LX128BIFN10032 [LATTICE]

High Performance Interfacing and Switching; 高性能接口和开关
LX128BIFN10032
型号: LX128BIFN10032
厂家: LATTICE SEMICONDUCTOR    LATTICE SEMICONDUCTOR
描述:

High Performance Interfacing and Switching
高性能接口和开关

开关
文件: 总72页 (文件大小:531K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ispGDX2 Family  
High Performance Interfacing and Switching  
September 2005  
Data Sheet  
Two Options Available  
Features  
• High-performance sysHSI (standard part number)  
• Low-cost, no sysHSI (“E-Series”)  
High Performance Bus Switching  
• High bandwidth  
sysHSI Blocks Provide up to 16 High-speed  
Channels  
– Up to 12.8 Gbps (SERDES)  
– Up to 38 Gbps (without SERDES)  
• Up to 16 (15x10) FIFOs for data buffering  
• High speed performance  
• Serializer/de-serializer (SERDES) included  
• Clock Data Recovery (CDR) built in  
• 800 Mbps per channel  
LVDS differential support  
• 10B/12B support  
– f  
= 360MHz  
MAX  
– t = 3.0ns  
PD  
– t = 2.9ns  
CO  
– Encoding / decoding  
– Bit alignment  
– Symbol alignment  
– t = 2.0ns  
S
• Built-in programmable control logic capability  
• I/O intensive: 64 to 256 I/Os  
• Expanded MUX capability up to 188:1 MUX  
• 8B/10B support  
– Bit alignment  
– Symbol alignment  
• Source Synchronous support  
sysCLOCK™ PLL  
• Frequency synthesis and skew management  
• Clock multiply and divide capability  
• Clock shifting up to +/-2.35ns in 335ps steps  
• Up to four PLLs  
Flexible Programming and Testing  
• IEEE 1532 compliant In-System Programmabil-  
ity (ISP™)  
sysIO™ Interfacing  
• Boundary scan test through IEEE 1149.1  
interface  
• 3.3V, 2.5V or 1.8V power supplies  
• 5V tolerant I/O for LVCMOS 3.3 and LVTTL  
interfaces  
LVCMOS 1.8, 2.5, 3.3 and LVTTL support for  
standard board interfaces  
• SSTL 2/3 Class I and II support  
• HSTL Class I, III and IV support  
• GTL+, PCI-X for bus interfaces  
LVPECL, LVDS and Bus LVDS differential support  
• Hot socketing  
• Programmable drive strength  
Table 1. ispGDX2 Family Selection Guide  
ispGDX2-64/E  
ispGDX2-128/E  
ispGDX2-256/E  
I/Os  
64  
128  
256  
16  
GDX Blocks  
4
3.0ns  
8
3.2ns  
t
t
t
f
3.5ns  
PD  
S
2.0ns  
2.0ns  
2.0ns  
2.9ns  
3.1ns  
3.2ns  
CO  
MAX  
(Toggle)  
360MHz  
3.2Gbps  
11Gbps  
4
330MHz  
6.4Gbps  
21Gbps  
8
300MHz  
12.8Gbps  
38Gbps  
16  
SERDES1, 2  
Without SERDES3  
Max Bandwidth  
sysHSI Channels2  
LVDS/Bus LVDS (Pairs)  
PLLs  
32  
64  
128  
2
2
4
Package  
100-ball fpBGA  
208-ball fpBGA  
484-ball fpBGA  
1. Max number of SERDES channels per device * 800Mbps  
2. “E-Series” does not support sysHSI.  
3. f  
(Toggle) * maximum I/Os divided by 2.  
MAX  
© 2005 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand  
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
www.latticesemi.com  
1
gdx2fam_13  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Figure 1. ispGDX2 Block Diagram (256-I/O Device)  
sysIO Bank  
sysIO Bank  
sysHSI  
Block  
sysHSI  
Block  
SERDES  
FIFO  
SERDES  
FIFO  
SERDES  
SERDES  
FIFO  
sysCLOCK  
PLL  
sysCLOCK  
PLL  
FIFO  
GDX Block  
GDX Block  
GDX Block  
GDX Block  
Global Routing Pool  
(GRP)  
GDX Block  
FIFO  
GDX Block  
GDX Block  
FIFO  
GDX Block  
FIFO  
FIFO  
sysCLOCK  
PLL  
sysCLOCK  
PLL  
sysHSI  
Block  
sysHSI  
Block  
SERDES  
SERDES  
SERDES  
SERDES  
ISP & Boundary Scan  
Test Port  
sysIO Bank  
sysIO Bank  
Introduction  
The ispGDX2™ family is Lattice’s second generation in-system programmable generic digital crosspoint switch for  
high speed bus switching and interface applications.  
The ispGDX2 family is available in two options. The standard device supports sysHSI capability for ultra fast serial  
communications while the lower-cost “E-series” supports the same high-performance FPGA fabric without the  
sysHSI Block.  
This family of switches combines a flexible switching architecture with advanced sysIO interfaces including high  
performance sysHSI Blocks, and sysCLOCK PLLs to meet the needs of the today’s high-speed systems. Through  
a muliplexer-intensive architecture, the ispGDX2 facilitates a variety of common switching functions.  
The availability of on-chip control logic further enhances the power of these devices. A high-performance solution,  
the family supports bandwidth up to 38Gbps.  
Every device in the family has a number of PLLs to provide the system designer with the ability to generate multiple  
clocks and manage clock skews in their systems.  
2
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
The sysIO interfaces provide system-level performance and integration. These I/Os support various modes of  
LVCMOS/LVTTL and support popular high-speed standard interfaces such as GTL+, PCI-X, HSTL, SSTL, LVDS  
and Bus-LVDS. The sysHSI Blocks further extend this capability by providing high speed serial data transfer capa-  
bility.  
Devices in the family can operate at 3.3V, 2.5V or 1.8V core voltages and can be programmed in-system via an  
IEEE 1149.1 interface that is compliant with the IEEE 1532 standard. Voltages required for the I/O buffers are inde-  
pendent of the core voltage supply. This further enhances the flexibility of this family in system designs.  
Typical applications for the ispGDX2 include multi-port multi-processor interfaces, wide data and address bus mul-  
tiplexing, programmable control signal routing and programmable bus interfaces. Table 1 shows the members of  
the ispGDX2 family and their key features.  
Architecture  
The ispGDX2 devices consist of GDX Blocks interconnected by a Global Routing Pool (GRP). Signals interface  
with the external system via sysIO banks. In addition, each GDX Block is associated with a FIFO and a sysHSI  
Block to facilitate the transfer of data on- and off-chip. Figure 1 shows the ispGDX2 block diagram. Each GDX  
Block can be individually configured in one of four modes:  
• Basic (No FIFO or SERDES)  
• FIFO Only  
• SERDES Only  
• SERDES and FIFO  
Each sysIO bank has its own I/O power supply and reference voltage. Designers can use any output standard  
within a bank that is compatible with the power supply. Any input standard may be used, providing it is compatible  
with the reference voltage. The banks are independent.  
Global Routing Pool (GRP)  
The ispGDX2 architecture is organized into GDX Blocks, which are connected via a Global Routing Pool. The inno-  
vative GRP is optimized for routability, exibility and speed. All the signals enter via the GDX Block. The block sup-  
plies these either directly or in registered form to the GRP. The GRP routes the signals to different blocks, and  
provides separate data and control routing.The data path is optimized to achieve faster speed and routing flexibility  
for nibble oriented signals. The control routing is optimized to provide high-speed bit oriented routing of control sig-  
nals.  
There are some restrictions on the allocation of pins for optimal bus routing. These restrictions are considered by  
the software in the allocation of pins.  
GDX Block  
The blocks are organized in a “block” (nibble) manner, with each GDX Block providing data flow and control logic  
for 16 I/O buffers. The data flow is organized as four nibbles, each nibble containing four Multiplexer Register  
Blocks (MRBs). Data for the MRBs is provided from 64 lines from the GRP. Figure 2 illustrates the groups of signals  
going into and out of a GDX Block.  
Control signals for the MRBs are provided from the Control Array. The Control Array receives the 32 signals from  
the GRP and generates 16 control signals: eight MUX Select, four Clock/Clock Enable, two Set/Reset and two Out-  
put Enable. Each nibble is controlled via two MUX select signals. The remaining control signals go to all the MRBs.  
Besides the control signals from the Control Array, the following global signals are available to the MRBs in each  
GDX Block: four Clock/Clock Enable, one reset/preset, one power-on reset, two of four MUX select (two of two in  
64 I/O), four Output Enable (two in 64 I/O) and Test Out Enable (TOE).  
3
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
MUX and Register Block (MRB)  
Every MRB Block has a 4:1 MUX (I/O MUX) and a set of three registers which are connected to the I/O buffers,  
FIFO and sysHSI Blocks. Multiple MRBs can be combined to form large multiplexers as described below. Figure 3  
shows the structure of the MRB.  
Each of the three registers in the MRB can be configured as edge-triggered D-type flip-flop or as a level sensitive  
latch. One register operates on the input data, the other output data and the last register synchronizes the output  
enable function. The input and output data signals can bypass each of their registers. The polarity of the data out  
and output enable signals can be selected.  
The Output and OE register share the same clock and clock enable signals.The Input register has a separate clock  
and clock enable.The initialization signals of each register can be independently configured as Set or Reset.These  
registers have programmable polarity control for Clock, Clock Enable and Set/Reset. The output enable register  
input can be set either by one of the two output enables generated locally from the Control Array or from one of the  
four (two in 64 I/O) Global OE enable pins. In addition to the local clock and clock enable signals, each MRB has  
access to Global Clock, Clock Enable, Reset and TOE nets.  
4
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Figure 2. GDX Block  
GRP  
GDX Block  
sysIO Bank  
MUX  
Select  
32 bits  
4 bits  
4 bits  
Control Array  
Control  
8
Nibble 0  
8
OE  
IN  
MUX and Register  
Block (MRB)  
0
8
2
OUT  
8
OE  
IN  
MUX and Register  
Block (MRB)  
1
2
OUT  
8
OE  
IN  
MUX and Register  
Block (MRB)  
2
2
4 bits  
OUT  
8
OE  
IN  
MUX and Register  
Block (MRB)  
3
2
4 bits  
OUT  
8
OE  
IN  
2
Nibble 1  
MRBs 4-7  
16 bits  
OUT  
4
8
OE  
IN  
2
Nibble 2  
MRBs 8-11  
16 bits  
OUT  
4
8
OE  
IN  
2
Nibble 3  
MRBs 12-15  
16 bits  
OUT  
4
The output register of the MRB has a built-in bi-directional shift register capability. Each output register correspond-  
ing to MRB “n”, receives data output from its two adjacent MRBs, MRB (n-1) and MRB (n+1), to provide shift regis-  
ter capability. Like the output register, each input register of the MRB has built-in shift register capability. Each input  
register can receive data from its two adjacent MRB input registers, to provide bi-directional shift register capability.  
The chaining crosses GDX Block boundaries. The chain of input registers and the chain of output registers can be  
combined as one shift register via the GRP.  
5
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
The four data inputs to the 4:1 MUX come from the GRP. The output of this MUX connects to the output register. A  
fast feedback path from the MUX to the GRP allows wider MUXes to be built. Table 2 summarizes the various MUX  
sizes and delay levels.  
Table 2. MUX Size Versus Internal Delay  
MUX Sizes  
Levels of Internal GRP Delays  
One Level  
4:1  
Up to 16:1  
Up to 64:1  
Two Levels  
Three Levels  
Up to 188:1 (with ispGDX2-256)  
Four Levels  
Figure 3. ispGDX2 Family MRB  
Global  
Signals  
GDX  
Control Array  
MUX Select  
Control Array Signals  
2-4  
4
2
2
4
D/L  
ClK  
Q
OE  
MUX  
Select  
Global  
Signals  
OE  
CK  
Reg/Latch  
TOE  
CE  
CE  
Set  
Reset  
Flags*  
(FIFO, SERDES  
or PLL)  
V
CC  
from  
Out_Reg(n-1)  
D/L  
From GRP  
Q
to Out_Reg(n-1)  
to Out_Reg(n+1)  
from  
Out_Reg(n+1)  
ClK  
Out  
Reg/Latch  
CE  
Set  
Reset  
V
CC  
S/R  
Global Resetb  
To GRP  
Delay  
FIFO Out*  
to IN_Reg(n-1)  
to IN_Reg(n+1)  
from IN_Reg(n-1)  
from IN_Reg(n+1)  
D/L  
Q
CK  
ClK  
Input  
Reg/Latch  
CE  
CE  
Set  
Reset  
S/R  
Global Resetb  
*Selected MRBs see Logic Signal Connection Table for details  
Control Array  
The control array generates control signals for the 16 MRBs within a GDX Block. The true and complement forms  
of 32 inputs from the GRP are available in the control array. The 20 NAND terms can use any or all of these inputs  
to form the control array outputs. Two AND terms are combined with a NOR term to form Set/Reset and OE sig-  
nals. Figure 4 illustrates the control array.  
6
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Figure 4. ispGDX2 Family Control Array  
32 Inputs from Control GRP  
Each connection  
is programmable.  
MUX Select  
to Nibble 0  
MUX Select  
to Nibble 1  
MUX Select  
to Nibble 2  
MUX Select  
to Nibble 3  
To MRB Clock/  
Clock Enable  
On selected blocks,  
this signal can reset  
the M Divider of the  
PLL.  
To MRB  
Set/Reset  
To MRB  
Output Enable  
sysIO Banks  
The inputs and outputs of ispGDX2 devices are divided into eight sysIO banks, where each bank is capable of sup-  
porting different I/O standards. The number of I/Os per bank is 32, 16 and 8 for the 256-, 128- and 64-I/O devices  
respectively. Each sysIO bank has its own I/O supply voltage (V  
) and reference voltage (V  
), allowing each  
CCO  
REF  
bank complete independence from the other banks. Each I/O within a bank can be individually configured to any  
standard consistent with the V and V settings. Figure 5 shows the I/O banks for the ispGDX2-256 device.  
CCO  
REF  
The I/O of the ispGDX2 devices contain a programmable strength and slew rate tri-state output buffer, a program-  
mable input buffer, a programmable pull-up resistor, a programmable pull-down resistor and a programmable bus-  
keeper latch. These programmable capabilities allow the support of a wide range of I/O standards.  
7
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Figure 5. ispGDX2-256 sysIO Banks  
sysIO Bank 4  
sysIO Bank 5  
sysIO Bank 3  
sysIO Bank 2  
VCCO5  
VCCO2  
VREF2  
GND  
VREF5  
GND  
VCCO6  
VREF6  
GND  
VCCO1  
VREF1  
GND  
sysIO Bank 6  
sysIO Bank 7  
sysIO Bank 1  
sysIO Bank 0  
There are three classes of I/O interface standards implemented in the ispGDX2 devices. The first is the non-termi-  
nated, single-ended interface; it includes the 3.3V LVTTL standard along with the 1.8V, 2.5V and 3.3V LVCMOS  
interface standards. The slew rate and strength of these output buffers can be controlled individually. Additionally,  
PCI 3.3, PCI-X and AGP-1X are all subsets of this interface type. The second interface class implemented is the  
terminated, single-ended interface standard. This group of interfaces includes different versions of SSTL and HSTL  
interfaces along with CTT and GTL+. Use of these I/O interfaces requires an additional V  
signal. At the system  
REF  
level, a termination voltage, V , is also required. Typically, an output will be terminated to V at the receiving end  
TT  
TT  
of the transmission line it is driving. The final types of interfaces implemented are the differential standards  
LVPECL, LVDS and Bus LVDS. Table 3 shows the I/O standards supported by the ispGDX2 devices along with  
nominal V  
, V  
and V .  
CCO REF TT  
The ispGDX2 family also features 5V tolerant I/O. I/O banks with V  
= 3.3V may have inputs driven to a maxi-  
CCO  
mum of 5.5V for easy interfacing with legacy systems. Up to 64 I/O pins per device may be driven by 5V inputs.  
8
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Table 3. ispGDX2 Supported I/O Standards  
sysIO Standard  
LVCMOS 3.3  
Nominal V  
3.3V  
2.5V  
1.8V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
2.5V  
3.3V  
2.5V  
1.5V  
1.5V  
1.5V  
Nominal V  
Nominal V  
CCO  
REF  
TT  
LVCMOS 2.5  
LVCMOS 1.8  
LVTTL  
PCI 3.3  
PCI -X  
AGP-1X  
SSTL3 class I & II  
SSTL2 class I & II  
CTT 3.3  
1.5V  
1.25V  
1.5V  
1.25V  
0.75V  
0.9V  
0.9V  
1.0V  
1.5V  
1.25V  
1.5V  
1.25V  
0.75V  
0.75V  
1.5V  
1.5V  
CTT 2.5  
HSTL class I  
HSTL class III  
HSTL class IV  
GTL+  
1.8/2.5/3.3V  
3.3V  
LVPECL1, 2, 3  
LVDS  
2.5/3.3V  
2.5/3.3V  
Bus-LVDS  
1. LVPECL drivers require three resistor pack (see Figure 17).  
2. Depending on the driving LVPECL output specification, GDX2 LVPECL input driver may require terminating resistors.  
3. For additional information on LVPECL refer to Lattice technical note number TN1000, sysIO Design and Usage Guidelines.  
The dedicated inputs support a subset of the sysIO standards indicated in Table 4. These inputs are associated  
with a bank consistent with their location.  
Table 4. I/O Standards Supported by Dedicated Inputs  
LVCMOS  
Yes  
LVDS  
No  
All other ASIC I/Os  
Global OE Pins  
Global MUX Select Pins  
Resetb  
Yes2  
Yes2  
Yes2  
Yes2  
No  
Yes  
No  
Yes  
No  
Global Clock/Clock Enables  
ispJTAG™ Port  
TOE  
Yes  
Yes1  
Yes  
No  
Yes  
No  
No  
1. LVCMOS as defined by the V  
2. No PCI clamp.  
pin voltage.  
CCJ  
For more information on the sysIO capability, please refer to Lattice technical note number TN1000, sysIO Design  
and Usage Guidelines.  
sysCLOCK PLL  
The sysCLOCK PLL circuitry consists of Phase-Lock Loops (PLLs) along the various dividers and reset and feed-  
back signals associated with the PLLs. This feature gives the user the ability to synthesize clock frequencies and  
generate multiple clock signals for routing within the device. Furthermore, it can generate clock signals that are  
deskewed either at the board level or the device level. Figure 6 shows the ispGDX2 PLL block diagram.  
Each PLL has a set of PLL_RST, PLL_FBK and PLL_LOCK signals. In order to facilitate the multiply and divide  
capabilities of the PLL, each PLL has associated dividers.The M divider is used to divide the clock signal, while the  
9
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
N divider is used to multiply the clock signal. The K divider is used to provide a divided clock frequency of the adja-  
cent PLL. This output can be routed to the global clock net. The V divider is used to provide lower frequency output  
clocks, while maintaining a stable, high frequency output from the PLLs VCO circuit. The PLL also has a delay fea-  
ture that allows the output clock to be advanced or delayed to improve set-up and clock-to-out times for better per-  
formance. For more information on the PLL, please refer to Lattice technical note number TN1003, sysCLOCK PLL  
Design and Usage Guidelines.  
Figure 6. sysCLOCK PLL  
PLL_LOCK  
CLK_OUT  
CLK_IN  
Input Clock  
Programmable  
(M) Divider  
+Delay  
Post-scalar  
(V) Divider  
1 to 32  
--------------------  
PLL (n)  
Clock Net  
1, 2, 4, 8,  
16, 32  
Programmable  
-Delay  
PLL_RST  
Clock (K)  
Divider  
2, 4, 8,  
16, 32  
To Adjacent_PLL  
From  
Adjacent_PLL  
Feedback  
Divider (N)  
X 1 to 32  
PLL_FBK  
There are four global clock networks routed to each MRB block. These global clocks, CLK0-3, can either be gener-  
ated by the PLL circuits or supplied externally. External clock pins can be configured as single-ended or differential  
(LVDS) input. Figure 7 illustrates how the sysCLOCK PLL inputs and outputs can be routed to the I/O pins or gen-  
eral routing. Figure 10 shows the clock network for the ispGDX2-256 and Figure 8 shows the clock networks for  
ispGDX2-128 and ispGDX2-64. The Reset (0) pin from the Control Array of selected GDX Blocks can be pro-  
grammed to reset the M Divider of the PLLs. This provides a means for generating the reset signal internally.  
Table 5 details which GDX Block provides reset to the PLLs.  
Table 5. Internal Reset Input of the PLL (M Divider)  
PLL0  
PLL1  
PLL2  
PLL3  
ispGDX2-256  
ispGDX2-128  
ispGDX2-64  
GDX Block 5A  
GDX Block 2A  
GDX Block 0A  
GDX Block 7B  
GDX Block 1A  
GDX Block 0A  
GDX Block 1B  
GDX Block 3B  
10  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Figure 7. I/O Pin Connection to the sysCLOCK PLL1  
PLL_LOCK  
CLK_OUT  
Output  
Reg/  
Latch  
Input Clock  
(M) Divider  
÷ 1 to 32  
Programmable  
+ Delay  
GCLK_IN  
Post-scalar  
(V) Divider  
÷
--------------------  
PLL (n)  
Clock Net  
1, 2, 4, 8,  
16, 32  
Programmable  
- Delay  
Clock  
(K) Divider  
÷
2, 4, 8,  
16, 32  
To Adjacent_PLL  
Delay  
Input  
Reg/  
Latch  
From Adjacent_PLL  
Feedback  
Divider (N)  
x 1 to 32  
GRP  
GDX Block  
PLL_FBK  
PLL_RST  
Resetb (0)  
Control Array  
(from selected blocks)  
GCLK_IN  
1. Some pins are shared. See Logic Signal Connections Table for details.  
11  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Figure 8. ispGDX2-64 CLOCK Network  
Clock Net  
MRB  
sysIO Interface  
sysCLOCK  
CLK0  
K(0)  
PLL  
(0)  
Reg/  
GCLK/CE0  
+
Clock Net  
Latch  
VREF0  
-
CLK_OUT0  
Reg/  
Clock Net  
Latch  
GCLK/CE1  
+
-
VREF1  
CLK_OUT2  
CLK2  
K(2)  
PLL  
(2)  
Reg/  
GCLK/CE2  
+
Clock Net  
Latch  
VREF2  
-
Reg/  
Clock Net  
Latch  
GCLK/CE3  
+
-
VREF3  
Figure 9. ispGDX2-128 CLOCK Network  
Clock Net  
MRB  
sysIO Interface  
sysCLOCK  
CLK0  
K(0)  
PLL  
(0)  
Reg/  
GCLK/CE0  
+
Clock Net  
Latch  
VREF0  
-
CLK_OUT0  
Reg/  
Clock Net  
Latch  
GCLK/CE1  
+
-
VREF1  
CLK_OUT2  
CLK2  
K(2)  
PLL  
(2)  
Reg/  
GCLK/CE2  
+
Clock Net  
Latch  
-
VREF2  
Reg/  
Clock Net  
Latch  
GCLK/CE3  
+
-
VREF3  
12  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Figure 10. ispGDX2-256 CLOCK Network  
MRB  
sysIO Interface  
sysCLOCK  
Clock Net  
CLK0  
K(0)  
PLL  
(0)  
Reg/  
GCLK/CE0  
+
Clock Net  
Latch  
VREF0  
-
CLK_OUT0  
CLK1  
CLK2  
CLK3  
K(1)  
PLL  
(1)  
Reg/  
GCLK/CE1  
+
Clock Net  
Latch  
-
VREF1  
CLK_OUT1  
K(2)  
PLL  
(2)  
Reg/  
Latch  
GCLK/CE2  
+
Clock Net  
VREF2  
-
CLK_OUT2  
K(3)  
PLL  
(3)  
Reg/  
Latch  
GCLK/CE3  
+
Clock Net  
-
VREF3  
CLK_OUT3  
13  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Operating Modes  
All the GDX Blocks in the ispGDX2 family can be programmed in four modes: Basic, FIFO only, SERDES only, and  
FIFO with SERDES mode. In basic mode, the SERDES and FIFO are disabled and the MUX output of the MRB  
connects to the output register. Inputs are connected to the GRP via the MRB.  
Figure 11 shows the four different operating modes. Precise detail of the FIFO and SERDES connections is pro-  
vided in their respective sections.  
Figure 11. Four Operating Modes of ispGDX2 Devices  
Basic  
Mode  
FIFO  
sysIO  
Bank  
GDX  
Block  
GRP  
GRP  
GRP  
SERDES  
SERDES  
SERDES  
FIFO  
Mode  
FIFO  
sysIO  
Bank  
GDX  
Block  
SERDES  
Mode  
(FIFO in  
Flow-through  
Mode)  
FIFO*  
sysIO  
Bank  
GDX  
Block  
SERDES  
and  
FIFO Mode  
FIFO  
sysIO  
Bank  
GDX  
Block  
GRP  
SERDES  
*FIFO held in RESET for SERDES-only mode.  
FIFO Operations  
Each GDX Block is associated with a 10-bit wide and 15-word deep (10x15) RAM. This RAM, combined with two  
address counters and two comparators, is used to implement a FIFO as a “circular queue”. The FIFO has separate  
clocks, the Read Clock (RCLK) and Write Clock (WCLK), for asynchronous operation. The FIFO has three addi-  
tional control signals Write Enable, Read Enable and FIFO Reset. Three flags show the status of the FIFO: Empty,  
Full and Start Read. Each FIFO receives the global Power-on Reset and Reset signals. Figure 12 shows the con-  
nections to the FIFO.  
14  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Figure 12. ispGDX2 FIFO Signals  
10  
10  
Data Out (DOUT)  
Data In (DIN)  
Write Clock (WCLK)  
Write Enable (WE)  
Read Clock (RCLK)  
Read Enable (RE)  
FIFO  
10x15  
Full (FULL)  
Empty (EMPTY)  
Start Read (STRDb)  
Global Reset (RESETb)  
Power-on Reset (PORb)  
FIFO Reset (FIFORSTb)  
Read Clock and Read Enable are the same as the Clock and Clock Enable signals of the input registers of the  
associated MRB.These registers are used to register the FIFO outputs, and in modes that utilize the FIFO are con-  
figured to use the same clock and clock enable signals. The Write Clock is selected from one of the GCLK/CE sig-  
nals or the RECCLK (Recovered Clock) signal from the associated SERDES. The Write Enable is selected from  
one of the local MRB product term CLK/CE signals. All FIFO operations occur on the rising edge of the clock  
although clock polarity of these signals can be programmed.  
The flags from the FIFO, FULL, EMPTY and STRDb (Start Read) are each fed via a MUX in the MRB to an I/O  
buffer. The STRDb (half full) signal is used in conjunction with SERDES. STRDb is an active low signal, the signal  
is inactive (high) on FIFO RESET. After the FIFO reset when the FIFO contains data in five memory locations, at  
the following write clock transition the STRDb becomes active (low). Note, if the Read Clocks arrive before writing  
the sixth location, it may take longer than five write clocks before the STRDb becomes active. When the FIFO has  
data in the first six locations, at the next write clock transition the STRDb becomes inactive (high). Again, if the  
Read Clocks arrive before writing the seventh location, the STRDb may stay active for longer than one write clock  
period, even if the FIFO contains data in less than five locations. After this event, the STRDb stays inactive until the  
FIFO is RESET again. STRDb does not become active again even if less than six memory locations are occupied  
in the FIFO. It is the user’s responsibility to monitor the FULL and EMPTY signals to avoid data underflow/overflow  
and to take appropriate actions.  
Figure 13 shows how the FIFO is connected between the I/O banks and the GDX Blocks in FIFO mode. For more  
information on the FIFO, please refer to Lattice technical note number TN1020, sysHSI Usage Guidelines.  
15  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Figure 13. Operation in FIFO Mode2  
GDX Block 1  
SERDES  
Pre-Assigned Pins  
GRP  
FIFO  
10  
Delay  
Input  
Reg/  
10  
DIN  
RXD  
Parallel  
Data  
DOUT  
Serial  
Data In  
(SIN)  
Latch  
RCLK  
RE  
TXD Serial  
Parallel Data Out  
Data (SOUT)  
10  
Output  
Reg/  
Latch  
PT-CLK/CE(0:3)  
WE  
GCLK/CE(0:3)  
RECCLK  
Input  
Reg/  
Latch  
CAL  
WCLK  
Input  
Reg/  
Latch  
SYDT  
Output  
Reg/  
Latch  
FULL  
EMPTY  
Output  
Reg/  
Latch  
CDRRSTb  
FIFORSTb  
Notes:  
POR  
RESETb  
1. For clarity, only a portion of the GDX Block is shown.  
2. Some signals share pins. See Logic Signal Connections tables for details.  
16  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
High Speed Serial Interface Block (sysHSI Block)1  
The High Speed Serial Interface (sysHSI) allows high speed serial data transfer over a pair of LVDS I/O. The  
ispGDX2 devices have multiple sysHSI Blocks.  
Each sysHSI Block has two SERDES blocks which contain two main sub-blocks, Transmitter (with a serializer) and  
Receiver (with a deserializer) including Clock/Data Recovery Circuit (CDR). Each SERDES can be used as a full  
duplex channel. The two SERDES in a given sysHSI Block share a common clock and must operate at the same  
nominal frequency. Figure 14 shows the sysHSI Block.  
Device features support two data coding modes: 10B/12B and 8B/10B (for use with other encoding schemes, see  
Lattice’s sysHSI application notes). The encoding and decoding of the 10B/12B standard are performed within the  
device in dedicated logic. For the 8B/10B standard, the symbol boundaries are aligned internally but the encoding  
and decoding are performed outside the device.  
Each SERDES block receives a single high speed serial data input stream (with embedded clock) from an input,  
and provide a low speed 10-bit wide data stream and a recovered clock to the device. For transmitting, the SER-  
DES converts a 10-bit wide low-speed data stream to a single high-speed data stream with embedded clock for  
output.  
Additionally, multiple sysHSI Blocks can be grouped together to form a source synchronous interface of between 1-  
8 channels.  
Figure 15 shows the connections of the SERDES block with the FIFO, sysIO block and the MRB. Table 6 provides  
the descriptions of the SERDES.  
For more information on the SERDES/CDR, refer to Lattice technical note number TN1020, sysHSI Usage Guide-  
lines.  
Table 6. SERDES Signal Descriptions  
Signal  
CDRRSTb  
SYDT  
I/O  
Description  
Resets the CDR circuit of sysHSI block  
I
O
Symbol alignment detect for sysHSI block  
Initiates source synchronous calibration sequence  
Parallel data in for sysHSI block  
CAL  
I
RXD  
Internal  
Internal  
Internal  
I
TXD  
Parallel data out for sysHSI block  
REFCLK  
SIN  
Reference clock received from the clock tree  
Serial data input for sysHSI block (LVDS input)  
Serial data output for sysHSI block (LVDS output)  
Clock input for source synchronous group  
Clock output for source synchronous group  
Recovered clock from encoded data by CDR of sysHSI block  
Lock output of the PLL associated with sysHSI block  
SOUT  
O
SS_CLKIN  
SS_CLKOUT  
RECCLK  
CSLOCK  
I
O
Internal  
Internal  
1. “E-Series” does not support sysHSI.  
17  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Figure 14. sysHSI Block with SERDES and FIFO  
sysHSI Block  
Core Logic  
SERDES  
10  
10  
SOUT  
TXD  
Serializer  
RXD  
SIN  
De-serializer  
including CDR  
FIFO  
RECCLK  
GDX  
Block  
CSLOCK  
CSLOCK  
SS_CLKOUT  
CSPLL  
SS_CLKIN  
CAL  
GRP  
Shared Source Synchronous  
pins drive multiple sysHSI  
blocks  
SERDES  
Serializer  
10  
10  
SOUT  
SIN  
TXD  
RXD  
De-serializer  
including CDR  
FIFO  
RECCLK  
GDX  
Block  
REFCLK (0:3)  
Reference clocks  
from CLK (0:3)  
Note: Some pins are shared. See Logic Signal Connections table for details  
18  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Figure 15. Operation in SERDES Only Mode1, 2  
GRP  
GDX Block  
SERDES  
Pre-Assigned Pins  
FIFO  
10  
Delay  
Input  
Reg/  
DIN  
RXD  
Parallel  
Data  
DOUT  
Serial  
Data In  
(SIN)  
Latch  
RCLK  
RE  
TXD Serial  
Parallel Data Out  
Data (SOUT)  
10  
Output  
Reg/  
Latch  
PT-CLK/CE(0:3)  
WE  
GCLK/CE(0:3)  
RECCLK  
Input  
Reg/  
Latch  
CAL  
WCLK  
Input  
Reg/  
Latch  
SYDT  
Output  
Reg/  
Latch  
FULL  
EMPTY  
Output  
Reg/  
Latch  
CDRRSTb  
FIFORSTb  
Notes:  
POR  
RESETb  
1. Some pins shared. See Logic Signal  
Connections table for details.  
2. For SERDES only mode programmable bit  
holds FIFO in reset. Input registers used for  
DOUT, and RECCLK configured as  
latches and held in pass through.  
19  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Figure 16. Operation in SERDES with FIFO Mode  
GRP  
GDX Block  
SERDES  
FIFO  
Pre-Assigned Pins  
10  
Delay  
Input  
Reg/  
DIN  
RXD  
Parallel  
Data  
DOUT  
Serial  
Data In  
(SIN)  
Latch  
RCLK  
RE  
TXD Serial  
Parallel Data Out  
Data (SOUT)  
10  
Output  
Reg/  
Latch  
PT-CLK/CE(0:3)  
WE  
GCLK/CE(0:3)  
RECCLK  
Input  
Reg/  
Latch  
CAL  
WCLK  
Input  
Reg/  
Latch  
SYDT  
Output  
Reg/  
Latch  
FULL  
EMPTY  
Output  
Reg/  
Latch  
CDRRSTb  
FIFORSTb  
POR  
RESETb  
20  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
IEEE 1149.1-Compliant Boundary Scan Testability  
All ispGDX2 devices have boundary scan cells and are compliant to the IEEE 1149.1 standard. This allows func-  
tional testing of the circuit board on which the device is mounted through a serial scan path that can access all crit-  
ical logic notes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto  
test nodes, or test node data to be captured and shifted out for verification. In addition, these devices can be linked  
into a board-level serial scan path for more board-level testing. The test access port has its own supply voltage that  
can operate with LVCMOS3.3, 2.5 and 1.8 standards.  
sysIO Quick Configuration  
To facilitate the most efficient board test, the physical nature of the I/O cells must be set before running any continu-  
ity tests. As these tests are fast, by nature, the overhead and time that is required for configuration of the I/Os'  
physical nature should be minimal so that board test time is minimized. The ispGDX2 family of devices allows this  
by offering the user the ability to quickly configure the physical nature of the sysIO cells. This quick configuration  
takes milliseconds to complete, whereas it takes seconds for the entire device to be programmed. Lattice's  
ispVM™ System programming software can either perform the quick configuration through the PC parallel port, or  
can generate the ATE or test vectors necessary for a third-party test system.  
IEEE 1532-Compliant In-System Programming  
In-system programming of devices provides a number of significant benefits including rapid prototyping, lower  
inventory levels, higher quality and the ability to make in-field modifications. All ispGDX2 devices provide In-System  
Programming (ISP) capability through their Boundary Scan Test Access Port. This capability has been imple-  
mented in a manner that ensures that the port remains compliant to the IEEE 1532 standard. By using IEEE 1532  
as the communication interface through which ISP is achieved, designers get the benefit of a standard, well defined  
interface.  
The ispGDX2 devices can be programmed across the commercial temperature and voltage range. The PC-based  
Lattice software facilitates in-system programming of ispGDX2 devices. The software takes the JEDEC file output  
produced by the design implementation software, along with information about the scan chain, and creates a set of  
vectors used to drive the scan chain. The software can use these vectors to drive a scan chain via the parallel port  
of a PC. Alternatively, the software can output files in formats understood by common automated test equipment.  
This equipment can then be used to program ispGDX2 devices during the testing of a circuit board.  
Security Scheme  
A programmable security scheme is provided on the ispGDX2 devices as a deterrent to unauthorized copying of  
the array configuration patterns. Once programmed, this scheme prevents readback of the programmed pattern by  
a device programmer, securing proprietary designs from competitors. The security scheme also prevents program-  
ming and verification. The entire device must be erased in order to reset the security scheme.  
Hot Socketing  
The ispGDX2 devices are well suited for those applications that require hot socketing capability. Hot socketing a  
device requires that the device, when powered down, can tolerate active signals on the I/Os and inputs without  
being damaged. Additionally, it requires that the effects of the powered-down device be minimal on active signals.  
21  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Absolute Maximum Ratings1, 2, 3  
ispGDX2C (1.8V)  
ispGDX2B/V (2.5/3.3V)  
Supply Voltage V  
. . . . . . . . . . . . . . . . . . . . . . . . -0.5 to 2.5V. . . . . . . . . . . . . . . . -0.5 to 5.5V  
CC  
PLL Supply Voltage V  
. . . . . . . . . . . . . . . . . . . . -0.5 to 2.5V. . . . . . . . . . . . . . . . -0.5 to 5.5V  
CCP  
Output Supply Voltage V  
. . . . . . . . . . . . . . . . . -0.5 to 4.5V. . . . . . . . . . . . . . . . -0.5 to 4.5V  
CCO  
JTAG Supply Voltage (V  
) . . . . . . . . . . . . . . . . . -0.5 to 4.5V. . . . . . . . . . . . . . . . -0.5 to 4.5V  
CCJ  
Input or I/O Tristate Voltage Applied 4, 5 . . . . . . . . . -0.5 to 5.5V. . . . . . . . . . . . . . . . -0.5 to 5.5V  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . -65 to 150°C . . . . . . . . . . . . . . . -65 to 150°C  
Junction Temp. (T ) with Power Applied . . . . . . . . -55 to 150°C . . . . . . . . . . . . . . . -55 to 150°C  
J
1. Stress above those listed under the Absolute Maximum Ratings may cause permanent damage to the device. Functional operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied (while program-  
ming, following the programming specifications).  
2. Compliance with the Lattice Thermal Management document is required.  
3. All voltages referenced to GND.  
4. Overshoot and undershoot of -2V to (V (MAX)+2) volts is permitted for a duration of <20ns.  
IH  
5. A maximum of 64 I/Os per device with V > 3.6V is allowed.  
IN  
Recommended Operating Conditions  
Symbol  
Parameter  
Supply Voltage for 1.8V Devices1  
Min.  
1.65  
2.3  
3
Max.  
1.95  
2.7  
Units  
V
V
V
V
Supply Voltage for 2.5V Devices  
V
CC  
Supply Voltage for 3.3V Devices  
3.6  
V
Supply Voltage for PLL and sysHSI Blocks, 1.8V Devices1  
Supply Voltage for PLL and sysHSI Blocks, 2.5V Devices  
Supply Voltage for PLL and sysHSI Blocks, 3.3V Devices  
Power Supply Voltage for JTAG Programming 1.8V Operation  
Power Supply Voltage for JTAG Programming 2.5V Operation  
Power Supply Voltage for JTAG Programming 3.3V Operation  
Junction Commercial Operation  
1.65  
2.3  
3
1.95  
2.7  
V
V
CCP  
CCJ  
3.6  
V
1.65  
2.3  
3
1.95  
2.7  
V
V
3.6  
V
T (COM)  
0
90  
°C  
°C  
J
T (IND)  
Junction Industrial Operation  
-40  
105  
J
1. sysHSI specification is valid for V and V  
= 1.7V to 1.9V.  
CCP  
CC  
Erase Reprogram Specifications  
Parameter  
Min  
Max  
Units  
Erase/Reprogram Cycle  
1,000  
Cycles  
Note: Valid over commercial temperature range.  
Hot Socketing Specifications1, 2, 3  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
4
I
Input or Tristated I/O Leakage Current 0 V 3.0V  
+/-50  
+/-800  
μA  
DK  
IN  
1. Insensitive to sequence of V and V  
. However, assumes monotonic rise/fall rates for V and V  
provided (V - V  
) 3.6V.  
CCO  
CC  
CCO  
CC  
CCO,  
IN  
2. LVTTL, LVCMOS only.  
3. 0 < V V (MAX), 0 < V  
V  
(MAX).  
CCO  
CC  
CC  
CCO  
4. I is additive to I , I or I . Device defaults to pull-up until fuse circuitry is active.  
DK  
PU PD  
BH  
22  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
DC Electrical Characteristics  
Over Recommended Operating Conditions  
Symbol  
Parameter  
Condition  
0 V (V - 0.2V)  
Min.  
Typ.  
Max.  
10  
Units  
μA  
IN  
CCO  
1
I , I  
Input or I/O Low Leakage  
IL IH  
(V  
- 0.2V) < V 3.6V  
30  
μA  
CCO  
IN  
3.6V < V 5.5V and  
3
IN  
I
Input High Leakage Current  
3
mA  
IH  
3.0V V  
3.6V  
CCO  
I
I
I
I
I
I
I/O Active Pull-up Current  
0 V 0.7 V  
CCO  
-30  
30  
30  
-30  
-150  
150  
μA  
μA  
μA  
μA  
μA  
μA  
V
PU  
IN  
I/O Active Pull-down Current  
V (MAX) V V (MAX)  
IL IN IH  
PD  
Bus Hold Low Sustaining Current V = V (MAX)  
BHLS  
BHHS  
BHLO  
BHLH  
IN  
IL  
Bus Hold High Sustaining Current V = 0.7 V  
IN  
CCO  
Bus Hold Low Overdrive Current 0 V V (MAX)  
150  
-150  
IN  
IH  
Bus Hold High Overdrive Current 0 V V (MAX)  
IN  
IH  
V
Bus Hold Trip Points  
I/O Capacitance2  
V
* 0.35  
V
* 0.65  
BHT  
CCO  
CCO  
V
V
V
V
V
V
= 3.3V, 2.5V, 1.8V  
CCO  
C
C
C
8
6
6
pf  
pf  
pf  
1
2
3
= 1.8V, V = 0 to V (MAX)  
CC  
IO  
IH  
= 3.3V, 2.5V, 1.8V  
CCO  
Clock Capacitance2  
= 1.8V, V = 0 to V (MAX)  
CC  
IO  
IH  
= 3.3V, 2.5V, 1.8V  
CCO  
Global Input Capacitance2  
= 1.8V, V = 0 to V (MAX)  
CC  
IO  
IH  
1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not  
measured with the output driver active. Bus maintenance circuits are disabled.  
2. T = 25°C, f = 1.0MHz.  
A
3. 5V tolerant inputs and I/Os should be placed in banks where 3.0V V  
3.6V. The JTAG ports are not included for the 5V tolerant inter-  
CCO  
face.  
Supply Current  
Over Recommended Operating Conditions (ispGDX2-256)4  
Symbol  
Description  
Power Pins  
Vcc (V)  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
Min.  
Typ.  
59.6  
58.7  
60.0  
118.7  
118.7  
117.5  
14.7  
14.7  
17.4  
35  
Max.  
Units  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
Core Logic Power Supply Current  
1,2  
I
V
CC  
CC  
GPLL/sysHSI Logic Power Supply  
Current  
GPLL/sysHSI CSPLL Power  
Supply Current  
2
I
I
I
V
CCP  
CCP  
3
Bank Power Supply Current  
JTAG Programming Current  
V
35  
CCO  
CCO  
25  
1.5  
V
1.0  
CCJ  
CCJ  
800  
1. 64-input switching frequency at 20 MHz, with one GRP fanout.  
2. One GPLL with f = 400 MHz and one sysHSI Block (two receivers and two transmitters) at 622 MHz data rate.  
VCO  
3. All 8-bank reference circuit currents, all I/Os in tristate, inputs held at valid logic levels, and bus maintenance circuits disabled.  
4. T = 25°C  
A
23  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
sysIO Recommended Operating Conditions  
V
(V)1  
V
(V)  
REF  
CCO  
Standard  
LVCMOS 3.3  
LVCMOS 2.5  
LVCMOS 1.82  
LVTTL  
Min.  
3.0  
2.3  
1.65  
3.0  
3.0  
3.0  
3.15  
2.3  
3.0  
3.0  
2.3  
1.4  
1.4  
1.4  
1.4  
3.0  
2.3  
2.3  
Typ.  
Max.  
3.6  
2.7  
1.95  
3.6  
3.6  
3.6  
3.45  
2.7  
3.6  
3.6  
2.7  
1.6  
1.6  
1.6  
3.6  
3.6  
3.6  
3.6  
Min.  
Typ.  
Max.  
3.3  
2.5  
-
-
-
-
-
-
-
1.8  
-
-
3.3  
-
-
-
PCI 3.3  
3.3  
-
-
-
PCI-X  
3.3  
-
-
-
AGP-1X  
3.3  
-
-
-
SSTL 2  
2.5  
1.15  
1.25  
1.5  
1.5  
1.5  
0.75  
0.9  
0.9  
1.0  
-
1.35  
SSTL 3  
3.3  
1.3  
1.7  
CTT 3.3  
3.3  
1.35  
1.65  
CTT 2.5  
2.5  
1.35  
1.65  
HSTL Class I  
HSTL Class III  
HSTL Class IV  
GTL+  
1.5  
0.68  
0.9  
1.5  
-
-
1.5  
-
-
-
0.882  
1.122  
LVPECL  
3.3  
-
-
-
-
-
-
LVDS  
2.5/3.3  
2.5/3.3  
-
BLVDS  
-
1. Inputs are independent of V  
2. Software default setting.  
setting. However, V  
must be set within the valid operating range for one of the supported standards.  
CCO  
CCO  
24  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
sysIO Single Ended DC Electrical Characteristics  
Over Recommended Operating Conditions  
V
V
IH  
2
2
IL  
Input/Output  
Standard  
V
V
I
I
OH  
OL  
OH  
OL  
Min (V)  
Max (V)  
Min (V)  
Max (V)  
Max (V)  
Min (V)  
(mA)  
(mA)  
20, 16, 12, -20, -16, -12,  
8, 5.33, 4 -8, -5.33, -4  
0.4  
2.4  
LVCMOS 3.3  
LVTTL  
-0.3  
0.8  
2.0  
5.5  
0.2  
0.4  
0.2  
V
- 0.2  
0.1  
4
-0.1  
-4  
CCO  
2.4  
-0.3  
-0.3  
0.8  
0.7  
2.0  
1.7  
5.5  
3.6  
V
V
- 0.2  
0.1  
-0.1  
CCO  
16, 12, 8, -16, -12, -8,  
0.4  
- 0.4  
CCO  
5.33, 4  
-5.33, -4  
LVCMOS 2.5  
0.2  
0.4  
0.4  
0.2  
V
V
- 0.2  
- 0.4  
0.1  
-0.1  
CCO  
LVCMOS 1.81, 3  
LVCMOS 1.83  
-0.3  
-0.3  
0.68  
0.68  
1.07  
1.07  
3.6  
3.6  
8
-8  
CCO  
V
-0.4 12, 5.33, 4 -12, -5.33, -4  
CCO  
CCO  
V
- 0.2  
0.1  
1.5  
1.5  
1.5  
8
-0.1  
-0.5  
-0.5  
-0.5  
-8  
PCI 3.34  
PCI -X5  
AGP-1X4  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
1.08  
1.26  
1.08  
1.5  
1.5  
1.5  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
0.1 V  
0.9 V  
0.9 V  
0.9 V  
CCO  
CCO  
CCO  
0.1 V  
CCO  
0.1 V  
CCO  
CCO  
SSTL3 class I  
SSTL3 class II  
SSTL2 class I  
SSTL2 class II  
CTT 3.3  
V
V
- 0.2  
- 0.2  
V
V
+ 0.2  
0.7  
0.5  
V
- 1.1  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
CCO  
CCO  
+ 0.2  
V
- 0.9  
- 0.62  
- 0.43  
+ 0.4  
+ 0.4  
- 0.4  
16  
7.6  
15.2  
8
-16  
-7.6  
-15.2  
-8  
V
- 0.18 V  
- 0.18 V  
+ 0.18  
+ 0.18  
+ 0.2  
+ 0.2  
+ 0.1  
+ 0.1  
+ 0.1  
+ 0.2  
0.54  
0.35  
V
V
REF  
REF  
CCO  
CCO  
V
V
- 0.2  
- 0.3  
- 0.1  
- 0.2  
- 0.3  
- 0.2  
V
V
V
- 0.4  
- 0.4  
V
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
CTT 2.5  
V
V
V
8
-8  
REF  
REF  
REF  
REF  
REF  
REF  
HSTL class I  
HSTL class III  
HSTL class IV  
GTL+  
V
V
V
V
V
V
V
V
0.4  
V
V
V
8
-8  
CCO  
CCO  
CCO  
0.4  
0.4  
0.6  
- 0.4  
24  
48  
36  
-8  
- 0.4  
-8  
n/a  
n/a  
1. Software default setting.  
2. The average DC current drawn by I/Os between adjacent bank GND connections, or between the last GND in an I/O bank and the end of  
the I/O bank, as shown in the logic signals connection table, shall not exceed n*8mA. Where n is the number of I/Os between bank GND  
connections or between the last GND in a bank and the end of a bank.  
3. For 1.8V devices (ispGDX2C) these specifications are V = 0.35 V and V = 0.65V  
IL  
CC  
IH  
CC  
4. For 1.8V power supply devices these specifications are V = 0.3 * V * 3.3/1.8, V = 0.5 * V * 3.3/1.8  
IL  
CC  
IH  
CC  
5. For 1.8V power supply devices these specifications are V = 0.35 * V * 3.3/1.8 and V = 0.5 * V * 3.3/1.8  
IL  
CC  
IH  
CC  
25  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
sysIO Differential DC Electrical Characteristics  
Over Recommended Operating Conditions  
Parameter  
Symbol  
Parameter Description  
Test Conditions  
Min.  
Typ.  
Max.  
Units  
LVDS  
V
V
V
Input Voltage  
0
+/-100  
2.4  
V
mV  
µA  
V
INP INM  
Differential Input Threshold  
Input Current  
0.2V V  
1.8V  
THD  
CM  
I
Power On  
R = 100Ω  
+/-10  
1.60  
IN  
V
V
V
Output High Voltage for V or V  
1.38  
1.03  
350  
OH  
OL  
OD  
OP  
OM  
T
Output Low Voltage for V or V  
R = 100Ω  
0.9  
V
OP  
OM  
T
Output Voltage Differential  
(V - V ), R = 100Ω  
250  
450  
50  
mV  
mV  
V
OP  
OM  
T
ΔV  
Change in V Between High and Low —  
OD  
OD  
V
Output Voltage Offset  
(V - V )/2, R = 100Ω  
1.125  
1.25  
1.375  
50  
OS  
OP  
OM  
T
ΔV  
Change in VOS Between H and L  
Output Short Circuit Current  
mV  
OS  
I
V
= 0V. Driver Outputs  
OSD  
OD  
24  
mA  
Shorted.  
Bus LVDS1  
V
V
V
Output High Voltage for V or V  
R = 27Ω  
0.95  
240  
1.4  
1.1  
300  
1.80  
V
V
OH  
OL  
OD  
OP  
OM  
T
Output Low Voltage for V or V  
R = 27Ω  
T
OP  
OM  
Output Voltage Differential  
|V - V |, RT = 27Ω  
460  
27  
mV  
mV  
V
OP  
OM  
ΔV  
Change in V Between H and L  
OD  
OD  
V
Output Voltage Offset  
|V - VOM| /2, RT = 27Ω  
1.1  
1.3  
1.5  
27  
OS  
OP  
ΔV  
Change in V Between H and L  
mV  
OS  
OS  
I
Output Short Circuit Current  
V
= 0. Driver Outputs  
OSD  
OD  
36  
65  
mA  
Shorted.  
1. V and V  
are the two outputs of the LVDS output buffer.  
OP  
OM  
1
LVPECL  
DC Parameter  
Parameter Description  
Output Supply Voltage  
Input Voltage High  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Units  
V
V
V
V
V
V
3.0  
3.3  
3.6  
V
V
V
V
V
V
CCO  
IH  
1.49  
0.86  
1.7  
2.72  
2.125  
2.11  
1.49  
0.86  
1.92  
1.06  
0.3  
2.72  
2.125  
2.28  
1.49  
0.86  
2.03  
1.25  
0.3  
2.72  
2.125  
2.41  
Input Voltage Low  
IL  
Output Voltage High  
Output Voltage Low  
Differential Input voltage  
OH  
OL  
0.96  
0.3  
1.27  
1.43  
1.57  
2
DIFF  
1. These values are valid at the output of the source termination pack as shown above with 100-ohm differential load only (see Figure 17).  
The V levels are 200mV below the standard LVPECL levels and are compatible with devices tolerant of the lower common mode ranges.  
OH  
2. Valid for 0.2V V  
1.8V.  
CM  
Figure 17. LVPECL Driver with Three Resistor Pack  
1/4 of Bourns P/N  
ispGDX2  
CAT 16-PC4F12  
LVPECL Buffer  
A
Zo  
Zo  
Rs  
to LVPECL  
differential  
receiver  
Rs  
26  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2V/B/C, ispGDX2EV/EB/EC External Switching Characteristics  
Over Recommended Operating Conditions  
-3  
-32  
-35  
-5  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Units  
Output Paths  
t
t
t
t
t
Data From Input Pin to Output Pin  
Data From Global Select Pin to Output Pin  
Global Clock to Output  
3.0  
2.8  
2.9  
3.2  
3.0  
3.1  
3.5  
3.3  
3.2  
5.0  
4.7  
5.4  
ns  
ns  
ns  
ns  
ns  
PD  
PD_SEL  
CO  
Set-up Time Before Global Clock  
Hold Time After Global Clock  
2.0  
0.0  
2.0  
0.0  
2.0  
0.0  
3.0  
0.0  
OPS  
OPH  
PT Clock Enable Setup Time Before  
Global Clock  
t
3.0  
3.0  
4.1  
6.9  
ns  
OPCES  
PT Clock Enable Hold Time After  
Global Clock  
t
t
0.0  
0.0  
0.0  
0.0  
ns  
ns  
OPCEH  
External Reset Pin to Output Delay  
5.3  
6.0  
6.0  
10.0  
OPRSTO  
Input Paths  
t
t
t
t
Set-up Time Before Global Clock  
0.5  
2.0  
1.0  
0.0  
0.5  
2.0  
1.0  
0.0  
0.5  
2.0  
1.0  
0.0  
0.9  
3.0  
1.7  
0.0  
ns  
ns  
ns  
ns  
IPS  
Set-up Time Before Global Clock  
(Zero Hold Time)  
IPSZ  
IPH  
Hold Time After Global Clock  
Hold Time After Global Clock  
(Zero Hold Time)  
IPHZ  
PT Clock Enable Setup Time Before  
Global Clock  
t
3.1  
3.1  
3.1  
5.1  
ns  
IPCES  
PT Clock Enable Hold Time After Global  
Clock  
t
t
0.0  
0.0  
0.0  
0.0  
ns  
ns  
IPCEH  
External Reset Pin to Output Delay  
5.6  
6.5  
7.5  
12.5  
IPRSTO  
Output Enable Paths  
t
t
t
t
Global Clock to Output Enabled Pin  
4.2  
4.5  
5.5  
9.1  
ns  
ns  
ns  
ns  
OECO  
Output Enable Register Set-up Time  
Before Global Clock  
1.6  
0.0  
3.5  
1.6  
0.0  
3.5  
2.0  
0.0  
4.1  
3.4  
0.0  
6.9  
OES  
Hold Time After Global Clock  
OEH  
PT Clock Enable Setup Time Before  
Global Clock  
OECES  
PT Clock Enable Hold Time After Global  
Clock  
t
0.0  
0.0  
0.0  
0.0  
ns  
OECEH  
t
t
t
Global OE Input to Output Enable/Disable  
Test OE Input to Output Enable/Disable  
Input to Output Enable/Disable  
3.5  
5.2  
5.2  
3.8  
5.5  
5.5  
4.5  
6.2  
6.2  
7.5  
ns  
ns  
ns  
GOE/DIS  
TOE/DIS  
EN/DIS  
10.3  
10.3  
Clock and Reset Paths  
t
t
t
Width of Reset Pulse  
Clock Width  
2.5  
1.3  
1.5  
2.5  
1.5  
1.6  
2.5  
1.6  
1.6  
4.1  
2.7  
2.7  
ns  
ns  
ns  
RW  
CW  
GW  
Clock Width  
Clock Frequency with External  
f
(Ext)  
204  
360  
196  
330  
192  
300  
119 MHz  
180 MHz  
MAX  
Feedback 1/(t  
+ t  
)
OPS  
CO  
f
(Tog, Clock Frequency Maximum Toggle  
(No PLL)  
MAX  
No PLL)  
27  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2V/B/C, ispGDX2EV/EB/EC External Switching Characteristics  
Over Recommended Operating Conditions  
-3  
-32  
-35  
-5  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Units  
f
Clock Frequency Maximum Toggle  
MAX  
360  
330  
300  
180 MHz  
(Tog, PLL) (With PLL)  
Timing v.2.2  
28  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Timing Model  
The task of determining the timing through the ispGDX2 family is relatively simple. The timing model provided in  
Figure 18 shows the specific delay paths. Once the implementation of a given function is determined either con-  
ceptually or from the software report file, the delay path of the function can easily be determined from the timing  
model. The Lattice design tools report the timing delays based on the same timing model for a particular design.  
Note that the internal timing parameters are given for reference only, and are not tested.The external timing param-  
eters are tested and guaranteed for every device.  
Figure 18. ispGDX2 Timing Model Diagram (I/O Cell)  
TOE path  
tTOE_IN  
TOE/  
GOE  
tGOE_IN  
t IOI  
GOE path  
tPTOE  
from GRP  
to FIFO  
(WE)  
to sysHSI  
(REFCLK)  
tGCLK  
tPTCLKEN  
tCLK_IN  
tCLKEN_IN  
tIOI  
t OEBYPASS  
GCLK/  
GCLKEN  
from GRP  
tPLL_DELAY  
tPLL_SEC_DELAY  
tPTCLK  
OE Reg.  
D
Q
to sysHSI/FIFO  
(Global Reset)  
to FIFO  
(WCLK)  
CE  
t SR_IN  
GSR  
from sysHSI  
(SOUT)  
tIOI  
t HSISOUT  
S/R  
from GRP  
from GRP  
tPTSR  
from sysHSI/FIFO  
(Flags)  
t HSIFIFOFLAG  
Output  
Delays  
tSEL_IN  
tIOI  
from sysHSI  
(SSCLKOUT)  
tHSISSCLKOUT  
GSEL  
tBUF  
tEN  
tDIS  
t IOO  
from Adjacent  
Cells (Output)  
tOPBYPASS  
OUT  
tPTSEL  
Output Reg.  
Q
t OPAC  
D
tMUXPD  
tMUXSEL  
from GRP  
CE  
to sysHSI  
(TXD)  
S/R  
from Adjacent Cells  
(Input)  
t IPAC  
from FIFO  
(DOUT)  
t FIFODATAOUT  
to Adjacent Cells  
(Output)  
from sysHSI  
(RECCLK, SYDT)  
Input Reg.  
t HSIOUT  
S/R  
CE  
from PLL  
(PLL Output)  
t PLLOUT  
t IN  
t IOI  
D
Q
IN  
t ROUTEGRP  
to GRP  
tINDIO  
tIPBYPASS  
to sysHSI/FIFO  
(SIN, Control, DIN, I/O Reset, SSCLKIN)  
to Adjacent Cells  
(Input)  
to FIFO  
(REN)  
Italicized parameters are optional.  
Model Version 1.6.7  
to FIFO  
(RCLK)  
29  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Figure 19. ispGDX2 Timing Model Diagram (with sysHSI and FIFO Receive Mode)  
to I/O Cell  
(RECCLK)  
sysHSI  
(RXD)  
FIFO  
Serial Data  
In  
Data Out  
(RXD)  
from I/O Cell  
(SIN)  
tFIFODATAIN  
Data In  
tHSISIN  
Recovered  
Clock  
Write CLK  
tFIFOWCLK  
to I/O Cell  
(DOUT)  
HSI Controls  
CAL  
Data Out  
HSI Flags  
CSLOCK  
to I/O Cell  
(Output Path Flag)  
from I/O Cell  
(Control)  
tHSICTRLCAL  
FIFO Flags  
to I/O Cell  
(SYDT and Output  
Path Flags)  
SYDT  
to I/O Cell  
(Output Path Flags)  
FULL, EMPTY  
Source  
Synchronous Clock  
from I/O Cell  
(SSCLKIN)  
tHSISSCLKIN  
Read  
Clock  
from I/O Cell  
(RCLK)  
tFIFORCLK  
from I/O Cell  
(REFCLK)  
Reference Clock  
tHSIREFCLK  
Read  
Enable  
from I/O Cell  
(RE)  
tFIFOREN  
RESET  
RESET  
from I/O Cell  
(Global RESET)  
tHSIFIFORST  
from I/O Cell  
(I/O RESET)  
Figure 20. ispGDX2 Timing Model Diagram (with sysHSI Transmit Mode)  
sysHSI  
(TXD)  
Serial  
Data Out  
to I/O Cell  
(SOUT)  
from I/O Cell  
(TXD)  
Data In  
tHSITXDATA  
from I/O Cell  
(REFCLK)  
Reference Clock  
tHSIREFCLK  
Source  
to I/O Cell  
Synchronous Clock  
(SSCLKOUT)  
30  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Figure 21. ispGDX2 Timing Model Diagram (in FIFO Only Mode)  
from I/O Cell  
(DIN)  
tFIFODATAIN  
tFIFOWCLK  
tFIFOWEN  
Data In  
FIFO  
to I/O Cell  
(DOUT)  
Data Out  
from I/O Cell  
(WCLK)  
Write  
Clock  
from I/O Cell  
(WE)  
Write  
Enable  
FIFO Flags  
to I/O Cell  
(Output Path Flags)  
FULL, EMPTY  
Read  
Clock  
from I/O Cell  
(RCLK)  
tFIFORCLK  
Read  
Enable  
from I/O Cell  
(RE)  
tFIFOREN  
RESET  
from I/O Cell  
(Global RESET)  
tHSIFIFORST  
from I/O Cell  
(I/O RESET)  
31  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Sample External Timing Calculations  
The following equations illustrate the task of determining the timing through the ispGDX2 family. These are only a  
sample of equations to calculate the timing through the ispGDX2.  
Figure 18 shows the specific delay paths and the Internal Timing Parameters table provides the parameter values.  
Note that the internal timing parameters are given for reference only and are not tested. The external timing param-  
eters are tested and guaranteed for every device.  
Data from global select pin to output pin:  
t
= t  
+ t  
+ t  
+ t  
PD_SEL  
SEL_IN  
MUXSEL  
OPBYPASS BUF  
Global clock to output:  
= t + t + t  
t
+ t  
BUF  
CO  
CLK_IN  
GCLK  
OPCOi  
Input register or latch set-up time before global clock:  
= t + t - (t + t  
t
)
GCLK  
IPS  
IN  
IPS  
CLK  
Input register or latch hold time after global clock:  
= (t + t ) + t - t  
t
IPH  
CLK_IN  
GCLK  
IPHi IN  
Data from product term select to output pin:  
t
= t + t  
+ t  
+ t  
+ t  
+ t  
+ t  
PD_PTSEL  
IN  
IPBYPASS  
ROUTEGRP  
PTSEL  
MUXSEL  
OPBYPASS BUF  
Product term clock to output:  
= t + t + t  
t
+ t  
+ t  
+ t  
CO_PT  
IN  
IPBYPASS  
ROUTEGRP  
PTCLK  
OPCOi BUF  
Input register or latch set-up time before product term clock:  
= t + t - (t + t + t + t )  
PTCLK  
t
IPS_PT  
IN  
IPSi_PT  
IN  
IPBYPASS  
ROUTEGRP  
Input register or latch hold time after product term clock:  
t
= (t + t  
+ t  
+ t  
) + t  
- t  
IPH_PT  
IN  
IPBYPASS  
ROUTEGRP  
PTCLK  
IPHi IN  
Global OE input to output enable/disable:  
= t + t + t  
t
GOE/DIS  
GOE_IN  
OEBYPASS  
EN  
External reset pin to output delay:  
= t + t + t  
BUF  
t
OPRSTO  
SR_IN  
OPASROi  
32  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2V/B/C, ispGDX2EV/EB/EC Internal Timing Parameters1  
Over Recommended Operating Conditions  
-3  
-32  
-35  
-5  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Units  
Input/Output Delays  
t
t
t
t
t
t
t
t
t
t
Output Buffer Delay  
0.80  
1.00  
1.80  
1.80  
1.50  
2.00  
0.40  
1.60  
2.00  
3.70  
0.80  
1.00  
1.80  
1.80  
1.80  
2.00  
0.40  
1.60  
2.70  
3.70  
0.80  
1.00  
1.80  
2.50  
2.50  
2.00  
0.40  
1.60  
2.70  
3.70  
1.14  
1.67  
3.00  
4.17  
4.17  
3.33  
0.57  
2.29  
4.50  
6.17  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUF  
Global Clock Input Delay  
Global Clock Enable Input Delay  
Output Disable Delay  
CLK_IN  
CLKEN_IN  
DIS  
Output Enable Delay  
EN  
Global Output Enable Path Delay  
Input Pin Delay  
GOE_IN  
IN  
Global MUX Select Input Delay  
Global Set/Reset Path Delay  
Test Output Enable Path Delay  
SEL_IN  
SR_IN  
TOE_IN  
Shift Register and MUX Delays  
Input Path Adjacent I/O Cell Delay  
(Shift Register)  
t
t
0.80  
1.30  
0.80  
1.30  
0.80  
1.30  
1.33  
2.17  
ns  
ns  
IPAC  
Output Path Adjacent I/O Cell Delay  
(Shift Register)  
OPAC  
t
t
MUX Data Path Delay  
MUX Select Path Delay  
0.90  
0.40  
0.90  
0.40  
0.90  
0.40  
1.29  
0.57  
ns  
ns  
MUXPD  
MUXSEL  
AND Arrays and Routing Delays  
t
t
t
t
FIFO Output to I/O Block Delay  
Clock Tree Delay  
0.00  
0.40  
0.00  
0.00  
0.00  
0.40  
0.00  
0.00  
0.00  
0.40  
0.00  
0.00  
0.00  
0.67  
0.00  
0.00  
ns  
ns  
ns  
ns  
FIFODATAOUT  
GCLK  
HSI/FIFO Flag to I/O Block Delay  
HSI Output to I/O Cell Block Delay  
HSIFIFOFLAG  
HSIOUT  
HSI Source Synchronous Clock to I/O Cell  
Block Delay  
t
0.00  
0.00  
0.00  
0.00  
ns  
HSISSCLKOUT  
t
t
t
t
t
t
t
PLL Delay Increment  
0.33  
2.20  
2.10  
2.40  
1.70  
1.40  
0.90  
0.33  
2.20  
2.10  
2.40  
1.70  
1.40  
0.90  
0.33  
2.20  
2.10  
2.40  
1.70  
2.70  
0.90  
0.33  
3.67  
3.50  
4.00  
2.83  
4.50  
1.29  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PLL_DELAY  
Clock AND Array Delay  
Clock Enable AND Array Delay  
OE AND Array Delay  
PTCLK  
PTCLKEN  
PTOE  
Select AND Array Delay  
Set/Reset AND Array Delay  
Global Routing Pool Delay  
PTSEL  
PTSR  
ROUTEGRP  
Register/Latch Delays, Output Paths  
t
t
t
t
Asynchronous Set/Reset to Output  
Asynchronous Set/Reset Recovery  
Register/Latch Bypass Delay  
2.50  
2.50  
0.00  
2.50  
2.50  
0.20  
2.50  
2.50  
0.50  
4.17  
4.17  
0.71  
ns  
ns  
ns  
ns  
OPASROi  
OPASRRi  
OPBYPASS  
OPCEHi  
Register Clock Enable Hold Time  
1.30  
1.30  
1.30  
2.17  
Register Clock Enable Setup Time  
(Global Clock Enable)  
t
t
1.10  
1.00  
1.10  
1.00  
1.10  
2.10  
1.83  
3.50  
ns  
ns  
OPCESi  
Register Clock Enable Setup Time  
(Product Term Clock Enable)  
OPCESi_PT  
t
t
Register Clock to Output Delay  
Register Hold Time  
0.70  
0.90  
1.00  
1.67  
ns  
ns  
OPCOi  
0.80  
0.80  
0.80  
1.33  
OPHi  
33  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2V/B/C, ispGDX2EV/EB/EC Internal Timing Parameters1 (Continued)  
Over Recommended Operating Conditions  
-3  
-32  
-35  
-5  
Parameter  
Description  
Latch Gate to Output Delay  
Latch Hold Time  
Min. Max. Min. Max. Min. Max. Min. Max. Units  
t
t
1.00  
1.00  
1.00  
1.67  
ns  
ns  
OPLGOi  
0.80  
0.80  
0.80  
1.33  
OPLHi  
Latch Propagation Delay (Transparent  
Mode)  
t
0.30  
0.30  
0.30  
0.50  
ns  
OPLPDi  
t
t
t
t
t
Latch Setup Time (Global Gate)  
1.20  
1.00  
1.20  
1.00  
1.20  
1.00  
1.20  
1.00  
1.20  
1.00  
1.20  
1.00  
2.00  
1.67  
2.00  
1.67  
ns  
ns  
ns  
ns  
ns  
OPLSi  
Latch Setup Time (Product Term Gate)  
Register Setup Time (Global Clock)  
Register Setup Time (Product Term Clock)  
Asynchronous Set/Reset Pulse Width  
OPLSi_PT  
OPSi  
OPSi_PT  
OPSRPWi  
2.50  
2.50  
2.50  
4.17  
Register/Latch Delays, Input Paths  
t
t
t
t
Asynchronous Set/Reset to Output  
Asynchronous Set/Reset Recovery  
Register/Latch Bypass Delay  
1.00  
2.50  
0.00  
1.00  
2.50  
0.00  
1.70  
2.50  
0.00  
2.83  
4.17  
0.00  
ns  
ns  
ns  
ns  
IPASROi  
IPASRRi  
IPBYPASS  
IPCEHi  
Register Clock Enable Hold Time  
1.30  
1.30  
1.30  
2.17  
Register Clock Enable Setup Time  
(Global Clock Enable)  
t
t
1.10  
1.10  
1.10  
1.10  
1.10  
1.10  
1.83  
1.83  
ns  
ns  
IPCESi  
Register Clock Enable Setup Time  
(Product Term Clock Enable)  
IPCESi_PT  
t
t
t
t
Register Clock to Output Delay  
Register Hold Time  
0.00  
0.80  
0.00  
1.00  
0.00  
1.00  
0.00  
1.67  
ns  
ns  
ns  
ns  
IPCOi  
IPHi  
Latch Gate to Output Delay  
Latch Hold Time  
1.00  
1.00  
1.00  
1.67  
IPLGOi  
IPLHi  
0.00  
0.00  
0.00  
0.00  
Latch Propagation Delay (Transparent  
Mode)  
t
0.30  
0.30  
0.30  
0.50  
ns  
IPLPDi  
t
t
t
t
t
Latch Setup Time (Global Term)  
1.50  
1.50  
1.50  
1.50  
1.50  
1.50  
1.50  
1.50  
1.50  
1.50  
1.50  
1.50  
2.50  
2.50  
2.50  
2.50  
ns  
ns  
ns  
ns  
ns  
IPLSi  
Latch Setup Time (Product Term Gate)  
Register Setup Time (Global Clock)  
Register Setup Time (Product Term Clock)  
Asynchronous Set/Reset Pulse Width  
IPLSi_PT  
IPSi  
IPSi_PT  
IPSRPWi  
2.50  
2.50  
2.50  
4.17  
OE Paths  
t
t
t
t
Asynchronous Set/Reset to Output  
Asynchronous Set/Reset Recovery  
Register/Latch Bypass Delay  
2.50  
2.50  
0.00  
2.50  
2.50  
0.00  
2.50  
2.50  
0.00  
4.17  
4.17  
0.00  
ns  
ns  
ns  
ns  
OEASROi  
OEASRRi  
OEBYPASS  
OECEHi  
Register Clock Enable Hold Time  
1.30  
1.30  
0.80  
1.33  
Register Clock Enable Setup Time (Global  
Clock Enable)  
t
t
1.20  
1.50  
1.20  
1.50  
1.20  
2.10  
2.00  
3.50  
ns  
ns  
OECESi  
Register Clock Enable Setup Time  
(Product Term Clock Enable)  
OECESi_PT  
t
t
t
t
Register Clock to Output Delay  
Register Hold Time  
0.40  
1.30  
0.40  
1.30  
0.40  
1.60  
0.67  
2.67  
ns  
ns  
ns  
ns  
OECOi  
OEHi  
Latch Gate to Output Delay  
Latch Hold Time  
1.60  
1.60  
1.60  
2.67  
OELGOi  
OELHi  
0.40  
0.40  
0.40  
0.67  
Latch Propagation Delay (Transparent  
Mode)  
t
0.30  
0.30  
0.30  
0.50  
ns  
OELPDi  
34  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2V/B/C, ispGDX2EV/EB/EC Internal Timing Parameters1 (Continued)  
Over Recommended Operating Conditions  
-3  
-32  
-35  
-5  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Units  
t
t
t
t
t
Latch Setup Time (Global Gate)  
1.40  
1.00  
1.00  
1.00  
1.40  
1.00  
1.00  
1.00  
1.40  
1.00  
1.40  
1.00  
2.33  
1.67  
2.33  
1.67  
ns  
ns  
ns  
ns  
ns  
OELSi  
Latch Setup Time (Product Term Gate)  
Register Setup Time (Global Clock)  
Register Setup Time (Product Term Clock)  
Asynchronous Set/Reset Pulse Width  
OELSi_PT  
OESi  
OESi_PT  
OESRPWi  
2.50  
2.50  
2.50  
4.17  
Timing v.2.2  
1. Internal parameters are not tested and are for reference only. Refer to the timing model in this data sheet for details.  
2. t is the unit of increment by which the clock signal can be incremented. The PLL can adjust the clock signal by up to t  
(as  
RANGE  
PLL_DELAY  
given in the sysCLOCK PLL Timing section) in either direction in steps of size t  
PLL_DELAY.  
35  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2V/B/C, ispGDX2EV/EB/EC Timing Adjusters  
-3  
-32  
-35  
-5  
Parameter  
Optional Adders  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Units  
t
Input Delay  
1.50  
1.30  
1.50  
1.30  
1.50  
1.30  
2.50  
1.30  
ns  
ns  
INDIO  
Secondary PLL Output  
Delay  
t
PLL_SEC_DELAY  
t
Output Adjusters  
IOO  
Using Slow Slew (LVTTL and  
LVCMOS Outputs Only)  
Slow Slew  
0.90  
1.20  
0.30  
0.90  
1.20  
0.30  
0.90  
1.20  
0.30  
0.90  
1.20  
0.30  
ns  
ns  
ns  
LVTTL_out  
Using 3.3V TTL Drive  
Using 1.8V CMOS Standard,  
4mA Drive  
LVCMOS_18_4mA_out  
Using 1.8V CMOS Standard,  
5.33mA Drive  
LVCMOS_18_5.33mA_out  
LVCMOS_18_8mA_out  
LVCMOS_18_12mA_out  
LVCMOS_25_4mA_out  
LVCMOS_25_5.33mA_out  
LVCMOS_25_8mA_out  
LVCMOS_25_12mA_out  
LVCMOS_25_16mA_out  
LVCMOS_33_4mA_out  
LVCMOS_33_5.33mA_out  
LVCMOS_33_8mA_out  
LVCMOS_33_12mA_out  
LVCMOS_33_16mA_out  
0.30  
0.00  
0.00  
1.20  
1.00  
0.40  
0.40  
0.40  
1.20  
1.20  
0.80  
0.60  
0.60  
0.30  
0.00  
0.00  
1.20  
1.00  
0.40  
0.40  
0.40  
1.20  
1.20  
0.80  
0.60  
0.60  
0.30  
0.00  
0.00  
1.20  
1.00  
0.40  
0.40  
0.40  
1.20  
1.20  
0.80  
0.60  
0.60  
0.30  
0.00  
0.00  
1.20  
1.00  
0.40  
0.40  
0.40  
1.20  
1.20  
0.80  
0.60  
0.60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Using 1.8V CMOS Standard,  
8mA Drive  
Using 1.8V CMOS Standard,  
12mA Drive  
Using 2.5V CMOS Standard,  
4mA Drive  
Using 2.5V CMOS Standard,  
5.33mA Drive  
Using 2.5V CMOS Standard,  
8mA Drive  
Using 2.5V CMOS Standard,  
12mA Drive  
Using 2.5V CMOS Standard,  
16mA Drive  
Using 3.3V CMOS Standard,  
4mA Drive  
Using 3.3V CMOS Standard,  
5.33mA Drive  
Using 3.3V CMOS Standard,  
8mA Drive  
Using 3.3V CMOS Standard,  
12mA Drive  
Using 3.3V CMOS Standard,  
16mA Drive  
Using 3.3V CMOS Standard,  
20mA Drive  
LVCMOS_33_20mA_out  
AGP_1X_out  
0.30  
0.60  
1.00  
0.30  
0.60  
1.00  
0.30  
0.60  
1.00  
0.30  
0.60  
1.00  
ns  
ns  
ns  
Using AGP 1x Standard  
Using Bus Low Voltage Dif-  
ferential Signaling (BLVDS)  
BLVDS_out  
CTT25_out  
CTT33_out  
GTL+_out  
Using CTT 2.5v  
0.30  
0.20  
0.50  
0.50  
0.60  
0.60  
0.30  
0.20  
0.50  
0.50  
0.60  
0.60  
0.30  
0.20  
0.50  
0.50  
0.60  
0.60  
0.30  
0.20  
0.50  
0.50  
0.60  
0.60  
ns  
ns  
ns  
ns  
ns  
ns  
Using CTT 3.3v  
Using GTL+  
HSTL_I_out  
HSTL_III_out  
HSTL_IV_out  
Using HSTL 2.5V, Class I  
Using HSTL 2.5V, Class III  
Using HSTL 2.5V, Class IV  
36  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2V/B/C, ispGDX2EV/EB/EC Timing Adjusters (Continued)  
-3  
-32  
-35  
-5  
Parameter  
LVPECL_out  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Units  
Using LVPECL Differential  
Signaling  
0.30  
0.80  
0.30  
0.80  
0.30  
0.80  
0.30  
0.80  
ns  
ns  
Using Low Voltage Differen-  
tial Signaling (LVDS)  
LVDS_out  
PCI_out  
Using PCI Standard  
0.60  
0.60  
0.30  
0.50  
0.20  
0.40  
0.60  
0.60  
0.30  
0.50  
0.20  
0.40  
0.60  
0.60  
0.30  
0.50  
0.20  
0.40  
0.60  
0.60  
0.30  
0.50  
0.20  
0.40  
ns  
ns  
ns  
ns  
ns  
ns  
PCI_X_out  
Using PCI-X Standard  
Using SSTL 2.5V, Class I  
Using SSTL 2.5V, Class II  
Using SSTL 3.3V, Class I  
Using SSTL 3.3V, Class II  
SSTL2_I_out  
SSTL2_II_out  
SSTL3_I_out  
SSTL3_II_out  
t
Input Adjusters  
IOI  
LVTTL_in  
Using 3.3V TTL  
Using 1.8V CMOS  
Using 2.5V CMOS  
Using 3.3V CMOS  
Using AGP 1x  
0.00  
0.00  
0.00  
0.00  
1.00  
0.00  
0.00  
0.00  
0.00  
1.00  
0.00  
0.00  
0.00  
0.00  
1.00  
0.00  
0.00  
0.00  
0.00  
1.00  
ns  
ns  
ns  
ns  
ns  
LVCMOS_18_in  
LVCMOS_25_in  
LVCMOS_33_in  
AGP_1X_in  
Using Bus Low Voltage Differ-  
ential Signaling (BLVDS)  
BLVDS_in  
0.50  
0.50  
0.50  
0.50  
ns  
CTT25_in  
CTT33_in  
GTL+_in  
Using CTT 2.5V  
1.00  
1.00  
0.50  
0.50  
0.60  
0.60  
1.00  
1.00  
0.50  
0.50  
0.60  
0.60  
1.00  
1.00  
0.50  
0.50  
0.60  
0.60  
1.00  
1.00  
0.50  
0.50  
0.60  
0.60  
ns  
ns  
ns  
ns  
ns  
ns  
Using CTT 3.3V  
Using GTL+  
HSTL_I_in  
HSTL_III_in  
HSTL_IV_in  
Using HSTL 2.5V, Class I  
Using HSTL 2.5V, Class III  
Using HSTL 2.5V, Class IV  
Using Differential Signaling  
(LVPECL)  
LVPECL_in  
LVDS_in  
0.00  
0.50  
0.00  
0.50  
0.00  
0.50  
0.00  
0.50  
ns  
ns  
Using Low Voltage Differen-  
tial Signaling (LVDS)  
PCI_in  
Using PCI  
1.00  
1.00  
0.50  
0.50  
0.60  
0.60  
1.00  
1.00  
0.50  
0.50  
0.60  
0.60  
1.00  
1.00  
0.50  
0.50  
0.60  
0.60  
1.00  
1.00  
0.50  
0.50  
0.60  
0.60  
ns  
ns  
PCI_X_in  
Using PCI-X  
SSTL2_I_in  
SSTL2_II_in  
SSTL3_I_in  
SSTL3_II_in  
Using SSTL 2.5V, Class I  
Using SSTL 2.5V, Class II  
Using SSTL 3.3V, Class I  
Using SSTL 3.3V, Class II  
ns  
ns  
ns  
ns  
Timing v.2.2  
37  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2V/B/C, ispGDX2EV/EB/EC FIFO Internal Timing  
-3  
-32  
-35  
-5  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Units  
Routing Delays  
t
t
t
t
t
t
FIFO Input Delay  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
ns  
ns  
ns  
ns  
ns  
ns  
FIFODATAIN  
FIFODATAOUT  
FIFORCLK  
FIFOREN  
FIFO Output to I/O Core Delay  
Read Clock Input Delay  
Read Clock Enable Input Delay  
Write Clock Input Delay  
FIFOWCLK  
FIFOWEN  
Write Clock Enable Input Delay  
Core Delays  
t
t
t
t
Global Read Clock to Write Clock Skew  
Read Clock to Empty Flag Delay  
Write Clock to Full Flag Delay  
2.00  
1.30  
1.30  
2.00  
1.80  
1.80  
2.00  
1.80  
1.80  
3.33  
3.00  
3.00  
ns  
ns  
ns  
FIFOCLKSKEW  
FIFOEMPTY  
FIFOFULL  
Read Clock Hold after Read Clock Enable  
Time  
FIFORCEH  
0.00  
1.50  
0.00  
1.50  
0.00  
1.50  
0.00  
2.50  
ns  
ns  
t
Read Clock Setup before Read Clock  
Enable Time  
FIFORCES  
t
t
t
t
t
t
t
Read Clock to FIFO Out Delay  
Reset to Output Delay  
0.50  
0.70  
2.00  
1.20  
0.00  
0.00  
0.50  
0.70  
2.00  
1.50  
0.00  
0.00  
0.50  
0.70  
2.00  
2.00  
0.00  
0.00  
0.83  
1.17  
3.33  
3.33  
0.00  
0.00  
ns  
ns  
ns  
ns  
ns  
ns  
FIFORCLKO  
FIFORSTO  
FIFORSTPW  
FIFORSTR  
FIFOSTRD  
FIFOTHRU  
FIFOWCEH  
Reset Pulse Width  
Reset Recovery Time  
Write Clock to Start Read Flag Delay  
Flow Through Delay  
Write Clock hold after Write Clock Enable  
Time  
2.00  
0.00  
2.00  
0.00  
2.00  
0.00  
3.33  
0.00  
ns  
ns  
t
Write Clock Setup before Write Clock Enable  
Time  
FIFOWCES  
t
t
Write Data Hold after Write Clock Time  
Write Data Setup before Write Clock Time  
0.50  
1.00  
0.50  
1.00  
0.70  
1.00  
1.17  
1.67  
ns  
ns  
FIFOWCLKH  
FIFOWCLKS  
Timing v.2.2  
38  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
sysHSI Block Timing  
Figure 22 provides a graphical representation of the SERDES receiver input requirements. It provides guidance on  
a number of input parameters, including signal amplitude and rise time limits, noise and jitter limits, and P and N  
input skew tolerance.  
Figure 22. Receive Data Eye Diagram Template (Differential)  
Bit Time  
VTHD  
200 mV Differential  
+/- 100 mV Single Ended  
jtTH  
eoSIN  
jtTH  
jtTH : Optimum Threshold Crossing Jitter  
The data pattern eye opening at the receive end of a link is considered the ultimate measure of received signal  
quality. Almost all detrimental characteristics of a transmit signal and the interconnection link design result in eye  
closure. This combined with the eye-opening limitations of the line receiver can provide a good indication of a link’s  
ability to transfer error-free data.  
Signal jitter is of special interest to system designers. It is often the primary limiting characteristic of long digital  
links and of systems with high noise level environments. An interesting characteristic of the clock and data recovery  
(CDR) portion of the ispGDX2 SERDES receiver is its ability to filter incoming signal jitter that is below the clock  
recovery PLL bandwidth. For signals with high levels of low frequency jitter, the receiver can detect incoming data  
error free, with eye openings significantly less than that shown in Figure 22.  
sysHSI Block AC Specifications  
Operating Frequency Ranges  
Symbol  
Description  
Mode  
SS:CAL  
10B12B  
8B10B  
Test Condition  
Min.  
50  
Max.  
200  
67  
Units  
MHz  
f
Reference Clock Frequency  
33  
MHz  
CLK  
40  
80  
MHz  
SS:CAL  
10B12B  
8B10B  
with eo  
400  
400  
400  
8001  
8001  
8001  
Mbps  
Mbps  
Mbps  
SIN  
2
f
f
Serial Input  
Serial Out  
with eo  
SIN  
SIN  
with eo  
SIN  
C = 5 pF, R = 100 Ohms,  
LVDS  
400  
8001  
Mbps  
2
L
L
SOUT  
f
with no jitter  
CLK  
1. f  
2. f  
(8B/10B and 10B/12B) 800Mbps limit applicable only to the fastest speed grade. Limit is 700Mbps for the lower speed grade.  
SIN  
and f  
speeds are supported at V and V at 1.7V to 1.9V for ispGDX2C devices.  
SIN  
SOUT  
CC  
CCP  
39  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
LOCKIN Time  
Symbol  
Description  
Mode  
All  
Condition  
Min.  
Max.  
25  
Units  
t
t
CSPLL Lock Time  
After input is stabilized  
With SS mode sync pattern  
μS  
SCLOCK  
1
SS  
1024  
1024  
960  
t
RCP  
CDRPLL Lock-in Time  
10B12B With 10B12B sync pattern  
t
CDRLOCK  
RCP  
RCP  
RCP  
RCP  
RCP  
RCP  
8B10B  
SS  
With 8B10B idle pattern  
t
t
t
t
t
SyncPat Length  
1200  
1100  
50  
t
t
t
t
SYNC  
CAL Duration  
SS  
CAL  
SyncPat Set-up Time to CAL  
SyncPat Hold Time from CAL  
SS  
SUSYNC  
SS  
50  
HDSYNC  
1. REFCLK clock period.  
REFCLK and SS_CLKIN Timing  
Symbol  
Description  
Mode  
Condition  
Min.  
Max.  
100  
Units  
ppm  
UIPP  
ns  
Frequency Deviation Between TX REFCLK and  
CDRX REFCLK on One Link  
8B10B/  
10B12B  
t
t
t
-100  
DREFCLK  
REFCLK, SS_CLKIN Peak-to-Peak Period Jitter  
All  
Random Jitter  
0.01  
JPPREFCLK  
PWREFCLK  
REFCLK, SS_CLKIN Pulse Width, (80% to 80% or  
20% to 20%).  
All  
1
REFCLK, SS_CLKIN Rise/Fall Time (20% to 80% or  
80% to 20%)  
t
All  
2
ns  
RFREFCLK  
Serializer Timing2  
Symbol  
Description  
Mode  
Condition  
with no jitter  
CLK  
Min.  
Max.  
Units  
UIPP  
ps  
t
SOUT Peak-to-Peak Output Data Jitter  
SOUT Peak-to-Peak Random Jitter  
SOUT Peak-to-Peak Deterministic Jitter  
All  
f
0.25  
130  
JPPSOUT  
8B10B 800 Mbps w/K28.7-  
t
JPP8B10B  
8B10B 800 Mbps w/K28.5+  
160  
ps  
LVDS  
BLVDS  
700  
ps  
SOUT Output Data Rise/Fall Time (20%,  
80%)  
t
RFSOUT  
900  
ps  
SS/8B10B  
10B12B  
2Bt1 + 2  
1Bt1 + 2  
2Bt1 +10  
1Bt1 +10  
ns  
t
t
REFCLK to SOUT Delay  
COSOUT  
SKTX  
ns  
Skew of SOUT with Respect to  
SS_CLKOUT  
SS  
250  
ps  
t
t
t
SS_CLKOUT to bit0 of SOUT  
TXD Data Setup Time  
TXD Data Hold Time  
SS  
2Bt1 - t  
2Bt1 + t  
SKTX  
ns  
ns  
ns  
CKOSOUT  
SKTX  
All  
All  
Note 3  
Note 3  
1.5  
HSITXDDATAS  
1.0  
HSITXDDATAH  
1. Bt: Bit Time Period. High Speed Serial Bit Time.  
2. The SIN and SOUT jitter specifications listed above are under the condition that the clock tree that drives the REFCLK to sysHSI Block is in  
sysCLOCK PLL BYPASS mode.  
3. Internal timing for reference only.  
40  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Deserializer Timing  
Symbol  
Description  
Mode  
Conditions  
Min.  
-100  
0.45  
Max.  
Units  
8B10B/  
10B12B  
f
SIN Frequency Deviation from REFCLK  
100  
ppm  
DSIN  
eo  
SIN Eye Opening Tolerance  
Bit Error Rate  
All  
All  
Notes 1, 2  
UIPP  
Bits  
SIN  
ber  
10-12  
RXD, SYDT Valid Time Before RECCLK Fall-  
ing Edge  
t
t
t
All  
All  
All  
Note 3  
Note 3  
t
t
/2 - 0.7  
/2 - 0.7  
ns  
ns  
ns  
HSIOUTVALIDPRE  
HSIOUTVALIDPOST  
DSIN  
RCP  
RCP  
RXD, SYDT Valid Time  
After RECCLK Falling Edge  
Bit 0 of SIN Delay to RXD Valid at RECCLK  
Falling edge  
1.5 t  
+
1.5 t  
4.5Bt + 10  
+
RCP  
RCP  
4.5Bt + 2  
1. Eye opening based on jitter frequency of 100KHz.  
2. Lower frequency operation assumes maximum eye closure of 800ps.  
3. Internal timing for reference only.  
Lock-in Timing  
CDRX_SS LOCK-IN (DE-SKEW) TIMING  
SIN  
MIN. 1200 SYNCPAT  
MIN. 1100 LS CYCLE  
DATA (SERIAL)  
CAL  
tHDSYNC  
tSUSYNC  
SYDT  
RXD(0:7)  
SYNCPAT  
TRAINING SEQUENCE  
DATA (PARALLEL)  
SS MODE DATA TRANSFER  
CDR_10B12B LOCK-IN TIMING  
SIN  
1024 SYNCPAT  
DATA (SERIAL)  
SYDT  
RXD(0:9)  
SYNCPAT  
DATA (PARALLEL)  
41  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Lock-in Timing (Continued)  
CDR_8B10B LOCK-IN TIMING  
SIN  
240 Idle Pattern(960 TRCP)  
DATA (SERIAL)  
SYDT  
RXD(0:9)  
Idle Pattern  
DATA (PARALLEL)  
SYDT Timing  
SYDT TIMING FOR CDRX_10B12B  
RECCLK  
SYDT  
RXD(0:9)  
Data0 Data1 Data2 Data3 Data4  
Parallel Data  
SYNC PATTERN  
SYDT TIMING FOR CDRX_8B10B  
RECCLK  
SYDT  
RXD(0:9)  
K28.5 D21.4 D21.5 D21.5 K28.5 D21.4 D21.5 D21.5  
D0  
D2  
D1  
IDLE PATTERN  
IDLE PATTERN  
Data  
42  
Lattice Semiconductor  
Serializer Timing  
ispGDX2 Family Data Sheet  
8B/10B SERIALIZER DELAY TIMING  
SYMBOL N  
tCOSOUT  
SYMBOL N+1  
TXD  
REFCLK  
SOUT  
b4  
b4 b5 b6 b7 b8 b9 b0 b1 b2 b3  
b5 b6 b7 b8 b9 b0 b1 b2  
SYMBOL N  
SYMBOL N-1  
SYMBOL N+1  
10B/12B SERIALIZER DELAY TIMING  
SYMBOL N  
tCOSOUT  
SYMBOL N+1  
TXD  
REFCLK  
SOUT  
b4  
b5 b6 b7 b8 b9  
"0" "1"  
b4 b5 b6 b7 b8 b9  
SYMBOL N-1  
b0 b1 b2 b3  
"0"  
"1"  
SYMBOL N  
SS Mode SERIALIZER DELAY TIMING  
SYMBOL N  
SYMBOL N+1  
TXD  
tCOSOUT  
REFCLK  
SS_CLKOUT  
SOUT  
tCKOSOUT  
tSKTX  
b4  
b4  
b5  
b6  
b7  
b0  
b2  
SYMBOL N  
b5  
b1  
b3  
b6  
b7  
b0  
SYMBOL  
N+1  
SYMBOL N-1  
INTERNAL TIMING FOR sysHSI BLOCK  
tPWREFCLK  
REFCLK  
tHSITXDDATAS  
tHSITXDDATAH  
TXD  
43  
Lattice Semiconductor  
Deserializer Timing  
ispGDX2 Family Data Sheet  
8B/10B DESERIALIZER DELAY TIMING  
SYMBOL N+1  
SYMBOL N  
SYMBOL N+2  
b4  
b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b0 b1 b2 b3  
TDSIN  
b5 b6 b7 b8 b9 b0 b1 b2 b3 b4 b5  
SIN  
RECCLK  
RXD  
SYMBOL N  
SYMBOL N-1  
10B/12B DESERIALIZER DELAY TIMING  
SYMBOL N+2  
SYMBOL N  
b0 b1 b2 b3 b4 b5  
SYMBOL N+1  
SIN  
b8 b9  
b6 b7  
"0" "1" b0 b1 b2 b3 b4 b5 b6 b7 b8 b9  
b4  
"1"  
"0" "1" b0 b1 b2 b3  
TTDSIN  
RECCLK  
RXD  
SYMBOL N-1  
SYMBOL N-2  
SYMBOL N  
CDRX_SS DESERIALIZER DELAY TIMING  
SYMBOL N  
SYMBOL N+2  
SYMBOL N+1  
b7  
b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6  
TDSIN  
b0 b1 b2 b3 b4  
SIN  
RECCLK  
RXD  
SYMBOL N-2  
SYMBOL N  
SYMBOL N-1  
INTERNAL TIMING FOR sysHSI BLOCK  
RECCLK  
tHSIOUTVALIDPRE  
tHSIOUTVALIDPOST  
SYDT, RXD  
44  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
sysCLOCK PLL Timing  
Over Recommended Operating Conditions  
Symbol  
Parameter  
Conditions  
80% to 80%  
Min  
0.5  
0.5  
Max  
Units  
ns  
t
t
Input clock, high time  
Input clock, low time  
PWH  
PWL  
20% to 20%  
ns  
t , t  
Input Clock, rise and fall time  
20% to 80%  
3.0  
ns  
R
F
t
f
f
f
f
f
f
t
Input clock stability, cycle to cycle (peak)  
M Divider input, frequency range  
M Divider output, frequency range  
N Divider input, frequency range  
N Divider output, frequency range  
V Divider input, frequency range  
V Divider output, frequency range  
Output clock, duty cycle  
+/- 300  
320  
320  
320  
320  
400  
320  
60  
ps  
INSTB  
10  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
%
MDIVIN  
MDIVOUT  
NDIVIN  
10  
10  
10  
NDIVOUT  
VDIVIN  
100  
10  
VDIVOUT  
OUTDUTY  
40  
Clean reference1:  
10 MHz f  
100 MHz f  
Clean reference1:  
40 MHz or  
160 MHz  
+/- 600  
+/- 150  
+/- 600  
+/- 150  
ps  
ps  
ps  
ps  
MDIVOUT  
VDIVIN  
t
Output clock, cycle to cycle jitter (peak)  
Output clock, period jitter (peak)  
JIT(CC)  
40 MHz f  
160 MHz f  
320 MHz and  
400 MHz  
MDIVOUT  
VDIVIN  
Clean reference1:  
10 MHz f  
100 MHz f  
40 MHz or  
160 MHz  
MDIVOUT  
VDIVIN  
2
T
JIT(PERIOD)  
Clean reference1:  
40 MHz f  
160 MHz f  
320 MHz and  
400 MHz  
MDIVOUT  
VDIVIN  
t
t
t
t
t
t
Input clock to CLK_OUT delay  
Internal feedback  
External feedback  
3.4  
500  
25  
ns  
ps  
us  
ps  
ns  
ns  
CLK_OUT_DLY  
Input clock to external feedback delta  
Time to acquire phase lock after input stable  
Delay increment (Lead/Lag)  
PHASE  
LOCK  
Typical = +/- 250ps  
+/- 120 +/- 550  
+/- 0.84 +/- 3.85  
PLL_DELAY  
RANGE  
Total output delay range (lead/lag)  
Minimum reset pulse width  
1.8  
PLL_RSTW  
1. This condition assures that the output phase jitter will remain within specification. Jitter specification is based on optimized M, N and V set-  
tings determined by the ispLEVER software.  
2. Accumulated jitter measured over 10,000 waveform samples  
45  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Boundary Scan Timing Specifications  
Over Recommended Operating Conditions  
Parameter  
Description  
Min  
40  
20  
20  
8
Max  
Units  
ns  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
TCK [BSCAN] clock pulse width  
BTCP  
TCK [BSCAN] clock pulse width high  
ns  
BTCPH  
BTCPL  
BTS  
TCK [BSCAN] clock pulse width low  
ns  
TCK [BSCAN] setup time  
ns  
TCK [BSCAN] hold time  
10  
50  
8
ns  
BTH  
TCK [BSCAN] rise/fall time  
mV/ns  
ns  
BTRF  
TAP controller falling edge of clock to valid output  
TAP controller falling edge of clock to valid disable  
TAP controller falling edge of clock to valid enable  
BSCAN test capture register setup time  
10  
10  
10  
BTCO  
ns  
BTCODIS  
BTCOEN  
BTCRS  
BTCRH  
BUTCO  
BTUODIS  
BTUPOEN  
ns  
ns  
BSCAN test capture register hold time  
10  
ns  
BSCAN test update register, falling edge of clock to valid output  
BSCAN test update register, falling edge of clock to valid disable  
BSCAN test update register, falling edge of clock to valid enable  
25  
25  
25  
ns  
ns  
ns  
46  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Power Consumption  
ICORE  
IHSI  
IPLL  
200  
90  
80  
100  
IHSI_D  
IPLL_D  
70  
60  
50  
40  
30  
20  
10  
0
80  
150  
100  
50  
60  
40  
20  
0
IHSI_A  
IPLL_A  
0
0
200  
400  
600  
800 1000 1200  
0
50 100 150 200 250 300 350  
0
200  
400  
600  
MHz  
Mbps  
MHz  
Power Estimation Coefficients – Core and PLL  
Device  
V
I
(mA)  
K
K
K
K
K
PLLA  
CC  
DC  
REF  
IN  
CORE  
PLLD  
3.3  
2.5  
1.8  
10.0  
3.25  
3.13  
3.00  
0.0139  
0.292  
0.157  
0.157  
0.179  
0.024  
ispGDX2-256  
10.0  
4.0  
0.0139  
0.0213  
0.292  
0.239  
0.024  
0.024  
I
:
Blank chip background current  
DC  
K
K :  
:
Reference voltage circuit current per bank  
I/O current per input per MHz  
REF  
IN  
K
K
K
:
Core current per MHz with GRP fanout of 1  
PLL logic current per MHz per PLL  
PLL analog portion current per MHz per PLL  
CORE  
:
PLLD  
:
PLLA  
Power Estimation Coefficients – sysHSI  
Device  
V
K
K
K
K
K
K
TXA  
CC  
RXD  
RXSTBY  
RXA  
TXD  
TXSTBY  
3.3  
2.5  
1.8  
0.027  
0.027  
0.019  
1.3  
0.0023  
0.0023  
0.0040  
0.011  
0.011  
0.011  
2.4  
0.0018  
0.0018  
0.0023  
ispGDX2-256  
1.3  
3.7  
2.4  
1.2  
K
K
K
K
K
K
:
Receiver Logic current per Mbps  
Receiver Logic standby current  
Receiver Analog portion current per Mbps  
Transmitter Logic current per Mbps  
Transmitter Logic standby current  
Transmitter Analog portion current per Mbps  
RXD  
:
RXSTBY  
:
:
RXA  
TXD  
:
TXSTBY  
:
TXA  
47  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Power Consumption (Continued)  
Power consumption in the ispGDX2 family is the sum of three components:  
I
= I  
+ I  
+ I  
(I  
combines current supplied via V pins and V pins)  
CCP  
CC-TOTAL  
CORE  
PLL  
HSI CC-TOTAL  
CC  
I
= I + I  
+ I  
CORE  
DC  
REF IN  
= Blank chip background current  
+ K * Number of Banks with V  
active  
REF  
REF  
+ (K * Number of inputs + K  
) * Average Input Switching Frequency (MHz)  
IN  
CORE  
I
I
= I  
+ I  
PLL  
PLL_D PLL_A  
= [K  
* F  
* Number of PLLs used] + [K  
* F  
* Number of PLLs used]  
PLLD  
VCO  
PLLA  
VCO  
= [(K  
+ K  
) * F  
] * Number of PLLs used  
PLLD  
PLLA  
VCO  
= I + I  
HSI  
RX  
TX  
= [(K  
+ K  
) * F + I  
] * Number of Receiver Channels  
RXD  
RXA  
RX  
RXSTBY  
+ [(K  
+ K  
) * F + I  
] * Number of Transmitter Channels  
TXD  
TXA  
TX  
TXSTBY  
Where:  
F
F
F
: sysClock PLL VCO Frequency in MHz  
sysHSI Receiver Serial Data Rate  
sysHSI Transmitter Serial Data Rate  
VCO  
:
RX  
:
TX  
I
can also be determined by calculating I  
, the current supplied by the V pin, and I the current sup-  
HSI_A,  
HSI  
HSI_D  
CC  
plied by the V  
and V  
.
CCP0  
CCP1  
I
= I  
+ I  
HSI  
HSI_D HSI_A  
= [(K  
* F + I  
)* Number of Receiver Channels  
RXD  
RX  
RXSTBY  
+ (K  
* F + I  
) * Number of Transmitter Channels]  
TXD  
RXA  
TXA  
TX  
TXSTBY  
+[(K  
+ (K  
* F ) * Number of Receiver Channels  
RX  
* F ) * Number of Transmitter Channels]  
TX  
The I  
is supplied through V  
and V  
pins for PLL and sysHSI analog portion. The equation for I  
can  
CCP  
CCP0  
CCP1  
CCP  
be derived from the equations below.  
I
= I  
+ I  
CCP  
PLL_A HSI_A  
= [(K  
* F  
) * Number of PLLs used]  
PLLA  
VCO  
+ [(K  
* F ) * Number of Receiver Channels  
RXA  
RX  
+ (K  
* F ) * Number of Transmitter Channels]  
TXA  
TX  
Where:  
I
I
: PLL Analog Portion Current  
: HSI Analog Portion Current  
PLL_A  
HSI_A  
Note: For further information about the use of these coefficients, refer to Technical Note TN1034, Power Estimation  
in the ispGDX2 Family.  
I
estimates are based on typical conditions. These values are for estimates only. Since the value of I  
CC-  
CC-TOTAL  
is sensitive to operating conditions and the program in the device, the actual current should be verified.  
TOTAL  
48  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Switching Test Conditions  
Figure 23 shows the output test load used for AC testing. Specific values for resistance, capacitance, voltage and  
other test conditions are shown in Table 7.  
Figure 23. Output Test Load, LVTTL and LVCMOS Standards (1.8V)  
VCCO  
R1  
Device  
Output  
Test  
Point  
R2  
CL*  
*CL includes Test Fixture and Probe Capacitance.  
Table 7. Test Fixture Required Components  
Test Condition  
R
R
C
Timing Ref.  
/2  
V
CCO  
1
2
L
Default LVCMOS 1.8 I/O (L -> H, H -> L)  
106  
106  
35pF  
V
1.8V  
LVCMOS3.3 = 3.0V  
LVCMOS2.5 = 2.3V  
LVCMOS1.8 = 1.65V  
1.65V  
CCO  
LVCMOS3.3 = 1.5V  
LVCMOS I/O (L -> H, H -> L)  
35pF  
LVCMOS2.5 = V  
LVCMOS1.8 = V  
/2  
/2  
CCO  
CCO  
Default LVCMOS 1.8 I/O (Z -> H)  
Default LVCMOS 1.8 I/O (Z -> L)  
Default LVCMOS 1.8 I/O (H -> Z)  
Default LVCMOS 1.8 I/O (L -> Z)  
106  
106  
35pF  
35pF  
5pF  
V
V
/2  
/2  
CCO  
CCO  
1.65V  
106  
V
- 0.15  
+ 0.15  
1.65V  
OH  
106  
5pF  
V
1.65V  
OL  
Note: Output test conditions for all other interfaces are determined by the respective standards.  
49  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Signal Descriptions1  
Signal Names  
General Purpose  
BKx_IOy  
Description  
Input/Output – General purpose I/O number y in I/O Bank X.  
Input – Global clock/clock enable inputs.  
GCLK/CE0, GCLK/CE1, GCLK/CE2,  
GCLK/CE3  
SEL0, SEL1, SEL22, SEL32  
GOE0, GOE1, GOE22, GOE32  
Input – Global MUX select inputs.  
Input – Global output enable inputs.  
Input – Global RESET signal (active low).  
No connect.  
RESETb  
NC  
GND  
GND – Ground.  
V
V
V
V
VCC – The power supply pins for core logic.  
VCC – The power supply for the JTAG logic.  
VCC – The power supply pins for I/O Bank X.  
Input – Defines the reference voltage for I/O Bank X.  
CC  
CCJ  
CCO  
x
REF  
x
Testing and Programming  
TMS  
Input – Test Mode Select input, used to control the 1149.1 state machine.  
Input – Test Clock Input pin, used to clock the 1149.1 state machine.  
Input – Test Data In pin, used to load data into device using 1149.1 state machine.  
Output – Test Data Out pin used to shift data out of device using 1149.1.  
Input – Test Output Enable pin. TOE tristates all I/O pins when driven low.  
TCK  
TDI  
TDO  
TOE  
PLL Functions  
PLL_FBKz  
PLL_RSTz  
CLK_OUTz  
Input – Optional feedback input allows external feedback for PLL z.  
Input – Optional input resets the M divider in PLL z.  
Output – Optional clock output from PLL z (clock signal occupies the input path of  
this I/O pad).  
PLL_LOCKz  
Output – Optional lock output from PLL z (lock signal occupies the input path of this  
I/O pad).  
GND GND  
GND – Ground for PLLs.  
P0,  
P1  
V
V
VCC – The power supply pins for PLLs.  
CCP0, CCP1  
FIFO Functions  
FIFOy_DINw  
Input – DATA IN Bit w of FIFO y.  
FIFOy_DOUTw  
Internal Signal – DATA OUT Bit w of FIFO y  
Input – Reset input for FIFO y (active low).  
Output – FULL flag for FIFO y.  
FIFOy_FIFORSTb  
FIFOy_FULL  
FIFOy_EMPTY  
Output – EMPTY flag for FIFO y.  
FIFOy_STRDb  
Output – Start read (STRDb) flag for FIFO y.  
SERDES Functions  
HSImA_SINP, HSImB_SINP  
HSImA_SINN, HSImB_SINN  
HSImA_SOUTP, HSImB_SOUTP  
HSImA_SOUTN, HSImB_SOUTN  
HSImA_SYDT, HSImB_ SYDT  
HSImA_RECCLK, HSImB_RECCLK  
Input – Positive sense serial input for sysHSI BLOCK m channel A, B.  
Input – Negative (minus) sense serial input for sysHSI BLOCK m channel A, B.  
Output – Positive sense serial output for sysHSI BLOCK m channel A, B.  
Output – Negative (minus) sense serial output for sysHSI BLOCK m channel A, B.  
Output – Symbol alignment detect for sysHSI BLOCK m channel A, B.  
Internal Signal – Recovered clock for sysHSI BLOCK m channel A, B.  
HSImA_CDRRSTb, HSImB_CDRRSTb Input – Resets the CDR circuit of sysHSI BLOCK m channel A, B.  
HSIm_CSLOCK Output – LOCK output of the PLL associated with channel m.  
50  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Signal Descriptions1 (Continued)  
Signal Names  
Description  
HSImA_TXDw, HSImB_ TXDw  
HSImA_RXDw, HSImB_ RXDw  
Source Synchronous Functions  
SS_SCLKIN0P, SS_SCLKIN1P  
SS_SCLKIN0N, SS_SCLKIN1N  
SS_CLKOUT0N, SS_CLKOUT1P  
SS_CLKOUT0N, SS_CLKOUT1N  
CAL  
Internal Signal – Parallel data in bit w for sysHSI BLOCK m channel A, B.  
Internal Signal – Parallel data out bit w for sysHSI BLOCK m channel A, B.  
Input – Positive sense clock input for Source Synchronous group A, B.  
Input – Negative (minus) sense clock input for Source Synchronous group A, B.  
Output – Positive sense clock output for Source Synchronous group A, B.  
Output – Negative (minus) sense clock output for Source Synchronous group A, B.  
Input – Initiates source synchronous calibration sequence.  
1. m, w, x, y and z are variables.  
2. Not on ispGDX2-64  
ispGDX2-64 Power Supply and NC Connections1  
Signal  
ispGDX2-64 (100-Ball fpBGA)2  
V
V
V
V
V
V
V
V
V
V
V
A1, K10  
CC  
J7  
CCO0  
CCO1  
CCO2  
CCO3  
CCO4  
CCO5  
CCO6  
CCO7  
CCJ  
F10  
E10  
B7  
B4  
E1  
F1  
K4  
K1  
G6  
CCP0  
GND  
GND  
G5  
P0  
A10, B9, C8, E6, E5, F6, F5, H3, J2  
1. All grounds must be electrically connected at the board level.  
2. Pin orientation A1 starts from the upper left corner of the top  
side view with alphabetical order ascending vertically and  
numerical order ascending horizontally.  
51  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2 Power Supply and NC Connections1  
Signal  
ispGDX2-128 (208-Ball fpBGA)3  
ispGDX2-256 (484-Ball fpBGA)3  
V
B15, C14, R15, B2, C3, P3, R2,  
AA3, AA20, B3, B20, C2, C11, C12, C21, H9, H10, H11,  
H12, H13, H14, J8, J15, K8, K15, L8, L15, L20, M3, M8,  
M15, M20, N8, N15, P8, P15, R9, R10, R11, R12, R13,  
R14, Y2, Y11, Y12, Y21  
CC  
V
V
V
V
V
V
V
V
V
V
V
N11, T12  
L13, M16  
E16, F13  
A12, D11  
A5, D6  
E1, F4  
L4, M1  
N6, T5  
P14  
AA14, AB20, Y17  
P21, U20, Y22  
C22, E20, J21  
A20, B14, C17  
A3, B9, C6  
C1, F3, J2  
P2, U3, Y1  
AA9, AB3, Y6  
L3  
CCO0  
CCO1  
CCO2  
CCO3  
CCO4  
CCO5  
CCO6  
CCO7  
CCJ  
J1  
K1  
CCP0  
CCP1  
J16  
N22  
GND  
GND  
GND  
H1  
J1  
P0  
P1  
H16  
K22  
A16, D13, H15, J15, N13, T16, A1, B9, B8, D4, H2, J2, A2, A11, A12, A21, A1, A22, AA1, AA2, AA11, AA12,  
N4, R8, R9, T1, G7, G8, G9, G10, H7, H8, H9, H10, J7, AA21, AA22, AB1, AB2, AB11, AB12, AB21, AB22, B1,  
J8, J9, J10, K7, K8, K9, K10  
B2, B11, B12, B21, B22, C3, C20, D4, D19, E5, E18, F6,  
F17, G7, G16, H8, H15, J9, J10, J11, J12, J13, J14, K9,  
K10, K11, K12, K13, K14, L1, L2, L7, L9, L10, L11, L12,  
L13, L14,L16, L21, L22, M1, M2, M7, M9, M10, M11,  
M12,M13, M14, M16, M21, M22, N9, N10, N11, N12,  
N13, N14, P9, P10, P11, P12, P13, P14, R8, R15, T7,  
T16, U6, U17, V5, V18, W4, W19,Y3, Y20  
NC2  
A11, B16  
D8, D11, E6, E7, E8, E9, E12, E13, E14, E15, E16, F7,  
F16, G5, G6, G18, G19, H19, K4, K19, L19, M4, M19,  
N4, P4, P19, R4, R18, T4, T5, T17, T18, U5, U7, U16, V7,  
V8, V9, V10, V11, V12, V15, V16, V17, W14, Y18  
1. All grounds must be electrically connected at the board level.  
2. NC pins should not be connected to any active signals, V or GND.  
CC  
3. Pin orientation A1 starts from the upper left corner of the top side view with alphabetical order ascending vertically and numerical order  
ascending horizontally.  
52  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2-64 Logic Signal Connections  
sysIO  
LVDS  
GDX  
SERDES Mode  
SERDES Mode  
I/O Cell2  
FIFO Mode I/O  
Cell/Pin3  
100  
Signal Name  
GOE0  
Bank Pair/Polarity Block MRB  
I/O Pin1  
fpBGA  
-
-
-
-
0
1
-
-
-
-
H6  
J6  
BK0_IO0/PLL_LOCK0  
BK0_IO1  
GND  
0
0
0
0
0
0
0
0
0
0
0
-
0N  
0P  
-
0A  
0A  
-
-
-
FIFO0_FULL  
HSI0A_CDRRSTb  
-
FIFO0_FIFORSTb  
K6  
-
-
-
-
-
-
GND  
G7  
BK0_IO2  
BK0_IO3  
GND  
1N  
1P  
-
0A  
0A  
-
2
3
-
HSI0A_SINN  
HSI0A_RECCLK  
HSI0A_SINP  
-
-
H7  
-
GND  
K7  
BK0_IO4/PLL_RST0  
BK0_IO5  
BK0_IO6  
BK0_IO7  
GND  
2N  
2P  
3N  
3P  
-
0A  
0A  
0A  
0A  
-
4
5
6
7
-
-
HSI0A_RXD0/TXD0 FIFO0_DIN0/DOUT0  
HSI0A_RXD1/TXD1 FIFO0_DIN1/DOUT1  
HSI0A_RXD2/TXD2 FIFO0_DIN2/DOUT2  
HSI0A_RXD3/TXD3 FIFO0_DIN3/DOUT3  
-
K8  
-
J8  
Note 4  
K9  
-
-
-
-
-
-
-
GND  
J10  
J9  
TCK  
-
-
-
-
RESETb  
-
-
-
-
-
BK1_IO0/PLL_FBK0  
BK1_IO1  
BK1_IO2  
BK1_IO3/VREF(0,1)  
GND  
1
1
1
1
1
1
1
1
1
1
-
4P  
4N  
5P  
5N  
-
0A  
0A  
0A  
0A  
-
8
9
10  
11  
-
HSI0A_SYDT5  
HSI0A_RXD4/TXD4 FIFO0_DIN4/DOUT4  
HSI0A_RXD5/TXD5 FIFO0_DIN5/DOUT5  
HSI0A_RXD6/TXD6 FIFO0_DIN6/DOUT6  
HSI0A_RXD7/TXD7 FIFO0_DIN7/DOUT7  
H10  
H9  
-
-
H8  
FIFO0_STRDb6  
G10  
GND  
G9  
-
-
-
BK1_IO4  
BK1_IO5  
GND  
6P  
6N  
0A  
0A  
12  
13  
HSI0A_SOUTP  
HSI0A_RXD8/TXD8 FIFO0_DIN8/DOUT8  
HSI0A_RXD9/TXD9 FIFO0_DIN9/DOUT9  
HSI0A_SOUTN  
G8  
-
-
-
GND  
F9  
BK1_IO6  
BK1_IO7  
GCLK/CE2  
GCLK/CE3  
BK2_IO0  
BK2_IO1  
GND  
7P  
7N  
0A  
0A  
-
14  
15  
-
SS_CLKIN1P  
HSI0A_SYDT5  
-
SS_CLKIN1N  
-
FIFO0_ EMPTY  
F8  
CLK2P  
CLK2N  
8N  
-
-
-
F7  
-
-
-
-
-
-
E7  
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
0B  
0B  
-
0
SS_CLKOUT0N  
-
FIFO1_FULL  
E8  
8P  
1
SS_CLKOUT0P  
-
FIFO1_EMPTY  
E9  
-
-
-
-
-
GND  
D8  
BK2_IO2  
BK2_IO3  
GND  
9N  
0B  
0B  
-
2
HSI0B_SOUTN  
HSI0BA_SYDT5  
HSI0B_RXD0/TXD0  
-
-
9P  
3
HSI0B_SOUTP  
FIFO1_DIN0  
-
D9  
-
-
-
GND  
D10  
C9  
BK2_IO4/V  
BK2_IO5  
BK2_IO6  
BK2_IO7  
BK3_IO0  
BK3_IO1  
BK3_IO2  
BK3_IO3  
GND  
(2,3)  
10N  
10P  
11N  
11P  
12P  
12N  
13P  
13N  
-
0B  
0B  
0B  
0B  
0B  
0B  
0B  
0B  
-
4
-
HSI0B_RXD1/TXD1 FIFO1_DIN1/DOUT1  
HSI0B_RXD2/TXD2 FIFO1_DIN2/DOUT2  
HSI0B_RXD3/TXD3 FIFO1_DIN3/DOUT3  
HSI0B_RXD4/TXD4 FIFO1_DIN4/DOUT4  
HSI0B_RXD5/TXD5 FIFO1_DIN5/DOUT5  
HSI0B_RXD6/TXD6 FIFO1_DIN6/DOUT6  
HSI0B_RXD7/TXD7 FIFO1_DIN7/DOUT7  
HSI0B_RXD8/TXD8 FIFO1_DIN8/DOUT8  
REF  
5
-
6
HSI0_CSLOCK  
Note 4  
C10  
B10  
A9  
7
8
-
9
HSI0B_SYDT5  
B8  
10  
11  
-
A8  
-
A7  
-
-
-
GND  
C7  
BK3_IO4  
BK3_IO5  
GND  
14P  
14N  
-
0B  
0B  
-
12  
13  
-
HSI0B_SINP  
HSI0B_SINN  
-
HSI0B_RXD9/TXD9 FIFO1_DIN9/DOUT9  
HSI0B_RECCLK  
-
D7  
-
-
-
-
GND  
B6  
BK3_IO6  
15P  
15N  
0B  
0B  
14  
FIFO1_STRDb6  
-
BK3_IO7/CLK_OUT0  
15 HSI0B_CDRRSTb  
FIFO1_FIFORSTb  
C6  
53  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2-64 Logic Signal Connections (Continued)  
sysIO  
LVDS  
GDX  
SERDES Mode  
SERDES Mode  
FIFO Mode I/O  
Cell/Pin3  
100  
fpBGA  
Signal Name  
Bank Pair/Polarity Block MRB  
I/O Pin1  
I/O Cell2  
SEL0  
SEL1  
-
-
-
-
-
-
-
-
D6  
D5  
-
-
-
-
-
-
BK4_IO0/CLK_OUT2  
BK4_IO1  
GND  
4
4
4
4
4
4
4
4
4
4
-
16N  
16P  
-
1A7  
1A7  
-
1A7  
1A7  
0
1
-
HSI1A_CDRRSTb  
FIFO2_STRDb6  
-
FIFO2_FIFORSTb  
C5  
-
-
-
-
B5  
-
-
GND  
D4  
BK4_IO2  
BK4_IO3  
GND  
17N  
17P  
2
3
HSI1A_SINN  
HSI1A_RECCLK  
HSI1A_SINP  
HSI1A_RXD9/TXD9 FIFO2_DIN9/DOUT9  
C4  
-
-
-
GND  
A6  
BK4_IO4  
BK4_IO5  
BK4_IO6  
BK4_IO7  
TMS  
18N  
18P  
19N  
19P  
1A7  
1A7  
1A7  
1A7  
-
4
5
-
HSI1A_RXD8/TXD8 FIFO2_DIN8/DOUT8  
HSI1A_RXD7/TXD7 FIFO2_DIN7/DOUT7  
HSI1A_RXD6/TXD6 FIFO2_DIN6/DOUT6  
HSI1A_RXD5/TXD5 FIFO2_DIN5/DOUT5  
CAL  
HSI1A_SYDT5  
A5  
6
A4  
7
-
A3  
-
-
-
-
-
-
-
-
-
-
-
-
B3  
TDI  
-
-
-
-
-
-
A2  
GND  
-
-
-
-
GND  
B1  
TDO  
-
-
-
-
-
TOE  
-
-
-
-
-
B2  
BK5_IO0  
BK5_IO1  
BK5_IO2  
BK5_IO3/Vref(4,5)  
GND  
5
5
5
5
5
5
5
5
5
5
-
20P  
20N  
21P  
21N  
-
1A7  
1A7  
1A7  
1A7  
-
1A7  
1A7  
-
8
Note 4  
HSI1A_RXD4/TXD4 FIFO2_DIN4/DOUT4  
HSI1A_RXD3/TXD3 FIFO2_DIN3/DOUT3  
HSI1A_RXD2/TXD2 FIFO2_DIN2/DOUT2  
HSI1A_RXD1/TXD1 FIFO2_DIN1/DOUT1  
C1  
9
HSI1_CSLOCK  
C2  
10  
11  
-
-
C3  
-
D1  
-
-
-
GND  
D3  
BK5_IO4  
BK5_IO5  
GND  
22P  
22N  
-
12  
13  
HSI1A_SOUTP  
HSI1A_RXD0/TXD0 FIFO2_DIN0/DOUT0  
HSI1A_SOUTN  
HSI1A_SYDT5  
-
D2  
-
-
-
GND  
E2  
BK5_IO6  
BK5_IO7  
GCLK/CE0  
GCLK/CE1  
BK6_IO0  
BK6_IO1  
GND  
23P  
23N  
CLK0P  
CLK0N  
24N  
24P  
-
1A7  
1A7  
-
14  
15  
-
SS_CLKIN1P  
-
FIFO2_EMPTY  
SS_CLKIN1N  
-
FIFO2_FULL  
E3  
-
-
-
E4  
-
-
-
-
-
-
F4  
6
6
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
1B  
1B  
-
0
SS_CLKOUT1N  
-
FIFO3_EMPTY  
F3  
1
SS_CLKOUT1P  
HSI1B_SYDT5  
-
-
F2  
-
-
-
GND  
G3  
G2  
GND  
G1  
H1  
BK6_IO2  
BK6_IO3  
GND  
25N  
25P  
-
1B  
1B  
-
2
HSI1B_SOUTN  
HSI1B_RXD9/TXD9 FIFO3_DIN9/DOUT9  
HSI1B_RXD8/TXD8 FIFO3_DIN8/DOUT8  
3
HSI1B_SOUTP  
-
-
-
-
BK6_IO4/Vref(Bank6,7)  
BK6_IO5  
BK6_IO6  
BK6_IO7/PLL_FBK2  
BK7_IO0  
BK7_IO1  
BK7_IO2  
BK7_IO3/PLL_RST2  
GND  
26N  
26P  
27N  
27P  
28P  
28N  
29P  
29N  
-
1B  
1B  
1B  
1B  
1B  
1B  
1B  
1B  
-
4
FIFO3_STRDb6  
HSI1B_RXD7/TXD7 FIFO3_DIN7/DOUT7  
HSI1B_RXD6/TXD6 FIFO3_DIN6/DOUT6  
HSI1B_RXD5/TXD5 FIFO3_DIN5/DOUT5  
HSI1B_RXD4/TXD4 FIFO3_DIN4/DOUT4  
HSI1B_RXD3/TXD3 FIFO3_DIN3/DOUT3  
HSI1B_RXD2/TXD2 FIFO3_DIN2/DOUT2  
HSI1B_RXD1/TXD1 FIFO3_DIN1/DOUT1  
HSI1B_RXD0/TXD0 FIFO3_DIN0/DOUT0  
5
-
6
-
H2  
7
HSI1B_SYDT5  
J1  
8
Note 4  
J3  
9
-
K2  
10  
11  
-
-
J4  
-
K3  
-
-
-
-
-
GND  
G4  
H4  
BK7_IO4  
BK7_IO5  
30P  
30N  
1B  
1B  
12  
13  
HSI1B_SINP  
HSI1B_SINN  
-
HSI1B_RECCLK  
54  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2-64 Logic Signal Connections (Continued)  
sysIO  
LVDS  
GDX  
SERDES Mode  
SERDES Mode  
FIFO Mode I/O  
Cell/Pin3  
100  
fpBGA  
Signal Name  
Bank Pair/Polarity Block MRB  
I/O Pin1  
I/O Cell2  
GND  
7
7
7
7
-
-
-
-
-
-
-
-
-
FIFO3_FIFORSTb  
FIFO3_FULL  
-
GND  
K5  
BK7_IO6  
31P  
31N  
-
1B  
1B  
-
14 HSI1B_CDRRSTb  
BK7_IO7/PLL_LOCK2  
GOE1  
15  
-
-
-
J5  
H5  
1. The signals in this column route to/from the assigned pins of the associated I/O cell.  
2. The signals in this column use the I/O cell. If a receiver signal is present in the I/O cell, the associated pin is available for output only. When  
transmit data (TXD) is present in the cell, the associated pin is available for input only.  
3. The DOUT outputs are routed to GRP through the input register of the cell and the DIN inputs are routed direct from the associated pins in  
FIFO only mode. In SERDES with FIFO mode, the FULL and EMPTY flags are routed to the associated pins through the output MUX and  
the pins.  
4. If the Source Synchronous Receiver is used in the HSI Block, this pin is unavailable for another use and must be left unconnected.  
5. The SYDT signal has two routing options. If direct output through the dedicated pin is used, the I/O cell (the whole HSI Block) is not avail-  
able for transmitter. The SYDT in the I/O Cell column is routed to the GRP through the input register of the cell and frees the I/O cell for  
transmitter.  
6. FIFO_STRDb flag output is used in SERDES with FIFO Mode only.  
7. sysHSI Source Synchronous Receive Mode is not available for channel 1A.  
55  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2-128 Logic Signal Connections  
sysIO  
LVDS  
GDX  
SERDES Mode  
SERDES Mode  
I/O Cell2  
FIFO Mode I/O  
Cell/Pin3  
208  
fpBGA  
Signal Name  
Bank Pair/Polarity Block MRB  
I/O Pin1  
TOE  
-
-
-
-
-
-
-
-
-
-
P8  
P9  
BK0_IO0  
BK0_IO1  
0
0
0N  
0P  
0A  
0A  
0
1
FIFO0A_FULL  
-
T10  
BK0_IO2 / PLL_LOCK2 /  
PLL_RST2  
0
1N  
1P  
0A  
2
-
-
-
R10  
BK0_IO3  
GND  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
0A  
-
3
-
-
HSI0A_SYDT5  
-
FIFO0A_ EMPTY  
-
T11  
-
GND  
BK0_IO4  
BK0_IO5  
BK0_IO6  
BK0_IO7  
BK0_IO8  
BK0_IO9 / PLL_FB2  
BK0_IO10  
BK0_IO11  
GND  
2N  
2P  
3N  
3P  
4N  
4P  
5N  
5P  
0A  
0A  
4
HSI0A_SINN  
HSI0A_RXD0/TXD0 FIFO0A_DIN0/DOUT0 P10  
HSI0A_RXD1/TXD1 FIFO0A_DIN1/DOUT1 N10  
HSI0A_RXD2/TXD2 FIFO0A_DIN2/DOUT2 R11  
HSI0A_RXD3/TXD3 FIFO0A_DIN3/DOUT3 T13  
HSI0A_RXD4/TXD4 FIFO0A_DIN4/DOUT4 P11  
HSI0A_RXD5/TXD5 FIFO0A_DIN5/DOUT5 R12  
HSI0A_RXD6/TXD6 FIFO0A_DIN6/DOUT6 P12  
HSI0A_RXD7/TXD7 FIFO0A_DIN7/DOUT7 N12  
5
HSI0A_SINP  
6
-
0A  
0A  
0A  
0A  
0A  
-
7
-
8
Note 4  
9
-
10  
11  
-
HSI0A_SOUTN  
HSI0A_SOUTP  
-
-
-
GND  
BK0_IO12  
BK0_IO13  
BK0_IO14  
BK0_IO15 / VREF0  
GOE3  
6N  
6P  
7N  
7P  
0A  
0A  
0A  
0A  
-
12  
13  
-
HSI0A_RXD8/TXD8 FIFO0A_DIN8/DOUT8 T14  
HSI0A_RXD9/TXD9 FIFO0A_DIN9/DOUT9 R13  
HSI0A_SYDT5  
14 HSI0A_CDRRSTb  
HSI0A_RECCLK  
FIFO0A_FIFORSTb  
T15  
P13  
T9  
15  
-
FIFO0A_STRDb6  
-
-
-
-
-
TDO  
-
-
-
-
-
-
R16  
GND  
N14  
GND  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
-
-
-
-
-
-
BK1_IO0 / VREF1  
BK1_IO1  
BK1_IO2  
BK1_IO3  
BK1_IO4  
BK1_IO5  
BK1_IO6  
BK1_IO7  
BK1_IO8  
BK1_IO9  
BK1_IO10  
BK1_IO11  
GND  
8P  
8N  
0B  
0B  
0B  
0B  
0B  
0B  
0B  
0B  
0B  
0B  
0B  
0B  
-
0
-
HSI0B_SYDT5  
FIFO0B_FULL  
1
-
HSI0B_RXD0/TXD0 FIFO0B_DIN0/DOUT0 P15  
HSI0B_RXD1/TXD1 FIFO0B_DIN1/DOUT1 N15  
HSI0B_RXD2/TXD2 FIFO0B_DIN2/DOUT2 L14  
HSI0B_RXD3/TXD3 FIFO0B_DIN3/DOUT3 M14  
HSI0B_RXD4/TXD4 FIFO0B_DIN4/DOUT4 M13  
HSI0B_RXD5/TXD5 FIFO0B_DIN5/DOUT5 M15  
HSI0B_RXD6/TXD6 FIFO0B_DIN6/DOUT6 L15  
HSI0B_RXD7/TXD7 FIFO0B_DIN7/DOUT7 P16  
HSI0B_RXD8/TXD8 FIFO0B_DIN8/DOUT8 N16  
HSI0B_RXD9/TXD9 FIFO0B_DIN9/DOUT9 K14  
9P  
2
Note 4  
9N  
3
-
10P  
10N  
11P  
11N  
12P  
12N  
13P  
13N  
4
HSI0B_SOUTP  
HSI0B_SOUTN  
HSI0_CSLOCK  
HSI0B_SYDT5  
-
5
6
7
8
9
-
10  
11  
-
HSI0B_SINP  
HSI0B_SINN  
-
HSI0B_RECCLK  
-
K13  
GND  
K15  
L16  
J14  
J13  
N8  
-
-
-
BK1_IO12  
BK1_IO13  
BK1_IO14  
BK1_IO15 / CLK_OUT2  
GCLK/CE2  
SEL2  
14P  
14N  
15P  
15N  
0B  
0B  
0B  
0B  
-
12  
FIFO0B_STRDb6  
-
13 HSI0B_CDRRSTb  
-
FIFO0B_FIFORSTb  
14  
15  
-
SS_CLKIN1P  
-
-
SS_CLKIN1N  
-
FIFO0B_ EMPTY  
-
-
-
-
-
-
-
-
-
K16  
G16  
N9  
SEL3  
-
-
-
-
-
-
GCLK/CE3  
BK2_IO0  
BK2_IO1  
BK2_IO2  
-
-
-
-
-
-
2
2
2
16N  
16P  
17N  
1A7  
1A7  
1A7  
0
1
2
SS_CLKOUT1N  
SS_CLKOUT1P  
-
-
FIFO1A_FULL  
H13  
H14  
G15  
-
-
-
HSI1A_SYDT5  
56  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2-128 Logic Signal Connections (Continued)  
sysIO  
LVDS  
GDX  
SERDES Mode  
SERDES Mode  
FIFO Mode I/O  
Cell/Pin3  
208  
Signal Name  
BK2_IO3  
Bank Pair/Polarity Block MRB  
I/O Pin1  
I/O Cell2  
fpBGA  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
-
17P  
1A7  
-
3
-
-
HSI1A_RXD0/TXD0 FIFO1A_DIN0/DOUT0 F16  
GND  
GND  
-
-
-
BK2_IO4  
BK2_IO5  
BK2_IO6  
BK2_IO7  
BK2_IO8  
BK2_IO9  
BK2_IO10  
BK2_IO11  
GND  
18N  
18P  
19N  
19P  
20N  
20P  
21N  
21P  
1A7  
1A7  
1A7  
1A7  
1A7  
1A7  
1A7  
1A7  
-
1A7  
1A7  
1A7  
1A7  
-
4
HSI1A_SINN  
HSI1A_SINP  
HSI1_CSLOCK  
Note 4  
HSI1A_RXD1/TXD1 FIFO1A_DIN1/DOUT1 G13  
HSI1A_RXD2/TXD2 FIFO1A_DIN2/DOUT2 G14  
HSI1A_RXD3/TXD3 FIFO1A_DIN3/DOUT3 F14  
HSI1A_RXD4/TXD4 FIFO1A_DIN4/DOUT4 F15  
HSI1A_RXD5/TXD5 FIFO1A_DIN5/DOUT5 D16  
HSI1A_RXD6/TXD6 FIFO1A_DIN6/DOUT6 E15  
HSI1A_RXD7/TXD7 FIFO1A_DIN7/DOUT7 E13  
HSI1A_RXD8/TXD8 FIFO1A_DIN8/DOUT8 E14  
5
6
7
8
CAL  
9
-
10  
11  
-
HSI1A_SOUTN  
HSI1A_SOUTP  
-
-
-
GND  
BK2_IO12  
BK2_IO13  
BK2_IO14  
BK2_IO15 / VREF2  
TCK  
22N  
22P  
23N  
23P  
12  
HSI1A_SYDT5  
HSI1A_RXD9/TXD9 FIFO1A_DIN9/DOUT9 C16  
13 HSI1A_CDRRSTb  
HSI1A_RECCLK  
FIFO1A_FIFORSTb  
D15  
C15  
D14  
R14  
A9  
14  
15  
-
FIFO1A_STRDb6  
-
-
-
-
-
-
FIFO1A_EMPTY  
-
-
-
GOE2  
-
-
-
-
BK3_IO0 / VREF3  
BK3_IO1  
BK3_IO2  
BK3_IO3  
GND  
3
3
3
3
3
3
3
3
24P  
24N  
25P  
25N  
1B  
1B  
1B  
1B  
0
1
2
3
-
-
HSI1B_RXD0/TXD0 FIFO1B_DIN0/DOUT0 C13  
HSI1B_RXD1/TXD1 FIFO1B_DIN1/DOUT1 B14  
HSI1B_RXD2/TXD2 FIFO1B_DIN2/DOUT2 A15  
HSI1B_RXD3/TXD3 FIFO1B_DIN3/DOUT3 B13  
Note 4  
-
-
-
-
-
GND  
BK3_IO4  
BK3_IO5  
BK3_IO6  
BK3_IO7  
26P  
26N  
27P  
1B  
1B  
1B  
4
5
6
HSI1B_SOUTP  
HSI1B_SOUTN  
-
HSI1B_RXD4/TXD4 FIFO1B_DIN4/DOUT4 D12  
HSI1B_RXD5/TXD5 FIFO1B_DIN5/DOUT5 C12  
HSI1B_RXD6/TXD6 FIFO1B_DIN6/DOUT6 A14  
FIFO1B_DIN7/DOUT7  
3
27N  
1B  
7
-
HSI1B_RXD7/TXD7  
A13  
/ FIFO1B_STRDb  
BK3_IO8  
BK3_IO9  
BK3_IO10  
BK3_IO11  
GND  
3
3
3
3
3
3
3
3
3
-
28P  
28N  
29P  
29N  
1B  
1B  
1B  
1B  
-
8
9
-
HSI1B_RXD8/TXD8 FIFO1B_DIN8/DOUT8 B12  
HSI1B_RXD9/TXD9 FIFO1B_DIN9/DOUT9 C11  
HSI1B_SYDT5  
10  
11  
-
HSI1B_SINP  
HSI1B_RECCLK  
-
D10  
C10  
GND  
B11  
B10  
A10  
C9  
HSI1B_SINN  
-
-
-
-
-
-
BK3_IO12  
BK3_IO13  
BK3_IO14  
BK3_IO15  
RESET  
30P  
30N  
31P  
31N  
1B  
1B  
1B  
1B  
-
12  
HSI1B_SYDT5  
FIFO1B_FULL  
FIFO1B_FIFORSTb  
-
13 HSI1B_CDRRSTb  
-
-
-
-
-
14  
15  
-
-
-
-
-
FIFO1B_ EMPTY  
-
A7  
BK4_IO0  
4
32N  
32P  
2A  
0
FIFO2A_EMPTY  
C8  
BK4_IO1 / PLL_LOCK0 /  
PLL_RST0  
4
2A  
1
-
-
-
B7  
BK4_IO2  
BK4_IO3  
GND  
4
4
4
4
4
4
4
33N  
33P  
2A  
2A  
2
3
HSI2A_CDRRSTb  
-
FIFO2A_FIFORSTb  
A6  
B6  
-
HSI2A_SYDT5  
FIFO2A_FULL  
-
-
-
-
-
GND  
C7  
BK4_IO4  
BK4_IO5  
BK4_IO6  
BK4_IO7  
34N  
34P  
35N  
35P  
2A  
2A  
2A  
2A  
4
5
6
7
HSI2A_SINN  
HSI2A_SINP  
HSI2A_SYDT5  
-
-
HSI2A_RECCLK  
D7  
HSI2A_RXD9/TXD9 FIFO2A_DIN9/DOUT9 C6  
HSI2A_RXD8/TXD8 FIFO2A_DIN8/DOUT8 B5  
57  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2-128 Logic Signal Connections (Continued)  
sysIO  
LVDS  
GDX  
SERDES Mode  
SERDES Mode  
FIFO Mode I/O  
Cell/Pin3  
208  
Signal Name  
BK4_IO8  
Bank Pair/Polarity Block MRB  
I/O Pin1  
I/O Cell2  
fpBGA  
4
4
4
4
4
4
4
4
4
-
36N  
36P  
37N  
37P  
2A  
2A  
2A  
2A  
8
9
FIFO2A_STRDb6  
HSI2A_RXD7/TXD7 FIFO2A_DIN7/DOUT7 A4  
HSI2A_RXD6/TXD6 FIFO2A_DIN6/DOUT6 A3  
HSI2A_RXD5/TXD5 FIFO2A_DIN5/DOUT5 C5  
HSI2A_RXD4/TXD4 FIFO2A_DIN4/DOUT4 D5  
BK4_IO9 / PLL_FB0  
BK4_IO10  
BK4_IO11  
GND  
-
10  
11  
-
HSI2A_SOUTN  
HSI2A_SOUTP  
-
-
-
GND  
BK4_IO12  
BK4_IO13  
BK4_IO14  
BK4_IO15 / VREF4  
GOE1  
38N  
38P  
39N  
39P  
2A  
2A  
2A  
2A  
12  
13  
14  
15  
-
-
HSI2A_RXD3/TXD3 FIFO2A_DIN3/DOUT3 B4  
HSI2A_RXD2/TXD2 FIFO2A_DIN2/DOUT2 A2  
HSI2A_RXD1/TXD1 FIFO2A_DIN1/DOUT1 B3  
HSI2A_RXD0/TXD0 FIFO2A_DIN0/DOUT0 C4  
-
Note 4  
-
-
-
-
A8  
R1  
TMS  
-
-
-
-
-
-
GND  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
-
-
-
-
-
-
GND  
D3  
BK5_IO0 / VREF5  
BK5_IO1  
BK5_IO2  
BK5_IO3  
BK5_IO4  
BK5_IO5  
BK5_IO6  
BK5_IO7  
BK5_IO8  
BK5_IO9  
BK5_IO10  
BK5_IO11  
GND  
40P  
40N  
41P  
41N  
42P  
42N  
43P  
43N  
44P  
44N  
45P  
45N  
2B  
2B  
2B  
2B  
2B  
2B  
2B  
2B  
2B  
2B  
2B  
2B  
-
0
-
-
FIFO2B_EMPTY  
-
1
FIFO2B_STRDb6  
-
C2  
2
HSI2B_CDRRSTb  
HSI2B_SYDT5  
HSI2B_RECCLK  
FIFO2B_FIFORSTb  
D2  
3
HSI2B_RXD9/TXD9 FIFO2B_DIN9/DOUT9 B1  
HSI2B_RXD8/TXD8 FIFO2B_DIN8/DOUT8 E3  
HSI2B_RXD7/TXD7 FIFO2B_DIN7/DOUT7 E4  
HSI2B_RXD6/TXD6 FIFO2B_DIN6/DOUT6 F3  
HSI2B_RXD5/TXD5 FIFO2B_DIN5/DOUT5 E2  
HSI2B_RXD4/TXD4 FIFO2B_DIN4/DOUT4 F2  
HSI2B_RXD3/TXD3 FIFO2B_DIN3/DOUT3 C1  
HSI2B_RXD2/TXD2 FIFO2B_DIN2/DOUT2 G3  
HSI2B_RXD1/TXD1 FIFO2B_DIN1/DOUT1 G4  
4
HSI2B_SOUTP  
5
HSI2B_SOUTN  
6
-
7
-
8
Note 4  
9
HSI2_CSLOCK  
10  
11  
-
HSI2B_SINP  
HSI2B_SINN  
-
-
-
GND  
BK5_IO12  
BK5_IO13  
BK5_IO14  
BK5_IO15 / CLK_OUT0  
GCLK/CE0  
SEL0  
46P  
46N  
2B  
2B  
2B  
2B  
-
12  
13  
14  
15  
-
-
HSI2B_RXD0/TXD0 FIFO2B_DIN0/DOUT0 D1  
-
HSI2B_SYDT5  
-
G2  
H4  
H3  
D9  
F1  
47P  
SS_CLKIN0P  
-
-
47N  
SS_CLKIN0N  
-
FIFO2B_FULL  
CLK0P  
-
-
-
-
-
-
-
-
-
SEL1  
-
-
-
-
-
-
G1  
D8  
J4  
GCLK/CE1  
BK6_IO0  
BK6_IO1  
BK6_IO2  
BK6_IO3  
GND  
-
CLK0N  
48N  
-
-
-
-
-
6
6
6
6
6
6
6
6
6
6
6
6
6
3A  
3A  
3A  
3A  
-
0
SS_CLKOUT0N  
SS_CLKOUT0P  
HSI3A_CDRRSTb  
FIFO3A_STRDb6  
-
-
FIFO3A_EMPTY  
48P  
1
-
-
J3  
49N  
2
-
FIFO3A_FIFORSTb  
K1  
K2  
GND  
K4  
49P  
3
-
-
-
-
-
-
BK6_IO4  
BK6_IO5  
BK6_IO6  
BK6_IO7  
BK6_IO8  
BK6_IO9  
BK6_IO10  
BK6_IO11  
50N  
50P  
51N  
51P  
52N  
52P  
53N  
53P  
3A  
3A  
3A  
3A  
3A  
3A  
3A  
3A  
4
HSI3A_SINN  
HSI3A_SINP  
-
HSI3A_RECCLK  
5
HSI3A_RXD9/TXD9 FIFO3A_DIN9/DOUT9 K3  
HSI3A_RXD8/TXD8 FIFO3A_DIN8/DOUT8 L1  
HSI3A_RXD7/TXD7 FIFO3A_DIN7/DOUT7 L2  
HSI3A_RXD6/TXD6 FIFO3A_DIN6/DOUT6 N1  
HSI3A_RXD5/TXD5 FIFO3A_DIN5/DOUT5 M2  
HSI3A_RXD4/TXD4 FIFO3A_DIN4/DOUT4 M4  
HSI3A_RXD3/TXD3 FIFO3A_DIN3/DOUT3 M3  
6
7
-
8
HSI3A_SYDT5  
HSI3_CSLOCK  
HSI3A_SOUTN  
HSI3A_SOUTP  
9
10  
11  
58  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2-128 Logic Signal Connections (Continued)  
sysIO  
LVDS  
GDX  
SERDES Mode  
SERDES Mode  
FIFO Mode I/O  
Cell/Pin3  
208  
fpBGA  
Signal Name  
Bank Pair/Polarity Block MRB  
I/O Pin1  
I/O Cell2  
GND  
6
6
6
6
6
-
-
-
12  
13  
14  
15  
-
-
-
-
GND  
BK6_IO12  
BK6_IO13  
BK6_IO14  
BK6_IO15 / VREF6  
TDI  
54N  
54P  
55N  
55P  
3A  
3A  
3A  
3A  
-
-
HSI3A_RXD2/TXD2 FIFO3A_DIN2/DOUT2 L3  
HSI3A_RXD1/TXD1 FIFO3A_DIN1/DOUT1 N2  
HSI3A_RXD0/TXD0 FIFO3A_DIN0/DOUT0 P1  
Note 4  
-
-
HSI3A_SYDT5  
FIFO3A_ FULL  
P2  
N3  
-
-
-
GOE0  
-
-
-
-
-
-
T8  
GND  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
-
-
-
-
-
GND  
T2  
BK7_IO0 / VREF7  
BK7_IO1  
BK7_IO2  
BK7_IO3  
BK7_IO4  
BK7_IO5  
BK7_IO6  
BK7_IO7  
BK7_IO8  
BK7_IO9  
BK7_IO10  
BK7_IO11  
GND  
56P  
56N  
57P  
57N  
58P  
58N  
59P  
59N  
60P  
60N  
61P  
61N  
3B  
3B  
3B  
3B  
3B  
3B  
3B  
3B  
3B  
3B  
3B  
3B  
-
0
FIFO3B_STRDb6  
-
-
1
HSI3B_CDRRSTb  
HSI3B_SYDT5  
HSI3B_RECCLK  
FIFO3B_FIFORSTb  
R3  
2
HSI3B_RXD9/TXD9 FIFO3B_DIN9/DOUT9 P4  
HSI3B_RXD8/TXD8 FIFO3B_DIN8/DOUT8 T3  
HSI3B_RXD7/TXD7 FIFO3B_DIN7/DOUT7 N5  
HSI3B_RXD6/TXD6 FIFO3B_DIN6/DOUT6 P5  
HSI3B_RXD5/TXD5 FIFO3B_DIN5/DOUT5 R4  
HSI3B_RXD4/TXD4 FIFO3B_DIN4/DOUT4 T4  
HSI3B_RXD3/TXD3 FIFO3B_DIN3/DOUT3 R5  
HSI3B_RXD2/TXD2 FIFO3B_DIN2/DOUT2 P6  
HSI3B_RXD1/TXD1 FIFO3B_DIN1/DOUT1 N7  
HSI3B_RXD0/TXD0 FIFO3B_DIN0/DOUT0 P7  
3
-
4
HSI3B_SOUTP  
5
HSI3B_SOUTN  
6
-
7
Note 4  
8
-
9
-
10  
11  
-
HSI3B_SINP  
HSI3B_SINN  
-
-
-
-
-
-
-
GND  
R6  
BK7_IO12  
BK7_IO13  
BK7_IO14  
BK7_IO15  
62P  
62N  
63P  
63N  
3B  
3B  
3B  
3B  
12  
13  
14  
15  
HSI3B_SYDT5  
FIFO3B_ EMPTY  
-
-
-
-
T6  
-
R7  
FIFO3B_FULL  
T7  
1. The signals in this column route to/from the assigned pins of the associated I/O cell.  
2. The signals in this column use the I/O cell. If a receiver signal is present in the I/O cell, the associated pin is available for output only. When  
transmit data (TXD) is present in the cell, the associated pin is available for input only.  
3. The DOUT outputs are routed to GRP through the input register of the cell and the DIN inputs are routed direct from the associated pins in  
FIFO only mode. In SERDES with FIFO mode, the FULL and EMPTY flags are routed to the associated pins through the output MUX and  
the pins.  
4. If the Source Synchronous Receiver is used in the HSI Block, this pin is unavailable for another use and must be left unconnected.  
5. The SYDT signal has two routing options. If direct output through the dedicated pin is used, the I/O cell (the whole HSI Block) is not avail-  
able for transmitter. The SYDT in the I/O Cell column is routed to the GRP through the input register of the cell and frees the I/O cell for  
transmitter.  
6. FIFO_STRDb flag output is used in SERDES with FIFO Mode only.  
7. sysHSI Source Synchronous Receive Mode is not available for channel 1A.  
59  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2-256 Logic Signal Connections  
Signal  
Name  
sysIO  
Bank  
LVDS  
GDX  
SERDES Mode  
SERDES Mode  
I/O Cell2  
FIFO Mode I/O  
Cell/Pin3  
484  
fpBGA  
Pair/Polarity Block MRB  
I/O Pin1  
BK0_IO0  
BK0_IO1  
0
0
0N  
0P  
0A  
0A  
0
1
-
-
-
-
FIFO0A_FULL  
-
AB13  
AA13  
BK0_IO2/  
PLL_LOCK2  
0
1N  
0A  
2
-
-
-
V13  
BK0_IO3  
GND  
0
0
0
0
0
0
0
1P  
-
0A  
-
3
-
-
-
FIFO0A_ EMPTY  
-
V14  
GND  
U12  
U13  
W12  
Y13  
-
SYDT_HSI0A5  
BK0_IO4  
BK0_IO5  
BK0_IO6  
BK0_IO7  
BK0_IO8  
2N  
2P  
3N  
3P  
4N  
0A  
0A  
4
5
6
7
8
HSI0A_SINN  
HSI0A_RXD0/TXD0  
HSI0A_RXD1/TXD1  
HSI0A_RXD2/TXD2  
HSI0A_RXD3/TXD3  
HSI0A_RXD4/TXD4  
FIFO0A_DIN0/DOUT0  
FIFO0A_DIN1/DOUT1  
FIFO0A_DIN2/DOUT2  
FIFO0A_DIN3/DOUT3  
FIFO0A_DIN4/DOUT4  
HSI0A_SINP  
-
0A  
0A  
-
Note 4  
W13  
BK0_IO9/  
PLL_FB2  
0
4P  
0A  
9
-
HSI0A_RXD5/TXD5  
FIFO0A_DIN5/DOUT5  
Y14  
BK0_IO10  
BK0_IO11  
GND  
0
0
0
0
0
0
0
0
5N  
5P  
-
0A  
0A  
-
10  
11  
-
HSI0A_SOUTN  
HSI0A_RXD6/TXD6  
FIFO0A_DIN6/DOUT6  
FIFO0A_DIN7/DOUT7  
-
T12  
T13  
HSI0A_SOUTP  
HSI0A_RXD7/TXD7  
-
-
GND  
AB14  
AB15  
Y15  
BK0_IO12  
BK0_IO13  
BK0_IO14  
BK0_IO15  
BK0_IO16  
6N  
6P  
7N  
7P  
8N  
0A  
0A  
0A  
0A  
1A  
12  
13  
14  
15  
0
-
HSI0A_RXD8/TXD8  
FIFO0A_DIN8/DOUT8  
FIFO0A_DIN9/DOUT9  
FIFO0A_FIFORSTb  
-
HSI0A_SYDT5  
HSI0A_CDRRSTb  
FIFO0A_STRDb6  
-
HSI0A_RXD9/TXD9  
HSI0A_RECCLK  
-
-
W15  
AA15  
FIFO1A_FULL  
BK0_IO17/  
PLL_RST2  
0
8P  
1A  
1
-
-
-
AA16  
BK0_IO18  
BK0_IO19  
GND  
0
0
0
0
9N  
9P  
-
1A  
1A  
-
2
3
-
-
HSI1A_SYDT5  
HSI1A_RXD0/TXD0  
-
-
Y16  
W16  
GND  
U14  
-
FIFO1A_DIN0/DOUT0  
-
-
BK0_IO20  
10N  
1A  
4
HSI1A_SOUTN  
HSI1A_RXD1/TXD1  
FIFO1A_DIN1/DOUT1  
BK0_IO21/  
VREF0  
0
10P  
1A  
5
HSI1A_SOUTP  
HSI1A_RXD2/TXD2  
FIFO1A_DIN2/DOUT2  
U15  
BK0_IO22  
BK0_IO23  
BK0_IO24  
BK0_IO25  
BK0_IO26  
BK0_IO27  
BK0_IO28  
BK0_IO29  
BK0_IO30  
BK0_IO31  
GND  
0
0
0
0
0
0
0
0
0
0
0
-
11N  
11P  
12N  
12P  
13N  
13P  
14N  
14P  
15N  
15P  
-
1A  
1A  
1A  
1A  
1A  
1A  
1A  
1A  
1A  
1A  
-
6
7
-
HSI1A_RXD3/TXD3  
FIFO1A_DIN3/DOUT3  
AB16  
AB17  
AA17  
W17  
T14  
Note 4  
HSI1A_RXD4/TXD4  
FIFO1A_DIN4/DOUT4  
8
-
HSI1A_RXD5/TXD5  
FIFO1A_DIN5/DOUT5  
9
-
HSI1A_RXD6/TXD6  
FIFO1A_DIN6/DOUT6  
10  
11  
12  
13  
14  
15  
-
HSI1A_SINN  
HSI1A_RXD7/TXD7  
FIFO1A_DIN7/DOUT7  
HSI1A_SINP  
HSI1A_SYDT5  
HSI1A_CDRRSTb5  
FIFO1A_STRDb6  
HSI1A_RXD8/TXD8  
FIFO1A_DIN8/DOUT8  
T15  
HSI1A_RXD9/TXD9  
FIFO1A_DIN9/DOUT9  
AA18  
AB18  
W18  
Y19  
HSI1A_RECCLK  
FIFO1A_FIFORSTb  
-
-
-
-
FIFO1A_EMPTY  
-
-
-
GND  
AA19  
AB19  
GND  
W21  
W20  
V22  
GOE3  
-
-
-
-
-
-
TDO  
-
-
-
-
-
-
-
GND  
1
1
1
1
1
1
-
-
-
-
-
-
BK1_IO0  
BK1_IO1  
BK1_IO2  
BK1_IO3  
BK1_IO4  
16P  
16N  
17P  
17N  
18P  
0B  
0B  
0B  
0B  
0B  
0
-
-
FIFO0B_ FULL  
-
1
-
-
HSI0B_SYDT5  
HSI0B_RXD0/TXD0  
HSI0B_RXD1/TXD1  
HSI0B_RXD2/TXD2  
2
FIFO0B_DIN0/DOUT0  
FIFO0B_DIN1/DOUT1  
FIFO0B_DIN2/DOUT2  
3
Note 4  
HSI0B_SINP  
W22  
P16  
4
60  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2-256 Logic Signal Connections (Continued)  
Signal  
Name  
sysIO  
Bank  
LVDS  
GDX  
SERDES Mode  
SERDES Mode  
FIFO Mode I/O  
Cell/Pin3  
484  
fpBGA  
Pair/Polarity Block MRB  
I/O Pin1  
I/O Cell2  
BK1_IO5  
BK1_IO6  
BK1_IO7  
BK1_IO8  
BK1_IO9  
1
1
1
1
1
18N  
19P  
19N  
20P  
20N  
0B  
0B  
0B  
0B  
0B  
5
6
7
8
9
HSI0B_SINN  
HSI0B_RXD3/TXD3  
HSI0B_RXD4/TXD4  
HSI0B_RXD5/TXD5  
HSI0B_RXD6/TXD6  
HSI0B_RXD7/TXD7  
FIFO0B_DIN3/DOUT3  
FIFO0B_DIN4/DOUT4  
FIFO0B_DIN5/DOUT5  
FIFO0B_DIN6/DOUT6  
FIFO0B_DIN7/DOUT7  
P17  
U18  
V19  
V20  
V21  
HSI0_CSLOCK  
-
-
HSI0B_SYDT5  
BK1_IO10/  
VREF1  
1
21P  
0B  
10  
HSI0B_SOUTP  
HSI0B_RXD8/TXD8  
FIFO0B_DIN8/DOUT8  
R16  
BK1_IO11  
GND  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
21N  
-
0B  
-
11  
-
HSI0B_SOUTN  
HSI0B_RXD9/TXD9  
FIFO0B_DIN9/DOUT9  
R17  
GND  
U19  
T19  
U21  
U22  
R19  
T20  
T21  
T22  
GND  
N16  
N17  
R20  
R21  
N19  
P20  
P18  
N18  
GND  
R22  
P22  
M18  
-
-
-
BK1_IO12  
BK1_IO13  
BK1_IO14  
BK1_IO15  
BK1_IO16  
BK1_IO17  
BK1_IO18  
BK1_IO19  
GND  
22P  
22N  
23P  
23N  
24P  
24N  
25P  
25N  
-
0B  
0B  
0B  
0B  
1B  
1B  
1B  
1B  
-
12  
13  
14  
15  
0
HSI0B_CDRRSTb  
FIFO0B_STRDb6  
HSI0B_RECCLK  
FIFO0B_FIFORSTb  
-
-
-
-
-
-
-
FIFO0B_EMPTY  
FIFO1B_FULL  
FIFO1B_DIN0/DOUT0  
FIFO1B_DIN1/DOUT1  
FIFO1B_DIN2/DOUT2  
-
-
HSI1B_SYDT5  
HSI1B_RXD0/TXD0  
HSI1B_RXD1/TXD1  
HSI1B_RXD2/TXD2  
-
1
-
2
Note 4  
3
-
-
-
BK1_IO20  
BK1_IO21  
BK1_IO22  
BK1_IO23  
BK1_IO24  
BK1_IO25  
BK1_IO26  
BK1_IO27  
GND  
26P  
26N  
27P  
27N  
28P  
28N  
29P  
29N  
1B  
1B  
1B  
1B  
1B  
1B  
1B  
1B  
-
4
HSI1B_SOUTP  
HSI1B_SOUTN  
HSI1_CSLOCK  
HSI1B_SYDT5  
-
HSI1B_RXD3/TXD3  
HSI1B_RXD4/TXD4  
HSI1B_RXD5/TXD5  
HSI1B_RXD6/TXD6  
HSI1B_RXD7/TXD7  
HSI1B_RXD8/TXD8  
HSI1B_RXD9/TXD9  
HSI1B_RECCLK  
-
FIFO1B_DIN3/DOUT3  
FIFO1B_DIN4/DOUT4  
FIFO1B_DIN5/DOUT5  
FIFO1B_DIN6/DOUT6  
FIFO1B_DIN7/DOUT7  
FIFO1B_DIN8/DOUT8  
FIFO1B_DIN9/DOUT9  
-
5
6
7
8
9
-
10  
11  
-
HSI1B_SINP  
HSI1B_SINN  
-
FIFO1B_STRDb6  
HSI1B_CDRRSTb  
SS_CLKIN1P  
-
BK1_IO28  
BK1_IO29  
BK1_IO30  
30P  
30N  
31P  
1B  
1B  
1B  
12  
13  
14  
-
-
-
FIFO1B_FIFORSTb  
-
-
BK1_IO31/  
CLK_OUT2  
1
31N  
1B  
15  
SS_CLKIN1N  
-
FIFO1B_EMPTY  
M17  
GCLK/CE2  
SEL2  
-
-
-
-
CLK2P  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
N20  
N21  
K21  
K20  
-
SEL3  
-
GCLK/CE3  
CLK2N  
BK2_IO0/  
CLK_OUT3  
2
32N  
3A7  
0
SS_CLKOUT1N  
-
FIFO3A_FULL  
K17  
BK2_IO1  
BK2_IO2  
BK2_IO3  
GND  
2
2
2
2
2
2
2
2
2
2
32P  
33N  
33P  
3A7  
3A7  
3A7  
-
3A7  
3A7  
3A7  
3A7  
3A7  
3A7  
1
2
3
-
SS_CLKOUT1P  
-
-
K18  
L17  
L18  
GND  
J17  
J18  
J22  
J20  
H22  
H21  
-
HSI3A_SYDT5  
-
-
HSI3A_RXD0/TXD0  
-
FIFO3A_DIN0/DOUT0  
-
-
HSI3A_SINN  
HSI3A_SINP  
HSI3_CSLOCK  
Note 4  
BK2_IO4  
BK2_IO5  
BK2_IO6  
BK2_IO7  
BK2_IO8  
BK2_IO9  
34N  
34P  
35N  
35P  
36N  
36P  
4
5
6
7
8
9
HSI3A_RXD1/TXD1  
HSI3A_RXD2/TXD2  
HSI3A_RXD3/TXD3  
HSI3A_RXD4/TXD4  
HSI3A_RXD5/TXD5  
HSI3A_RXD6/TXD6  
FIFO3A_DIN1/DOUT1  
FIFO3A_DIN2/DOUT2  
FIFO3A_DIN3/DOUT3  
FIFO3A_DIN4/DOUT4  
FIFO3A_DIN5/DOUT5  
FIFO3A_DIN6/DOUT6  
CAL  
-
61  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2-256 Logic Signal Connections (Continued)  
Signal  
Name  
sysIO  
Bank  
LVDS  
GDX  
SERDES Mode  
SERDES Mode  
FIFO Mode I/O  
Cell/Pin3  
484  
fpBGA  
Pair/Polarity Block MRB  
I/O Pin1  
I/O Cell2  
BK2_IO10  
BK2_IO11  
GND  
2
2
2
2
2
2
2
2
2
2
2
2
37N  
37P  
-
3A7  
3A7  
-
10  
11  
-
HSI3A_SOUTN  
HSI3A_RXD7/TXD7  
FIFO3A_DIN7/DOUT7  
K16  
J16  
HSI3A_SOUTP  
HSI3A_RXD8/TXD8  
FIFO3A_DIN8/DOUT8  
-
-
-
GND  
J19  
BK2_IO12  
BK2_IO13  
BK2_IO14  
BK2_IO15  
BK2_IO16  
BK2_IO17  
BK2_IO18  
BK2_IO19  
GND  
38N  
38P  
39N  
39P  
40N  
40P  
41N  
41P  
-
3A7  
3A7  
3A7  
3A7  
2A  
2A  
2A  
2A  
-
12  
13  
14  
15  
0
HSI3A_SYDT5  
HSI3A_RXD9/TXD9  
FIFO3A_DIN9/DOUT9  
HSI3A_CDRRSTb  
FIFO3A_STRDb6  
HSI3A_RECCLK  
FIFO3A_FIFORSTb  
H20  
G21  
G20  
G22  
F22  
F20  
F21  
GND  
-
-
-
-
FIFO3A_EMPTY  
-
-
FIFO2A_FULL  
1
-
HSI2A_SYDT5  
HSI2A_RXD0/TXD0  
HSI2A_RXD1/TXD1  
-
-
2
-
FIFO2A_DIN0/DOUT0  
FIFO2A_DIN1/DOUT1  
-
3
Note 4  
-
-
BK2_IO20/  
PLL_FB3  
2
2
42N  
42P  
2A  
2A  
4
5
HSI2A_SOUTN  
HSI2A_SOUTP  
HSI2A_RXD2/TXD2  
HSI2A_RXD3/TXD3  
FIFO2A_DIN2/DOUT2  
FIFO2A_DIN3/DOUT3  
H18  
G17  
BK2_IO21/  
VREF2  
BK2_IO22  
BK2_IO23  
BK2_IO24  
BK2_IO25  
BK2_IO26  
BK2_IO27  
BK2_IO28  
BK2_IO29  
BK2_IO30  
BK2_IO31  
GND  
2
2
2
2
2
2
2
2
2
2
2
-
43N  
43P  
44N  
44P  
45N  
45P  
46N  
46P  
47N  
47P  
-
2A  
2A  
2A  
2A  
2A  
2A  
2A  
2A  
2A  
2A  
-
6
7
HSI2_CSLOCK  
HSI2A_RXD4/TXD4  
HSI2A_RXD5/TXD5  
HSI2A_RXD6/TXD6  
HSI2A_RXD7/TXD7  
HSI2A_RXD8/TXD8  
HSI2A_RXD9/TXD9  
HSI2A_RECCLK  
-
FIFO2A_DIN4/DOUT4  
FIFO2A_DIN5/DOUT5  
FIFO2A_DIN6/DOUT6  
FIFO2A_DIN7/DOUT7  
FIFO2A_DIN8/DOUT8  
FIFO2A_DIN9/DOUT9  
FIFO2A_FIFORSTb  
-
E21  
F19  
E22  
D22  
H17  
H16  
E19  
F18  
D20  
D21  
GND  
B19  
C19  
E17  
D18  
A19  
A18  
GND  
G15  
G14  
D17  
D16  
C18  
B18  
-
8
-
9
HSI2A_SYDT5  
10  
11  
12  
13  
14  
15  
-
HSI2A_SINN  
HSI2A_SINP  
HSI2A_CDRRSTb  
FIFO2A_STRDb6  
-
-
-
-
-
FIFO2A_EMPTY  
-
-
-
TCK  
-
-
-
-
-
-
GOE2  
-
-
-
-
-
-
-
BK3_IO0  
BK3_IO1  
BK3_IO2  
BK3_IO3  
GND  
3
3
3
3
3
3
3
3
3
3
3
48P  
48N  
49P  
49N  
-
3B  
3B  
3B  
3B  
-
0
-
HSI3B_SYDT5  
HSI3B_RXD0/TXD0  
HSI3B_RXD1/TXD1  
HSI3B_RXD2/TXD2  
-
FIFO3B_FULL  
1
-
FIFO3B_DIN0/DOUT0  
FIFO3B_DIN1/DOUT1  
FIFO3B_DIN2/DOUT2  
-
2
Note 4  
3
-
-
-
BK3_IO4  
BK3_IO5  
BK3_IO6  
BK3_IO7  
BK3_IO8  
BK3_IO9  
50P  
50N  
51P  
51N  
52P  
52N  
3B  
3B  
3B  
3B  
3B  
3B  
4
HSI3B_SINP  
HSI3B_RXD3/TXD3  
HSI3B_RXD4/TXD4  
HSI3B_RXD5/TXD5  
HSI3B_RXD6/TXD6  
HSI3B_RXD7/TXD7  
HSI3B_RXD8/TXD8  
FIFO3B_DIN3/DOUT3  
FIFO3B_DIN4/DOUT4  
FIFO3B_DIN5/DOUT5  
FIFO3B_DIN6/DOUT6  
FIFO3B_DIN7/DOUT7  
FIFO3B_DIN8/DOUT8  
5
HSI3B_SINN  
6
-
7
HSI3B_SYDT5  
8
-
-
9
BK3_IO10/  
VREF3  
3
53P  
3B  
10  
HSI3B_SOUTP  
HSI3B_RXD9/TXD9  
FIFO3B_DIN9/DOUT9  
F15  
BK3_IO11  
GND  
3
3
3
3
53N  
-
3B  
-
11  
-
HSI3B_SOUTN  
-
FIFO3B_STRDb6  
HSI3B_RECCLK  
-
F14  
GND  
B17  
A17  
-
-
BK3_IO12  
BK3_IO13  
54P  
54N  
3B  
3B  
12  
13  
-
-
HSI3B_CDRRSTb  
HSI3B_RECCLK  
FIFO3B_FIFORSTb  
BK3_IO14/  
PLL_RST3  
3
55P  
3B  
14  
-
-
-
A16  
62  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2-256 Logic Signal Connections (Continued)  
Signal  
Name  
sysIO  
Bank  
LVDS  
GDX  
SERDES Mode  
SERDES Mode  
FIFO Mode I/O  
Cell/Pin3  
484  
fpBGA  
Pair/Polarity Block MRB  
I/O Pin1  
I/O Cell2  
BK3_IO15  
BK3_IO16  
BK3_IO17  
BK3_IO18  
BK3_IO19  
GND  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
55N  
56P  
56N  
57P  
57N  
-
3B  
2B  
2B  
2B  
2B  
-
15  
0
-
-
FIFO3B_EMPTY  
FIFO2B_DIN0/DOUT0  
FIFO2B_DIN1/DOUT1  
FIFO2B_DIN2/DOUT2  
FIFO2B_DIN3/DOUT3  
-
C16  
D15  
D14  
B16  
C15  
GND  
G13  
G12  
B15  
A15  
C14  
A14  
F13  
F12  
GND  
D13  
C13  
-
HSI2B_RXD0/TXD0  
HSI2B_RXD1/TXD1  
HSI2B_RXD2/TXD2  
HSI2B_RXD3/TXD3  
-
1
Note 4  
2
-
3
-
-
-
BK3_IO20  
BK3_IO21  
BK3_IO22  
BK3_IO23  
BK3_IO24  
BK3_IO25  
BK3_IO26  
BK3_IO27  
GND  
58P  
58N  
59P  
59N  
60P  
60N  
61P  
61N  
-
2B  
2B  
2B  
2B  
2B  
2B  
2B  
2B  
-
4
HSI2B_SOUTP  
HSI2B_RXD4/TXD4  
HSI2B_RXD5/TXD5  
HSI2B_RXD6/TXD6  
HSI2B_RXD7/TXD7  
HSI2B_RXD8/TXD8  
HSI2B_RXD9/TXD9  
HSI2B_RECCLK  
-
FIFO2B_DIN4/DOUT4  
FIFO2B_DIN5/DOUT5  
FIFO2B_DIN6/DOUT6  
FIFO2B_DIN7 /DOUT7  
FIFO2B_DIN8/DOUT8  
FIFO2B_DIN9/DOUT9  
-
5
HSI2B_SOUTN  
6
-
7
FIFO2B_STRDb6  
8
-
HSI2B_SYDT5  
HSI2B_SINP  
HSI2B_SINN  
-
9
10  
11  
-
-
-
-
BK3_IO28  
BK3_IO29  
62P  
62N  
2B  
2B  
12  
13  
-
HSI2B_SYDT5  
FIFO2B_FULL  
HSI2B_CDRRSTb  
-
FIFO2B_FIFORSTb  
BK3_IO30/  
3
63P  
63N  
2B  
14  
-
-
-
B13  
PLL_LOCK3  
BK3_IO31  
RESETb  
BK4_IO0  
3
-
2B  
-
15  
-
-
-
-
-
-
-
FIFO2B_ EMPTY  
A13  
D12  
A10  
-
4
64N  
64P  
4A  
0
FIFO4A_EMPTY  
BK4_IO1/  
PLL_LOCK0  
4
4A  
1
-
-
-
B10  
BK4_IO2  
BK4_IO3  
GND  
4
4
4
4
4
4
4
4
65N  
65P  
4A  
4A  
2
3
HSI4A_CDRRSTb  
-
FIFO4A_FIFORSTb  
E11  
E10  
GND  
F11  
F10  
C10  
C9  
-
-
HSI4A_SYDT5  
FIFO4A_FULL  
-
-
BK4_IO4  
BK4_IO5  
BK4_IO6  
BK4_IO7  
BK4_IO8  
66N  
66P  
67N  
67P  
68N  
4A  
4A  
4A  
4A  
4A  
4
5
6
7
8
HSI4A_SINN  
HSI4A_SINP  
HSI4A_SYDT5  
-
-
-
HSI4A_RECCLK  
HSI4A_RXD9/TXD9  
HSI4A_RXD8/TXD8  
HSI4A_RXD7/TXD7  
-
FIFO4A_DIN9/DOUT9  
FIFO4A_DIN8/DOUT8  
FIFO4A_DIN7 /DOUT7  
FIFO4A_STRDb6  
D10  
BK4_IO9/  
PLL_FB0  
4
68P  
4A  
9
-
HSI4A_RXD6/TXD6  
FIFO4A_DIN6/DOUT6  
D9  
BK4_IO10  
BK4_IO11  
GND  
4
4
4
4
4
4
4
4
69N  
69P  
4A  
4A  
10  
11  
-
HSI4A_SOUTN  
HSI4A_RXD5/TXD5  
HSI4A_RXD4/TXD4  
-
FIFO4A_DIN5/DOUT5  
FIFO4A_DIN4/DOUT4  
-
G11  
G10  
GND  
A9  
HSI4A_SOUTP  
-
BK4_IO12  
BK4_IO13  
BK4_IO14  
BK4_IO15  
BK4_IO16  
70N  
70P  
71N  
71P  
72N  
4A  
4A  
4A  
4A  
5A  
12  
13  
14  
15  
0
-
HSI4A_RXD3/TXD3  
HSI4A_RXD2/TXD2  
HSI4A_RXD1/TXD1  
HSI4A_RXD0/TXD0  
-
FIFO4A_DIN3/DOUT3  
FIFO4A_DIN2/DOUT2  
FIFO4A_DIN1/DOUT1  
FIFO4A_DIN0/DOUT0  
FIFO5A_EMPTY  
-
C8  
Note 4  
B8  
-
-
A8  
B7  
BK4_IO17/  
PLL_RST0  
4
72P  
5A  
1
-
-
-
C7  
BK4_IO18  
BK4_IO19  
GND  
4
4
4
4
73N  
73P  
-
5A  
5A  
-
2
3
-
HSI5A_CDRRSTb  
FIFO5A_STRDb6  
-
-
FIFO5A_FIFORSTb  
A7  
B6  
-
-
-
-
-
GND  
F9  
BK4_IO20  
74N  
5A  
4
HSI5A_SOUTN  
HSI5A_RECCLK  
63  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2-256 Logic Signal Connections (Continued)  
Signal  
Name  
sysIO  
Bank  
LVDS  
GDX  
SERDES Mode  
SERDES Mode  
FIFO Mode I/O  
Cell/Pin3  
484  
fpBGA  
Pair/Polarity Block MRB  
I/O Pin1  
I/O Cell2  
BK4_IO21/  
VREF4  
4
74P  
5A  
5
HSI5A_SOUTP  
HSI5A_RXD9/TXD9  
FIFO5A_DIN9/DOUT9  
F8  
BK4_IO22  
BK4_IO23  
BK4_IO24  
BK4_IO25  
BK4_IO26  
BK4_IO27  
BK4_IO28  
BK4_IO29  
BK4_IO30  
BK4_IO31  
GND  
4
4
4
4
4
4
4
4
4
4
4
-
75N  
75P  
76N  
76P  
77N  
77P  
78N  
78P  
79N  
79P  
5A  
5A  
5A  
5A  
5A  
5A  
5A  
5A  
5A  
5A  
-
6
7
-
HSI5A_RXD8/TXD8  
HSI5A_RXD7/TXD7  
HSI5A_RXD6/TXD6  
HSI5A_RXD5/TXD5  
HSI5A_RXD4/TXD4  
HSI5A_RXD3/TXD3  
HSI5A_RXD2/TXD2  
HSI5A_RXD1/TXD1  
HSI5A_RXD0/TXD0  
HSI5A_SYDT5  
-
FIFO5A_DIN8/DOUT8  
FIFO5A_DIN7/DOUT7  
FIFO5A_DIN6/DOUT6  
FIFO5A_DIN5/DOUT5  
FIFO5A_DIN4/DOUT4  
FIFO5A_DIN3/DOUT3  
FIFO5A_DIN2/DOUT2  
FIFO5A_DIN1/DOUT1  
FIFO5A_DIN0/DOUT0  
FIFO5A_FULL  
D7  
D6  
A6  
A5  
G9  
G8  
C5  
B5  
D5  
C4  
GND  
B4  
A4  
GND  
D2  
D3  
F5  
-
8
HSI5A_SYDT5  
9
-
10  
11  
12  
13  
14  
15  
-
HSI5A_SINN  
HSI5A_SINP  
-
Note 4  
-
-
-
-
GOE1  
-
-
-
-
TMS  
-
-
-
-
-
-
GND  
5
5
5
5
5
5
5
5
5
5
5
-
-
-
-
-
BK5_IO0  
BK5_IO1  
BK5_IO2  
BK5_IO3  
BK5_IO4  
BK5_IO5  
BK5_IO6  
BK5_IO7  
BK5_IO8  
BK5_IO9  
80P  
80N  
81P  
81N  
82P  
82N  
83P  
83N  
84P  
84N  
4B  
4B  
4B  
4B  
4B  
4B  
4B  
4B  
4B  
4B  
0
-
-
FIFO4B_EMPTY  
-
1
-
-
2
FIFO4B_STRDb6  
HSI4B_CDRRSTb  
HSI4B_SINP  
HSI4B_SINN  
HSI4B_SYDT5  
-
-
-
3
HSI4B_RECCLK  
HSI4B_RXD9/TXD9  
HSI4B_RXD8/TXD8  
HSI4B_RXD7/TXD7  
HSI4B_RXD6/TXD6  
HSI4B_RXD5/TXD5  
HSI4_RXD4/TXD4  
FIFO4B_FIFORSTb  
FIFO4B_DIN9/DOUT9  
FIFO4B_DIN8/DOUT8  
FIFO4B_DIN7/DOUT7  
FIFO4B_DIN6/DOUT6  
FIFO4B_DIN5/DOUT5  
FIFO4B_DIN4/DOUT4  
E4  
J7  
4
5
J6  
6
D1  
E1  
F4  
7
8
-
9
HSI4_CSLOCK  
E3  
BK5_IO10/  
VREF5  
5
85P  
4B  
10  
HSI4B_SOUTP  
HSI4B_RXD3/TXD3  
FIFO4B_DIN3/DOUT3  
H7  
BK5_IO11  
GND  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
85N  
-
4B  
-
11  
-
HSI4B_SOUTN  
HSI4B_RXD2/TXD2  
-
FIFO4B_DIN2/DOUT2  
-
H6  
GND  
E2  
-
BK5_IO12  
BK5_IO13  
BK5_IO14  
BK5_IO15  
BK5_IO16  
BK5_IO17  
BK5_IO18  
BK5_IO19  
GND  
86P  
86N  
87P  
87N  
88P  
88N  
89P  
89N  
-
4B  
4B  
4B  
4B  
5B  
5B  
5B  
5B  
-
12  
13  
14  
15  
0
Note 4  
HSI4B_RXD1/TXD1  
HSI4B_RXD0/TXD0  
HSI4B_SYDT5  
-
FIFO4B_DIN1/DOUT1  
FIFO4B_DIN0/DOUT0  
-
-
F2  
-
G4  
H5  
F1  
-
FIFO4B_FULL  
-
-
FIFO5B_EMPTY  
-
1
FIFO5B_STRDb6  
HSI5B_CDRRSTb  
HSI5B_SYDT5  
-
-
G1  
G3  
G2  
GND  
K7  
2
HSI5B_RECCLK  
HSI5B_RXD9/TXD9  
-
FIFO5B_FIFORSTb  
FIFO5B_DIN9/DOUT9  
-
3
-
BK5_IO20  
BK5_IO21  
BK5_IO22  
BK5_IO23  
BK5_IO24  
BK5_IO25  
BK5_IO26  
BK5_IO27  
90P  
90N  
91P  
91N  
92P  
92N  
93P  
93N  
5B  
5B  
5B  
5B  
5B  
5B  
5B  
5B  
4
HSI5B_SOUTP  
HSI5B_SOUTN  
-
HSI5B_RXD8/TXD8  
HSI5B_RXD7/TXD7  
HSI5B_RXD6/TXD6  
HSI5B_RXD5/TXD5  
HSI5B_RXD4/TXD4  
HSI5B_RXD3/TXD3  
HSI5B_RXD2/TXD2  
HSI5B_RXD1/TXD1  
FIFO5B_DIN8/DOUT8  
FIFO5B_DIN7/DOUT7  
FIFO5B_DIN6/DOUT6  
FIFO5B_DIN5/DOUT5  
FIFO5B_DIN4/DOUT4  
FIFO5B_DIN3/DOUT3  
FIFO5B_DIN2/DOUT2  
FIFO5B_DIN1/DOUT1  
5
K6  
6
H4  
H3  
H1  
H2  
J5  
7
-
8
Note 4  
9
HSI5_CSLOCK  
HSI5B_SINP  
HSI5B_SINN  
10  
11  
K5  
64  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2-256 Logic Signal Connections (Continued)  
Signal  
Name  
sysIO  
Bank  
LVDS  
GDX  
SERDES Mode  
SERDES Mode  
FIFO Mode I/O  
Cell/Pin3  
484  
fpBGA  
Pair/Polarity Block MRB  
I/O Pin1  
I/O Cell2  
GND  
5
5
5
5
-
-
-
-
-
HSI5B_RXD0/TXD0  
HSI5B_SYDT5  
-
-
GND  
J4  
BK5_IO28  
BK5_IO29  
BK5_IO30  
94P  
94N  
95P  
5B  
5B  
5B  
12  
13  
14  
-
FIFO5B_DIN0/DOUT0  
-
-
-
J3  
SS_CLKIN0P  
L6  
BK5_IO31/  
CLK_OUT0  
5
95N  
5B  
15  
SS_CLKIN0N  
-
FIFO5B_FULL  
L5  
GCLK/CE0  
SEL0  
-
-
-
-
CLK0P  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
L4  
K3  
K2  
N1  
-
SEL1  
-
GCLK/CE1  
CLK0N  
BK6_IO0/  
CLK_OUT1  
6
96N  
7A  
0
SS_CLKOUT0N  
-
FIFO7A_EMPTY  
N6  
BK6_IO1  
BK6_IO2  
BK6_IO3  
GND  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
96P  
97N  
97P  
-
7A  
7A  
7A  
-
1
2
SS_CLKOUT0P  
-
-
N5  
M5  
M6  
GND  
P6  
HSI7A_CDRRST  
FIFO7A_STRDb6  
-
FIFO7A_FIFORSTb  
3
-
-
-
-
-
-
BK6_IO4  
BK6_IO5  
BK6_IO6  
BK6_IO7  
BK6_IO8  
BK6_IO9  
BK6_IO10  
BK6_IO11  
GND  
98N  
98P  
99N  
99P  
100N  
100P  
101N  
101P  
-
7A  
7A  
7A  
7A  
7A  
7A  
7A  
7A  
-
4
HSI7A_SINN  
HSI7A_RECCLK  
HSI7A_RXD9/TXD9  
HSI7A_RXD8/TXD8  
HSI7A_RXD7/TXD7  
HSI7A_RXD6/TXD6  
HSI7A_RXD5/TXD5  
HSI7A_RXD4/TXD4  
HSI7A_RXD3/TXD3  
-
-
5
HSI7A_SINP  
FIFO7A_DIN9/DOUT9  
FIFO7A_DIN8/DOUT8  
FIFO7A_DIN7/DOUT7  
FIFO7A_DIN6/DOUT6  
FIFO7A_DIN5/DOUT5  
FIFO7A_DIN4/DOUT4  
FIFO7A_DIN3/DOUT3  
-
P5  
6
-
N3  
7
-
N2  
8
HSI7A_SYDT5  
P3  
9
HSI7_CSLOCK  
P1  
10  
11  
-
HSI7A_SOUTN  
N7  
HSI7A_SOUTP  
P7  
-
GND  
R3  
BK6_IO12  
BK6_IO13  
BK6_IO14  
BK6_IO15  
BK6_IO16  
BK6_IO17  
BK6_IO18  
BK6_IO19  
GND  
102N  
102P  
103N  
103P  
104N  
104P  
105N  
105P  
-
7A  
7A  
7A  
7A  
6A  
6A  
6A  
6A  
-
12  
13  
14  
15  
0
-
HSI7A_RXD2/TXD2  
HSI7A_RXD1/TXD1  
HSI7A_RXD0/TXD0  
HSI7A_SYDT5  
-
FIFO7A_DIN2/DOUT2  
FIFO7A_DIN1/DOUT1  
FIFO7A_DIN0/DOUT0  
FIFO7A_ FULL  
FIFO6A_EMPTY  
-
Note 4  
R2  
-
R1  
-
T1  
-
T2  
1
-
-
T3  
2
FIFO6A_STRDb6  
HSI6A_CDRRSTb  
-
-
-
U1  
3
HSI6_RECCLK  
-
FIFO6A_FIFORSTb  
-
U2  
-
GND  
BK6_IO20/  
PLL_FB1  
6
6
106N  
106P  
6A  
6A  
4
5
HSI6A_SOUTN  
HSI6A_RXD9/TXD9  
HSI6A_RXD8/TXD8  
FIFO6A_DIN9/DOUT9  
FIFO6A_DIN8/DOUT8  
R5  
T6  
BK6_IO21/  
VREF6  
HSI6A_SOUTP  
BK6_IO22  
BK6_IO23  
BK6_IO24  
BK6_IO25  
BK6_IO26  
BK6_IO27  
BK6_IO28  
BK6_IO29  
BK6_IO30  
BK6_IO31  
6
6
6
6
6
6
6
6
6
6
107N  
107P  
108N  
108P  
109N  
109P  
110N  
110P  
111N  
111P  
6A  
6A  
6A  
6A  
6A  
6A  
6A  
6A  
6A  
6A  
6
HSI6A_SYDT5  
HSI6A_RXD7/TXD7  
HSI6A_RXD6/TXD6  
HSI6A_RXD5/TXD5  
HSI6A_RXD4/TXD4  
HSI6A_RXD3/TXD3  
HSI6A_RXD2/TXD2  
HSI6A_RXD1/TXD1  
HSI6A_RXD0/TXD0  
HSI6A_SYDT5  
FIFO6A_DIN7/DOUT7  
FIFO6A_DIN6/DOUT6  
FIFO6A_DIN5/DOUT5  
FIFO6A_DIN4/DOUT4  
FIFO6A_DIN3/DOUT3  
FIFO6A_DIN2/DOUT2  
FIFO6A_DIN1/DOUT1  
FIFO6A_DIN0/DOUT0  
-
U4  
V4  
V3  
V2  
R6  
R7  
W1  
V1  
W2  
W3  
7
-
8
-
9
HSI6_CSLOCK  
10  
11  
12  
13  
14  
15  
HSI6A_SINN  
HSI6A_SINP  
Note 4  
-
-
-
-
FIFO6A_ FULL  
65  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2-256 Logic Signal Connections (Continued)  
Signal  
Name  
sysIO  
Bank  
LVDS  
GDX  
SERDES Mode  
SERDES Mode  
FIFO Mode I/O  
Cell/Pin3  
484  
fpBGA  
Pair/Polarity Block MRB  
I/O Pin1  
I/O Cell2  
GND  
6
-
-
-
-
-
-
-
GND  
AA4  
Y4  
TDI  
-
-
-
-
-
-
GOE0  
-
-
-
-
-
-
-
GND  
7
7
7
7
7
7
7
7
7
7
7
-
-
-
-
-
-
GND  
AB4  
AB5  
V6  
BK7_IO0  
BK7_IO1  
BK7_IO2  
BK7_IO3  
BK7_IO4  
BK7_IO5  
BK7_IO6  
BK7_IO7  
BK7_IO8  
BK7_IO9  
112P  
112N  
113P  
113N  
114P  
114N  
115P  
115N  
116P  
116N  
7B  
7B  
7B  
7B  
7B  
7B  
7B  
7B  
7B  
7B  
0
1
2
3
4
5
6
7
8
9
-
-
FIFO7B_ EMPTY  
-
FIFO7B_STRDb6  
-
HSI7B_CDRRSTb  
HSI7B_SYDT5  
HSI7B_RECCLK  
HSI7B_RXD9/TXD9  
HSI7B_RXD8/TXD8  
HSI7B_RXD7/TXD7  
HSI7B_RXD6/TXD6  
HSI7B_RXD5/TXD5  
HSI7B_RXD4/TXD4  
HSI7B_RXD3/TXD3  
FIFO7B_FIFORSTb  
FIFO7B_DIN9/DOUT9  
FIFO7B_DIN8/DOUT8  
FIFO7B_DIN7/DOUT7  
FIFO7B_DIN6/DOUT6  
FIFO7B_DIN5/DOUT5  
FIFO7B_DIN4/DOUT4  
FIFO7B_DIN3/DOUT3  
W5  
T8  
HSI7B_SINP  
HSI7B_SINN  
T9  
-
W6  
Y5  
-
Note 4  
-
AA5  
AA6  
BK7_IO10/  
VREF7  
7
117P  
7B  
10  
HSI7B_SOUTP  
HSI7B_RXD2/TXD2  
FIFO7B_DIN2/DOUT2  
U8  
BK7_IO11  
GND  
7
7
7
7
117N  
-
7B  
-
11  
-
HSI7B_SOUTN  
HSI7B_RXD1/TXD1  
-
FIFO7B_DIN1/DOUT1  
U9  
GND  
W7  
-
-
-
-
BK7_IO12  
BK7_IO13  
118P  
118N  
7B  
7B  
12  
13  
HSI7B_RXD0/TXD0  
HSI7B_SYDT5  
FIFO7B_DIN0/DOUT0  
-
W8  
BK7_IO14/  
PLL_RST1  
7
119P  
7B  
14  
-
-
-
AB6  
BK7_IO15  
BK7_IO16  
BK7_IO17  
BK7_IO18  
BK7_IO19  
GND  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
119N  
120P  
120N  
121P  
121N  
-
7B  
6B  
6B  
6B  
6B  
-
15  
0
-
-
FIFO7B_FULL  
-
AB7  
Y7  
FIFO6B_STRDb6  
-
1
HSI6B_CDRRSTb  
HSI6B_SYDT5  
HSI6B_RECCLK  
HSI6B_RXD9/TXD9  
HSI6B_RXD8/TXD8  
-
FIFO6B_FIFORSTb  
FIFO6B_DIN9/DOUT9  
FIFO6B_DIN8/DOUT8  
-
AA7  
W9  
2
3
-
Y8  
-
-
GND  
T10  
T11  
AA8  
AB8  
W10  
Y9  
BK7_IO20  
BK7_IO21  
BK7_IO22  
BK7_IO23  
BK7_IO24  
BK7_IO25  
BK7_IO26  
BK7_IO27  
GND  
122P  
122N  
123P  
123N  
124P  
124N  
125P  
125N  
-
6B  
6B  
6B  
6B  
6B  
6B  
6B  
6B  
-
4
HSI6B_SOUTP  
HSI6B_RXD7/TXD7  
HSI6B_RXD6/TXD6  
HSI6B_RXD5/TXD5  
HSI6B_RXD4/TXD4  
HSI6B_RXD3/TXD3  
HSI6B_RXD2/TXD2  
HSI6B_RXD1/TXD1  
HSI6B_RXD0/TXD0  
-
FIFO6B_DIN7/DOUT7  
FIFO6B_DIN6/DOUT6  
FIFO6B_DIN5/DOUT5  
FIFO6B_DIN4/DOUT4  
FIFO6B_DIN3/DOUT3  
FIFO6B_DIN2/DOUT2  
FIFO6B_DIN1/DOUT1  
FIFO6B_DIN0/DOUT0  
-
5
HSI6B_SOUTN  
6
-
7
-
8
Note 4  
9
-
10  
11  
-
HSI6B_SINP  
U10  
U11  
GND  
W11  
HSI6B_SINN  
-
-
BK7_IO28  
126P  
6B  
12  
HSI6B_SYDT5  
FIFO6B_ EMPTY  
BK7_IO29/  
PLL_LOCK1  
7
126N  
6B  
13  
-
-
-
Y10  
BK7_IO30  
BK7_IO31  
7
7
127P  
127N  
6B  
6B  
14  
15  
-
-
-
-
-
AA10  
AB9  
FIFO6B_FULL  
66  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2-256 Logic Signal Connections (Continued)  
Signal  
Name  
sysIO  
Bank  
LVDS  
GDX  
SERDES Mode  
SERDES Mode  
FIFO Mode I/O  
Cell/Pin3  
484  
fpBGA  
Pair/Polarity Block MRB  
I/O Pin1  
I/O Cell2  
TOE  
-
-
-
-
-
-
-
AB10  
1. The signals in this column route to/from the assigned pins of the associated I/O cell.  
2. The signals in this column use the I/O cell. If a receiver signal is present in the I/O cell, the associated pin is available for output only. When  
transmit data (TXD) is present in the cell, the associated pin is available for input only.  
3. The DOUT outputs are routed to GRP through the input register of the cell and the DIN inputs are routed direct from the associated pins in  
FIFO only mode. In SERDES with FIFO mode, the FULL and EMPTY flags are routed to the associated pins through the output MUX and  
the pins.  
4. If the Source Synchronous Receiver is used in the HSI Block, this pin is unavailable for another use and must be left unconnected.  
5. The SYDT signal has two routing options. If direct output through the dedicated pin is used, the I/O cell (the whole HSI Block) is not avail-  
able for transmitter. The SYDT in the I/O Cell column is routed to the GRP through the input register of the cell and frees the I/O cell for  
transmitter.  
6. FIFO_STRDb flag output is used in SERDES with FIFO Mode only.  
7. sysHSI Source Synchronous Receive Mode is not available for channel 3A.  
67  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Part Number Description  
LX XXX X X – XX FXXX X  
Device Family  
Grade  
C = Commercial  
I = Industrial  
LX  
Device Number  
64 = 64 I/Os  
Package  
F100 = 100-Ball fpBGA  
FN100 = Lead-Free 100-Ball fpBGA  
F208 = 208-Ball fpBGA  
FN208 = Lead-Free 208-Ball fpBGA  
F484 = 484-Ball fpBGA  
FN484 = Lead-Free 484-Ball fpBGA  
128 = 128 I/Os  
256 = 256 I/Os  
sysHSI Support  
Blank = Supports sysHSI  
E = No sysHSI support  
Power Supply Voltage  
V = 3.3V  
B = 2.5V  
Speed  
3 = 3.0ns  
32 = 3.2ns  
35 = 3.5ns  
5 = 5.0ns  
C = 1.8V  
Ordering Information  
Conventional Packaging  
Commercial  
Family  
LX64V  
Part Number  
LX64V-3F100C  
LX64V-5F100C  
LX128V-32F208C  
LX128V-5F208C  
LX256V-35F484C  
LX256V-5F484C  
LX64B-3F100C  
LX64B-5F100C  
LX128B-32F208C  
LX128B-5F208C  
LX256B-35F484C  
LX256B-5F484C  
LX64C-3F100C  
LX64C-5F100C  
LX128C-32F208C  
LX128C-5F208C  
LX256C-35F484C  
LX256C-5F484C  
I/Os  
64  
Voltage  
t
Package  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
Pins  
100  
100  
208  
208  
484  
484  
100  
100  
208  
208  
484  
484  
100  
100  
208  
208  
484  
484  
Grade  
C
PD  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
3
64  
5
C
128  
128  
256  
256  
64  
3.2  
5
C
LX128V  
LX256V  
LX64B  
C
3.5  
5
C
C
3
C
64  
5
C
128  
128  
256  
256  
64  
3.2  
5
C
LX128B  
LX256B  
LX64C  
C
3.5  
5
C
C
3
C
64  
5
C
128  
128  
256  
256  
3.2  
5
C
LX128C  
LX256C  
C
3.5  
5
C
C
68  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
“E-Series” Commercial  
Family  
Part Number  
LX64EV-3F100C  
LX64EV-5F100C  
LX128EV-32F208C  
LX128EV-5F208C  
LX256EV-35F484C  
LX256EV-5F484C  
LX64EB-3F100C  
LX64EB-5F100C  
LX128EB-32F208C  
LX128EB-5F208C  
LX256EB-35F484C  
LX256EB-5F484C  
LX64EC-3F100C  
LX64EC-5F100C  
LX128EC-32F208C  
LX128EC-5F208C  
I/Os  
64  
Voltage  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
1.8  
1.8  
1.8  
1.8  
t
Package  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
Pins  
100  
100  
208  
208  
484  
484  
100  
100  
208  
208  
484  
484  
100  
100  
208  
208  
Grade  
C
PD  
3
LX64EV  
64  
5
C
128  
128  
256  
256  
64  
3.2  
5
C
LX128EV  
LX256EV  
LX64EB  
C
3.5  
5
C
C
3
C
64  
5
C
128  
128  
256  
256  
64  
3.2  
5
C
LX128EB  
LX256EB  
LX64EC  
LX128EC  
C
3.5  
5
C
C
3
C
64  
5
C
128  
128  
3.2  
5
C
C
“E-Series” Industrial  
Family  
Part Number  
I/Os  
64  
Voltage  
3.3  
t
Package  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
Pins  
100  
100  
100  
208  
208  
208  
484  
484  
484  
Grade  
PD  
LX64EV LX64EV-5F100I  
LX64EB LX64EB-5F100I  
LX64EC LX64EC-5F100I  
LX128EV LX128EV-5F208I  
LX128EB LX128EB-5F208I  
LX128EC LX128EC-5F208I  
LX256EV LX256EV-5F484I  
LX256EB LX256EB-5F484I  
LX256EC LX256EC-5F484I  
5
I
I
I
I
I
I
I
I
I
64  
2.5  
5
5
5
5
5
5
5
5
64  
1.8  
128  
128  
128  
256  
256  
256  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
69  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Lead-Free Packaging  
Commercial  
Family  
LX64V  
Part Number  
LX64V-3FN100C  
LX64V-5FN100C  
LX64B-3FN100C  
LX64B-5FN100C  
LX64C-3FN100C  
LX64C-5FN100C  
LX128V-32FN208C  
LX128V-5FN208C  
LX128B-32FN208C  
LX128B-5FN208C  
LX128C-32FN208C  
LX128C-5FN208C  
LX256V-35FN484C  
LX256V-5FN484C  
LX256B-35FN484C  
LX256B-5FN484C  
LX256C-35FN484C  
LX256C-5FN484C  
I/Os  
64  
Voltage  
3.3  
3.3  
2.5  
2.5  
1.8  
1.8  
3.3  
3.3  
2.5  
2.5  
1.8  
1.8  
3.3  
3.3  
2.5  
2.5  
1.8  
1.8  
t
Package  
Pins  
100  
100  
100  
100  
100  
100  
208  
208  
208  
208  
208  
208  
484  
484  
484  
484  
484  
484  
Grade  
C
PD  
3.0  
5.0  
3.0  
5.0  
3.0  
5.0  
3.2  
5.0  
3.2  
5.0  
3.2  
5.0  
3.5  
5.0  
3.5  
5.0  
3.5  
5.0  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
64  
C
64  
C
LX64B  
64  
C
64  
C
LX64C  
64  
C
128  
128  
128  
128  
128  
128  
256  
256  
256  
256  
256  
256  
C
LX128V  
LX128B  
LX128C  
LX256V  
LX256B  
LX256C  
C
C
C
C
C
C
C
C
C
C
C
“E-Series” Commercial  
Family  
Part Number  
LX64EV-3FN100C  
LX64EV-5FN100C  
LX64EB-3FN100C  
LX64EB-5FN100C  
LX64EC-3FN100C  
LX64EC-5FN100C  
LX128EV-32FN208C  
LX128EV-5FN208C  
LX128EB-32FN208C  
LX128EB-5FN208C  
LX128EC-32FN208C  
LX128EC-5FN208C  
LX256EV-35FN484C  
LX256EV-5FN484C  
LX256EB-35FN484C  
LX256EB-5FN484C  
LX256EC-35FN484C  
LX256EC-5FN484C  
I/Os  
64  
Voltage  
3.3  
3.3  
2.5  
2.5  
1.8  
1.8  
3.3  
3.3  
2.5  
2.5  
1.8  
1.8  
3.3  
3.3  
2.5  
2.5  
1.8  
1.8  
t
Package  
Pins  
100  
100  
100  
100  
100  
100  
208  
208  
208  
208  
208  
208  
484  
484  
484  
484  
484  
484  
Grade  
C
PD  
3.0  
5.0  
3.0  
5.0  
3.0  
5.0  
3.2  
5.0  
3.2  
5.0  
3.2  
5.0  
3.5  
5.0  
3.5  
5.0  
3.5  
5.0  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
LX64EV  
64  
C
64  
C
LX64EB  
64  
C
64  
C
LX64EC  
LX128EV  
LX128EB  
LX128EC  
LX256EV  
LX256EB  
LX256EC  
64  
C
128  
128  
128  
128  
128  
128  
256  
256  
256  
256  
256  
256  
C
C
C
C
C
C
C
C
C
C
C
C
70  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
“E-Series” Industrial  
Family  
LX64EV  
Part Number  
LX64EV-5FN100I  
LX64EB-5FN100I  
LX64EC-5FN100I  
LX128EV-5FN208I  
LX128EB-5FN208I  
LX128EC-5FN208I  
LX256EV-5FN484I  
LX256EB-5FN484I  
LX256EC-5FN484I  
I/Os  
64  
Voltage  
3.3  
t
Package  
Pins  
100  
100  
100  
208  
208  
208  
484  
484  
484  
Grade  
PD  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
I
I
I
I
I
I
I
I
I
LX64EB  
64  
2.5  
LX64EC  
LX128EV  
LX128EB  
LX128EC  
LX256EV  
LX256EB  
LX256EC  
64  
1.8  
128  
128  
128  
256  
256  
256  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
71  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
For Further Information  
In addition to this data sheet, the following Lattice technical notes may be helpful when designing with the ispGDX2  
Family:  
sysIO Design and Usage Guidelines (TN1000)  
• sysCLOCK PLL Design and Usage Guidelines (TN1003)  
sysHSI Usage Guide (TN1020)  
Power Estimation in ispGDX2 Devices (TN1021)  
72  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY