispMACH 4000ZE Devices  
Number of Logic Blocks, Power  
Guard Blocks and BIE Signals  
Device  
ispMACH 4032ZE  
ispMACH 4064ZE  
ispMACH 4128ZE  
ispMACH 4256ZE  
Two (Blocks: A and B)  
Four (Blocks: A, B, C and D)  
Eight (Blocks: A, B, C, …, H)  
Sixteen (Blocks: A, B, C, …, P)  
Power Guard for Dedicated Inputs  
Power Guard can optionally be applied to the dedicated inputs. The dedicated inputs and clocks are controlled by  
the BIE of the logic blocks shown in Tables 9 and 10.  
Table 9. Dedicated Clock Inputs to BIE Association  
CLK/I  
32 MC Block  
64MC Block  
128MC Block  
256MC Block  
CLK0 / I  
CLK1 / I  
CLK2 / I  
CLK3 / I  
A
A
B
B
A
B
C
D
A
D
E
H
A
H
I
P
Table 10. Dedicated Inputs to BIE Association  
Dedicated Input  
4064ZE Block  
4128ZE Block  
4256ZE Block  
0
1
2
3
4
5
6
7
8
9
A
B
B
C
D
E
G
G
J
B
D
C
F
D
G
H
D
L
M
O
O
B
For more information on the Power Guard function refer to TN1174, Advanced Features of the ispMACH 4000ZE.  
Global OE (GOE) and Block Input Enable (BIE) Generation  
Most ispMACH 4000ZE family devices have a 4-bit wide Global OE (GOE) Bus (Figure 11), except the ispMACH  
4032 device that has a 2-bit wide Global OE Bus (Figure 12). This bus is derived from a 4-bit internal global OE  
(GOE) PT bus and two dual purpose I/O or GOE pins. Each signal that drives the bus can optionally be inverted.  
Each GLB has a block-level OE PT that connects to all bits of the Global OE PT bus with four fuses. Hence, for a  
256-macrocell device (with 16 blocks), each line of the bus is driven from 16 OE product terms. Figures 9 and 10  
show a graphical representation of the global OE generation.  
The block-level OE PT of each GLB is also tied to Block Input Enable (BIE) of that block. Hence, for a 256-macro-  
cell device (with 16 blocks), each block's BIE signal is driven by block-level OE PT from each block.  
12  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
Figure 11. Global OE Generation for All Devices Except ispMACH 4032ZE  
Internal Global OE  
Global OE  
PT Bus  
(4 lines)  
4-Bit  
Global OE Bus  
Shared PTOE  
(Block 0)  
BIE0  
Shared PTOE  
(Block n)  
BIEn  
Global  
Fuses  
GOE (0:3)  
to I/O cells  
Fuse connection  
Hard wired  
Figure 12. Global OE Generation for ispMACH 4032ZE  
Internal Global OE  
PT Bus  
4-Bit  
Global OE Bus  
Global OE  
(2 lines)  
Shared PTOE  
(Block 0)  
BIE0  
BIE1  
Shared PTOE  
(Block 1)  
Global  
Fuses  
GOE (3:0)  
to I/O cells  
Fuse connection  
Hard wired  
On-Chip Oscillator and Timer  
An internal oscillator is provided for use in miscellaneous housekeeping functions such as watchdog heartbeats,  
digital de-glitch circuits and control state machines. The oscillator is disabled by default to save power. Figure 13  
shows the block diagram of the oscillator and timer block.  
13  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
Figure 13. On-Chip Oscillator and Timer  
OSCOUT  
DYNOSCDIS  
TIMERRES  
OSCTIMER  
TIMEROUT  
Table 11. On-Chip Oscillator and Timer Signal Names  
Input or Out-  
put  
Optional /  
Required  
Signal Name  
OSCOUT  
Description  
Output  
Output  
Input  
Optional  
Oscillator Output (Nominal Frequency: 5MHz)  
TIMEROUT  
TIMERRES  
DYNOSCDIS  
Optional  
Optional  
Optional  
Oscillator Frequency Divided by an integer TIMER_DIV (Default 128)  
Reset the Timer  
Input  
Disables the Oscillator, resets the Timer and saves the power.  
OSCTIMER has two outputs, OSCOUT and TIMEROUT. The outputs feed into the Global Routing Pool (GRP).  
From GRP, these signals can drive any macrocell input, as well as any output pin (with macrocell bypass). The out-  
put OSCOUT is the direct oscillator output with a typical frequency of 5MHz, whereas, the output TIMEROUT is the  
oscillator output divided by an attribute TIMER_DIV.  
The attribute TIMER_DIV can be: 128 (7 bits), 1024 (10 bits) or 1,048,576 (20 bits). The divided output is provided  
for those user situations, where a very slow clock is desired. If even a slower toggling clock is desired, then the pro-  
grammable macrocell resources can be used to further divide down the TIMEROUT output.  
Figure 14 shows the simplified relationship among OSCOUT, TIMERRES and TIMEROUT. In the diagram, the sig-  
nal “R” is an internal reset signal that is used to synchronize TIMERRES to OSCOUT. This adds one extra clock  
cycle delay for the first timer transition after TIMERRES.  
Figure 14. Relationship Among OSCOUT,TIMERRES and TIMEROUT  
n
n
-1  
0
1
2
2 / 2  
2
OSCOUT  
MPW  
TIMERRES  
R (Internal)  
TIMEROUT  
Note: n = Number of bits in the divider (7, 10 or 20)  
Metastability: If the signal TIMERRES is not synchronous to OSCOUT, it could make a  
difference of one or two clock cycles to the TIMEROUT going high the first time.  
14  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
Some Simple Use Scenarios  
The following diagrams show a few simple examples that omit optional signals for the OSCTIMER block:  
A. An oscillator giving 5MHz nominal clock  
B. An oscillator that can be disabled with an external signal (5MHz nominal clock)  
C. An oscillator giving approximately 5 Hz nominal clock (TIMER_DIV = 220 (1,048,576))  
D. An oscillator giving two output clocks: ~5MHz and ~5KHz (TIMER_DIV= 210 (1,024))  
OSCTIME R  
TIMER_DIV= N/A  
OSCTIME R  
TIMER_DIV= N/A  
DYNOS CD IS  
OSCOUT  
OSCOUT  
(A) A simple 5MHz oscillator.  
(B) An oscillator with dynamic disable.  
OSCTIME R  
OSCTIME R  
OSCOUT  
TIMER_DIV= 220  
TIMER_DIV= 210  
TIMEROUT  
TIMEROUT  
(C) A simple 5Hz oscillator.  
(D) Oscillator with two outputs (5MHz and 5KHz).  
OSCTIMER Integration With CPLD Fabric  
The OSCTIMER is integrated into the CPLD fabric using the Global Routing Pool (GRP). The macrocell (MC) feed-  
back path for two macrocells is augmented with a programmable multiplexer, as shown in Figure 15. The OSC-  
TIMER outputs (OSCOUT and TIMEROUT) can optionally drive the GRP lines, whereas the macrocell outputs can  
drive the optional OSCTIMER inputs TIMERRES and DYNOSCDIS.  
Figure 15. OSCTIMER Integration With CPLD Fabric  
A Regular Macrocell  
Macrocell  
Feedback  
Signal  
To GRP  
To GRP  
OSC Macrocell  
Macrocell 15  
Feedback  
Signal  
1
0
OSCOUT DYNOSCDIS  
TIMER Macrocell  
Macrocell 15  
Feedback  
Signal  
1
0
To GRP  
TIMEROUT TIMERRES  
Table 12 shows how these two MCs are designated in each of the ispMACH4000ZE device.  
15  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
Table 12. OSC and TIMER MC Designation  
Device  
Macrocell  
Block Number  
MC Number  
ispMACH 4032ZE  
OSC MC  
TIMER MC  
A
B
15  
15  
ispMACH 4064ZE  
ispMACH 4128ZE  
ispMACH 4256ZE  
OSC MC  
TIMER MC  
A
D
15  
15  
OSC MC  
TIMER MC  
A
G
15  
15  
OSC MC  
TIMER MC  
C
F
15  
15  
Zero Power/Low Power and Power Management  
The ispMACH 4000ZE family is designed with high speed low power design techniques to offer both high speed  
and low power. With an advanced E2 low power cell and non sense-amplifier design approach (full CMOS logic  
approach), the ispMACH 4000ZE family offers fast pin-to-pin speeds, while simultaneously delivering low standby  
power without needing any “turbo bits” or other power management schemes associated with a traditional sense-  
amplifier approach.  
The zero power ispMACH 4000ZE is based on the 1.8V ispMACH 4000Z family. With innovative circuit design  
changes, the ispMACH 4000ZE family is able to achieve the industry’s lowest static power.  
IEEE 1149.1-Compliant Boundary Scan Testability  
All ispMACH 4000ZE devices have boundary scan cells and are compliant to the IEEE 1149.1 standard. This  
allows functional testing of the circuit board on which the device is mounted through a serial scan path that can  
access all critical logic notes. Internal registers are linked internally, allowing test data to be shifted in and loaded  
directly onto test nodes, or test node data to be captured and shifted out for verification. In addition, these devices  
can be linked into a board-level serial scan path for more board-level testing. The test access port operates with an  
LVCMOS interface that corresponds to the power supply voltage.  
I/O Quick Configuration  
To facilitate the most efficient board test, the physical nature of the I/O cells must be set before running any continu-  
ity tests. As these tests are fast, by nature, the overhead and time that is required for configuration of the I/Os’  
physical nature should be minimal so that board test time is minimized. The ispMACH 4000ZE family of devices  
allows this by offering the user the ability to quickly configure the physical nature of the I/O cells. This quick config-  
uration takes milliseconds to complete, whereas it takes seconds for the entire device to be programmed. Lattice's  
ispVM™ System programming software can either perform the quick configuration through the PC parallel port, or  
can generate the ATE or test vectors necessary for a third-party test system.  
IEEE 1532-Compliant In-System Programming  
Programming devices in-system provides a number of significant benefits including: rapid prototyping, lower inven-  
tory levels, higher quality and the ability to make in-field modifications. All ispMACH 4000ZE devices provide In-  
System Programming (ISP™) capability through the Boundary Scan Test Access Port. This capability has been  
implemented in a manner that ensures that the port remains complaint to the IEEE 1149.1 standard. By using IEEE  
1149.1 as the communication interface through which ISP is achieved, users get the benefit of a standard, well-  
defined interface. All ispMACH 4000ZE devices are also compliant with the IEEE 1532 standard.  
The ispMACH 4000ZE devices can be programmed across the commercial temperature and voltage range. The  
PC-based Lattice software facilitates in-system programming of ispMACH 4000ZE devices. The software takes the  
JEDEC file output produced by the design implementation software, along with information about the scan chain,  
and creates a set of vectors used to drive the scan chain. The software can use these vectors to drive a scan chain  
via the parallel port of a PC. Alternatively, the software can output files in formats understood by common auto-  
16  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
mated test equipment. This equipment can then be used to program ispMACH 4000ZE devices during the testing  
of a circuit board.  
User Electronic Signature  
The User Electronic Signature (UES) allows the designer to include identification bits or serial numbers inside the  
device, stored in E2CMOS memory. The ispMACH 4000ZE device contains 32 UES bits that can be configured by  
the user to store unique data such as ID codes, revision numbers or inventory control codes.  
Security Bit  
A programmable security bit is provided on the ispMACH 4000ZE devices as a deterrent to unauthorized copying  
of the array configuration patterns. Once programmed, this bit defeats readback of the programmed pattern by a  
device programmer, securing proprietary designs from competitors. Programming and verification are also  
defeated by the security bit. The bit can only be reset by erasing the entire device.  
Hot Socketing  
The ispMACH 4000ZE devices are well-suited for applications that require hot socketing capability. Hot socketing a  
device requires that the device, during power-up and down, can tolerate active signals on the I/Os and inputs with-  
out being damaged. Additionally, it requires that the effects of I/O pin loading be minimal on active signals. The  
ispMACH 4000ZE devices provide this capability for input voltages in the range 0V to 3.0V.  
Density Migration  
The ispMACH 4000ZE family has been designed to ensure that different density devices in the same package have  
the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration  
from lower density parts to higher density parts. In many cases, it is possible to shift a lower utilization design tar-  
geted for a high density device to a lower density device. However, the exact details of the final resource utilization  
will impact the likely success in each case.  
17  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
Absolute Maximum Ratings1, 2, 3  
Supply Voltage (V ) . . . . . . . . . . . . . . . . . . . . . . -0.5 to 2.5V  
CC  
Output Supply Voltage (V  
) . . . . . . . . . . . . . . . -0.5 to 4.5V  
CCO  
Input or I/O Tristate Voltage Applied4, 5 . . . . . . . . . -0.5 to 5.5V  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . .-65 to 150°C  
Junction Temperature (T ) with Power Applied . . .-55 to 150°C  
j
1. Stress above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. Functional  
operation of the device at these or any other conditions above those indicated in the operational sections of this specification  
is not implied.  
2. Compliance with Lattice Thermal Management document is required.  
3. All voltages referenced to GND.  
4. Undershoot of -2V and overshoot of (V (MAX) + 2V), up to a total pin voltage of 6V is permitted for a duration of <20ns.  
IH  
5. Maximum of 64 I/Os per device with VIN > 3.6V is allowed.  
Recommended Operating Conditions  
Symbol  
Parameter  
Min.  
1.7  
1.61  
0
Max.  
1.9  
Units  
V
Standard Voltage Operation  
Extended Voltage Operation  
V
Supply Voltage  
CC  
1.9  
V
Junction Temperature (Commercial)  
Junction Temperature (Industrial)  
90  
°C  
°C  
T
j
-40  
105  
1. Devices operating at 1.6V can expect performance degradation up to 35%.  
Erase Reprogram Specifications  
Parameter  
Min.  
Max.  
Units  
Erase/Reprogram Cycle  
1,000  
Cycles  
Note: Valid over commercial temperature range.  
Hot Socketing Characteristics1,2,3  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
30  
Max.  
150  
Units  
µA  
0 V 3.0V, Tj = 105°C  
IN  
I
Input or I/O Leakage Current  
DK  
0 V 3.0V, Tj = 130°C  
30  
200  
µA  
IN  
1. Insensitive to sequence of V or V  
However, assumes monotonic rise/fall rates for V and V  
provided (V - V  
) 3.6V.  
CCO  
CC  
CCO.  
CC  
CCO,  
IN  
2. 0 < V < V (MAX), 0 < V  
< V (MAX).  
CC  
CC  
CCO  
CCO  
3. I is additive to I , I or I . Device defaults to pull-up until fuse circuitry is active.  
DK  
PU PD  
BH  
18  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
I/O Recommended Operating Conditions  
V
(V)1  
CCO  
Standard  
Min.  
3.0  
Max.  
3.6  
LVTTL  
LVCMOS 3.3  
Extended LVCMOS 3.3  
LVCMOS 2.5  
LVCMOS 1.8  
LVCMOS 1.5  
PCI 3.3  
3.0  
3.6  
2.7  
3.6  
2.3  
2.7  
1.65  
1.4  
1.95  
1.6  
3.0  
3.6  
1. Typical values for V  
are the average of the min. and max. values.  
CCO  
DC Electrical Characteristics  
Over Recommended Operating Conditions  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
0.5  
Max.  
1
Units  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
V
1, 2  
I , I  
Input Leakage Current  
0 V < V  
IL IH  
IN  
CCO  
1
I
I
I
I
I
I
I
Input High Leakage Current  
I/O Weak Pull-up Resistor Current  
V
< V 5.5V  
10  
IH  
CCO  
IN  
0 V 0.7V  
CCO  
-20  
30  
30  
-20  
-150  
150  
PU  
IN  
I/O Weak Pull-down Resistor Current V (MAX) V V (MAX)  
PD  
IL  
IN  
IH  
Bus Hold Low Sustaining Current  
Bus Hold High Sustaining Current  
Bus Hold Low Overdrive Current  
Bus Hold High Overdrive Current  
Bus Hold Trip Points  
V
V
= V (MAX)  
BHLS  
BHHS  
BHLO  
BHHO  
IN  
IN  
IL  
= 0.7 V  
CCO  
0V V V  
150  
-150  
IN  
BHT  
V
V V  
CCO  
BHT  
IN  
V
V
* 0.35  
V
* 0.65  
CCO  
BHT  
CCO  
V
V
V
V
V
V
= 3.3V, 2.5V, 1.8V, 1.5V  
CCO  
C
C
C
I/O Capacitance3  
8
6
6
pf  
pf  
pf  
1
2
3
= 1.8V, V = 0 to V (MAX)  
CC  
IO  
IH  
= 3.3V, 2.5V, 1.8V, 1.5V  
CCO  
Clock Capacitance3  
Global Input Capacitance3  
= 1.8V, V = 0 to V (MAX)  
CC  
IO  
IH  
= 3.3V, 2.5V, 1.8V, 1.5V  
CCO  
= 1.8V, V = 0 to V (MAX)  
CC  
IO  
IH  
1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tristated. It is not  
measured with the output driver active. Bus maintenance circuits are disabled.  
2. I excursions of up to 1.5µA maximum per pin above the spec limit may be observed for certain voltage conditions on no more than 10% of  
IH  
the device’s I/O pins.  
3. Measured T = 25°C, f = 1.0MHz.  
A
19  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
Supply Current  
Symbol  
Parameter  
Condition  
Min. Typ. Max. Units  
ispMACH 4032ZE  
Vcc = 1.8V, T = 25°C  
50  
58  
60  
10  
13  
15  
25  
40  
µA  
µA  
µA  
µA  
µA  
µA  
A
ICC1, 2, 3, 5, 6 Operating Power Supply Current  
Vcc = 1.9V, T = 0 to 70°C  
A
Vcc = 1.9V, T = -40 to 85°C  
A
Vcc = 1.8V, T = 25°C  
A
ICC4, 5, 6  
Standby Power Supply Current  
Vcc = 1.9V, T = 0 to 70°C  
A
Vcc = 1.9V, T = -40 to 85°C  
A
ispMACH 4064ZE  
Vcc = 1.8V, T = 25°C  
80  
89  
92  
11  
15  
18  
30  
50  
µA  
µA  
µA  
µA  
µA  
µA  
A
ICC1, 2, 3, 5, 6 Operating Power Supply Current  
Vcc = 1.9V, T = 0 to 70°C  
A
Vcc = 1.9V, T = -40 to 85°C  
A
Vcc = 1.8V, T = 25°C  
A
ICC4, 5, 6  
Standby Power Supply Current  
Vcc = 1.9V, T = 0 to 70°C  
A
Vcc = 1.9V, T = -40 to 85°C  
A
ispMACH 4128ZE  
Vcc = 1.8V, T = 25°C  
168  
190  
195  
12  
40  
60  
µA  
µA  
µA  
µA  
µA  
µA  
A
ICC1, 2, 3, 5, 6 Operating Power Supply Current  
Vcc = 1.9V, T = 0 to 70°C  
A
Vcc = 1.9V, T = -40 to 85°C  
A
Vcc = 1.8V, T = 25°C  
A
ICC4, 5, 6  
Standby Power Supply Current  
Vcc = 1.9V, T = 0 to 70°C  
16  
A
Vcc = 1.9V, T = -40 to 85°C  
19  
A
ispMACH 4256ZE  
Vcc = 1.8V, T = 25°C  
341  
361  
372  
13  
µA  
µA  
µA  
µA  
µA  
µA  
A
ICC1, 2, 3, 5, 6 Operating Power Supply Current  
Vcc = 1.9V, T = 0 to 70°C  
A
Vcc = 1.9V, T = -40 to 85°C  
A
Vcc = 1.8V, T = 25°C  
A
ICC4, 5, 6  
Standby Power Supply Current  
Vcc = 1.9V, T = 0 to 70°C  
32  
65  
100  
A
Vcc = 1.9V, T = -40 to 85°C  
43  
A
1. Frequency = 1.0 MHz.  
2. Device configured with 16-bit counters.  
3. I varies with specific device configuration and operating frequency.  
CC  
4. V  
= 3.6V, V = 0V or V  
bus maintenance turned off. V above V  
will add transient current above the specified standby I  
.
CC  
CCO  
IN  
CCO,  
IN  
CCO  
5. Includes V  
current without output loading.  
CCO  
6. This operating supply current is with the internal oscillator disabled. Enabling the internal oscillator adds approximately 15µA typical current  
plus additional current from any logic it drives.  
20  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
I/O DC Electrical Characteristics  
Over Recommended Operating Conditions  
V
V
IH  
1
1
IL  
V
V
I
I
OH  
OL  
OH  
OL  
Standard  
LVTTL  
Min (V)  
Max (V)  
Min (V)  
Max (V) Max (V)  
Min (V)  
(mA) (mA)  
0.40  
V
V
V
V
V
V
V
V
V
V
- 0.40  
8.0  
0.1  
8.0  
0.1  
8.0  
0.1  
2.0  
0.1  
2.0  
0.1  
1.5  
-4.0  
-0.1  
-4.0  
-0.1  
-4.0  
-0.1  
-2.0  
-0.1  
-2.0  
-0.1  
-0.5  
CCO  
CCO  
CCO  
CCO  
CCO  
CCO  
CCO  
CCO  
CCO  
CCO  
-0.3  
0.80  
0.80  
0.70  
2.0  
2.0  
5.5  
0.20  
- 0.20  
- 0.40  
- 0.20  
- 0.40  
- 0.20  
- 0.45  
- 0.20  
- 0.45  
- 0.20  
0.40  
LVCMOS 3.3  
LVCMOS 2.5  
LVCMOS 1.8  
-0.3  
-0.3  
-0.3  
5.5  
0.20  
0.40  
1.70  
3.6  
0.20  
0.40  
0.35 * V  
0.35 * V  
0.65 * V  
0.65 * V  
3.6  
CC  
CC  
0.20  
0.40  
LVCMOS 1.52  
PCI 3.3  
-0.3  
-0.3  
3.6  
CC  
CC  
0.20  
0.3 * 3.3 * (V / 1.8) 0.5 * 3.3 * (V / 1.8)  
5.5  
0.1 V  
0.9 V  
CCO  
CC  
CC  
CCO  
1. The average DC current drawn by I/Os between adjacent bank GND connections, or between the last GND in an I/O bank and the end of  
the I/O bank, as shown in the logic signals connection table, shall not exceed n*8mA. Where n is the number of I/Os between bank GND  
connections or between the last GND in a bank and the end of a bank.  
2. For 1.5V inputs, there may be an additional DC current drawn from V , if the ispMACH 4000ZE V and the V of the driving device  
CC  
CC  
CC  
(V d-d; that determines steady state V ) are in the extreme range of their specifications. Typically, DC current drawn from V will be  
CC  
IH  
CC  
2µA per input.  
1.8V V  
CCO  
60  
50  
IOL  
IOH  
40  
30  
20  
10  
0
0
0.5  
1.0  
1.5  
2.0  
VO Output Voltage (V)  
21  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
ispMACH 4000ZE External Switching Characteristics  
Over Recommended Operating Conditions  
LC4032ZE  
-4  
LC4064ZE  
-4  
All Devices  
-5  
-7  
Parameter  
Description1, 2  
Min. Max. Min. Max. Min. Max. Min. Max. Units  
t
20-PT combinatorial propagation delay  
GLB register setup time before clock  
4.4  
4.7  
5.8  
7.5  
ns  
ns  
PD  
S
t
2.2  
2.5  
2.9  
4.5  
GLB register setup time before clock with  
T-type register  
t
2.4  
1.0  
2.7  
1.1  
3.1  
1.3  
4.7  
1.4  
ns  
ns  
ST  
GLB register setup time before clock, input  
register path  
t
SIR  
GLB register setup time before clock with zero  
hold  
t
t
t
2.0  
0.0  
0.0  
2.1  
0.0  
0.0  
2.9  
0.0  
0.0  
4.0  
0.0  
0.0  
ns  
ns  
ns  
SIRZ  
GLB register hold time after clock  
H
GLB register hold time after clock with T-type  
register  
HT  
GLB register hold time after clock, input  
register path  
t
t
1.0  
0.0  
1.0  
0.0  
1.3  
0.0  
1.3  
0.0  
ns  
ns  
HIR  
GLB register hold time after clock, input  
register path with zero hold  
HIRZ  
t
t
t
GLB register clock-to-output delay  
External reset pin to output delay  
External reset pulse duration  
3.0  
5.0  
3.2  
6.0  
3.8  
7.5  
4.5  
9.0  
ns  
ns  
ns  
CO  
R
1.5  
1.7  
2.0  
4.0  
RW  
Input to output local product term output  
enable/disable  
t
t
7.0  
6.5  
8.0  
7.0  
8.2  
9.0  
ns  
ns  
PTOE/DIS  
Input to output global product term output  
enable/disable  
10.0  
10.5  
GPTOE/DIS  
t
t
Global OE input to output enable/disable  
Global clock width, high or low  
4.5  
4.5  
5.5  
7.0  
ns  
ns  
GOE/DIS  
1.0  
1.5  
1.8  
3.3  
CW  
Global gate width low (for low transparent) or  
high (for high transparent)  
t
1.0  
1.5  
1.8  
3.3  
ns  
GW  
t
f
Input register clock width, high or low  
(Int.)3 Clock frequency with internal feedback  
1.0  
1.5  
1.8  
3.3  
ns  
WIR  
260  
241  
200  
172  
MHz  
MAX  
MAX  
clock frequency with external feedback,  
(Ext.)  
f
192  
175  
149  
111  
MHz  
[1 / (t + t )]  
S
CO  
1. Timing numbers are based on default LVCMOS 1.8 I/O buffers. Use timing adjusters provided to calculate other standards.  
2. Measured using standard switching GRP loading of 1 and 1 output switching.  
3. Standard 16-bit counter using GRP feedback.  
Timing v.0.8  
22  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
Timing Model  
The task of determining the timing through the ispMACH 4000ZE family, like any CPLD, is relatively simple. The  
timing model provided in Figure 16 shows the specific delay paths. Once the implementation of a given function is  
determined either conceptually or from the software report file, the delay path of the function can easily be deter-  
mined from the timing model. The Lattice design tools report the timing delays based on the same timing model for  
a particular design. Note that the internal timing parameters are given for reference only, and are not tested. The  
external timing parameters are tested and guaranteed for every device. For more information on the timing model  
and usage, please refer to technical note TN1168, ispMACH 4000ZE Timing Model Design and Usage Guidelines.  
Figure 16. ispMACH 4000ZE Timing Model  
Oscillator/ Timer  
Delays  
tOSCDIS  
tOSCEN  
tOSCOD  
Feedback  
From  
Feedback  
Routing/GLB Delays  
Feedback  
Out  
tPDi  
tFBK  
tROUTE  
tBLA  
tMCELL  
tEXP  
tIN  
tIOI  
tPGRT  
tBUF  
tIOO  
tEN  
DATA  
Q
IN  
tORP  
tINREG  
tINDIO  
tDIS  
tGCLK_IN  
In/Out  
Delays  
SCLK  
tIOI  
tPGRT  
tPTCLK  
tBCLK  
C.E.  
S/R  
tPTSR  
tBSR  
tBIE  
Register/Latch  
Delays  
MC Reg.  
tGPTOE  
tPTOE  
Control  
Delays  
tGOE  
OE  
tIOI  
tPGRT  
In/Out  
Delays  
Note: Italicized items are optional delay adders.  
23  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
ispMACH 4000ZE Internal Timing Parameters  
Over Recommended Operating Conditions  
LC4032ZE  
-4  
LC4064ZE  
-4  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
In/Out Delays  
t
t
t
t
t
t
t
t
t
Input Buffer Delay  
0.85  
1.60  
2.25  
0.75  
2.25  
1.35  
3.30  
0.00  
5.00  
0.90  
1.60  
2.25  
0.90  
2.25  
1.35  
3.55  
0.00  
5.00  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IN  
Global Clock Input Buffer Delay  
Global OE Pin Delay  
GCLK_IN  
GOE  
BUF  
Delay through Output Buffer  
Output Enable Time  
EN  
Output Disable Time  
DIS  
Input Power Guard Setup Time  
Input Power Guard Hold Time  
Input Power Guard BIE Minimum Pulse Width  
PGSU  
PGH  
PGPW  
Input Power Guard Recovery Time Following BIE  
Dissertation  
t
5.00  
5.00  
ns  
PGRT  
Routing Delays  
t
t
t
t
t
t
Delay through GRP  
1.60  
0.25  
0.65  
0.90  
0.55  
0.30  
1.70  
0.25  
0.65  
1.00  
0.55  
0.30  
ns  
ns  
ns  
ns  
ns  
ns  
ROUTE  
PDi  
Macrocell Propagation Delay  
Macrocell Delay  
MCELL  
INREG  
FBK  
Input Buffer to Macrocell Register Delay  
Internal Feedback Delay  
Output Routing Pool Delay  
ORP  
Register/Latch Delays  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
D-Register Setup Time (Global Clock)  
D-Register Setup Time (Product Term Clock)  
D-Register Hold Time  
0.70  
1.25  
1.50  
0.90  
1.45  
1.50  
0.85  
1.45  
1.15  
0.90  
0.85  
1.85  
1.65  
1.05  
1.65  
1.65  
0.80  
1.45  
1.30  
1.10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
S
S_PT  
H
T-Register Setup Time (Global Clock)  
T-register Setup Time (Product Term Clock)  
T-Resister Hold Time  
ST  
ST_PT  
HT  
D-Input Register Setup Time (Global Clock)  
D-Input Register Setup Time (Product Term Clock)  
D-Input Register Hold Time (Global Clock)  
D-Input Register Hold Time (Product Term Clock)  
Register Clock to Output/Feedback MUX Time  
Clock Enable Setup Time  
SIR  
SIR_PT  
HIR  
HIR_PT  
COi  
0.35  
0.40  
1.00  
0.00  
0.70  
1.45  
1.40  
2.00  
0.00  
0.95  
1.85  
1.80  
CES  
CEH  
SL  
Clock Enable Hold Time  
Latch Setup Time (Global Clock)  
Latch Setup Time (Product Term Clock)  
Latch Hold Time  
SL_PT  
HL  
Latch Gate to Output/Feedback MUX Time  
0.40  
0.35  
GOi  
Propagation Delay through Transparent Latch to Output/  
Feedback MUX  
t
0.30  
0.30  
0.25  
0.30  
ns  
ns  
PDLi  
SRi  
Asynchronous Reset or Set to Output/Feedback MUX  
Delay  
t
24  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
ispMACH 4000ZE Internal Timing Parameters (Cont.)  
Over Recommended Operating Conditions  
LC4032ZE  
-4  
LC4064ZE  
-4  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
t
Asynchronous Reset or Set Recovery Delay  
2.00  
1.70  
ns  
SRR  
Control Delays  
t
t
t
t
t
t
t
GLB PT Clock Delay  
1.20  
1.40  
1.10  
1.20  
1.60  
2.30  
1.80  
1.30  
1.50  
1.85  
1.90  
1.70  
3.15  
2.15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BCLK  
PTCLK  
BSR  
Macrocell PT Clock Delay  
Block PT Set/Reset Delay  
Macrocell PT Set/Reset Delay  
Power Guard Block Input Enable Delay  
Macrocell PT OE Delay  
PTSR  
BIE  
PTOE  
GPTOE  
Global PT OE Delay  
Internal Oscillator  
t
t
t
t
t
t
Oscillator DYNOSCDIS Setup Time  
Oscillator DYNOSCDIS Hold Time  
Oscillator OSCOUT Enable Time (To Stable)  
Oscillator Output Delay  
5.00  
5.00  
5.00  
5.00  
ns  
ns  
OSCSU  
OSCH  
5.00  
4.00  
5.00  
30  
5.00  
4.00  
5.00  
30  
ns  
OSCEN  
OSCOD  
OSCNOM  
OSCvar  
ns  
Oscillator OSCOUT Nominal Frequency  
Oscillator Variation of Nominal Frequency  
MHz  
%
Oscillator TIMEROUT Clock (Negative Edge) to Out  
(20-Bit Divider)  
t
12.50  
7.50  
12.50  
7.50  
ns  
ns  
TMRCO20  
TMRCO10  
Oscillator TIMEROUT Clock (Negative Edge) to Out  
(10-Bit Divider)  
t
Oscillator TIMEROUT Clock (Negative Edge) to Out  
(7-Bit Divider)  
t
t
t
t
6.00  
5.00  
4.00  
6.00  
5.00  
4.00  
ns  
ns  
ns  
ns  
TMRCO7  
TMRRSTO  
TMRRR  
Oscillator TIMEROUT Reset to Out (Going Low)  
Oscillator TIMEROUT Asynchronous Reset Recovery  
Delay  
Oscillator TIMEROUT Reset Minimum Pulse Width  
3.00  
3.00  
TMRRSTPW  
Optional Delay Adjusters  
Base Parameter  
t
t
t
Input Register Delay  
t
t
t
1.00  
0.40  
0.04  
1.00  
0.40  
0.05  
ns  
ns  
ns  
INDIO  
EXP  
INREG  
MCELL  
ROUTE  
Product Term Expander Delay  
Additional Block Loading Adders  
BLA  
t
Input Buffer Delays  
IOI  
LVTTL_in  
Using LVTTL standard  
t , t  
, t  
0.60  
0.20  
0.00  
0.60  
0.20  
0.00  
ns  
ns  
ns  
IN GCLK_IN GOE  
LVCMOS15_in  
LVCMOS18_in  
Using LVCMOS 1.5 Standard  
Using LVCMOS 1.8 Standard  
t , t  
, t  
IN GCLK_IN GOE  
t , t  
, t  
IN GCLK_IN GOE  
Using LVCMOS 2.5 Standard with t , t  
Hysteresis  
, t  
IN GCLK_IN GOE  
LVCMOS25_in  
LVCMOS33_in  
PCI_in  
0.80  
0.80  
0.80  
0.80  
0.80  
0.80  
ns  
ns  
ns  
Using LVCMOS 3.3 Standard with t , t  
, t  
IN GCLK_IN GOE  
Hysteresis  
Using PCI Compatible Input with  
Hysteresis  
t , t  
, t  
IN GCLK_IN GOE  
t
Output Buffer Delays  
IOO  
LVTTL_out  
Output Configured as TTL Buffer  
t
t
, t , t  
0.20  
0.20  
0.20  
0.20  
ns  
ns  
EN DIS BUF  
LVCMOS15_out Output Configured as 1.5V Buffer  
, t , t  
EN DIS BUF  
25  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
ispMACH 4000ZE Internal Timing Parameters (Cont.)  
Over Recommended Operating Conditions  
LC4032ZE  
-4  
LC4064ZE  
-4  
Parameter  
Description  
Min.  
Max.  
0.00  
0.10  
0.20  
Min.  
Max.  
0.00  
0.10  
0.20  
Units  
ns  
LVCMOS18_out Output Configured as 1.8V Buffer  
LVCMOS25_out Output Configured as 2.5V Buffer  
LVCMOS33_out Output Configured as 3.3V Buffer  
t
t
t
, t , t  
EN DIS BUF  
, t , t  
ns  
EN DIS BUF  
, t , t  
ns  
EN DIS BUF  
Output Configured as PCI Compati- t , t , t  
ble Buffer  
EN DIS BUF  
PCI_out  
0.20  
1.00  
0.20  
1.00  
ns  
ns  
Output Configured for Slow Slew  
Rate  
t
, t  
EN BUF  
Slow Slew  
Note: Internal Timing Parameters are not tested and are for reference only. Refer to the timing model in this data sheet for further details.  
Timing v.0.8  
26  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
ispMACH 4000ZE Internal Timing Parameters (Cont.)  
Over Recommended Operating Conditions  
All Devices  
-5  
-7  
Parameter  
Description  
Min.  
Max. Min.  
Max.  
Units  
In/Out Delays  
t
t
t
t
t
t
t
t
t
Input Buffer Delay  
1.05  
1.95  
3.00  
1.10  
2.50  
2.50  
4.30  
0.00  
6.00  
1.90  
2.15  
4.30  
1.30  
2.70  
2.70  
5.60  
0.00  
8.00  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IN  
Global Clock Input Buffer Delay  
Global OE Pin Delay  
GCLK_IN  
GOE  
BUF  
Delay through Output Buffer  
Output Enable Time  
EN  
Output Disable Time  
DIS  
Input Power Guard Setup Time  
Input Power Guard Hold Time  
Input Power Guard BIE Minimum Pulse Width  
PGSU  
PGH  
PGPW  
Input Power Guard Recovery Time Following BIE Dis-  
sertation  
t
5.00  
7.00  
ns  
PGRT  
Routing Delays  
t
t
t
t
t
t
Delay through GRP  
2.25  
0.45  
0.65  
1.00  
0.75  
0.30  
2.50  
0.50  
1.00  
1.00  
0.30  
0.30  
ns  
ns  
ns  
ns  
ns  
ns  
ROUTE  
PDi  
Macrocell Propagation Delay  
Macrocell Delay  
MCELL  
INREG  
FBK  
Input Buffer to Macrocell Register Delay  
Internal Feedback Delay  
Output Routing Pool Delay  
ORP  
Register/Latch Delays  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
D-Register Setup Time (Global Clock)  
D-Register Setup Time (Product Term Clock)  
D-Register Hold Time  
0.90  
2.00  
2.00  
1.10  
2.20  
2.00  
1.20  
1.45  
1.40  
1.10  
1.25  
2.35  
3.25  
1.45  
2.65  
3.25  
0.65  
1.45  
2.05  
1.20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
S
S_PT  
H
T-Register Setup Time (Global Clock)  
T-register Setup Time (Product Term Clock)  
T-Resister Hold Time  
ST  
ST_PT  
HT  
D-Input Register Setup Time (Global Clock)  
D-Input Register Setup Time (Product Term Clock)  
D-Input Register Hold Time (Global Clock)  
D-Input Register Hold Time (Product Term Clock)  
Register Clock to Output/Feedback MUX Time  
Clock Enable Setup Time  
SIR  
SIR_PT  
HIR  
HIR_PT  
COi  
0.45  
0.75  
2.00  
0.00  
0.90  
2.00  
2.00  
2.00  
0.00  
1.55  
2.05  
1.17  
CES  
CEH  
SL  
Clock Enable Hold Time  
Latch Setup Time (Global Clock)  
Latch Setup Time (Product Term Clock)  
Latch Hold Time  
SL_PT  
HL  
Latch Gate to Output/Feedback MUX Time  
0.35  
0.33  
GOi  
Propagation Delay through Transparent Latch to Output/  
Feedback MUX  
t
0.25  
0.95  
0.25  
0.28  
ns  
ns  
PDLi  
SRi  
Asynchronous Reset or Set to Output/Feedback MUX  
Delay  
t
27  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
ispMACH 4000ZE Internal Timing Parameters (Cont.)  
Over Recommended Operating Conditions  
All Devices  
-5  
-7  
Parameter  
Description  
Min.  
Max. Min.  
Max.  
Units  
t
Asynchronous Reset or Set Recovery Delay  
1.80  
1.67  
ns  
SRR  
Control Delays  
t
t
t
t
t
t
t
GLB PT Clock Delay  
1.45  
1.45  
1.85  
1.85  
1.75  
2.40  
4.20  
0.95  
1.15  
1.83  
2.72  
1.95  
1.90  
3.40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BCLK  
PTCLK  
BSR  
Macrocell PT Clock Delay  
Block PT Set/Reset Delay  
Macrocell PT Set/Reset Delay  
Power Guard Block Input Enable Delay  
Macrocell PT OE Delay  
PTSR  
BIE  
PTOE  
GPTOE  
Global PT OE Delay  
Internal Oscillator  
t
t
t
t
t
t
Oscillator DYNOSCDIS Setup Time  
Oscillator DYNOSCDIS Hold Time  
Oscillator OSCOUT Enable Time (To Stable)  
Oscillator Output Delay  
5.00  
5.00  
5.00  
5.00  
ns  
ns  
OSCSU  
OSCH  
5.00  
4.00  
5.00  
30  
5.00  
4.00  
5.00  
30  
ns  
OSCEN  
OSCOD  
OSCNOM  
OSCvar  
ns  
Oscillator OSCOUT Nominal Frequency  
Oscillator Variation of Nominal Frequency  
MHz  
%
Oscillator TIMEROUT Clock (Negative Edge) to Out  
(20-Bit Divider)  
t
12.50  
7.50  
14.50  
9.50  
ns  
ns  
TMRCO20  
TMRCO10  
Oscillator TIMEROUT Clock (Negative Edge) to Out  
(10-Bit Divider)  
t
Oscillator TIMEROUT Clock (Negative Edge) to Out  
(7-Bit Divider)  
t
t
t
t
6.00  
5.00  
4.00  
8.00  
7.00  
6.00  
ns  
ns  
ns  
ns  
TMRCO7  
TMRRSTO  
TMRRR  
Oscillator TIMEROUT Reset to Out (Going Low)  
Oscillator TIMEROUT Asynchronous Reset Recovery  
Delay  
Oscillator TIMEROUT Reset Minimum Pulse Width  
3.00  
5.00  
TMRRSTPW  
Optional Delay Adjusters  
Base Parameter  
t
t
t
Input Register Delay  
t
t
t
1.60  
0.45  
0.05  
2.60  
0.50  
0.05  
ns  
ns  
ns  
INDIO  
EXP  
INREG  
MCELL  
ROUTE  
Product Term Expander Delay  
Additional Block Loading Adders  
BLA  
t
Input Buffer Delays  
IOI  
LVTTL_in  
Using LVTTL standard  
t , t  
, t  
0.60  
0.20  
0.00  
0.60  
0.20  
0.00  
ns  
ns  
ns  
IN GCLK_IN GOE  
LVCMOS15_in  
LVCMOS18_in  
Using LVCMOS 1.5 standard  
Using LVCMOS 1.8 standard  
t , t  
, t  
IN GCLK_IN GOE  
t , t  
, t  
IN GCLK_IN GOE  
Using LVCMOS 2.5 standard with t , t  
Hysteresis  
, t  
IN GCLK_IN GOE  
LVCMOS25_in  
LVCMOS33_in  
PCI_in  
0.80  
0.80  
0.80  
0.80  
0.80  
0.80  
ns  
ns  
ns  
Using LVCMOS 3.3 standard with t , t  
, t  
IN GCLK_IN GOE  
Hysteresis  
Using PCI compatible input with  
Hysteresis  
t , t  
, t  
IN GCLK_IN GOE  
t
Output Buffer Delays  
IOO  
LVTTL_out  
Output configured as TTL buffer  
t
, t , t  
0.20  
0.20  
ns  
EN DIS BUF  
28  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
ispMACH 4000ZE Internal Timing Parameters (Cont.)  
Over Recommended Operating Conditions  
All Devices  
-5  
-7  
Parameter  
Description  
Min.  
Max. Min.  
Max.  
0.20  
0.00  
0.10  
0.20  
Units  
ns  
LVCMOS15_out Output configured as 1.5V buffer  
LVCMOS18_out Output configured as 1.8V buffer  
LVCMOS25_out Output configured as 2.5V buffer  
LVCMOS33_out Output configured as 3.3V buffer  
t
t
t
t
t
, t , t  
0.20  
0.00  
0.10  
0.20  
EN DIS BUF  
, t , t  
ns  
EN DIS BUF  
, t , t  
ns  
EN DIS BUF  
, t , t  
ns  
EN DIS BUF  
Output configured as PCI compati-  
, t , t  
EN DIS BUF  
PCI_out  
0.20  
0.20  
ns  
ble buffer  
Slow Slew  
Output configured for slow slew rate t , t  
EN BUF  
1.00  
1.00  
ns  
Note: Internal Timing Parameters are not tested and are for reference only. Refer to the timing model in this data sheet for further details.  
Timing v.0.8  
29  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
Boundary Scan Waveforms and Timing Specifications  
Symbol  
Parameter  
Min.  
40  
20  
20  
8
Max.  
Units  
ns  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
TCK [BSCAN test] clock cycle  
BTCP  
TCK [BSCAN test] pulse width high  
ns  
BTCH  
BTCL  
TCK [BSCAN test] pulse width low  
ns  
TCK [BSCAN test] setup time  
ns  
BTSU  
BTH  
TCK [BSCAN test] hold time  
10  
50  
8
ns  
TCK [BSCAN test] rise and fall time  
mV/ns  
ns  
BRF  
TAP controller falling edge of clock to valid output  
TAP controller falling edge of clock to data output disable  
TAP controller falling edge of clock to data output enable  
BSCAN test Capture register setup time  
10  
10  
10  
BTCO  
BTOZ  
ns  
ns  
BTVO  
BTCPSU  
BTCPH  
BTUCO  
BTUOZ  
BTUOV  
ns  
BSCAN test Capture register hold time  
10  
ns  
BSCAN test Update reg, falling edge of clock to valid output  
BSCAN test Update reg, falling edge of clock to output disable  
BSCAN test Update reg, falling edge of clock to output enable  
25  
25  
25  
ns  
ns  
ns  
30  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
Power Consumption  
ispMACH 4000ZE  
Typical I  
vs. Frequency  
CC  
70  
60  
50  
40  
30  
20  
10  
0
4256ZE  
4128ZE  
4064ZE  
4032ZE  
0
50  
100  
150  
200  
250  
300  
Frequency (MHz)  
Power Estimation Coefficients1  
Device  
ispMACH 4032ZE  
ispMACH 4064ZE  
ispMACH 4128ZE  
ispMACH 4256ZE  
A
B
0.010  
0.009  
0.009  
0.009  
0.009  
0.011  
0.012  
0.013  
1. For further information about the use of these coefficients, refer to Technical Note  
TN1175, Power Estimation in ispMACH 4000ZE Devices.  
31  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
Switching Test Conditions  
Figure 17 shows the output test load that is used for AC testing. The specific values for resistance, capacitance,  
voltage, and other test conditions are shown in Table 13.  
Figure 17. Output Test Load, LVTTL and LVCMOS Standards  
V
CCO  
R
1
2
Test  
Point  
DUT  
R
C
L
0213A/ispm4k  
Table 13. Test Fixture Required Components  
1
Test Condition  
R
R
C
Timing Ref.  
V
CCO  
1
2
L
LVCMOS 3.3 = 1.5V  
LVCMOS 3.3 = 3.0V  
VCCO  
2
LVCMOS 2.5 = 2.3V  
LVCMOS 2.5 =  
LVCMOS I/O, (L -> H, H -> L)  
106Ω 106Ω  
35pF  
VCCO  
2
LVCMOS 1.8 = 1.65V  
LVCMOS 1.5 = 1.4V  
LVCMOS 1.8 =  
VCCO  
2
LVCMOS 1.5 =  
LVCMOS I/O (Z -> H)  
LVCMOS I/O (Z -> L)  
LVCMOS I/O (H -> Z)  
LVCMOS I/O (L -> Z)  
106Ω  
35pF  
35pF  
5pF  
1.5V  
1.5V  
3.0V  
3.0V  
3.0V  
3.0V  
106Ω  
106Ω  
V
- 0.3  
OH  
OL  
106Ω  
5pF  
V
+ 0.3  
1. C includes test fixtures and probe capacitance.  
L
32  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
Signal Descriptions  
Signal Names  
Description  
TMS  
Input – This pin is the IEEE 1149.1 Test Mode Select input, which is used to control  
the state machine.  
TCK  
Input – This pin is the IEEE 1149.1 Test Clock input pin, used to clock through the  
state machine.  
TDI  
Input – This pin is the IEEE 1149.1 Test Data In pin, used to load data.  
Output – This pin is the IEEE 1149.1 Test Data Out pin used to shift data out.  
TDO  
GOE0/IO, GOE1/IO  
These pins are configured to be either Global Output Enable Input or as general I/O  
pins.  
GND  
NC  
Ground  
Not Connected  
V
The power supply pins for logic core and JTAG port.  
These pins are configured to be either CLK input or as an input.  
The power supply pins for each I/O bank.  
CC  
CLK0/I, CLK1/I, CLK2/I, CLK3/I  
, V  
V
CCO0 CCO1  
Input/Output1 – These are the general purpose I/O used by the logic array. y is GLB  
reference (alpha) and z is macrocell reference (numeric). z: 0-15.  
ispMACH 4032ZE  
ispMACH 4064ZE  
ispMACH 4128ZE  
ispMACH 4256ZE  
y: A-B  
y: A-D  
y: A-H  
y: A-P  
yzz  
1. In some packages, certain I/Os are only available for use as inputs. See the signal connections table for details.  
ORP Reference Table  
4032ZE  
4064ZE  
4128ZE  
4256ZE  
Number of I/Os  
Number of GLBs  
32  
2
32  
4
48  
4
64  
4
64  
8
96  
8
64  
16  
4
96  
16  
6
108  
16  
Number of  
I/Os per GLB  
16  
8
Mixture of  
9, 10,  
16  
8
12  
Mixture of  
6, 7, 8  
14, 15  
Reference ORP  
Table (I/Os per  
GLB)  
16  
8
9, 10,  
14, 15  
16  
8
12  
4
6
6, 7, 8  
33  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
ispMACH 4000ZE Power Supply and NC Connections1  
Signal  
48 TQFP2  
64 csBGA3, 4  
100 TQFP2  
25, 40, 75, 90  
VCC  
12, 36  
6
E4, D5  
VCCO0  
VCCO (Bank 0)  
4032ZE: E3  
4064ZE: E3, F4  
13, 33, 95  
VCCO1  
VCCO (Bank 1)  
30  
4032ZE: D6  
4064ZE: D6, C6  
45, 63, 83  
GND  
13, 37  
5
D4, E5  
D4, E5  
D4, E5  
1, 26, 51, 76  
7, 18, 32, 96  
46, 57, 68, 82  
GND (Bank 0)  
GND (Bank 1)  
NC  
29  
1. All grounds must be electrically connected at the board level. However, for the purposes of I/O current loading, grounds are associated with  
the bank shown.  
2. Pin orientation follows the conventional order from pin 1 marking of the top side view and counter-clockwise.  
3. Pin orientation A1 starts from the upper left corner of the top side view with alphabetical order ascending vertically and numerical order  
ascending horizontally.  
4. All bonded grounds are connected to the following two balls, D4 and E5.  
34  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
ispMACH 4000ZE Power Supply and NC Connections1 (Cont.)  
Signal  
144 csBGA3  
144 TQFP2  
VCC  
H5, H8, E8, E5  
36, 57, 108, 129  
3, 19, 34, 47, 136  
VCCO0  
E4, F4, G4, J5, D5  
VCCO (Bank 0)  
VCCO1  
J8, H9, G9, F9, D8  
64, 75, 91, 106, 119  
VCCO (Bank 1)  
GND  
F6, G6, G7, F7  
1, 37, 73, 109  
GND (Bank 0)  
GND (Bank 1)  
NC  
G5, H4, H6, E6, F5  
H7, J9, G8, F8, E7  
10, 184, 27, 46, 127, 137  
55, 65, 82, 904, 99, 118  
4064ZE: E4, B2, B1, D2, D3, E1, H1, H3, H2, L1, G4, 4128ZE: 17, 20, 38, 45, 72, 89, 92, 110, 117, 144  
M1, K3, M2, M4, L5, H7, L8, M8, L10, K9, M11, H9, 4256ZE: 18, 90  
L12, L11, J12, J11, H10, D10, F10, D12, B12, F9,  
A12, C10, B10, A9, B8, E6, B5, A5, C4, B3, A2  
4128ZE: D2, D3, H2, M1, K3, M11, J12, J11, D12,  
A12, C10, A2  
1. All grounds must be electrically connected at the board level. However, for the purposes of I/O current loading, grounds are associated with  
the bank shown.  
2. Pin orientation follows the conventional order from pin 1 marking of the top side view and counter-clockwise.  
3. Pin orientation A1 starts from the upper left corner of the top side view with alphabetical order ascending vertically and numerical order  
ascending horizontally.  
4. For the LC4256ZE, pins 18 and 90 are no connects.  
35  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
ispMACH 4032ZE and 4064ZE Logic Signal Connections: 48 TQFP  
ispMACH 4032ZE  
ispMACH 4064ZE  
Pin Number  
Bank Number  
GLB/MC/Pad  
GLB/MC/Pad  
1
-
TDI  
TDI  
2
0
0
0
0
0
0
0
0
0
-
A5  
A8  
3
A6  
A10  
4
A7  
A11  
5
GND (Bank 0)  
GND (Bank 0)  
6
VCCO (Bank 0)  
VCCO (Bank 0)  
7
A8  
A9  
B15  
B12  
8
9
A10  
B10  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
A11  
B8  
TCK  
TCK  
VCC  
GND  
B6  
-
VCC  
GND  
A12  
-
0
0
0
0
0
1
1
1
1
1
1
-
A13  
B4  
A14  
B2  
A15  
B0  
CLK1/I  
CLK2/I  
B0  
CLK1/I  
CLK2/I  
C0  
B1  
C1  
B2  
C2  
B3  
C4  
B4  
C6  
TMS  
B5  
TMS  
C8  
1
1
1
1
1
1
1
1
1
-
B6  
C10  
B7  
C11  
GND (Bank 1)  
VCCO (Bank 1)  
B8  
GND (Bank 1)  
VCCO (Bank 1)  
D15  
B9  
D12  
B10  
D10  
B11  
D8  
TDO  
VCC  
GND  
B12  
TDO  
VCC  
GND  
D6  
-
-
1
1
1
1
1
B13  
D4  
B14  
D2  
B15/GOE1  
CLK3/I  
D0/GOE1  
CLK3/I  
36  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
ispMACH 4032ZE and 4064ZE Logic Signal Connections: 48 TQFP (Cont.)  
ispMACH 4032ZE  
ispMACH 4064ZE  
Pin Number  
Bank Number  
GLB/MC/Pad  
GLB/MC/Pad  
43  
44  
45  
46  
47  
48  
0
0
0
0
0
0
CLK0/I  
A0/GOE0  
A1  
CLK0/I  
A0/GOE0  
A1  
A2  
A2  
A3  
A4  
A4  
A6  
37  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
ispMACH 4032ZE and 4064ZE Logic Signal Connections: 64 csBGA  
ispMACH 4032ZE  
ispMACH 4064ZE  
Ball Number  
B2  
Bank Number  
GLB/MC/Pad  
GLB/MC/Pad  
-
TDI  
TDI  
B1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
A5  
A8  
C2  
A6  
A10  
C1  
A7  
A11  
GND*  
C3  
GND (Bank 0)  
GND (Bank 0)  
NC  
A12  
E3  
VCCO (Bank 0)  
VCCO (Bank 0)  
D1  
A8  
B15  
D2  
NC  
B14  
E1  
A9  
B13  
D3  
A10  
B12  
F1  
A11  
B11  
E2  
NC  
B10  
G1  
NC  
B9  
F2  
NC  
B8  
H1  
TCK  
TCK  
E4  
-
VCC  
VCC  
GND*  
G2  
-
GND  
GND  
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
-
A12  
B6  
H2  
NC  
B5  
H3  
A13  
B4  
GND*  
F4  
NC  
GND (Bank 0)  
NC  
VCCO (Bank 0)  
G3  
A14  
B3  
F3  
NC  
B2  
H4  
A15  
B0  
G4  
CLK1/I  
CLK1/I  
H5  
CLK2/I  
CLK2/I  
F5  
B0  
C0  
G5  
B1  
C1  
G6  
B2  
C2  
H6  
B3  
C4  
F6  
B4  
C5  
H7  
NC  
C6  
TMS  
H8  
TMS  
G7  
1
1
1
1
1
1
1
B5  
C8  
F7  
B6  
C10  
G8  
B7  
GND (Bank 0)  
NC  
C11  
GND*  
F8  
GND (Bank 1)  
C12  
D6  
VCCO (Bank 1)  
B8  
VCCO (Bank 1)  
D15  
E8  
38  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
ispMACH 4032ZE and 4064ZE Logic Signal Connections: 64 csBGA (Cont.)  
ispMACH 4032ZE  
ispMACH 4064ZE  
Ball Number  
E7  
Bank Number  
GLB/MC/Pad  
NC  
GLB/MC/Pad  
1
1
1
1
1
1
1
-
D14  
E6  
B9  
D13  
D7  
B10  
D12  
D8  
NC  
D11  
C5  
NC  
D10  
C7  
B11  
D9  
C8  
NC  
D8  
B8  
TDO  
VCC  
GND  
B12  
TDO  
D5  
-
VCC  
GND*  
A8  
-
GND  
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
D7  
A7  
NC  
D6  
B7  
NC  
D5  
A6  
B13  
D4  
GND (Bank 1)  
VCCO (Bank 1)  
D3  
GND*  
C6  
NC  
NC  
B6  
B14  
A5  
NC  
D2  
B5  
B15/GOE1  
CLK3/I  
CLK0/I  
A0/GOE0  
A1  
D0/GOE1  
CLK3/I  
CLK0/I  
A0/GOE0  
A1  
A4  
C4  
B4  
B3  
A3  
A2  
A2  
A2  
A3  
A4  
A1  
A4  
A6  
* All bonded grounds are connected to the following two balls, D4 and E5.  
39  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections:  
100 TQFP  
LC4064ZE  
LC4128ZE  
LC4256ZE  
Pin  
Number  
Bank  
Number  
GLB/MC/Pad  
GLB/MC/Pad  
GLB/MC/Pad  
1
2
-
GND  
GND  
GND  
-
TDI  
TDI  
TDI  
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
A8  
B0  
C12  
4
A9  
B2  
C10  
5
A10  
B4  
C6  
6
A11  
B6  
C2  
7
GND (Bank 0)  
GND (Bank 0)  
GND (Bank 0)  
8
A12  
B8  
D12  
9
A13  
B10  
D10  
10  
11  
12*  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23*  
24  
25  
26  
27*  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
A14  
B12  
D6  
A15  
B13  
D4  
I
I
I
VCCO (Bank 0)  
VCCO (Bank 0)  
VCCO (Bank 0)  
B15  
C14  
E4  
B14  
C12  
E6  
B13  
C10  
E10  
B12  
C8  
E12  
GND (Bank 0)  
GND (Bank 0)  
GND (Bank 0)  
B11  
C6  
F2  
B10  
C5  
F6  
B9  
C4  
F10  
B8  
C2  
F12  
I
I
I
TCK  
TCK  
TCK  
-
VCC  
VCC  
VCC  
-
GND  
GND  
GND  
0
0
0
0
0
0
0
0
0
0
0
0
1
-
I
I
I
B7  
D13  
G12  
B6  
D12  
G10  
B5  
D10  
G6  
B4  
D8  
G2  
GND (Bank 0)  
GND (Bank 0)  
GND (Bank 0)  
VCCO (Bank 0)  
VCCO (Bank 0)  
VCCO (Bank 0)  
B3  
B2  
D6  
D4  
H12  
H10  
H6  
B1  
D2  
B0  
D0  
H2  
CLK1/I  
CLK2/I  
VCC  
C0  
CLK1/I  
CLK2/I  
VCC  
E0  
CLK1/I  
CLK2/I  
VCC  
I2  
1
40  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections:  
100 TQFP (Cont.)  
LC4064ZE  
LC4128ZE  
LC4256ZE  
Pin  
Number  
Bank  
Number  
GLB/MC/Pad  
GLB/MC/Pad  
GLB/MC/Pad  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62*  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73*  
74  
75  
76  
77*  
78  
79  
80  
81  
82  
1
1
1
1
1
1
1
1
1
-
C1  
E2  
I6  
C2  
E4  
I10  
C3  
E6  
I12  
VCCO (Bank 1)  
VCCO (Bank 1)  
VCCO (Bank 1)  
GND (Bank 1)  
GND (Bank 1)  
GND (Bank 1)  
C4  
E8  
J2  
C5  
E10  
J6  
C6  
E12  
J10  
C7  
E14  
J12  
GND  
GND  
GND  
-
TMS  
TMS  
TMS  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
-
C8  
F0  
K12  
C9  
F2  
K10  
C10  
F4  
K6  
C11  
F6  
K2  
GND (Bank 1)  
GND (Bank 1)  
GND (Bank 1)  
C12  
F8  
L12  
C13  
F10  
L10  
C14  
F12  
L6  
C15  
F13  
L4  
I
I
I
VCCO (Bank 1)  
VCCO (Bank 1)  
VCCO (Bank 1)  
D15  
G14  
M4  
D14  
G12  
M6  
D13  
G10  
M10  
D12  
G8  
M12  
GND (Bank 1)  
GND (Bank 1)  
GND (Bank 1)  
D11  
G6  
N2  
D10  
G5  
N6  
D9  
G4  
N10  
D8  
G2  
N12  
I
I
I
TDO  
TDO  
TDO  
-
VCC  
VCC  
VCC  
-
GND  
GND  
GND  
1
1
1
1
1
1
I
I
H13  
I
D7  
O12  
O10  
D6  
H12  
D5  
D4  
H10  
O6  
H8  
O2  
GND (Bank 1)  
GND (Bank 1)  
GND (Bank 1)  
41  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections:  
100 TQFP (Cont.)  
LC4064ZE  
LC4128ZE  
LC4256ZE  
GLB/MC/Pad  
VCCO (Bank 1)  
P12  
Pin  
Bank  
Number  
Number  
GLB/MC/Pad  
GLB/MC/Pad  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
1
1
1
1
1
1
0
-
VCCO (Bank 1)  
VCCO (Bank 1)  
D3  
H6  
H4  
D2  
P10  
D1  
H2  
P6  
D0/GOE1  
H0/GOE1  
CLK3/I  
CLK0/I  
VCC  
P2/GOE1  
CLK3/I  
CLK0/I  
VCC  
CLK3/I  
CLK0/I  
VCC  
0
0
0
0
0
0
0
0
0
0
A0/GOE0  
A0/GOE0  
A2  
A2/GOE0  
A6  
A1  
A2  
A4  
A10  
A3  
A6  
A12  
VCCO (Bank 0)  
VCCO (Bank 0)  
GND (Bank 0)  
A8  
VCCO (Bank 0)  
GND (Bank 0)  
B2  
GND (Bank 0)  
A4  
A5  
A6  
A7  
A10  
B6  
A12  
B10  
A14  
B12  
* This pin is input only.  
42  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections:  
144 csBGA  
LC4064ZE  
GLB/MC/Pad  
GND  
LC4128ZE  
LC4256ZE  
Ball  
Bank  
Number  
Number  
GLB/MC/Pad  
GLB/MC/Pad  
F6  
A1  
E4  
B2  
B1  
C3  
C2  
C1  
D1  
G5  
D2  
D3  
E1  
E2  
F2  
D4  
F1  
F3*  
F4  
G1  
E3  
G2  
G3  
H1  
H3  
H2  
H4  
J1  
-
GND  
GND  
-
TDI  
TDI  
TDI  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
NC Ball  
NC Ball  
NC Ball  
A8  
VCCO (Bank 0)  
VCCO (Bank 0)  
B0  
C12  
B1  
C10  
B2  
C8  
A9  
B4  
C6  
A10  
B5  
C4  
A11  
B6  
C2  
GND (Bank 0)  
NC Ball  
NC Ball  
NC Ball  
A12  
GND (Bank 0)  
GND (Bank 0)  
NC Ball  
D14  
NC Ball  
D12  
B8  
D10  
B9  
D8  
A13  
B10  
D6  
A14  
B12  
D4  
A15  
B13  
D2  
I
B14  
D0  
VCCO (Bank 0)  
B15  
VCCO (Bank 0)  
VCCO (Bank 0)  
C14  
C13  
E0  
B14  
E2  
B13  
C12  
E4  
B12  
C10  
E6  
NC Ball  
NC Ball  
NC Ball  
GND (Bank 0)  
B11  
C9  
E8  
C8  
E10  
NC Ball  
GND (Bank 0)  
C6  
E12  
GND (Bank 0)  
F2  
J3  
B10  
C5  
F4  
F6  
J2  
B9  
C4  
K1  
K2*  
L1  
B8  
C2  
F8  
I
C1  
F10  
NC Ball  
NC Ball  
TCK  
C0  
F12  
G4  
L2  
VCCO (Bank 0)  
TCK  
VCCO (Bank 0)  
TCK  
H5  
G6  
M1  
K3  
M2  
L3*  
-
VCC  
VCC  
VCC  
GND  
G14  
-
GND  
GND  
NC Ball  
NC Ball  
D14  
0
0
0
0
NC Ball  
NC Ball  
NC Ball  
I
G12  
G10  
D13  
G8  
43  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections:  
144 csBGA (Cont.)  
LC4064ZE  
GLB/MC/Pad  
B7  
LC4128ZE  
LC4256ZE  
Ball  
Bank  
Number  
Number  
GLB/MC/Pad  
GLB/MC/Pad  
J4  
K4  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
-
D12  
G6  
B6  
D10  
G4  
M3  
L4  
B5  
D9  
G2  
B4  
D8  
G0  
H6  
J5  
GND (Bank 0)  
VCCO (Bank 0)  
NC Ball  
NC Ball  
B3  
GND (Bank 0)  
GND (Bank 0)  
VCCO (Bank 0)  
VCCO (Bank 0)  
M4  
L5  
D6  
H12  
D5  
H10  
K5  
D4  
H8  
J6  
B2  
D2  
H6  
M5  
K6  
B1  
D1  
H4  
B0  
D0  
H2  
L6  
CLK1/I  
NC Ball  
CLK2/I  
VCC  
CLK1/I  
CLK1/I  
H7  
M6  
H8  
K7  
GND (Bank 1)  
GND (Bank 1)  
CLK2/I  
CLK2/I  
VCC  
VCC  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
-
C0  
E0  
I2  
M7  
L7  
C1  
E1  
I4  
C2  
E2  
I6  
J7  
C3  
E4  
I8  
L8  
NC Ball  
NC Ball  
VCCO (Bank 1)  
GND (Bank 1)  
C4  
E5  
I10  
M8  
J8  
E6  
I12  
VCCO (Bank 1)  
VCCO (Bank 1)  
J9  
GND (Bank 1)  
GND (Bank 1)  
M9  
L9  
E8  
J2  
C5  
E9  
J4  
K8  
C6  
E10  
J6  
M10  
L10  
K9  
C7  
E12  
J8  
NC Ball  
NC Ball  
NC Ball  
GND  
E13  
J10  
E14  
J12  
M11  
G7  
M12  
H9  
L12  
L11  
K10  
K12  
J10  
K11  
G8  
NC Ball  
J14  
GND  
GND  
-
TMS  
TMS  
TMS  
1
1
1
1
1
1
1
1
NC Ball  
NC Ball  
NC Ball  
C8  
VCCO (Bank 1)  
VCCO (Bank 1)  
F0  
K12  
F1  
K10  
F2  
K8  
C9  
F4  
K6  
C10  
F5  
F6  
K4  
K2  
C11  
GND (Bank 1)  
GND (Bank 1)  
GND (Bank 1)  
44  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections:  
144 csBGA (Cont.)  
LC4064ZE  
GLB/MC/Pad  
NC Ball  
NC Ball  
NC Ball  
C12  
LC4128ZE  
LC4256ZE  
Ball  
Bank  
Number  
Number  
GLB/MC/Pad  
GLB/MC/Pad  
J12  
J11  
H10  
H12  
G11  
H11  
G12  
G10*  
G9  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
-
NC Ball  
L14  
NC Ball  
L12  
F8  
L10  
F9  
L8  
C13  
F10  
L6  
C14  
F12  
L4  
C15  
F13  
L2  
I
F14  
L0  
VCCO (Bank 1)  
D15  
VCCO (Bank 1)  
VCCO (Bank 1)  
F12  
F11  
E11  
E12  
D10  
F10  
D12  
F8  
G14  
M0  
D14  
G13  
M2  
D13  
G12  
M4  
D12  
G10  
M6  
NC Ball  
NC Ball  
NC Ball  
GND (Bank 1)  
D11  
G9  
M8  
G8  
M10  
NC Ball  
M12  
GND (Bank 1)  
GND (Bank 1)  
E10  
D11  
E9  
G6  
N2  
D10  
G5  
N4  
D9  
G4  
N6  
C12  
C11*  
B12  
F9  
D8  
G2  
N8  
I
G1  
N10  
NC Ball  
NC Ball  
TDO  
G0  
N12  
VCCO (Bank 1)  
VCCO (Bank 1)  
B11  
E8  
TDO  
TDO  
-
VCC  
VCC  
VCC  
F7  
-
GND  
GND  
GND  
A12  
C10  
B10  
A11*  
D9  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
NC Ball  
NC Ball  
NC Ball  
I
NC Ball  
O14  
NC Ball  
O12  
H14  
O10  
H13  
O8  
D7  
H12  
O6  
B9  
D6  
H10  
O4  
C9  
D5  
H9  
O2  
A10  
E7  
D4  
H8  
O0  
GND (Bank 1)  
VCCO (Bank 1)  
NC Ball  
NC Ball  
D3  
GND (Bank 1)  
GND (Bank 1)  
D8  
VCCO (Bank 1)  
VCCO (Bank 1)  
A9  
H6  
H5  
H4  
H2  
P12  
P10  
P8  
B8  
C8  
A8  
D2  
P6  
45  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections:  
144 csBGA (Cont.)  
LC4064ZE  
GLB/MC/Pad  
D1  
LC4128ZE  
LC4256ZE  
Ball  
Bank  
Number  
Number  
GLB/MC/Pad  
GLB/MC/Pad  
D7  
B7  
C7  
E6  
A7  
E5  
D6  
B6  
A6  
C6  
B5  
A5  
D5  
F5  
A4  
B4  
C5  
A3  
C4  
B3  
A2  
1
1
1
0
0
-
H1  
H0/GOE1  
CLK3/I  
GND (Bank 0)  
CLK0/I  
VCC  
P4  
D0/GOE1  
CLK3/I  
NC Ball  
CLK0/I  
VCC  
P2/GOE1  
CLK3/I  
GND (Bank 0)  
CLK0/I  
VCC  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A0/GOE0  
A1  
A0/GOE0  
A1  
A2/GOE0  
A4  
A2  
A2  
A6  
A3  
A4  
A8  
NC Ball  
NC Ball  
VCCO (Bank 0)  
GND (Bank 0)  
A4  
A5  
A10  
A6  
A12  
VCCO (Bank 0)  
GND (Bank 0)  
A8  
VCCO (Bank 0)  
GND (Bank 0)  
B2  
B4  
A5  
A9  
A6  
A10  
B6  
A7  
A12  
B8  
NC Ball  
NC Ball  
NC Ball  
A13  
B10  
B12  
B14  
A14  
NC Ball  
* This pin is input only for the LC4064ZE.  
46  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
ispMACH 4128ZE and 4256ZE Logic Signal Connections: 144 TQFP  
LC4128ZE  
LC4256ZE  
Pin Number  
Bank Number  
GLB/MC/Pad  
GLB/MC/Pad  
1
2
-
GND  
GND  
-
TDI  
TDI  
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
VCCO (Bank 0)  
VCCO (Bank 0)  
4
B0  
C12  
5
B1  
C10  
6
B2  
C8  
7
B4  
C6  
8
B5  
C4  
9
B6  
C2  
10  
11  
12  
13  
14  
15  
16  
17*  
18  
19  
20*  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38*  
39  
40  
41  
42  
GND (Bank 0)  
GND (Bank 0)  
B8  
D14  
B9  
D12  
B10  
D10  
B12  
D8  
B13  
D6  
B14  
D4  
NC  
I
GND (Bank 0)  
NC  
VCCO (Bank 0)  
VCCO (Bank 0)  
NC  
I
C14  
E2  
C13  
E4  
C12  
E6  
C10  
E8  
C9  
E10  
C8  
E12  
GND (Bank 0)  
GND (Bank 0)  
C6  
F2  
C5  
F4  
C4  
F6  
C2  
C1  
F8  
F10  
C0  
F12  
VCCO (Bank 0)  
TCK  
VCCO (Bank 0)  
TCK  
VCC  
GND  
I
-
VCC  
-
GND  
NC  
0
0
0
0
0
D14  
G12  
G10  
G8  
D13  
D12  
D10  
G6  
47  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
ispMACH 4128ZE and 4256ZE Logic Signal Connections: 144 TQFP (Cont.)  
LC4128ZE  
LC4256ZE  
Pin Number  
43  
Bank Number  
GLB/MC/Pad  
GLB/MC/Pad  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
-
D9  
G4  
44  
D8  
G2  
45*  
46  
NC  
I
GND (Bank 0)  
GND (Bank 0)  
47  
VCCO (Bank 0)  
VCCO (Bank 0)  
48  
D6  
H12  
49  
D5  
H10  
50  
D4  
H8  
51  
D2  
H6  
52  
D1  
H4  
53  
D0  
H2  
54  
CLK1/I  
CLK1/I  
55  
GND (Bank 1)  
GND (Bank 1)  
56  
CLK2/I  
CLK2/I  
57  
VCC  
VCC  
58  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
-
E0  
I2  
59  
E1  
I4  
60  
E2  
I6  
61  
E4  
I8  
62  
E5  
I10  
63  
E6  
I12  
64  
VCCO (Bank 1)  
VCCO (Bank 1)  
65  
GND (Bank 1)  
GND (Bank 1)  
66  
E8  
J2  
67  
E9  
J4  
68  
E10  
J6  
69  
E12  
J8  
70  
E13  
J10  
71  
E14  
J12  
72*  
73  
NC  
I
GND  
GND  
74  
-
TMS  
TMS  
75  
1
1
1
1
1
1
1
1
1
1
1
VCCO (Bank 1)  
VCCO (Bank 1)  
76  
F0  
K12  
77  
F1  
K10  
78  
F2  
K8  
79  
F4  
K6  
80  
F5  
K4  
81  
F6  
K2  
GND (Bank 1)  
L14  
82  
GND (Bank 1)  
83  
F8  
F9  
84  
L12  
85  
F10  
L10  
48  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
ispMACH 4128ZE and 4256ZE Logic Signal Connections: 144 TQFP (Cont.)  
LC4128ZE  
LC4256ZE  
Pin Number  
86  
Bank Number  
GLB/MC/Pad  
GLB/MC/Pad  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
-
F12  
L8  
87  
F13  
L6  
88  
F14  
L4  
89*  
90  
NC  
I
GND (Bank 1)  
NC  
91  
VCCO (Bank 1)  
VCCO (Bank 1)  
92*  
93  
NC  
I
G14  
M2  
94  
G13  
M4  
95  
G12  
M6  
96  
G10  
M8  
97  
G9  
M10  
98  
G8  
M12  
99  
GND (Bank 1)  
GND (Bank 1)  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110*  
111  
112  
113  
114  
115  
116  
117*  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
G6  
N2  
G5  
N4  
G4  
N6  
G2  
N8  
G1  
N10  
G0  
N12  
VCCO (Bank 1)  
VCCO (Bank 1)  
TDO  
TDO  
-
VCC  
VCC  
-
GND  
GND  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
NC  
I
H14  
O12  
H13  
O10  
H12  
O8  
H10  
O6  
H9  
O4  
H8  
NC  
O2  
I
GND (Bank 1)  
VCCO (Bank 1)  
P12  
GND (Bank 1)  
VCCO (Bank 1)  
H6  
H5  
P10  
H4  
P8  
H2  
P6  
H1  
P4  
H0/GOE1  
CLK3/I  
GND (Bank 0)  
CLK0/I  
P2/GOE1  
CLK3/I  
GND (Bank 0)  
CLK0/I  
49  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
ispMACH 4128ZE and 4256ZE Logic Signal Connections: 144 TQFP (Cont.)  
LC4128ZE  
LC4256ZE  
Pin Number  
Bank Number  
GLB/MC/Pad  
GLB/MC/Pad  
129  
-
VCC  
VCC  
130  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A0/GOE0  
A2/GOE0  
131  
A1  
A4  
132  
A2  
A6  
133  
A4  
A8  
134  
A5  
A10  
135  
A6  
A12  
136  
VCCO (Bank 0)  
VCCO (Bank 0)  
137  
GND (Bank 0)  
GND (Bank 0)  
138  
A8  
A9  
B2  
B4  
B6  
B8  
B10  
B12  
I
139  
140  
A10  
A12  
A13  
A14  
NC  
141  
142  
143  
144*  
* This pin is input only for the LC4256ZE.  
50  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
Part Number Description  
LC XXXX XX – XX XX XXX X XX  
Production Status  
Device Family  
Blank = Final production device  
ES = Engineering samples  
Device Number  
4032 = 32 Macrocells  
4064 = 64 Macrocells  
4128 = 128 Macrocells  
4256 = 256 Macrocells  
Operating Temperature Range  
C = Commercial  
I = Industrial  
Power  
Pin/Ball Count  
ZE = Zero Power, Enhanced  
48 (1.0 mm thickness)  
64  
100  
144  
Speed  
4 = 4.4ns (4032ZE Only)  
4 = 4.7ns (4064ZE Only)  
5 = 5.8ns (All Devices)  
7 = 7.5ns (All Devices)  
Package  
TN = Lead-free TQFP  
MN = Lead-free csBGA  
ispMACH 4000ZE Family Speed Grade Offering  
-4  
Com  
-5  
-7  
Com  
Ind  
Com  
Ind  
ispMACH 4032ZE  
ispMACH 4064ZE  
ispMACH 4128ZE  
ispMACH 4256ZE  
Ordering Information  
Note: ispMACH 4000ZE devices are dual marked except for the slowest commercial speed grade. For example, the  
commercial speed grade LC4128ZE-5TN100C is also marked with the industrial grade -7I. The commercial grade  
is always one speed grade faster than the associated dual mark industrial grade. The slowest commercial speed  
grade devices are marked as commercial grade only. The markings appear as follows:  
Figure 18. Mark Format for 100 TQFP and 144 TQFP Packages  
ispMACH  
ispMACH  
LC4128ZE  
5TN100C-7I  
LC4128ZE  
7TN100C  
Datecode  
Datecode  
Dual Mark  
Single Mark  
Figure 19. Mark Format for 48 TQFP, 64 csBGA and 144 csBGA Packages  
ispMACH  
ispMACH  
LC4032ZE  
5MN-7I  
LC4032ZE  
7MN  
Datecode  
Datecode  
Dual Mark  
Single Mark  
51  
Lattice Semiconductor  
Lead-Free Packaging  
ispMACH 4000ZE Family Data Sheet  
Commercial Devices  
Pin/Ball  
Device  
Part Number  
LC4032ZE-4TN48C  
LC4032ZE-5TN48C  
LC4032ZE-7TN48C  
LC4032ZE-4MN64C  
LC4032ZE-5MN64C  
LC4032ZE-7MN64C  
LC4064ZE-4TN48C  
LC4064ZE-5TN48C  
LC4064ZE-7TN48C  
LC4064ZE-4TN100C  
LC4064ZE-5TN100C  
LC4064ZE-7TN100C  
LC4064ZE-4MN64C  
LC4064ZE-5MN64C  
LC4064ZE-7MN64C  
LC4064ZE-4MN144C  
LC4064ZE-5MN144C  
LC4064ZE-7MN144C  
LC4128ZE-5TN100C  
LC4128ZE-7TN100C  
LC4128ZE-5TN144C  
LC4128ZE-7TN144C  
LC4128ZE-5MN144C  
LC4128ZE-7MN144C  
LC4256ZE-5TN100C  
LC4256ZE-7TN100C  
LC4256ZE-5TN144C  
LC4256ZE-7TN144C  
LC4256ZE-5MN144C  
LC4256ZE-7MN144C  
Macrocells Voltage  
t
Package  
Count  
I/O  
32  
32  
32  
32  
32  
32  
32  
32  
32  
64  
64  
64  
48  
48  
48  
64  
64  
64  
64  
64  
96  
96  
96  
96  
64  
64  
96  
96  
108  
108  
Grade  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
PD  
32  
32  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
4.4 Lead-Free TQFP  
5.8 Lead-Free TQFP  
7.5 Lead-Free TQFP  
4.4 Lead-Free csBGA  
5.8 Lead-Free csBGA  
7.5 Lead-Free csBGA  
4.7 Lead-Free TQFP  
5.8 Lead-Free TQFP  
7.5 Lead-Free TQFP  
4.7 Lead-Free TQFP  
5.8 Lead-Free TQFP  
7.5 Lead-Free TQFP  
4.7 Lead-Free csBGA  
5.8 Lead-Free csBGA  
7.5 Lead-Free csBGA  
4.7 Lead-Free csBGA  
5.8 Lead-Free csBGA  
7.5 Lead-Free csBGA  
5.8 Lead-Free TQFP  
7.5 Lead-Free TQFP  
5.8 Lead-Free TQFP  
7.5 Lead-Free TQFP  
5.8 Lead-Free csBGA  
7.5 Lead-Free csBGA  
5.8 Lead-Free TQFP  
7.5 Lead-Free TQFP  
5.8 Lead-Free TQFP  
7.5 Lead-Free TQFP  
5.8 Lead-Free csBGA  
7.5 Lead-Free csBGA  
48  
48  
32  
48  
LC4032ZE  
32  
64  
32  
64  
32  
64  
64  
48  
64  
48  
64  
48  
64  
100  
100  
100  
64  
64  
64  
LC4046ZE  
64  
64  
64  
64  
64  
64  
144  
144  
144  
100  
100  
144  
144  
144  
144  
100  
100  
144  
144  
144  
144  
64  
64  
128  
128  
128  
128  
128  
128  
256  
256  
256  
256  
256  
256  
LC4128ZE  
LC4256ZE  
52  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
Industrial  
Pin/Ball  
Device  
Part Number  
LC4032ZE-5TN48I  
LC4032ZE-7TN48I  
LC4032ZE-5MN64I  
LC4032ZE-7MN64I  
LC4064ZE-5TN48I  
LC4064ZE-7TN48I  
LC4064ZE-5TN100I  
LC4064ZE-7TN100I  
LC4064ZE-5MN64I  
LC4064ZE-7MN64I  
LC4064ZE-5MN144I  
LC4064ZE-7MN144I  
LC4128ZE-7TN100I  
Macrocells Voltage  
t
Package  
Count  
I/O  
32  
32  
32  
32  
32  
32  
64  
64  
48  
48  
64  
64  
64  
96  
96  
64  
96  
108  
Grade  
PD  
32  
32  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
5.8 Lead-Free TQFP  
7.5 Lead-Free TQFP  
5.8 Lead-Free csBGA  
7.5 Lead-Free csBGA  
5.8 Lead-Free TQFP  
7.5 Lead-Free TQFP  
5.8 Lead-Free TQFP  
7.5 Lead-Free TQFP  
5.8 Lead-Free csBGA  
7.5 Lead-Free csBGA  
5.8 Lead-Free csBGA  
7.5 Lead-Free csBGA  
7.5 Lead-Free TQFP  
7.5 Lead-Free TQFP  
7.5 Lead-Free csBGA  
7.5 Lead-Free TQFP  
7.5 Lead-Free TQFP  
7.5 Lead-Free csBGA  
48  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
48  
LC4032ZE  
32  
64  
32  
64  
64  
48  
64  
48  
64  
100  
100  
64  
64  
LC4064ZE  
64  
64  
64  
64  
144  
144  
100  
144  
144  
100  
144  
144  
64  
128  
128  
128  
256  
256  
256  
LC4128ZE LC4128ZE-7TN144I  
LC4128ZE-7MN144I  
LC4256ZE-7TN100I  
LC4256ZE LC4256ZE-7TN144I  
LC4256ZE-7MN144I  
For Further Information  
In addition to this data sheet, the following technical notes may be helpful when designing with the ispMACH  
4000ZE family:  
• TN1168 ispMACH 4000ZE Timing Model Design and Usage Guidelines  
• TN1174 Advanced Features of the ispMACH 4000ZE  
• TN1175 Power Estimation and Management for ispMACH 4000ZE Devices  
Technical Support Assistance  
Hotline: 1-800-LATTICE (North America)  
+1-503-268-8001 (Outside North America)  
e-mail: techsupport@latticesemi.com  
Internet: www.latticesemi.com  
53  
Lattice Semiconductor  
ispMACH 4000ZE Family Data Sheet  
Revision History  
Date  
Version  
01.0  
Change Summary  
April 2008  
July 2008  
Initial release.  
01.1  
Updated Features bullets.  
Updated typical Hysteresis voltage.  
Updated Power Guard for Dedicated Inputs section.  
Updated DC Electrical Characteristics table.  
Updated Supply Current table.  
Updated I/O DC Electrical Characteristics table and note 2.  
Updated ispMACH 4000ZE Timing Model.  
Added new parameters for the Internal Oscillator.  
Updated ORP Reference table.  
Updated Power Supply and NC Connections table.  
Updated 100 TQFP Logic Signal Connections table with LC4128ZE and 4256ZE.  
Updated 144 csBGA Logic Signal Connections table with LC4128ZE and 4256ZE.  
Added 144 TQFP Logic Signal Connections table.  
Data sheet status changed from advance to final.  
Updated Supply Current table.  
August 2008  
01.2  
Updated External Switching Characteristics.  
Updated Internal Timing Parameters.  
Updated Power Consumption graph and Power Estimation Coefficients table.  
Updated Ordering Information mark format example.  
54  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY