M4-128/64-7YI [LATTICE]

High Performance E 2 CMOS In-System Programmable Logic; 高性能e 2的CMOS在系统可编程逻辑
M4-128/64-7YI
型号: M4-128/64-7YI
厂家: LATTICE SEMICONDUCTOR    LATTICE SEMICONDUCTOR
描述:

High Performance E 2 CMOS In-System Programmable Logic
高性能e 2的CMOS在系统可编程逻辑

可编程逻辑 输入元件 时钟
文件: 总46页 (文件大小:692K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MACH 4 CPLD Family  
High Performance E2CMOS®  
In-System Programmable Logic  
FEATURES  
2
  High-performance, E CMOS 3.3-V & 5-V CPLD families  
  Flexible architecture for rapid logic designs  
TM  
— Excellent First-Time-Fit  
— SpeedLocking  
and refit feature  
TM  
performance for guaranteed fixed timing  
— Central, input and output switch matrices for 100% routability and 100% pin-out retention  
  High speed  
— 7.5ns t Commercial and 10ns t Industrial  
PD  
PD  
— 111.1MHz f  
CNT  
  32 to 256 macrocells; 32 to 384 registers  
  44 to 256 pins in PLCC, PQFP, TQFP and BGA packages  
  Flexible architecture for a w ide range of design styles  
— D/T registers and latches  
— Synchronous or asynchronous mode  
— Dedicated input registers  
— Programmable polarity  
— Reset/ preset swapping  
  Advanced capabilities for easy system integration  
— 3.3-V & 5-V JEDEC-compliant operations  
— JTAG (IEEE 1149.1) compliant for boundary scan testing  
— 3.3-V & 5-V JTAG in-system programming  
— PCI compliant (-7/-10/-12 speed grades)  
— Safe for mixed supply voltage system designs  
TM  
— Bus-Friendly inputs and I/Os  
— Programmable security bit  
— Individual output slew rate control  
2
  Advanced E CMOS process provides high-performance, cost-effective solutions  
TM  
  Supported by ispDesignEXPERT softw are for rapid logic development  
— Supports HDL design methodologies with results optimized for MACH 4  
— Flexibility to adapt to user requirements  
— Software partnerships that ensure customer success  
  Lattice and third-party hardw are programming support  
TM  
LatticePRO  
equipment  
software for in-system programmability support on PCs and automated test  
— Programming support on all major programmers including Data I/O, BP Microsystems, Advin,  
and System General  
Publication# 1 7466  
Amendment/0  
Rev: M  
Issue Date: March 2000  
1, 2  
Table 1. MACH 4 Device Features  
M4-32/32  
M4-64/32  
M4-96/48  
M4-128/64  
M4-128N/64  
M4-192/96  
M4-256/128  
Feature  
M4LV-32/32 M4LV-64/32 M4LV-96/48 M4LV-128/64 M4LV-128N/64 M4LV-192/96 M4LV-256/128  
Macrocells  
32  
32  
64  
32  
96  
48  
128  
64  
128  
64  
192  
96  
256  
128  
7.5  
111  
5.5  
5.5  
100  
Yes  
Yes  
Maximum User I/O Pins  
t
(ns)  
7.5  
111  
5.5  
5.5  
25  
7.5  
111  
5.5  
5.5  
25  
7.5  
111  
5.5  
5.5  
50  
7.5  
111  
5.5  
5.5  
70  
7.5  
111  
5.5  
5.5  
70  
7.5  
111  
5.5  
5.5  
85  
PD  
f
(MHz)  
(ns)  
CNT  
t
COS  
t (ns)  
SS  
Static Power (mA)  
JTAG Compliant  
PCI Compliant  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
Notes:  
1. For information on the M4-96/96 device, please refer to the M4-96/96 data sheet at www.latticesemi.com.  
2. “M4-xxx” is for 5-V devices. “M4LV-xxx” is for 3.3-V devices.  
2
MACH 4 Family  
GENERAL DESCRIPTION  
®
The MACH 4 family from Lattice offers an exceptionally flexible architecture and delivers a  
superior Complex Programmable Logic Device (CPLD) solution of easy-to-use silicon products  
and software tools. The overall benefits for users are a guaranteed and predictable CPLD  
solution, faster time-to-market, greater flexibility and lower cost. The MACH 4 devices offer  
densities ranging from 32 to 256 macrocells with 100% utilization and 100% pin-out retention.  
The MACH 4 family offer 5-V (M4-xxx) and 3.3-V (M4LV-xxx) operation.  
MACH 4 products are 5-V or 3.3-V in-system programmable through the JTAG (IEEE Std. 1149.1)  
interface. JTAG boundary scan testing also allows product testability on automated test  
equipment for device connectivity.  
All MACH 4 family members deliver First-Time-Fit and easy system integration with pin-out  
retention after any design change and refit. For both 3.3-V and 5-V operation, MACH 4 products  
can deliver guaranteed fixed timing as fast as 7.5 ns t and 111 MHz f  
through the  
PD  
CNT  
SpeedLocking feature when using up to 20 product terms per output (Table 2).  
Table 2. MACH 4 Speed Grades  
1
Speed Grade  
Device  
-7  
-10  
-12  
-14  
-15  
-18  
M4-32/32  
C
C, I  
C, I  
I
C
I
M4LV-32/32  
M4-64/32  
C
C
C
C
C
C
C, I  
C, I  
C, I  
C, I  
C, I  
C, I  
C, I  
C, I  
C, I  
C, I  
C, I  
C, I  
I
I
I
I
I
I
C
C
C
C
C
C
I
I
I
I
I
I
M4LV-64/32  
M4-96/48  
M4LV-96/48  
M4-128/64  
M4LV-128/64  
M4-128N/64  
M4LV-128N/64  
M4-192/96  
M4LV-192/96  
M4-256/128  
M4LV-256/128  
Note:  
1. C = Commercial, I = Industrial  
The MACH 4 family offers numerous density-I/O combinations in Thin Quad Flat Pack (TQFP),  
Plastic Quad Flat Pack (PQFP), Plastic Leaded Chip Carrier (PLCC), and Ball Grid Array (BGA)  
packages ranging from 44 to 256 pins (Table 3). It also offers I/O safety features for mixed-  
voltage designs so that the 3.3-V devices can accept 5-V inputs, and 5-V devices do not overdrive  
3.3-V inputs. Additional features include Bus-Friendly inputs and I/Os, a programmable power-  
down mode for extra power savings and individual output slew rate control for the highest speed  
transition or for the lowest noise transition.  
MACH 4 Family  
3
Table 3. MACH 4 Package and I/O Options (Number of I/Os and dedicated inputs in Table)  
M4-32/32  
M4-64/32  
M4-96/48  
M4-128/64  
M4-128N/64  
M4-192/96  
M4-256/128  
Package  
44-pin PLCC  
M4LV-32/32 M4LV-64/32 M4LV-96/48  
M4LV-128/64  
M4LV-128N/64  
M4LV-192/96  
M4LV-256/128  
32+2  
32+2  
32+2  
32+2  
32+2  
32+2  
44-pin TQFP  
48-pin TQFP  
84-pin PLCC  
100-pin TQFP  
100-pin PQFP  
144-pin TQFP  
208-pin PQFP  
256-ball BGA  
64+6  
48+8  
64+6  
64+6  
96+16  
128+14  
128+14  
4
MACH 4 Family  
FUNCTIONAL DESCRIPTION  
®
The fundamental architecture of MACH 4 devices (Figure 1) consists of multiple, optimized PAL  
blocks interconnected by a central switch matrix. The central switch matrix allows  
communication between PAL blocks and routes inputs to the PAL blocks. Together, the PAL  
blocks and central switch matrix allow the logic designer to create large designs in a single  
device instead of having to use multiple devices.  
The key to being able to make effective use of these devices lies in the interconnect schemes.  
In MACH 4 architecture, the macrocells are flexibly coupled to the product terms through the  
logic allocator, and the I/O pins are flexibly coupled to the macrocells due to the output switch  
matrix. In addition, more input routing options are provided by the input switch matrix. These  
resources provide the flexibility needed to fit designs efficiently.  
PAL Block  
4
Note 2  
Clock  
Generator  
Clock/Input  
Pins  
33/  
34/  
36  
Note 3  
I/O  
Pins  
16  
16  
8
Logic  
Allocator  
with XOR  
Output/  
Buried  
Macrocells  
Logic  
Array  
Note 1  
Dedicated  
Input Pins  
16  
Input  
Switch  
Matrix  
16  
I/O  
Pins  
PAL Block  
PAL Block  
I/O  
Pins  
17466G-001  
Figure 1. MACH 4 Block Diagram and PAL Block Structure  
Notes:  
1. 16 for MACH 4 devices with 1:1 macrocell-I/O cell ratio (see next page).  
2. Block clocks do not go to I/O cells in M4(LV)-32/32.  
3. M4(LV)-192/96 and M4(LV)-256/128 have dedicated clock pins which cannot be used as inputs and do not connect to the central  
switch matrix.  
MACH 4 Family  
5
Table 4. Architectural Summary of MACH 4 devices  
MACH 4 Devices  
M4-64/32, M4LV-64/32  
M4-96/48, M4LV-96/48  
M4-128/64, M4LV-128/64  
M4-128N/64, M4LV-128N/64  
M4-192/96, M4LV-192/96  
M4-256/128, M4LV-256/128  
M4-32/32  
M4LV-32/32  
Macrocell-I/O Cell  
Ratio  
2:1  
1:1  
Input Switch Matrix  
Input Registers  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Central Switch Matrix  
Output Switch Matrix  
Yes  
Yes  
The Macrocell-I/O cell ratio is defined as the number of macrocells versus the number of I/O  
cells internally in a PAL block (Table 4).  
The central switch matrix takes all dedicated inputs and signals from the input switch matrices  
and routes them as needed to the PAL blocks. Feedback signals that return to the same PAL block  
still must go through the central switch matrix. This mechanism ensures that PAL blocks in MACH  
4 devices communicate with each other with consistent, predictable delays.  
The central switch matrix makes a MACH 4 device more advanced than simply several PAL  
devices on a single chip. It allows the designer to think of the device not as a collection of  
blocks, but as a single programmable device; the software partitions the design into PAL blocks  
through the central switch matrix so that the designer does not have to be concerned with the  
internal architecture of the device.  
Each PAL block consists of:  
  Product-term array  
  Logic allocator  
  Macrocells  
  Output switch matrix  
  I/O cells  
  Input switch matrix  
  Clock generator  
6
MACH 4 Family  
Product-Term Array  
The product-term array consists of a number of product terms that form the basis of the logic  
being implemented. The inputs to the AND gates come from the central switch matrix (Table 5),  
and are provided in both true and complement forms for efficient logic implementation.  
Table 5. PAL Block Inputs  
Device  
M4-32/32 and M4LV-32/32  
Number of Inputs to PAL Block  
33  
33  
33  
M4-64/32 and M4LV-64/32  
M4-96/48 and M4LV-96/48  
M4-128/64 and M4LV-128/64  
M4-128N/64 and M4LV-128N/64  
33  
33  
M4-192/96 and M4LV-192/96  
M4-256/128 and M4LV-256/128  
34  
34  
Logic Allocator  
Within the logic allocator, product terms are allocated to macrocells in “product term clusters.”  
The availability and distribution of product term clusters are automatically considered by the  
software as it fits functions within a PAL block. The size of a product term cluster has been  
optimized to provide high utilization of product terms, making complex functions using many  
product terms possible. Yet when few product terms are used, there will be a minimal number  
of unused—or wasted—product terms left over. The product term clusters available to each  
macrocell within a PAL block are shown in Tables 6 and 7.  
Each product term cluster is associated with a macrocell. The size of a cluster depends on the  
configuration of the associated macrocell. When the macrocell is used in synchronous mode  
(Figure 2a), the basic cluster has 4 product terms. When the associated macrocell is used in  
asynchronous mode (Figure 2b), the cluster has 2 product terms. Note that if the product term  
cluster is routed to a different macrocell, the allocator configuration is not determined by the  
mode of the macrocell actually being driven. The configuration is always set by the mode of the  
macrocell that the cluster will drive if not routed away, regardless of the actual routing.  
In addition, there is an extra product term that can either join the basic cluster to give an  
extended cluster, or drive the second input of an exclusive-OR gate in the signal path. If included  
with the basic cluster, this provides for up to 20 product terms on a synchronous function that  
uses four extended 5-product-term clusters. A similar asynchronous function can have up to 18  
product terms.  
When the extra product term is used to extend the cluster, the value of the second XOR input  
can be programmed as a 0 or a 1, giving polarity control. The possible configurations of the logic  
allocator are shown in Figures 3 and 4.  
MACH 4 Family  
7
Table 6. Logic Allocator for All MACH 4 Devices (except M4(LV)-32/32)  
Output Macrocell  
Available Clusters  
C , C , C  
Output Macrocell  
Available Clusters  
C , C , C , C  
M
M
8
0
0
1
2
7
8
9
10  
M
C , C , C , C  
M
C , C , C , C  
8 9 10 11  
1
0
1
2
3
9
M
C , C , C , C  
M
C , C , C , C  
9 10 11 12  
2
1
2
3
4
10  
M
C , C , C , C  
M
C , C , C , C  
10 11 12 13  
3
2
3
4
5
11  
M
C , C , C , C  
M
C , C , C , C  
11 12 13 14  
4
3
4
5
6
12  
M
C , C , C , C  
M
C , C , C , C  
12 13 14 15  
5
4
5
6
7
13  
M
C , C , C , C  
M
C , C , C  
13 14 15  
6
5
6
7
8
14  
M
C , C , C , C  
M
C , C  
7
6
7
8
9
15  
14 15  
Table 7. Logic Allocator for M4(LV)-32/32  
Output Macrocell  
Available Clusters  
C , C , C  
Output Macrocell  
Available Clusters  
M
M
C , C , C  
8 9 10  
0
0
1
2
8
M
C , C , C , C  
M
C , C , C , C  
8 9 10 11  
1
0
1
2
3
9
M
C , C , C , C  
M
C , C , C , C  
9 10 11 12  
2
1
2
3
4
10  
M
C , C , C , C  
M
C , C , C , C  
10 11 12 13  
3
2
3
4
5
11  
M
C , C , C , C  
M
C , C , C , C  
11 12 13 14  
4
3
4
5
6
12  
M
C , C , C , C  
M
C , C , C , C  
12 13 14 15  
5
4
5
6
7
13  
M
C , C , C  
M
C , C , C  
13 14 15  
6
5
6
7
14  
M
C , C  
M
C , C  
14 15  
7
6
7
15  
Logic Allocator  
Basic Product  
Term Cluster  
n
n
0 Default  
0 Default  
Extra  
Product  
Term  
Prog. Polarity  
17466G-005  
a. Synchronous Mode  
Logic Allocator  
Basic Product  
Term Cluster  
n
n
0 Default  
0 Default  
Extra  
Product  
Term  
Prog. Polarity  
b. Asynchronous Mode  
17466G-006  
Figure 2. Logic Allocator: Configuration of Cluster “n” Set by Mode of Macrocell “n”  
8
MACH 4 Family  
a. Basic cluster w ith XOR  
b. Extended cluster, active high  
c. Extended cluster, active low  
0
d. Basic cluster routed aw ay;  
single-product-term, active high  
e. Extended cluster routed aw ay  
17466G-007  
Figure 3. Logic Allocator Configurations: Synchronous Mode  
a. Basic cluster w ith XOR  
b. Extended cluster, active high  
c. Extended cluster, active low  
0
d. Basic cluster routed aw ay;  
single-product-term, active high  
e. Extended cluster routed aw ay  
17466G-008  
Figure 4. Logic Allocator Configurations: Asynchronous Mode  
Note that the configuration of the logic allocator has absolutely no impact on the speed of the  
signal. All configurations have the same delay. This means that designers do not have to decide  
between optimizing resources or speed; both can be optimized.  
If not used in the cluster, the extra product term can act in conjunction with the basic cluster to  
provide XOR logic for such functions as data comparison, or it can work with the D-,T-type flip-  
flop to provide for J-K, and S-R register operation. In addition, if the basic cluster is routed to  
another macrocell, the extra product term is still available for logic. In this case, the first XOR  
input will be a logic 0. This circuit has the flexibility to route product terms elsewhere without  
giving up the use of the macrocell.  
Product term clusters do not wrap” around a PAL block. This means that the macrocells at the  
ends of the block have fewer product terms available.  
MACH 4 Family  
9
Macrocell  
The macrocell consists of a storage element, routing resources, a clock multiplexer, and  
initialization control. The macrocell has two fundamental modes: synchronous and  
asynchronous (Figure 5). The mode chosen only affects clocking and initialization in the  
macrocell.  
Power-Up  
Reset  
PAL-Block  
Initialization  
Product Terms  
SWAP  
Common PAL-block resource  
Individual macrocell resources  
To Output and Input  
Switch Matrices  
AP  
AR  
From Logic Allocator  
Q
D/T/L  
Block CLK0  
Block CLK1  
Block CLK2  
Block CLK3  
From  
PAL-Clock  
Generator  
17466G-009  
a. Synchronous mode  
Power-Up  
Reset  
Individual  
Initialization  
Product Term  
To Output and Input  
Switch Matrices  
AP  
AR  
From Logic  
Allocator  
Q
D/T/L  
Block CLK0  
Block CLK1  
From PAL-Block  
Clock Generator  
Individual Clock  
Product Term  
b. Asynchronous mode  
Figure 5. Macrocell  
17466G-010  
In either mode, a combinatorial path can be used. For combinatorial logic, the synchronous  
mode will generally be used, since it provides more product terms in the allocator.  
10  
MACH 4 Family  
The flip-flop can be configured as a D-type or T-type latch. J-K or S-R registers can be  
synthesized. The primary flip-flop configurations are shown in Figure 6, although others are  
possible. Flip-flop functionality is defined in Table 8. Note that a J-K latch is inadvisable as it will  
cause oscillation if both J and K inputs are HIGH.  
AP AR  
AP AR  
D
Q
D
Q
b. D-type w ith programmable D polarity  
a. D-type w ith XOR  
AP AR  
AP AR  
L
Q
L
Q
G
G
c. Latch w ith XOR  
d. Latch w ith programmable D polarity  
AP AR  
T
Q
f. Combinatorial w ith XOR  
e. T-type w ith programmable T polarity  
g. Combinatorial w ith programmable polarity  
17466G-011  
Figure 6. Primary Macrocell Configurations  
MACH 4 Family  
11  
Table 8. Register/Latch Operation  
1
Configuration  
Input(s)  
CLK/LE  
Q+  
D=X  
D=0  
D=1  
0,1, ↓ ()  
↑ ()  
Q
0
D-type Register  
T-type Register  
↑ ()  
1
T=X  
T=0  
T=1  
0, 1, ↓ ()  
↑ ()  
Q
Q
Q
↑ ()  
D=X  
D=0  
D=1  
1(0)  
0(1)  
0(1)  
Q
0
D-type Latch  
1
Note:  
1. Polarity of CLK/LE can be programmed  
Although the macrocell shows only one input to the register, the XOR gate in the logic allocator  
allows the D-, T-type register to emulate J-K, and S-R behavior. In this case, the available product  
terms are divided between J and K (or S and R). When configured as J-K, S-R, or T-type, the  
extra product term must be used on the XOR gate input for flip-flop emulation. In any register  
type, the polarity of the inputs can be programmed.  
The clock input to the flip-flop can select any of the four PAL block clocks in synchronous mode,  
with the additional choice of either polarity of an individual product term clock in the  
asynchronous mode.  
The initialization circuit depends on the mode. In synchronous mode (Figure 7), asynchronous  
reset and preset are provided, each driven by a product term common to the entire PAL block.  
Power-Up  
Reset  
Power-Up  
Preset  
PAL-Block  
PAL-Block  
Initialization  
Initialization  
Product Terms  
Product Terms  
AR  
Q
AP  
D/T/L  
AR  
Q
AP  
D/L  
a. Pow er-up reset  
b. Pow er-up preset  
17466G-012  
17466G-013  
Figure 7. Synchronous Mode Initialization Configurations  
12  
MACH 4 Family  
A reset/preset swapping feature in each macrocell allows for reset and preset to be exchanged,  
providing flexibility. In asynchronous mode (Figure 8), a single individual product term is  
provided for initialization. It can be selected to control reset or preset.  
Power-Up  
Preset  
Power-Up  
Reset  
Individual  
Preset  
Product Term  
Individual  
Reset  
Product Term  
AR  
Q
AP  
D/L/T  
AR  
Q
AP  
D/L/T  
a. Reset  
b. Preset  
17466G-014  
17466G-015  
Figure 8. Asynchronous Mode Initialization Configurations  
Note that the reset/preset swapping selection feature effects power-up reset as well. The  
initialization functionality of the flip-flops is illustrated in Table 9. The macrocell sends its data  
to the output switch matrix and the input switch matrix. The output switch matrix can route this  
data to an output if so desired. The input switch matrix can send the signal back to the central  
switch matrix as feedback.  
Table 9. Asynchronous Reset/Preset Operation  
1
AR  
0
AP  
0
CLK/LE  
Q+  
X
X
X
X
See Table 8  
0
1
1
0
0
1
0
1
1
Note:  
1. Transparent latch is unaffected by AR, AP  
MACH 4 Family  
13  
Output Sw itch Matrix  
The output switch matrix allows macrocells to be connected to any of several I/O cells within a  
PAL block. This provides high flexibility in determining pinout and allows design changes to  
occur without effecting pinout.  
In MACH 4 devices with 2:1 Macrocell-I/O cell ratio, each PAL block has twice as many  
macrocells as I/O cells. The MACH 4 output switch matrix allows for half of the macrocells to  
drive I/O cells within a PAL block, in combinations according to Figure 9. Each I/O cell can  
choose from eight macrocells; each macrocell has a choice of four I/O cells. The MACH 4 devices  
with 1:1 Macrocell-I/O cell ratio allow each macrocell to drive one of eight I/O cells (Figure 9).  
M0  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
I/O0  
I/O1  
I/O2  
I/O3  
I/O4  
I/O5  
I/O6  
I/O7  
M0  
M1  
M2  
M3  
M4  
I/O0  
I/O1  
I/O2  
I/O3  
I/O4  
I/O5  
I/O6  
I/O7  
M5  
M6  
M7  
M8  
M8  
M9  
I/O8  
M9  
I/O9  
M10  
M11  
M12  
M13  
M14  
M15  
M10  
M11  
M12  
M13  
M14  
M15  
I/O10  
I/O11  
I/O12  
I/O13  
I/O14  
I/O15  
Each I/O cell can  
choose one of 8  
macrocells in  
all MACH 4  
Each macrocell can drive  
one of 4 I/O cells in  
MACH 4 devices with  
Each macrocell can drive  
one of 8 I/O cells in  
M4(LV)-32/32 devices.  
2:1 macrocell-I/O cell ratio.  
devices.  
Figure 9. MACH 4 Output Sw itch Matrix  
14  
MACH 4 Family  
Table 10. Output Sw itch Matrix Combinations for MACH 4 Devices w ith 2:1  
Macrocell-I/O Cell Ratio  
Macrocell  
M0, M1  
Routable to I/O Cells  
I/O0, I/O5, I/O6, I/O7  
I/O0, I/O1, I/O6, I/O7  
I/O0, I/O1, I/O2, I/O7  
I/O0, I/O1, I/O2, I/O3  
I/O1, I/O2, I/O3, I/O4  
I/O2, I/O3, I/O4, I/O5  
I/O3, I/O4, I/O5, I/O6  
I/O4, I/O5, I/O6, I/O7  
M2, M3  
M4, M5  
M6, M7  
M8, M9  
M10, M11  
M12, M13  
M14, M15  
I/O Cell  
I/O0  
I/O1  
I/O2  
I/O3  
I/O4  
I/O5  
I/O6  
I/O7  
Available Macrocells  
M0, M1, M2, M3, M4, M5, M6, M7  
M2, M3, M4, M5, M6, M7, M8, M9  
M4, M5, M6, M7, M8, M9, M10, M11  
M6, M7, M8, M9, M10, M11, M12, M13  
M8, M9, M10, M11, M12, M13, M14, M15  
M0, M1, M10, M11, M12, M13, M14, M15  
M0, M1, M2, M3, M12, M13, M14, M15  
M0, M1, M2, M3, M4, M5, M14, M15  
Table 11. Output Sw itch Matrix Combinations for M4(LV)-32/32  
Macrocell  
Routable to I/O Cells  
M0, M1, M2, M3, M4, M5, M6, M7  
M8, M9, M10, M11, M12, M13, M14, M15  
I/O0, I/O1, I/O2, I/O3, I/O4, I/O5, I/O6, I/O7  
I/O8, I/O9, I/O10, I/O11, I/O12, I/O13, I/O14, I/O15  
I/O Cell  
Available Macrocells  
I/O0, I/O1, I/O2, I/O3, I/O4, I/O5, I/O6, I/O7  
I/O8, I/O9, I/O10, I/O11, I/O12, I/O13, I/O14, I/O15  
M0, M1, M2, M3, M4, M5, M6, M7  
M8, M9, M10, M11, M12, M13, M14, M15  
MACH 4 Family  
15  
I/O Cell  
The I/O cell (Figures 10 and 11) simply consists of a programmable output enable, a feedback  
path, and flip-flop (except MACH 4 devices with 1:1 macrocell-I/O cell ratio.) An individual  
output enable product term is provided for each I/O cell. The feedback signal drives the input  
switch matrix.  
Individual  
Output Enable  
Product Term  
From Output  
Switch Matrix  
Individual  
Output Enable  
Product Term  
To  
Input  
Switch  
Matrix  
From Output  
Switch Matrix  
D/L  
Q
To  
Input  
Switch  
Matrix  
Block CLK0  
Block CLK1  
Block CLK2  
Block CLK3  
Power-up reset  
17466G-017  
17466G-018  
Figure 10. I/O Cell for MACH 4 Devices w ith 2:1  
Macrocell-I/O Cell Ratio  
Figure 11. I/O Cell for MACH 4 Devices w ith 1:1  
Macrocell-I/O Cell Ratio  
The I/O cell (Figure 10) contains a flip-flop, which provides the capability for storing the input  
in a D-type register or latch. The clock can be any of the PAL block clocks. Both the direct and  
registered versions of the input are sent to the input switch matrix. This allows for such functions  
as time-domain-multiplexed” data comparison, where the first data value is stored, and then the  
second data value is put on the I/O pin and compared with the previous stored value.  
Note that the flip-flop used in the MACH 4 I/O cell is independent of the flip-flops in the  
macrocells. It powers up to a logic low.  
Zero-Hold-Time Input Register  
The MACH 4 devices have a zero-hold-time (ZHT) fuse which controls the time delay associated  
with loading data into all I/O cell registers and latches. When programmed, the ZHT fuse  
increases the data path setup delays to input storage elements, matching equivalent delays in  
the clock path. When the fuse is erased, the setup time to the input storage element is minimized.  
This feature facilitates doing worst-case designs for which data is loaded from sources which  
have low (or zero) minimum output propagation delays from clock edges.  
Input Sw itch Matrix  
The input switch matrix (Figures 12 and 13) optimizes routing of inputs to the central switch  
matrix. Without the input switch matrix, each input and feedback signal has only one way to  
enter the central switch matrix. The input switch matrix provides additional ways for these  
signals to enter the central switch matrix.  
16  
MACH 4 Family  
From Input Cell  
17466G-002  
17466G-003  
Figure 12. MACH 4 w ith 2:1 Macrocell-I/O Cell Ratio Figure 13. MACH 4 w ith 1:1 Macrocell-I/O Cell Ratio  
- Input Sw itch Matrix - Input Sw itch Matrix  
PAL Block Clock Generation  
Each MACH 4 device has four clock pins that can also be used as inputs. These pins drive a  
clock generator in each PAL block (Figure 14). The clock generator provides four clock signals  
that can be used anywhere in the PAL block. These four PAL block clock signals can consist of  
a large number of combinations of the true and complement edges of the global clock signals.  
Table 12 lists the possible combinations.  
GCLK0  
Block CLK0  
(GCLK0 or GCLK1)  
GCLK1  
Block CLK1  
(GCLK1 or GCLK0)  
GCLK2  
Block CLK2  
(GCLK2 or GCLK3)  
GCLK3  
Block CLK3  
(GCLK3 or GCLK2)  
17466G-004  
1
Figure 14. PAL Block Clock Generator  
Note:  
1. M4(LV)-32/32 and M4(LV)-64/32 have only two clock pins, GCLK0 and GCLK1. GCLK2 is tied to GCLK0, and GCLK3 is tied to  
GCLK1.  
MACH 4 Family  
17  
1
Table 12. PAL Block Clock Combinations  
Block CLK0  
Block CLK1  
Block CLK2  
Block CLK3  
GCLK0  
GCLK1  
GCLK0  
GCLK1  
X
GCLK1  
GCLK1  
GCLK0  
GCLK0  
X
X
X
X
X
X
X
X
X
GCLK2 (GCLK0)  
GCLK3 (GCLK1)  
GCLK2 (GCLK0)  
GCLK3 (GCLK1)  
GCLK3 (GCLK1)  
GCLK3 (GCLK1)  
GCLK2 (GCLK0)  
GCLK2 (GCLK0)  
X
X
X
X
X
X
Note:  
1. Values in parentheses are for the M4(LV)-32/32 and M4(LV)-64/32.  
This feature provides high flexibility for partitioning state machines and dual-phase clocks. It  
also allows latches to be driven with either polarity of latch enable, and in a master-slave  
configuration.  
18  
MACH 4 Family  
MACH 4 TIMING MODEL  
The primary focus of the MACH 4 timing model is to accurately represent the timing in a MACH  
4 device, and at the same time, be easy to understand. This model accurately describes all  
combinatorial and registered paths through the device, making a distinction between internal  
feedback and external feedback. A signal uses internal feedback when it is fed back into the  
switch matrix or block without having to go through the output buffer. The input register  
specifications are also reported as internal feedback. When a signal is fed back into the switch  
matrix after having gone through the output buffer, it is using external feedback.  
The parameter, t , is defined as the time it takes to go from feedback through the output buffer  
BUF  
to the I/O pad. If a signal goes to the internal feedback rather than to the I/O pad, the parameter  
designator is followed by an i”. By adding t  
to this internal parameter, the external parameter  
BUF  
is derived. For example, t = t  
+ t . A diagram representing the modularized MACH 4  
PD  
PDi  
BUF  
timing model is shown in Figure 15. Refer to the Technical Note entitled MACH 4 Timing and  
High Speed Design for a more detailed discussion about the timing parameters.  
(External Feedback)  
(Internal Feedback)  
COMB/DFF/TFF/  
LATCH/SR*/JK*  
tSLW  
*emulated  
Central  
Switch  
Matrix  
IN  
OUT  
tSS(T)  
tPDi  
tBUF  
Q
tSA(T)  
tPDLi  
tH(S/A)  
tS(S/A)L  
tH(S/A)L  
tSRR  
tCO(S/A)i  
tGO(S/A)i  
tSRi  
tPL  
INPUT REG/  
INPUT LATCH  
tEA  
tER  
S/R  
tSIRS  
tHIRS  
tSIL  
tPDILi  
tICOSi  
tIGOSi  
tPDILZi  
Q
tHIL  
tSIRZ  
tHIRZ  
tSILZ  
tHILZ  
BLK CLK  
17466G-025  
Figure 15. MACH 4 Timing Model  
SPEEDLOCKING FOR GUARANTEED FIXED TIMING  
The MACH 4 architecture allows allocation of up to 20 product terms to an individual macrocell  
with the assistance of an XOR gate without incurring additional timing delays.  
The design of the switch matrix and PAL blocks guarantee a fixed pin-to-pin delay that is  
independent of the logic required by the design. Other competitive CPLDs incur serious timing  
delays as product terms expand beyond their typical 4 or 5 product term limits. Speed and  
SpeedLocking combine to give designs easy access to the performance required in todays  
designs.  
MACH 4 Family  
19  
IEEE 1149.1-COMPLIANT BOUNDARY SCAN TESTABILITY  
All MACH 4 devices, except the M4(LV)-128N/64, have boundary scan cells and are compliant  
to the IEEE 1149.1 standard. This allows functional testing of the circuit board on which the  
device is mounted through a serial scan path that can access all critical logic nodes. Internal  
registers are linked internally, allowing test data to be shifted in and loaded directly onto test  
nodes, or test node data to be captured and shifted out for verification. In addition, these devices  
can be linked into a board-level serial scan path for more complete board-level testing.  
IEEE 1149.1-COMPLIANT IN-SYSTEM PROGRAMMING  
Programming devices in-system provides a number of significant benefits including: rapid  
prototyping, lower inventory levels, higher quality, and the ability to make in-field modifications.  
All MACH 4 devices provide In-System Programming (ISP) capability through their Boundary  
ScanTest Access Ports. This capability has been implemented in a manner that ensures that the  
port remains compliant to the IEEE 1149.1 standard. By using IEEE 1149.1 as the communication  
interface through which ISP is achieved, customers get the benefit of a standard, well-defined  
interface.  
MACH 4 devices can be programmed across the commercial temperature and voltage range. The  
PC-based LatticePRO software facilitates in-system programming of MACH 4 devices. LatticePRO  
takes the JEDEC file output produced by the design implementation software, along with  
information about the JTAG chain, and creates a set of vectors that are used to drive the JTAG  
chain. LatticePRO software can use these vectors to drive a JTAG chain via the parallel port of a  
PC. Alternatively, LatticePRO software can output files in formats understood by common  
automated test equipment. This equpment can then be used to program MACH 4 devices during  
the testing of a circuit board.  
PCI COMPLIANT  
MACH 4 devices in the -7/-10/-12 speed grades are compliant with the PCI Local Bus  
Specification version 2.1, published by the PCI Special Interest Group (SIG). The 5-V devices are  
fully PCI-compliant. The 3.3-V devices are mostly compliant but do not meet the PCI condition  
to clamp the inputs as they rise above V because of their 5-V input tolerant feature.  
CC  
SAFE FOR MIXED SUPPLY VOLTAGE SYSTEM DESIGNS  
Both the 3.3-V and 5-V V MACH 4 devices are safe for mixed supply voltage system designs.  
CC  
The 5-V devices will not overdrive 3.3-V devices above the output voltage of 3.3 V, while they  
accept inputs from other 3.3-V devices. The 3.3-V device will accept inputs up to 5.5 V. Both the  
5-V and 3.3-V versions have the same high-speed performance and provide easy-to-use mixed-  
voltage design capability.  
BUS-FRIENDLY INPUTS AND I/OS  
All MACH 4 devices have inputs and I/Os which feature the Bus-Friendly circuitry incorporating  
two inverters in series which loop back to the input. This double inversion weakly holds the  
input at its last driven logic state. While it is good design practice to tie unused pins to a known  
state, the Bus-Friendly input structure pulls pins away from the input threshold voltage where  
noise can cause high-frequency switching. At power-up, the Bus-Friendly latches are reset to a  
logic level “1.” For the circuit diagram, please refer to the document entitled MACH Endurance  
Characteristics on the Lattice/Vantis Data Book CD-ROM or Lattice web site.  
20  
MACH 4 Family  
POWER MANAGEMENT  
Each individual PAL block in MACH 4 devices features a programmable low-power mode, which  
results in power savings of up to 50%. The signal speed paths in the low-power PAL block will  
be slower than those in the non-low-power PAL block. This feature allows speed critical paths  
to run at maximum frequency while the rest of the signal paths operate in the low-power mode.  
PROGRAMMABLE SLEW RATE  
Each MACH 4 device I/O has an individually programmable output slew rate control bit. Each  
output can be individually configured for the higher speed transition (3 V/ns) or for the lower  
noise transition (1 V/ns). For high-speed designs with long, unterminated traces, the slow-slew  
rate will introduce fewer reflections, less noise, and keep ground bounce to a minimum. For  
designs with short traces or well terminated lines, the fast slew rate can be used to achieve the  
highest speed. The slew rate is adjusted independent of power.  
POWER-UP RESET/SET  
All flip-flops power up to a known state for predictable system initialization. If a macrocell is  
configured to SET on a signal from the control generator, then that macrocell will be SET during  
device power-up. If a macrocell is configured to RESET on a signal from the control generator  
or is not configured for set/reset, then that macrocell will RESET on power-up. To guarantee  
initialization values, the V rise must be monotonic, and the clock must be inactive until the  
CC  
reset delay time has elapsed.  
SECURITY BIT  
A programmable security bit is provided on the MACH 4 devices as a deterrent to unauthorized  
copying of the array configuration patterns. Once programmed, this bit defeats readback of the  
programmed pattern by a device programmer, securing proprietary designs from competitors.  
Programming and verification are also defeated by the security bit. The bit can only be reset by  
erasing the entire device.  
MACH 4 Family  
21  
M4(LV)-64/32, M4(LV)-96/48,  
M4(LV)-128/64  
M4(LV)-192/96, M4(LV)-256/128  
CLOCK  
GENERATOR  
A
A
B
16  
17  
17  
17  
4
0
M0  
C0  
C1  
MACROCELL  
MACROCELL  
I/O0  
M0  
I/O  
O0  
O1  
M1  
CELL  
M1  
M2  
M3  
C2  
C3  
MACROCELL  
MACROCELL  
M2  
M3  
I/O1  
I/O2  
I/O3  
I/O  
CELL  
M4  
M5  
C4  
C5  
MACROCELL  
MACROCELL  
M4  
M5  
I/O  
CELL  
O2  
O3  
M6  
M7  
C6  
C7  
MACROCELL  
MACROCELL  
M6  
M7  
I/O  
CELL  
M8  
M9  
C8  
C9  
MACROCELL  
MACROCELL  
M8  
M9  
I/O4  
I/O5  
I/O6  
I/O  
CELL  
O4  
O5  
O6  
M10  
M11  
C10  
C11  
MACROCELL  
MACROCELL  
M10  
M11  
I/O  
CELL  
M12  
M13  
C12  
C13  
MACROCELL  
MACROCELL  
M12  
M13  
I/O  
CELL  
M14  
M15  
C14  
C15  
MACROCELL  
MACROCELL  
I/O7  
M14  
M15  
I/O  
CELL  
O7  
89  
B
16  
24  
INPUT SWITCH  
MATRIX  
16  
Figure 16. PAL Block for MACH 4 w ith 2:1 Macrocell - I/O Cell Ratio  
22  
MACH 4 Family  
CLK0/I0 CLK0/I1  
CLOCK  
16  
GENERATOR  
2
0
I/O0  
I/O1  
M0  
M1  
I/O  
CELL  
O0  
O1  
MACROCELL  
MACROCELL  
M0  
M1  
C0  
C1  
I/O  
CELL  
I/O2  
I/O3  
M2  
M3  
I/O  
CELL  
C2  
C3  
O2  
O3  
MACROCELL  
MACROCELL  
M2  
M3  
I/O  
CELL  
I/O4  
I/O5  
M4  
M5  
I/O  
CELL  
C4  
C5  
O4  
O5  
MACROCELL  
MACROCELL  
M4  
M5  
I/O  
CELL  
I/O6  
I/O7  
M6  
M7  
I/O  
CELL  
C6  
C7  
MACROCELL  
MACROCELL  
O6  
O7  
M6  
M7  
I/O  
CELL  
I/O8  
I/O9  
M8  
M9  
I/O  
CELL  
C8  
C9  
O8  
O9  
MACROCELL  
MACROCELL  
M8  
M9  
I/O  
CELL  
I/O10  
I/O11  
M10  
M11  
I/O  
CELL  
C10  
C11  
O10  
O11  
MACROCELL  
MACROCELL  
M10  
M11  
I/O  
CELL  
I/O12  
I/O13  
M12  
M13  
I/O  
CELL  
C12  
C13  
O12  
O13  
MACROCELL  
MACROCELL  
M12  
M13  
I/O  
CELL  
I/O14  
I/O15  
M14  
M15  
I/O  
CELL  
C14  
C15  
MACROCELL  
MACROCELL  
O14  
O15  
M14  
M15  
I/O  
CELL  
97  
17  
16  
INPUT  
SWITCH  
MATRIX  
32  
16  
Figure 17. PAL Block for M4(LV)-32/32  
17466H-042  
MACH 4 Family  
23  
BLOCK DIAGRAM – M4(LV)-32/32  
Block A  
I/O8–I/O15  
I/O0–I/O7  
8
8
I/O Cells  
I/O Cells  
8
8
Output Switch  
Output Switch  
Matrix  
8
Matrix  
8
8
8
4
4
8
8
8
8
Macrocells  
8
Macrocells  
2
8
66 X 98  
AND Logic Array  
and Logic Allocator  
16  
16  
16  
33  
Central Switch Matrix  
2
2
33  
16  
66 X 98  
AND Logic Array  
and Logic Allocator  
8
2
8
Macrocells  
8
Macrocells  
8
8
4
4
8
8
8
8
8
Output Switch  
Output Switch  
Matrix  
Matrix  
8
8
I/O Cells  
8
I/O Cells  
8
I/O16–I/O23  
I/O24–I/O31  
Block B  
17466H-019  
24  
MACH 4 Family  
BLOCK DIAGRAM – M4(LV)-64/32  
Block A  
Block D  
I/O0I/O7  
I/O24I/O31  
8
8
I/O Cells  
I/O Cells  
8
8
4
4
4
4
Output Switch  
Matrix  
Output Switch  
Matrix  
8
8
16  
16  
16  
16  
16  
16  
Macrocells  
Macrocells  
16  
16  
66 X 90  
AND Logic Array  
and Logic Allocator  
66 X 90  
AND Logic Array  
and Logic Allocator  
2
2
24  
24  
24  
33  
33  
33  
Central Switch Matrix  
2
2
33  
24  
66 X 90  
66 X 90  
AND Logic Array  
and Logic Allocator  
AND Logic Array  
and Logic Allocator  
2
2
16  
16  
Macrocells  
Macrocells  
16  
16  
16  
4
4
4
4
16  
16  
16  
8
8
Output Switch  
Matrix  
Output Switch  
Matrix  
8
8
I/O Cells  
8
I/O Cells  
8
I/O8I/O15  
I/O16I/O23  
Block C  
Block B  
17466H-020  
MACH 4 Family  
25  
BLOCK DIAGRAM – M4(LV)-96/48  
I2, I3, I6, I7  
Input Switch  
Matrix  
Input Switch  
Matrix  
OE  
OE  
OE  
OE  
Clock Generator  
Clock Generator  
Input Switch  
Matrix  
Input Switch  
Matrix  
OE  
Clock Generator  
Clock Generator  
Input Switch  
Matrix  
Input Switch  
Matrix  
OE  
Clock Generator  
Clock Generator  
CLK0/I0, CLK1/I1,  
CLK2/I4, CLK3/I5  
17466G-021  
26  
MACH 4 Family  
BLOCK DIAGRAM – M4(LV)-128N/64 AND M4(LV)-128/64  
I2, I5  
Input Switch  
Matrix  
Input Switch  
Matrix  
OE  
OE  
OE  
OE  
OE  
Clock Generator  
Clock Generator  
Input Switch  
Matrix  
Input Switch  
Matrix  
OE  
Clock Generator  
Clock Generator  
Input Switch  
Matrix  
Input Switch  
Matrix  
OE  
Clock Generator  
Clock Generator  
Input Switch  
Matrix  
Input Switch  
Matrix  
OE  
Clock Generator  
Clock Generator  
CLK0/I0, CLK1/I1,  
CLK2/I3, CLK3/I4  
17466H-022  
MACH 4 Family  
27  
BLOCK DIAGRAM – M4(LV)-192/96  
Block B  
I/O8I/O15  
Block A  
I/O0I/O7  
Block L  
I/O88I/O95  
Block K  
I/O80I/O87  
CLK0CLK3  
4
4
8
I/O Cells  
8
8
I/O Cells  
8
8
I/O Cells  
8
8
I/O Cells  
8
4
4
4
4
4
4
4
4
Output Switch  
Matrix  
Output Switch  
Matrix  
Output Switch  
Matrix  
Output Switch  
Matrix  
8
8
8
8
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
Macrocells  
Macrocells  
Macrocells  
Macrocells  
16  
16  
16  
16  
68 X 90  
AND Logic Array  
and Logic Allocator  
68 X 90  
AND Logic Array  
and Logic Allocator  
68 X 90  
AND Logic Array  
and Logic Allocator  
68 X 90  
AND Logic Array  
and Logic Allocator  
4
4
4
4
24  
24  
24  
24  
34  
34  
34  
34  
I/O72I/O79 Block J  
I/O64I/O71 Block I  
Block C I/O16I/O23  
Block D I/O24I/O31  
8
8
8
8
I/O Cells  
8
I/O Cells  
I/O Cells  
I/O Cells  
8
8
8
4
4
4
4
4
4
4
4
Output Switch  
Matrix  
Output Switch  
Matrix  
Output Switch  
Matrix  
Output Switch  
Matrix  
8
8
8
8
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
Macrocells  
Macrocells  
Macrocells  
Macrocells  
16  
16  
16  
16  
68 X 90  
AND Logic Array  
and Logic Allocator  
68 X 90  
AND Logic Array  
and Logic Allocator  
68 X 90  
AND Logic Array  
and Logic Allocator  
68 X 90  
AND Logic Array  
and Logic Allocator  
4
4
4
4
24  
24  
24  
24  
34  
34  
34  
34  
34  
34  
34  
34  
24  
24  
24  
24  
68 X 90  
68 X 90  
68 X 90  
68 X 90  
AND Logic Array  
and Logic Allocator  
AND Logic Array  
and Logic Allocator  
AND Logic Array  
and Logic Allocator  
AND Logic Array  
and Logic Allocator  
4
4
4
4
16  
16  
16  
16  
Macrocells  
16  
Macrocells  
16  
Macrocells  
16  
Macrocells  
16  
16  
16  
16  
16  
4
4
4
4
4
4
4
4
16  
16  
16  
16  
8
8
8
8
Output Switch  
Matrix  
Output Switch  
Matrix  
Output Switch  
Matrix  
Output Switch  
Matrix  
8
I/O Cells  
8
8
I/O Cells  
8
8
8
I/O Cells  
I/O Cells  
8
8
16  
I0I15  
I/O32I/O39  
I/O40I/O47  
I/O48I/O55  
I/O56I/O63  
Block E  
Block F  
Block G  
Block H  
17466G-067  
28  
MACH 4 Family  
BLOCK DIAGRAM – M4(LV)-256/128  
Block B  
I/O8I/O15  
Block A  
I/O0I/O7  
Block P  
I/O120I/O127  
Block O  
I/O112I/O119  
CLK0CLK3  
4
4
8
I/O Cells  
8
8
I/O Cells  
8
8
I/O Cells  
8
8
I/O Cells  
8
4
4
4
4
4
4
4
4
Output Switch  
Matrix  
Output Switch  
Matrix  
Output Switch  
Matrix  
Output Switch  
Matrix  
8
8
8
8
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
Macrocells  
Macrocells  
Macrocells  
Macrocells  
16  
16  
16  
16  
68 X 90  
AND Logic Array  
and Logic Allocator  
68 X 90  
AND Logic Array  
and Logic Allocator  
68 X 90  
AND Logic Array  
and Logic Allocator  
68 X 90  
AND Logic Array  
and Logic Allocator  
4
4
4
4
24  
24  
24  
24  
34  
34  
34  
34  
34  
34  
34  
34  
24  
24  
24  
24  
68 X 90  
68 X 90  
68 X 90  
68 X 90  
AND Logic Array  
and Logic Allocator  
AND Logic Array  
and Logic Allocator  
AND Logic Array  
and Logic Allocator  
AND Logic Array  
and Logic Allocator  
4
4
4
4
16  
16  
16  
16  
Macrocells  
16  
Macrocells  
16  
Macrocells  
16  
Macrocells  
16  
16  
16  
16  
16  
4
4
4
4
4
4
4
4
16  
16  
16  
16  
8
8
8
8
Output Switch  
Matrix  
Output Switch  
Matrix  
Output Switch  
Matrix  
Output Switch  
Matrix  
8
I/O Cells  
8
8
8
8
I/O Cells  
8
I/O Cells  
I/O Cells  
8
8
8
Block C I/O16I/O23  
Block D I/O24I/O31  
Block E I/O32I/O39  
Block F I/O40I/O47  
I/O104I/O111 Block N  
I/O96I/O103 Block M  
I/O88I/O95 Block L  
I/O80I/O87 Block K  
8
8
8
I/O Cells  
8
I/O Cells  
I/O Cells  
I/O Cells  
8
8
8
4
4
4
4
4
4
4
4
Output Switch  
Matrix  
Output Switch  
Matrix  
Output Switch  
Matrix  
Output Switch  
Matrix  
8
8
8
8
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
Macrocells  
Macrocells  
Macrocells  
Macrocells  
16  
16  
16  
16  
68 X 90  
AND Logic Array  
and Logic Allocator  
68 X 90  
AND Logic Array  
and Logic Allocator  
68 X 90  
AND Logic Array  
and Logic Allocator  
68 X 90  
AND Logic Array  
and Logic Allocator  
4
4
4
4
24  
24  
24  
24  
34  
34  
34  
34  
34  
34  
34  
34  
24  
24  
24  
24  
68 X 90  
68 X 90  
68 X 90  
68 X 90  
AND Logic Array  
and Logic Allocator  
AND Logic Array  
and Logic Allocator  
AND Logic Array  
and Logic Allocator  
AND Logic Array  
and Logic Allocator  
4
4
4
4
16  
16  
16  
16  
Macrocells  
16  
Macrocells  
16  
Macrocells  
16  
Macrocells  
16  
16  
16  
16  
16  
4
4
4
4
4
4
4
4
16  
16  
16  
16  
8
8
8
8
Output Switch  
Matrix  
Output Switch  
Matrix  
Output Switch  
Matrix  
Output Switch  
Matrix  
8
I/O Cells  
8
8
I/O Cells  
8
8
8
I/O Cells  
I/O Cells  
8
8
14  
I0I13  
I/O56I/O63  
Block H  
I/O64I/O71  
Block I  
I/O72I/O79  
Block J  
I/O48I/O55  
Block G  
17466G-024  
MACH 4 Family  
29  
ABSOLUTE MAXIMUM RATINGS  
OPERATING RANGES  
M4  
Commercial (C) Devices  
Storage Temperature . . . . . . . . . . . . . .-65°C to +150°C  
Ambient Temperature (T )  
A
Operating in Free Air . . . . . . . . . . . . . . . 0°C to +70°C  
Ambient Temperature  
with Power Applied . . . . . . . . . . . . . . -55°C to +100°C  
Supply Voltage (V )  
CC  
with Respect to Ground . . . . . . . . . +4.75 V to +5.25 V  
Device Junction Temperature . . . . . . . . . . . . . +130°C  
Supply Voltage  
with Respect to Ground . . . . . . . . . . . -0.5 V to +7.0 V  
Industrial (I) Devices  
Ambient Temperature (T )  
A
DC Input Voltage . . . . . . . . . . . . -0.5 V to V + 0.5 V  
Operating in Free Air . . . . . . . . . . . . . . -40°C to +85°C  
CC  
Static Discharge Voltage . . . . . . . . . . . . . . . . . 2000 V  
Supply Voltage (V )  
CC  
with Respect to Ground . . . . . . . . . . +4.50 V to +5.5 V  
Latchup Current (T = -40°C to +85°C). . . . . . . 200 mA  
A
Operating ranges define those limits between which the func-  
tionality of the device is guaranteed.  
Str esses a bove those listed u n der Absolu te Ma ximu m  
Ratings may cause permanent device failure. Functionality at  
or a bove these limits is not implied. Exposure to Absolute  
Ma ximum Ra tings for extended periods ma y a ffect device  
reliability.  
5-V DC CHARACTERISTICS OVER OPERATING RANGES  
Parameter  
Symbol  
Parameter Description  
Output HIGH Voltage  
Test Conditions  
= –3.2 mA, V = Min, V = V or V  
IL  
Min  
Typ  
Max  
Unit  
V
I
2.4  
OH  
CC  
IN  
IH  
V
OH  
I
= 0 mA, V = Max, V = V or V  
IL  
3.3  
0.5  
V
OH  
CC  
IN  
IH  
V
Output LOW Voltage  
Input HIGH Voltage  
I
= 24 mA, V = Min, V = V or V (Note 1)  
V
OL  
OL  
CC  
IN  
IH  
IL  
Guaranteed Input Logical HIGH Voltage for all Inputs  
(Note 2)  
V
2.0  
V
V
IH  
Guaranteed Input Logical LOW Voltage for all Inputs  
(Note 2)  
V
Input LOW Voltage  
0.8  
IL  
I
Input HIGH Leakage Current  
V = 5.25 V, V = Max (Note 3)  
10  
–10  
10  
µA  
µA  
µA  
µA  
mA  
IH  
IN  
CC  
I
Input LOW Leakage Current  
V = 0 V, V = Max (Note 3)  
IN CC  
IL  
I
Off-State Output Leakage Current HIGH  
Off-State Output Leakage Current LOW  
Output Short-Circuit Current  
V
= 5.25 V, V = Max, V = V or V (Note 3)  
OZH  
OUT CC IN IH IL  
I
V
= 0 V, V = Max , V = V or V (Note 3)  
–10  
–160  
OZL  
OUT  
CC  
IN  
IH  
IL  
I
V
= 0.5 V, V = Max (Note 4)  
–30  
SC  
OUT  
CC  
Notes:  
1. Total I for one PAL block should not exceed 64 mA.  
OL  
2. These are absolute values with respect to device ground, and all overshoots due to system or tester noise are included.  
3. I/O pin leakage is the worst case of I and I (or I and I ).  
IL  
OZL  
IH  
OZH  
4. Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.  
V
= 0.5 V has been chosen to avoid test problems caused by tester ground degradation.  
OUT  
MACH 4 Family  
30  
ABSOLUTE MAXIMUM RATINGS  
OPERATING RANGES  
M4LV  
Commercial (C) Devices  
Storage Temperature . . . . . . . . . . . . . .-65°C to +150°C  
Ambient Temperature (T )  
A
Operating in Free Air . . . . . . . . . . . . . . . 0°C to +70°C  
Ambient Temperature  
with Power Applied . . . . . . . . . . . . . . -55°C to +100°C  
Supply Voltage (V )  
CC  
with Respect to Ground . . . . . . . . . . . +3.0 V to +3.6 V  
Device Junction Temperature . . . . . . . . . . . . . +130°C  
Supply Voltage  
with Respect to Ground . . . . . . . . . . . -0.5 V to +4.5 V  
Industrial (I) Devices  
Ambient Temperature (T )  
A
DC Input Voltage . . . . . . . . . . . . . . . . . -0.5 V to 6.0 V  
Static Discharge Voltage . . . . . . . . . . . . . . . . . 2000 V  
Operating in Free Air . . . . . . . . . . . . . . -40°C to +85°C  
Supply Voltage (V )  
CC  
with Respect to Ground . . . . . . . . . . . +3.0 V to +3.6 V  
Latchup Current (T = -40°C to +85°C). . . . . . . 200 mA  
A
Operating ranges define those limits between which the func-  
tionality of the device is guaranteed.  
Str esses a bove those listed u n der Absolu te Ma ximu m  
Ratings may cause permanent device failure. Functionality at  
or a bove these limits is not implied. Exposure to Absolute  
Ma ximum Ra tings for extended periods ma y a ffect device  
reliability.  
3.3-V DC CHARACTERISTICS OVER OPERATING RANGES  
Parameter  
Symbol  
Parameter Description  
Output HIGH Voltage  
Test Conditions  
= –100 µA  
Min  
Typ  
Max  
Unit  
V
I
V – 0.2  
V = Min  
OH  
CC  
CC  
V
OH  
V = V or V  
I
= –3.2 mA  
= 100 µA  
= 24 mA  
2.4  
V
IN  
IH  
IL  
OH  
V = Min  
CC  
I
0.2  
0.5  
V
V
OL  
V
Output LOW Voltage  
V = V or V  
OL  
IN IH IL  
I
(Note 1)  
OL  
Guaranteed Input Logical HIGH Voltage for all  
Inputs  
V
Input HIGH Voltage  
Input LOW Voltage  
2.0  
5.5  
0.8  
V
V
IH  
Guaranteed Input Logical LOW Voltage for all  
Inputs  
V
–0.3  
IL  
I
Input HIGH Leakage Current  
Input LOW Leakage Current  
V = 3.6 V, V = Max (Note 2)  
5
µA  
µA  
IH  
IN  
CC  
I
V = 0 V, V = Max (Note 2)  
–5  
IL  
IN  
CC  
V
= 3.6 V, V = Max  
CC  
OUT  
I
Off-State Output Leakage Current HIGH  
5
µA  
OZH  
V = V or V (Note 2)  
IN  
IH  
IL  
V
= 0 V, V = Max  
CC  
OUT  
I
Off-State Output Leakage Current LOW  
Output Short-Circuit Current  
–5  
µA  
OZL  
V = V or V (Note 2)  
IN  
IH  
IL  
I
V
= 0.5 V, V = Max (Note 3)  
–15  
–160  
mA  
SC  
OUT  
CC  
Notes:  
1. Total I for one PAL block should not exceed 64 mA.  
OL  
2. I/O pin leakage is the worst case of I and I  
(or I and I  
).  
IL  
OZL  
IH  
OZH  
3. Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.  
MACH 4 Family  
31  
MACH 4 TIMING PARAMETERS OVER OPERATING RANGES1  
-7  
-10  
-12  
-14  
-15  
-18  
Min Max Min Max Min Max Min Max Min Max Min Max Unit  
Combinatorial Delay:  
t
Internal combinatorial propagation delay  
Combinatorial propagation delay  
5.5  
7.5  
8.0  
10.0  
12.0  
12.0  
14.0  
13.0  
15.0  
16.0  
18.0  
ns  
ns  
PDi  
t
10.0  
PD  
Registered Delays:  
t
Synchronous clock setup time, D-type register  
Synchronous clock setup time, T-type register  
Asynchronous clock setup time, D-type register  
Asynchronous clock setup time, T-type register  
Synchronous clock hold time  
5.5  
6.5  
3.5  
4.5  
0.0  
3.5  
6.0  
7.0  
4.0  
5.0  
0.0  
4.0  
7.0  
8.0  
5.0  
6.0  
0.0  
5.0  
10.0  
11.0  
8.0  
10.0  
11.0  
8.0  
12.0  
13.0  
10.0  
11.0  
0.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SS  
t
SST  
t
SA  
t
9.0  
9.0  
SAT  
t
0.0  
0.0  
HS  
t
Asynchronous clock hold time  
8.0  
8.0  
10.0  
HA  
t
Synchronous clock to internal output  
Synchronous clock to output  
3.5  
5.5  
7.5  
9.5  
4.5  
6.5  
6.0  
8.0  
8.0  
8.0  
10.0  
12.0  
18.0  
20.0  
COSi  
t
10.0  
16.0  
18.0  
10.0  
16.0  
18.0  
COS  
t
Asynchronous clock to internal output  
Asynchronous clock to output  
10.0  
12.0  
12.0  
14.0  
COAi  
t
COA  
Latched Delays:  
t
Synchronous Latch setup time  
6.0  
4.0  
0.0  
4.0  
7.0  
4.0  
0.0  
4.0  
8.0  
5.0  
0.0  
5.0  
10.0  
8.0  
0.0  
8.0  
10.0  
8.0  
0.0  
8.0  
12.0  
10.0  
0.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SSL  
t
Asynchronous Latch setup time  
Synchronous Latch hold time  
SAL  
t
HSL  
t
Asynchronous Latch hold time  
10.0  
HAL  
t
Transparent latch to internal output  
Propagation delay through transparent latch to output  
Synchronous Gate to internal output  
Synchronous Gate to output  
8.0  
10.0  
4.0  
10.0  
12.0  
5.5  
12.0  
14.0  
8.0  
15.0  
17.0  
9.0  
15.0  
17.0  
9.0  
18.0  
20.0  
10.0  
12.0  
20.0  
22.0  
PDLi  
t
PDL  
t
GOSi  
t
6.0  
7.5  
10.0  
14.0  
16.0  
11.0  
17.0  
19.0  
11.0  
17.0  
19.0  
GOS  
t
Asynchronous Gate to internal output  
Asynchronous Gate to output  
9.0  
11.0  
13.0  
GOAi  
t
11.0  
GOA  
Input Register Delays:  
t
Input register setup time  
2.0  
3.0  
2.0  
3.0  
2.0  
3.0  
2.0  
4.0  
2.0  
4.0  
2.0  
4.0  
ns  
ns  
ns  
SIRS  
t
Input register hold time  
HIRS  
t
Input register clock to internal feedback  
3.5  
4.5  
6.0  
6.0  
6.0  
6.0  
ICOSi  
Input Latch Delays:  
t
Input latch setup time  
2.0  
3.0  
2.0  
3.0  
2.0  
3.0  
2.0  
4.0  
2.0  
4.0  
2.0  
4.0  
ns  
ns  
ns  
ns  
SIL  
t
Input latch hold time  
HIL  
t
Input latch gate to internal feedback  
Transparent input latch to internal feedback  
4.0  
2.0  
4.0  
2.0  
4.0  
2.0  
5.0  
2.0  
5.0  
2.0  
6.0  
2.0  
IGOSi  
t
PDILi  
Input Register Delays with ZHT Option:  
t
Input register setup time - ZHT  
Input register hold time - ZHT  
6.0  
0.0  
6.0  
0.0  
6.0  
0.0  
6.0  
0.0  
6.0  
0.0  
6.0  
0.0  
ns  
ns  
SIRZ  
t
HIRZ  
32  
MACH 4 Family  
MACH 4 TIMING PARAMETERS OVER OPERATING RANGES1 (CONTINUED)  
-7  
-10  
-12  
-14  
-15  
-18  
Min Max Min Max Min Max Min Max Min Max Min Max Unit  
Input Latch Delays with ZHT Option:  
t
Input latch setup time - ZHT  
6.0  
0.0  
6.0  
0.0  
6.0  
0.0  
6.0  
0.0  
6.0  
0.0  
6.0  
0.0  
ns  
ns  
ns  
SILZ  
t
Input latch hold time - ZHT  
HILZ  
t
Transparent input latch to internal feedback - ZHT  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
PDILZi  
Output Delays:  
t
Output buffer delay  
Slow slew rate delay adder  
Output enable time  
2.0  
2.5  
9.5  
9.5  
2.0  
2.5  
2.0  
2.5  
2.0  
2.5  
2.0  
2.5  
2.0  
2.5  
ns  
ns  
ns  
ns  
BUF  
t
SLW  
t
10.0  
10.0  
12.0  
12.0  
15.0  
15.0  
15.0  
15.0  
17.0  
17.0  
EA  
t
Output disable time  
ER  
Power Delay:  
Power-down mode delay adder  
Reset and Preset Delays:  
t
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
ns  
PL  
t
Asynchronous reset or preset to internal register output  
Asynchronous reset or preset to register output  
Asynchronous reset and preset register recovery time  
Asynchronous reset or preset width  
10.0  
12.0  
12.0  
14.0  
14.0  
16.0  
18.0  
20.0  
18.0  
20.0  
20.0  
22.0  
ns  
ns  
ns  
ns  
SRi  
t
SR  
t
8.0  
8.0  
10.0  
12.0  
15.0  
15.0  
15.0  
15.0  
17.0  
17.0  
SRR  
t
10.0  
10.0  
SRW  
Clock/LE Width:  
t
Global clock width low  
3.0  
3.0  
4.0  
4.0  
5.0  
5.0  
5.0  
5.0  
6.0  
6.0  
8.0  
8.0  
6.0  
6.0  
9.0  
9.0  
6.0  
6.0  
9.0  
9.0  
7.0  
7.0  
ns  
ns  
ns  
ns  
WLS  
t
Global clock width high  
WHS  
t
Product term clock width low  
Product term clock width high  
10.0  
10.0  
WLA  
t
WHA  
Global gate width low (for low transparent) or high  
(for high transparent)  
t
5.0  
4.0  
5.0  
5.0  
6.0  
6.0  
6.0  
9.0  
6.0  
9.0  
7.0  
ns  
ns  
GWS  
Product term gate width low (for low transparent) or  
high (for high transparent)  
t
11.0  
GWA  
t
Input register clock width low  
Input register clock width high  
Input latch gate width  
4.5  
4.5  
5.0  
5.0  
5.0  
5.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
7.0  
7.0  
7.0  
ns  
ns  
ns  
WIRL  
t
WIRH  
t
6.0  
WIL  
MACH 4 Family  
33  
MACH 4 TIMING PARAMETERS OVER OPERATING RANGES1 (CONTINUED)  
-7  
-10  
-12  
-14  
-15  
-18  
Min Max Min Max Min Max Min Max Min Max Min Max Unit  
Frequency:  
External feedback, D-type, Min of 1/(t + t ) or  
WLS WHS  
90.9  
83.3  
80.0  
74.1  
95.2  
87.0  
100.0  
62.5  
58.8  
71.4  
66.7  
100.0  
100.0  
66.7  
62.5  
76.9  
71.4  
83.3  
52.6  
50.0  
58.8  
55.6  
62.5  
83.3  
50.0  
47.6  
55.6  
52.6  
83.3  
38.5  
37.0  
41.7  
40.0  
55.6  
83.3  
50.0  
47.6  
55.6  
52.6  
83.3  
38.5  
37.0  
41.7  
40.0  
55.6  
83.3  
41.7  
40.0  
45.5  
43.5  
71.4  
33.3  
32.3  
35.7  
34.5  
50.0  
71.4  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
1/(t + t  
)
SS COS  
External feedback, T-type, Min of 1/(t + t ) or  
WLS WHS  
1/(t + t  
)
SST COS  
Internal feedback (f ), D-type,  
CNT  
f
111.1  
100.0  
153.8  
76.9  
MAXS  
Min of 1/(t + t ) or 1/(t + t  
)
WLS WHS  
SS COSi  
Internal feedback (f ), T-type,  
CNT  
Min of 1/(t + t ) or 1/(t + t  
)
WLS WHS  
2
SST COSi  
No feedback , Min of 1/(t + t ), 1/(t + t ) or  
WLS WHS  
SS HS  
1/(t + t )  
SST HS  
External feedback, D-type, Min of 1/(t + t ) or  
WLA WHA  
1/(t + t  
)
SA COA  
External feedback, T-type, Min of 1/(t + t ) or  
WLA WHA  
71.4  
1/(t + t  
)
SAT COA  
Internal feedback (f ), D-type,  
CNTA  
f
90.9  
MAXA  
Min of 1/(t + t ) or 1/(t + t  
)
WLA WHA  
SA COAi  
Internal feedback (f ), T-type,  
CNTA  
83.3  
Min of 1/(t + t ) or 1/(t + t  
)
WLA WHA  
2
SAT COAi  
No feedback , Min of 1/(t + t ),  
WLA WHA  
125.0  
111.0  
1/(t + t ) or 1/(t + t )  
SA HA  
SAT HA  
Maximum input register frequency,  
Min of 1/(t + t ) or 1/(t + t  
f
MAXI  
)
SIRS HIRS  
WIRH WIRL  
Notes:  
1. See “MACH Switching Test Circuit” document on the Literature Download page of the Lattice web site.  
2. This parameter does not apply to flip-flops in the emulated mode since the feedback path is required for emulation.  
CAPACITANCE 1  
Parameter Symbol  
Parameter Description  
Input capacitance  
Test Conditions  
3.3 V or 5 V, 2C, 1 MHz  
3.3 V or 5 V, 2C, 1 MHz  
Typ  
6
Unit  
C
V =2.0 V  
pF  
pF  
IN  
IN  
C
Output capacitance  
V
=2.0V  
8
I/O  
OUT  
Note:  
1. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where  
this parameter may be affected.  
34  
MACH 4 Family  
ICC vs. FREQUENCY  
These curves represent the typical power consumption for a particular device at system frequen-  
cy. The selected “typical” pattern is a 16-bit up-down counter. This pattern fills the device and  
exercises every macrocell. Maximum frequency shown uses internal feedback and a D-type reg-  
ister. Power/Speed are optimized to obtain the highest counter frequency and the lowest power.  
The highest frequency (LSBs) is placed in common PAL blocks, which are set to high power. The  
lowest frequency signals (MSBs) are placed in a common PAL block and set to lowest power.  
V
= 5 V or 3.3 V, T = 25º C  
CC  
A
350  
300  
250  
200  
150  
100  
M4(LV)-256/128  
M4(LV)-192/96  
M4(LV)-128/64  
M4(LV)-96/48  
M4(LV)-64/32  
M4(LV)-32/32  
50  
0
Frequency (MHz)  
17466G-066  
Figure 18. MACH 4 I Curves at High Speed Mode  
CC  
350  
300  
250  
200  
150  
100  
V
= 5 V or 3.3 V, T = 25º C  
CC  
A
M4(LV)-256/128  
M4(LV)-192/96  
M4(LV)-128/64  
M4(LV)-96/48  
M4(LV)-64/32  
M4(LV)-32/32  
50  
0
Frequency (MHz)  
17466G-065  
Figure 19. MACH 4 I Curves at Low Pow er Mode  
CC  
MACH 4 Family  
35  
44-PIN PLCC CONNECTION DIAGRAM (M4(LV)-32/32 AND M4(LV)-64/32)  
Top View  
44-Pin PLCC  
M4(LV)-64/32  
M4(LV)-64/32  
40  
6
5
4
3
2
1 44 43 42 41  
39  
I/O27 D3  
I/O26 D2  
I/O25 D1  
I/O24 D0  
TDO  
B3  
B2  
B1  
B0  
7
8
A2  
A1  
A0  
A2 I/O5  
A1 I/O6  
A0 I/O7  
TDI  
38  
37  
36  
35  
34  
9
C
7
10  
11  
12  
CLK0/I0  
GND  
M4(LV)-32/32  
M4(LV)-32/32  
GND  
I/O Cell (0-7)  
CLK1/I1  
TMS  
33  
32  
31  
30  
29  
TCK  
13  
14  
15  
16  
17  
A8  
A9  
B0 I/O8  
B1 I/O9  
B2 I/O10  
B3 I/O11  
PAL Block (A-D)  
C0  
C1  
C2  
B8  
I/O23  
I/O22  
I/O21  
B9  
A10  
A11  
B10  
28  
18 19 20 21 22 23 24 25 26 27  
M4(LV)-64/32  
M4(LV)-64/32  
17466G-026  
PIN DESIGNATIONS  
CLK/I = Clock or Input  
GND = Ground  
I/O  
= Input/Output  
= Supply Voltage  
V
CC  
TDI = Test Data In  
TCK = Test Clock  
TMS = Test Mode Select  
TDO = Test Data Out  
36  
MACH 4 Family  
44-PIN TQFP CONNECTION DIAGRAM (M4(LV)-32/32 AND M4(LV)-64/32)  
Top View  
44-Pin TQFP  
M4(LV)-64/32  
M4(LV)-64/32  
1
2
3
4
5
6
7
8
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
A2  
A1  
A0  
A2  
A1  
A0  
I/O5  
I/O6  
I/O7  
TDI  
I/O27 D3  
I/O26 D2  
I/O25 D1  
I/O24 D0  
TDO  
GND  
CLK1/I1  
TMS  
B3  
B2  
B1  
B0  
C
7
M4(LV)-32/32  
CLK0/I0  
GND  
M4(LV)-32/32  
I/O Cell (0-7)  
TCK  
I/O8  
I/O9  
A8  
A9  
A10  
A11  
B0  
B1  
B2 I/O10  
B3 I/O11  
PAL Block (A-D)  
9
10  
11  
I/O23  
I/O22  
I/O21  
C0  
C1  
C2  
B8  
B9  
B10  
M4(LV)-64/32  
M4(LV)-64/32  
PIN DESIGNATIONS  
CLK/I = Clock or Input  
GND = Ground  
I/O  
= Input/Output  
= Supply Voltage  
V
CC  
TDI = Test Data In  
TCK = Test Clock  
TMS = Test Mode Select  
TDO = Test Data Out  
MACH 4 Family  
37  
48-PIN TQFP CONNECTION DIAGRAM (M4(LV)-32/32 AND M4(LV)-64/32)  
Top View  
48-Pin TQFP  
M4(LV)-64/32  
M4(LV)-64/32  
A2  
A1  
A0  
A2 I/O5  
A1 I/O6  
A0 I/O7  
TDI  
CLK0/I0  
NC  
1
2
3
4
5
6
7
8
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
I/O27 D3  
I/O26 D2  
I/O25 D1  
I/O24 D0  
TDO  
B3  
B2  
B1  
B0  
C
7
M4(LV)-32/32  
GND  
NC  
M4(LV)-32/32  
GND  
TCK  
I/O Cell (0-7)  
CLK1/I1  
TMS  
I/O23 C0  
I/O22 C1  
I/O21 C2  
A8  
A9  
A10  
A11  
B0  
B1  
B2  
B3  
9
I/O8  
I/O9  
I/O10  
I/O11  
PAL Block (A-D)  
10  
11  
12  
B8  
B9  
B10  
M4(LV)-64/32  
M4(LV)-64/32  
17466G-028  
PIN DESIGNATIONS  
CLK/I = Clock or Input  
GND = Ground  
I/O  
= Input/Output  
= Supply Voltage  
= No Connect  
V
CC  
NC  
TDI = Test Data In  
TCK = Test Clock  
TMS = Test Mode Select  
TDO = Test Data Out  
38  
MACH 4 Family  
100-PIN TQFP CONNECTION DIAGRAM (M4(LV)-96/48)  
Top View  
100-Pin TQFP  
NC  
TDI  
NC  
NC  
TDO  
NC  
NC  
NC  
1
2
3
4
5
6
7
8
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
A1  
A0  
B0  
B1  
I/O6  
I/O7  
I/O8  
I/O9  
I/O41  
I/O40  
I/O39  
I/O38  
I/O37  
I/O36  
I5/CLK3  
GND  
VCC  
I4/CLK2  
I/O35  
I/O34  
I/O33  
I/O32  
I/O31  
I/O30  
NC  
F1  
F0  
E0  
E1  
E2  
E3  
B2 I/O10  
B3 I/O11  
I0/CLK0  
VCC  
9
C
7
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
GND  
I/O Cell (0-7)  
I1/CLK1  
B4 I/O12  
B5 I/O13  
B6 I/O14  
B7 I/O15  
C0 I/O16  
C1 I/O17  
NC  
E4  
E5  
E6  
E7  
D0  
D1  
PAL Block (A-F)  
NC  
TMS  
TCK  
NC  
NC  
NC  
NC  
17466G-029  
PIN DESIGNATIONS  
CLK/I = Clock or Input  
GND = Ground  
I
= Input  
I/O  
= Input/Output  
= Supply Voltage  
= No Connect  
V
CC  
NC  
TDI = Test Data In  
TCK = Test Clock  
TMS = Test Mode Select  
TDO = Test Data Out  
MACH 4 Family  
39  
84-PIN PLCC CONNECTION DIAGRAM (M4(LV)-128N/64)  
Top View  
84-Pin PLCC  
8
4 3  
84 83  
8180 78 7776 75  
79  
82  
9
7 6 5  
2 1  
1110  
12  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
74 GND  
I/O8  
I/O9  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
73 I/O55 G7  
72  
I/O54 G6  
I/O10  
I/O11  
I/O12  
I/O13  
I/O14  
I/O15  
71  
G5  
I/O53  
G4  
70  
I/O52  
G3  
G2  
G1  
G0  
69 I/O51  
68  
67  
66  
I/O50  
I/O49  
I/O48  
C
7
CLK /I  
0 0  
65 CLK /I  
V
3 4  
CC  
64  
63  
62  
61  
60  
GND  
V
GND  
I/O Cell (0-7)  
CLK /I  
CC  
1 1  
CLK /I  
I/O16  
I/O17  
I/O18  
I/O19  
I/O20  
I/O21  
I/O22  
I/O23  
GND  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
2 3  
PAL Block (A-H)  
I/O47 F0  
I/O46  
59 I/O45  
F1  
F2  
F3  
F4  
F5  
58  
I/O44  
I/O43  
I/O42  
I/O41 F6  
I/O40  
57  
56  
55  
54  
F7  
33  
4142  
4546 47  
50 5152  
48 49  
53  
3536  
39 40  
3738  
43 44  
34  
17466G-030  
Note:  
Pin-compatible with the MACH131, MACH231, MACH435.  
PIN DESIGNATIONS  
CLK/I = Clock or Input  
GND = Ground  
I
= Input  
I/O  
= Input/Output  
= Supply Voltage  
V
CC  
40  
MACH 4 Family  
100-PIN PQFP CONNECTION DIAGRAM (M4(LV)-128/64)  
Top View  
100-Pin PQFP  
1
2
80  
79  
78  
77  
GND  
GND  
TD0  
TRST  
I/O55  
I/O54  
I/O53  
I/O52  
I/O51  
GND  
GND  
TDI  
I5  
I/O8  
I/O9  
I/O10  
I/O11  
3
4
5
6
7
8
9
(83)  
(12)  
(13)  
(14)  
(15)  
(16)  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
G7  
G6  
G5  
G4  
G3  
G2  
G1  
G0  
(73) 76  
(72) 75  
(71) 74  
(70) 73  
(69) 72  
I/O12  
10(17)  
11 (18)  
12(19)  
13(20)  
14  
I/O13  
I/O14  
I/O15  
IO/CLK0  
I/O50  
I/O49  
I/O48  
I4/CLK3  
GND  
(68) 71  
(67) 70  
(66) 69  
(65) 68  
67  
C
7
V
CC  
V
CC  
GND  
15  
16  
I/O Cell (0-7)  
PAL Block (A-H)  
66  
65  
64  
V
GND  
CC  
V
CC  
17  
GND  
I1/CLK1  
I/O16  
(23)  
(24)  
(25)  
18  
19  
20  
I3/CLK2  
I/O47  
I/O46  
63  
62  
61  
(62)  
(61)  
(60)  
C0  
C1  
F0  
F1  
I/O17  
(26)  
(27)  
(28)  
(29)  
(30)  
(31)  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
C2  
C3  
C4  
C5  
C6  
C7  
I/O18  
I/O19  
I/O20  
I/O21  
I/O22  
I/O23  
TMS  
TCK  
GND  
GND  
I/O45  
I/O44  
I/O43  
I/O42  
I/O41  
I/O40  
I2  
ENABLE  
GND  
GND  
F2  
F3  
F4  
F5  
F6  
F7  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
(59)  
(58)  
(57)  
(56)  
(55)  
(54)  
(41)  
17466G-031  
Note:  
The numbers in parentheses reflect compatible pin numbers for 84-pin PLCC.  
PIN DESIGNATIONS  
I/CLK = Input or Clock  
GND = Ground  
I
= Input  
I/O  
= Input/Output  
= Supply Voltage  
V
CC  
TDI = Test Data In  
TCK = Test Clock  
TMS = Test Mode Select  
TDO = Test Data Out  
TRST  
= Test Reset  
ENABLE = Program  
MACH 4 Family  
41  
100-PIN TQFP CONNECTION DIAGRAM (M4(LV)-128/64)  
Top View  
100-Pin TQFP  
GND  
TDI  
I/O8  
I/O9  
GND  
TDO  
1
2
3
4
5
6
7
8
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
B7  
B6  
TRST  
I/O55  
I/O54  
I/O53  
I/O52  
I/O51  
I/O50  
I/O49  
I/O48  
I4/CLK3  
GND  
G7  
G6  
G5  
G4  
G3  
G2  
G1  
G0  
B5 I/O10  
B4 I/O11  
B3 I/O12  
B2 I/O13  
B1 I/O14  
B0 I/O15  
I0/CLK0  
9
C
7
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
V
GND  
CC  
I/O Cell (0-7)  
I1/CLK1  
I/O16  
I/O17  
C1  
I/O18  
I/O19  
C3  
I/O20  
I/O21  
C5  
V
CC  
I3/CLK2  
I/O47  
I/O46  
I/O45  
I/O44  
I/O43  
I/O42  
I/O41  
I/O40  
ENABLE  
GND  
C0  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
PAL Block (A-H)  
C2  
C4  
I/O22  
I/O23  
C7  
C6  
TMS  
TCK  
GND  
17466G-032  
PIN DESIGNATIONS  
CLK/I = Clock or Input  
GND = Ground  
I
= Input  
I/O  
= Input/Output  
= Supply Voltage  
V
CC  
TDI = Test Data In  
TCK = Test Clock  
TMS = Test Mode Select  
TDO = Test Data Out  
TRST  
= Test Reset  
ENABLE = Program  
42  
MACH 4 Family  
144-PIN TQFP CONNECTION DIAGRAM (M4(LV)-192/96)  
Top View  
144-Pin TQFP  
GND  
TDI  
1
2
3
4
5
6
7
8
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
GND  
TDO  
NC  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
I/O0  
I/O1  
I/O2  
I/O3  
I/O4  
I/O5  
I/O6  
I/O7  
I2  
I3  
VCC  
GND  
I4  
I/O8  
I/O9  
I/O10  
I/O11  
I/O12  
I/O13  
I/O14  
I/O15  
GND  
VCC  
I/O16  
I/O17  
I/O18  
I/O19  
I/O20  
I/O21  
I/O22  
I/O23  
TMS  
TCK  
GND  
I/O71 K0  
I/O70 K1  
I/O69 K2  
I/O68 K3  
I/O67 K4  
I/O66 K5  
I/O65 K6  
I/O64 K7  
I12  
VCC  
GND  
I11  
I10  
I/O63 J0  
I/O62 J1  
I/O61 J2  
I/O60 J3  
I/O59 J4  
I/O58 J5  
I/O57 J6  
I/O56 J7  
GND  
VCC  
I/O55  
I/O54  
I/O53  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
C
7
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
I/O Cell (0-7)  
PAL Block (A-L)  
E7  
E6  
E5  
E4  
E3  
E2  
E1  
E0  
I0  
I1  
I2  
I3  
I4  
I5  
I6  
I7  
I/O52  
I/O51  
I/O50  
I/O49  
I/O48  
NC  
GND  
74  
73  
17466G-033  
PIN DESIGNATIONS  
CLK = Clock  
GND = Ground  
I
= Input  
I/O  
= Input/Output  
= Supply Voltage  
V
CC  
TDI = Test Data In  
TCK = Test Clock  
TMS = Test Mode Select  
TDO = Test Data Out  
17466G-044  
MACH 4 Family  
43  
208-PIN PQFP CONNECTION DIAGRAM (M4(LV)-256/128)  
Top View  
208-Pin PQFP  
GND  
TDI  
1
2
3
4
5
6
7
8
9
156 GND  
155 TDO  
RECOMMEND TO TIE TO VCC  
C7 I/O16  
C6 I/O17  
C5 I/O18  
C4 I/O19  
C3 I/O20  
C2 I/O21  
C1 I/O22  
154 TRST  
153 I/O111  
152 I/O110  
151 I/O109  
150 I/O108  
149 I/O107  
148 I/O106  
147 I/O105  
146 I/O104  
145 VCC  
N7  
N6  
N5  
N4  
N3  
N2  
N1  
N0  
C0 I/O23 10  
VCC 11  
GND 12  
D7 I/O24 13  
D6 I/O25 14  
D5 I/O26 15  
D4 I/O27 16  
D3 I/O28 17  
D2 I/O29 18  
D1 I/O30 19  
D0 I/O31 20  
I2 21  
144 GND  
143 I/O103 M7  
142 I/O102 M6  
141 I/O101 M5  
140 I/O100 M4  
139 I/O99  
138 I/O98  
137 I/O97  
136 I/O96  
135 I11  
134 GND  
133 VCC  
132 VCC  
131 GND  
130 GND  
129 VCC  
128 VCC  
127 GND  
126 I10  
PIN DESIGNATIONS  
M3  
M2  
M1  
M0  
CLK  
GND  
I
=
=
=
=
=
=
=
=
=
=
=
=
Clock  
Ground  
Input  
I3 22  
GND 23  
VCC 24  
VCC 25  
GND 26  
GND 27  
VCC 28  
VCC 29  
I/O  
N/C  
VCC  
TDI  
TCK  
TMS  
TDO  
TRST  
ENABLE  
Input/Output  
No Connect  
Supply Voltage  
Test Data In  
Test Clock  
Test Mode Select  
Test Data Out  
Test Reset  
Program  
GND 30  
I4 31  
C
7
E0 I/O32 32  
E1 I/O33 33  
E2 I/O34 34  
E3 I/O35 35  
E4 I/O36 36  
E5 I/O37 37  
E6 I/O38 38  
E7 I/O39 39  
GND 40  
125 I9  
I/O Cell (0-7)  
PAL Block (A-HX)  
124 I/O95  
123 I/O94  
122 I/O93  
121 I/O92  
120 I/O91  
119 I/O90  
118 I/O89  
117 I/O88  
116 GND  
115 VCC  
114 I/O87  
113 I/O86  
112 I/O85  
111 I/O84  
110 I/O83  
109 I/O82  
108 I/O81  
107 I/O80  
L0  
L1  
L2  
L3  
L4  
L5  
L6  
L7  
VCC 41  
F0 I/O40 42  
F1 I/O41 43  
F2 I/O42 44  
F3 I/O43 45  
F4 I/O44 46  
F5 I/O45 47  
F6 I/O46 48  
F7 I/O47 49  
TMS 50  
K0  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
TCK 51  
RECOMMEND TO TIE TO GND 106 ENABLE  
GND 52  
105 GND  
17466G-044  
17466H-066  
44  
MACH 4 Family  
256-BALL BGA CONNECTION DIAGRAM (M4(LV)-256/128)  
Bottom View  
256-Ball BGA  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
I/O108  
N4  
I/O105  
N1  
I/O100  
M4  
I/O96  
M0  
I/O95  
L0  
I/O91  
L4  
I/O87  
K0  
A
GND  
N/C  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
N/C  
GND  
GND  
GND  
A
I/O113  
O6  
I/O109  
N5  
I/O106 I/O103  
N2 M7  
I/O102  
M6  
I/O98  
M2  
I/O93  
L2  
I/O89  
L6  
I/O88  
L7  
I/O85  
K2  
I/O83  
K6  
I/O82  
K5  
B
C
D
E
F
GND  
N/C  
N/C  
I11  
N/C  
I10  
I9  
N/C  
N/C  
GND  
B
C
D
E
F
I/O116  
O3  
I/O111 I/O107  
I/O104 I/O101  
N0  
I/O97  
M1  
I/O94  
L1  
I/O90  
L5  
I/O86  
K1  
I/O84  
K3  
I/O80  
K7  
I/O78  
J6  
I/O74  
J2  
N/C  
VCC  
TRST  
VCC  
TDI  
N/C  
N/C  
ENABLE VCC  
N7  
N3  
M5  
I/O120  
P7  
I/O117  
O2  
I/O112  
O7  
I/O110  
N6  
I/O99  
M3  
I/O92  
L3  
I/O81  
K6  
I/O79  
I/O75  
J3  
I/O71  
I7  
VCC  
VCC  
N/C  
N/C  
VCC  
VCC  
VCC  
J7  
I/O123  
P4  
I/O119  
O0  
I/O114  
O5  
I/O77  
I/O72  
J0  
I/O68  
I4  
TDO  
J5  
I/O122  
P5  
I/O118 I/O115  
I/O76  
J4  
I/O73  
J1  
I/O69  
I5  
GND  
GND  
O1  
O4  
I/O125 I/O121  
P2 P6  
I/O70  
I6  
I/O65  
I1  
G
H
I12  
VCC  
VCC  
I8  
G
H
PIN DESIGNATIONS  
I/O127 I/O126 I/O124  
I/O67  
I3  
I/O66  
I2  
I/O64  
I0  
GND  
GND  
CLK  
GND  
I
I/O  
N/C  
=
=
=
=
=
=
=
=
=
=
=
=
Clock  
Ground  
Input  
Input/Output  
No Connect  
Supply Voltage  
Test Data In  
Test Clock  
Test Mode Select  
Test Data Out  
Test Reset  
P0  
P1  
P3  
J
N/C  
N/C  
N/C  
I13  
I7  
N/C  
N/C  
N/C  
N/C  
N/C  
J
K
GND  
CLK3  
CLK0  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
I0  
N/C  
CLK2  
K
VCC  
TDI  
L
N/C  
N/C  
N/C  
I6  
N/C  
N/C  
CLK1  
GND  
L
TCK  
TMS  
TDO  
TRST  
ENABLE  
I/O63  
H0  
I/O62  
H1  
M
C
7
M
I/O Cell (0-7)  
PAL Block (A-P)  
I/O0  
A0  
I/O2  
A2  
I/O3  
A3  
I/O60  
H3  
I/O61  
H2  
I/O59  
H4  
Program  
N
P
R
T
GND  
I1  
GND  
I5  
N
P
R
T
I/O1  
A1  
I/O6  
A6  
I/O57  
H6  
I/O58  
H5  
VCC  
N/C  
VCC  
I/O5  
A5  
I/O9  
B1  
I/O51  
G4  
I/O54  
G1  
I/O56  
H7  
GND  
GND  
N/C  
I/O4  
A4  
I/O8  
B0  
I/O12  
B4  
I/O50  
G5  
I/O55  
G0  
TCK  
TMS  
VCC  
I/O7  
A7  
I/O11  
B3  
I/O15  
B7  
I/O48  
G7  
I/O53  
G2  
I/O18  
C5  
I/O24  
D7  
I/O29  
D2  
I/O35  
E3  
U
V
VCC  
VCC  
VCC  
I2  
I3  
N/C  
N/C  
N/C  
VCC  
N/C  
VCC  
N/C  
N/C  
U
V
I/O10  
B2  
I/O13  
B5  
I/O16  
C7  
I/O17  
C6  
I/O21  
C2  
I/O23  
C0  
I/O27  
D4  
I/O31  
D0  
I/O33  
E1  
I/O37  
E5  
I/O41  
F1  
I/O43  
F3  
I/O46  
F6  
I/O47  
F7  
I/O52  
G3  
VCC  
N/C  
VCC  
N/C  
I/O14  
B6  
I/O19  
C4  
I/O22  
C1  
I/O25  
D6  
I/O28  
D3  
I/O34  
E2  
I/O38  
E6  
I/O39  
E7  
I/O42  
F2  
I/O45  
F5  
I/O49  
G6  
W
Y
W
Y
GND  
N/C  
N/C  
N/C  
I4  
N/C  
GND  
I/O20  
C3  
I/O26  
D5  
I/O30  
D1  
I/O32  
E0  
I/O36  
E4  
I/O40  
F0  
I/O44  
F4  
GND  
GND  
GND  
N/C  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
N/C  
GND  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
17466G-045  
MACH 4 Family  
45  
MACH 4 PRODUCT ORDERING INFORMATION  
MACH 4 Devices Commercial & Industrial - 3.3V and 5V  
Lattice/Vantis programmable logic products are available with several ordering options. The order number (Valid Com-  
bination) is formed by a combination of:  
M4-  
256 / 128 -7  
Y
C
FAMILY TYPE  
M4- = MACH 4 Family (5-V V  
48  
= 48-pin TQFP for M4(LV)-32/32  
or M4(LV)-64/32  
)
CC  
M4LV- = MACH 4 Family Low Voltage (3.3-V V  
)
CC  
OPERATING CONDITIONS  
C
I
= Commercial (0°C to +70°C)  
= Industrial (-40°C to +85°C)  
MACROCELL DENSITY  
32 = 32 Macrocells 128N = 128 Macrocells, Non-ISP  
64 = 64 Macrocells 192 = 192 Macrocells  
96 = 96 Macrocells 256 = 256 Macrocells  
128 = 128 Macrocells  
PACKAGE TYPE  
A
J
= Ball Grid Array (BGA)  
= Plastic Leaded Chip Carrier  
(PLCC)  
V
Y
= Thin Quad Flat Pack (TQFP)  
= Plastic Quad Flat Pack (PQFP)  
I/Os  
/32 = 32 I/Os in 44-pin PLCC, 44-pin TQFP or 48-pin TQFP  
/48 = 48 I/Os in 100-pin TQFP  
/64 = 64 I/Os in 84-pin PLCC, 100-pin PQFP or 100-pin TQFP  
/96 = 96 I/Os in 144-pin TQFP  
SPEED  
-7 = 7.5 ns t  
-10 = 10 ns t  
PD  
PD  
/128 = 128 I/Os in 208-pin PQFP or 256-ball BGA  
-12 = 12 ns t  
-14 = 14 ns t  
-15 = 15 ns t  
-18 = 18 ns t  
PD  
PD  
PD  
PD  
Valid Combinations  
Valid Combinations  
M4-32/32  
M4LV-32/32  
M4-64/32  
M4LV-64/32  
M4-96/48  
JC, VC, VC48  
JC, VC, VC48  
JC, VC, VC48  
JC, VC, VC48  
VC  
M4-32/32  
M4LV-32/32  
M4-64/32  
M4LV-64/32  
M4-96/48  
JI, VI, VI48  
JI, VI, VI48  
JI, VI, VI48  
JI, VI, VI48  
VI  
M4LV-96/48  
M4-128/64  
M4LV-128/64  
M4-128N/64  
M4LV-128N/64  
M4-192/96  
M4LV-192/96  
M4-256/128  
M4LV-256/128  
VC  
M4LV-96/48  
M4-128/64  
M4LV-128/64  
M4-128N/64  
M4LV-128N/64  
M4-192/96  
M4LV-192/96  
M4-256/128  
M4LV-256/128  
VI  
YC, VC  
YC, VC  
JC  
JC  
VC  
VC  
YC, AC  
YC, AC  
YI, VI  
YI, VI  
JI  
JI  
VI  
VI  
YI, AI  
YI, AI  
-7, -10, -12, -15  
-10, -12, -14, -18  
All MACH devices are dual-marked with both Commercial and  
Industrial grades. The Industrial speed grade is slower, i.e.,  
M4-256/128-7YC-10YI  
Valid Combinations  
Valid Combinations list configurations planned to be  
supported in volume for this device. Consult the local  
Lattice sales office to confirm availability of specific valid  
co mb in atio n s an d to ch e ck o n n e w ly re le ase d  
combinations.  
46  
MACH 4 Family  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY