MACH230-15JC [LATTICE]

High-Density EE CMOS Programmable Logic; 高密度EE CMOS可编程逻辑
MACH230-15JC
型号: MACH230-15JC
厂家: LATTICE SEMICONDUCTOR    LATTICE SEMICONDUCTOR
描述:

High-Density EE CMOS Programmable Logic
高密度EE CMOS可编程逻辑

可编程逻辑器件 输入元件 时钟
文件: 总29页 (文件大小:228K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FINAL  
COM’L: -10/15/20  
IND: -18/24  
Lattice Semiconductor  
MACH230-10/15/20  
High-Density EE CMOS Programmable Logic  
DISTINCTIVE CHARACTERISTICS  
84 Pins  
64 Outputs  
128 Flip-flops; 4 clock choices  
128 Macrocells  
8 “PAL26V16” blocks with buried macrocells  
10 ns tPD Commercial  
18 ns tPD Industrial  
Pin-compatible with MACH130, MACH131,  
MACH231, and MACH435  
100 MHz fCNT  
70 Inputs  
GENERAL DESCRIPTION  
TheMACH230isamemberofthehigh-performance  
EE CMOS MACH 2 device family. This device has ap-  
proximately twelve times the logic macrocell capability  
of the popular PAL22V10 without loss of speed.  
latched, or combinatorial outputs with programmable  
polarity. If a registered configuration is chosen, the reg-  
ister can be configured as D-type or T-type to help  
reduce the number of product terms. The register type  
decision can be made by the designer or by the soft-  
ware. All output macrocells can be connected to an I/O  
cell. If a buried macrocell is desired, the internal feed-  
back path from the macrocell can be used, which frees  
up the I/O pin for use as an input.  
The MACH230 consists of eight PAL blocks intercon-  
nected by a programmable switch matrix. The switch  
matrix connects the PAL blocks to each other and to all  
input pins, providing a high degree of connectivity be-  
tween the fully-connected PAL blocks. This allows  
designs to be placed and routed efficiently.  
The MACH230 has dedicated buried macrocells which,  
in addition to the capabilities of the output macrocell,  
also provide input registers for use in synchronizing  
signals and reducing setup time requirements.  
The MACH230 has two kinds of macrocell: output and  
buried. The output macrocell provides registered,  
BLOCK DIAGRAM  
If you would like to view  
Block Diagram in full size,  
please click on the box.  
Publication# 14132 Rev. I  
Issue Date: May 1995  
Amendment/0  
I/O – I/O (Block A)  
I/O – I/O (Block B)  
I/O – I/O (Block C)  
I/O – I/O (Block D)  
24 31  
0
7
8
15  
16  
23  
I
I
2, 5  
8
8
8
8
8
8
I/O Cells  
8
I/O Cells  
8
I/O Cells  
8
I/O Cells  
8
8
8
8
8
8
8
Macrocells  
Macrocells  
Macrocells  
Macrocells  
Macrocells  
Macrocells  
Macrocells  
Macrocells  
4
2
OE  
OE  
52 x 68  
AND Logic Array  
OE  
OE  
52 x 68  
AND Logic Array  
52 x 68  
AND Logic Array  
52 x 68  
AND Logic Array  
and Logic Allocator  
and Logic Allocator  
and Logic Allocator  
and Logic Allocator  
26  
26  
26  
26  
Switch Matrix  
26  
26  
26  
26  
52 x 68  
AND Logic Array  
and Logic Allocator  
52 x 68  
AND Logic Array  
and Logic Allocator  
52 x 68  
AND Logic Array  
and Logic Allocator  
52 x 68  
AND Logic Array  
and Logic Allocator  
4
OE  
OE  
OE  
OE  
Macrocells  
Macrocells  
8
Macrocells  
Macrocells  
8
Macrocells  
Macrocells  
8
Macrocells  
Macrocells  
8
4
8
8
8
8
8
8
8
8
8
8
8
8
I/O Cells  
I/O Cells  
I/O Cells  
I/O Cells  
I/O – I/O (Block H)  
56 63  
I/O – I/O (Block G)  
48 55  
I/O – I/O (Block F)  
40 47  
I/O – I/O (Block E)  
31 39  
CLK /I CLK /I  
0 0, 1 1  
CLK /I CLK /I  
2 3,  
3 4  
14132I-1  
CONNECTION DIAGRAM  
Top View  
84 PLCC  
11 10  
9
8
7
6
5
4
3
2
1
84 83 82 81 80 79 78 77 76 75  
74  
12  
13  
14  
15  
I/O  
I/O  
GND  
8
9
I/O  
55  
I/O  
54  
I/O  
53  
I/O  
52  
I/O  
51  
I/O  
50  
I/O  
49  
I/O  
48  
73  
72  
71  
70  
69  
68  
67  
66  
I/O  
10  
I/O  
11  
16  
17  
I/O  
12  
13  
14  
I/O  
I/O  
18  
19  
20  
I/O  
15  
CLK /I  
0 0  
21  
22  
65  
64  
63  
62  
61  
V
CLK /I  
3 4  
CC  
GND  
GND  
23  
24  
25  
26  
27  
28  
29  
30  
V
CLK /I  
1 1  
I/O  
I/O  
CC  
CLK /I  
2 3  
16  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
17  
47  
46  
45  
44  
43  
42  
I/O  
18  
60  
59  
58  
57  
56  
I/O  
I/O  
I/O  
19  
20  
21  
22  
I/O  
31  
32  
55  
54  
I/O  
GND  
I/O  
I/O  
23  
41  
40  
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53  
14132I-2  
Note:  
Pin-compatible with MACH130, MACH131, MACH231, and MACH435.  
PIN DESIGNATIONS  
CLK/I = Clock or Input  
GND = Ground  
I
= Input  
I/O = Input/Output  
VCC = Supply Voltage  
MACH230-10/15/20  
3
ORDERING INFORMATION  
Commercial Products  
Programmable logic products for commercial applications are available with several ordering options. The order number  
(Valid Combination) is formed by a combination of:  
MACH  
230 -10  
J
C
FAMILY TYPE  
MACH = Macro Array CMOS High-Speed  
OPTIONAL PROCESSING  
Blank = Standard Processing  
OPERATING CONDITIONS  
C = Commercial (0°C to +70°C)  
DEVICE NUMBER  
230 = 128 Macrocells, 84 Pins  
SPEED  
PACKAGE TYPE  
J = 84-Pin Plastic Leaded  
Chip Carrier (PL 084)  
-10 = 10 ns tPD  
-15 = 15 ns tPD  
-20 = 20 ns tPD  
Valid Combinations  
Valid Combinations  
The Valid Combinations table lists configurations  
plannedtobesupportedinvolumeforthisdevice. Con-  
sult your local sales office to confirm availability of  
specific valid combinations and to check on newly re-  
leased combinations.  
MACH230-10  
JC  
MACH230-15  
MACH230-20  
4
MACH230-10/15/20 (Com’l)  
ORDERING INFORMATION  
Industrial Products  
Programmable logic products for industrial applications are available with several ordering options. The order number (Valid  
Combination) is formed by a combination of:  
MACH  
230 -18  
J
I
FAMILY TYPE  
MACH = Macro Array CMOS High-Speed  
OPTIONAL PROCESSING  
Blank = Standard Processing  
OPERATING CONDITIONS  
DEVICE NUMBER  
230 = 128 Macrocells, 84 Pins  
I
= Industrial (–40°C to +85°C)  
SPEED  
-18 = 18 ns tPD  
-24 = 24 ns tPD  
PACKAGE TYPE  
J = 84-Pin Plastic Leaded  
Chip Carrier (PL 084)  
Valid Combinations  
Valid Combinations  
The Valid Combinations table lists configurations  
planned to be supported in volume for this device.  
Consult your local sales office to confirm availabil-  
ity of specific valid combinations and to check on newly  
released combinations.  
MACH230-18  
JI  
MACH230-24  
MACH230-18/24 (Ind)  
5
configures the logic allocator when fitting the design into  
the device.  
FUNCTIONAL DESCRIPTION  
The MACH230 consists of eight PAL blocks connected  
by a switch matrix. There are 64 I/O pins and 2  
dedicated input pins feeding the switch matrix. These  
signals are distributed to the four PAL blocks for efficient  
design implementation. There are 4 clock pins that can  
also be used as dedicated inputs.  
Table 2 illustrates which product term clusters are  
available to each macrocell within a PAL block. Refer to  
Figure 1 for cluster and macrocell numbers.  
Table 2. Logic Allocation  
Macrocell  
Output  
Available  
Clusters  
The PAL Blocks  
Buried  
M1  
Each PAL block in the MACH230 (Figure 1) contains a  
64-product-term logic array, a logic allocator, 8 output  
macrocells, 8 buried macrocells, and 8 I/O cells. The  
switch matrix feeds each PAL block with 26 inputs. This  
makes the PAL block look effectively like an independ-  
ent “PAL26V16” with 8 buried macrocells.  
M0  
C0, C1, C2  
C0, C1, C2, C3  
M2  
C1, C2, C3, C4  
C2, C3, C4, C5  
M3  
M4  
C3, C4, C5, C6  
C4, C5, C6, C7  
M5  
In addition to the logic product terms, two output enable  
product terms, an asynchronous reset product term,  
and an asynchronous preset product term are provided.  
One of the two output enable product terms can be  
chosen within each I/O cell in the PAL block. All flip-flops  
within the PAL block are initialized together.  
M6  
C5, C6, C7, C8  
C6, C7, C8, C9  
M7  
M8  
C7, C8, C9, C10  
C8, C9, C10, C11  
M9  
M10  
M12  
M14  
C9, C10, C11, C12  
C10, C11, C12, C13  
M11  
M13  
M15  
The Switch Matrix  
The MACH230 switch matrix is fed by the inputs and  
feedback signals from the PAL blocks. Each PAL block  
provides 16 internal feedback signals and 8 I/O  
feedback signals. The switch matrix distributes these  
signals back to the PAL blocks in an efficient manner  
that also provides for high performance. The design  
software automatically configures the switch matrix  
when fitting a design into the device.  
C11, C12, C13, C14  
C12, C13, C14, C15  
C13, C14, C15  
C14, C15  
The Macrocell  
The MACH230 has two types of macrocell: output and  
buried. The output macrocells can be configured as  
either registered, latched, or combinatorial, with pro-  
grammable polarity. The macrocell provides internal  
feedback whether configured with or without the flip-  
flop. The registers can be configured as D-type or  
T-type, allowing for product-term optimization.  
The MACH230 places a restriction on buried macrocell  
feedback only. Buried macrocell feedback from one  
block can be used as an input only to that block or its  
“sibling” block. Sibling blocks are illustrated in the block  
diagram and in Table 1. Output macrocell feedback is  
not restricted.  
The flip-flops can individually select one of four clock/  
gate pins, which are also available as data inputs. The  
registers are clocked on the LOW-to-HIGH transition of  
the clock signal. The latch holds its data when the gate  
input is HIGH, and is transparent when the gate input is  
LOW. The flip-flops can also be asynchronously initial-  
ized with the common asynchronous reset and preset  
product terms.  
Table 1. Sibling Blocks  
PAL Block  
Sibling Block  
A
B
C
D
E
F
H
G
F
E
D
C
B
A
The buried macrocells are the same as the output  
macrocells if they are used for generating logic. In that  
case, the only thing that distinguishes them from the  
output macrocells is the fact that there is no I/O cell  
connection, and the signal is only used internally. The  
buried macrocell can also be configured as an input  
register or latch.  
G
H
The Product-Term Array  
The MACH230 product-term array consists of 64  
product terms for logic use, and 4 special-purpose  
product terms. Two of the special-purpose product  
terms provide programmable output enable, one  
provides asynchronous reset, and one provides asyn-  
chronous preset.  
The I/O Cell  
The I/O cell in the MACH230 consists of a three-state  
output buffer. The three-state buffer can be configured  
in one of three ways: always enabled, always disabled,  
or controlled by a product term. If product term control is  
chosen, one of two product terms may be used to  
provide the control. The two product terms that are  
available are common to all I/O cells in a PAL block.  
The Logic Allocator  
The logic allocator in the MACH230 takes the 64 logic  
product terms and allocates them to the 16 macrocells  
as needed. Each macrocell can be driven by up to 16  
product terms. The design software automatically  
These choices make it possible to use the macrocell as  
an output, an input, a bidirectional pin, or a three-state  
output for use in driving a bus.  
6
MACH230-10/15/20  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
47  
43  
51  
Output Enable  
Output Enable  
Asynchronous Reset  
Asynchronous Preset  
I/O  
Cell  
I/O  
Output  
Macro  
Cell  
M0  
Buried  
Macro  
Cell  
M1  
M2  
I/O  
Cell  
I/O  
Output  
Macro  
Cell  
Buried  
Macro  
Cell  
M3  
M4  
0
I/O  
Cell  
I/O  
Output  
Macro  
Cell  
C0  
C1  
Buried  
Macro  
Cell  
C2  
M5  
M6  
M7  
M8  
M9  
C3  
I/O  
Cell  
I/O  
C4  
Output  
Macro  
Cell  
C5  
C6  
Buried  
Macro  
Cell  
Switch  
Matrix  
C7  
I/O  
Cell  
C8  
I/O  
Output  
Macro  
Cell  
C9  
C10  
C11  
C12  
C13  
C14  
C15  
Buried  
Macro  
Cell  
I/O  
I/O  
I/O  
I/O  
Cell  
Output  
Macro  
Cell  
M10  
Buried  
Macro  
Cell  
M11  
M12  
M13  
63  
I/O  
Cell  
Output  
Macro  
Cell  
Buried  
Macro  
Cell  
I/O  
Cell  
Output  
Macro  
Cell  
M14  
M15  
Buried  
Macro  
Cell  
4
0
4
8
16  
12  
8
16  
20  
24  
28  
32  
36  
40  
43  
47  
51  
14132I-3  
Figure 1. MACH230 PAL Block  
MACH230-10/15/20  
7
ABSOLUTE MAXIMUM RATINGS  
OPERATING RANGES  
Storage Temperature . . . . . . . . . . . –65°C to +150°C  
Commercial (C) Devices  
Ambient Temperature  
Ambient Temperature (TA)  
With Power Applied . . . . . . . . . . . . . –55°C to +125°C  
Operating in Free Air . . . . . . . . . . . . . . 0°C to +70°C  
Supply Voltage with  
Respect to Ground . . . . . . . . . . . . . –0.5 V to +7.0 V  
Supply Voltage (VCC  
with Respect to Ground . . . . . . . . +4.75 V to +5.25 V  
)
DC Input Voltage . . . . . . . . . . . . –0.5 V to VCC + 0.5 V  
Operating ranges define those limits between which the func-  
tionality of the device is guaranteed.  
DC Output or I/O  
Pin Voltage . . . . . . . . . . . . . . . . –0.5 V to VCC + 0.5 V  
Static Discharge Voltage . . . . . . . . . . . . . . . . 2001 V  
Latchup Current  
(TA = 0°C to 70°C) . . . . . . . . . . . . . . . . . . . . . 200 mA  
Stressesabove those listed under Absolute MaximumRatings  
may cause permanent device failure. Functionality at or above  
these limits is not implied. Exposure to Absolute Maximum  
Ratings for extended periods may affect device reliability. Pro-  
gramming conditions may differ.  
DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified  
Parameter  
Symbol  
Parameter Description  
Test Conditions  
Min Typ Max  
Unit  
VOH  
Output HIGH Voltage  
IOH = –3.2 mA, VCC = Min  
2.4  
V
V
IN = VIH or VIL  
IOL = 16 mA, VCC = Min  
IN = VIH or VIL  
VOL  
VIH  
VIL  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
0.5  
V
V
V
V
Guaranteed Input Logical HIGH  
Voltage for all Inputs (Note 1)  
2.0  
Guaranteed Input Logical LOW  
Voltage for all Inputs (Note 1)  
0.8  
IIH  
IIL  
Input HIGH Current  
Input LOW Current  
VIN = 5.25 V, VCC = Max (Note 2)  
VIN = 0 V, VCC = Max (Note 2)  
VOUT = 5.25 V, VCC = Max  
10  
–10  
10  
µA  
µA  
µA  
IOZH  
Off-State Output Leakage  
Current HIGH  
VIN = VIH or VIL (Note 2)  
IOZL  
Off-State Output Leakage  
Current LOW  
VOUT = 0 V, VCC = Max  
VIN = VIH or VIL (Note 2)  
–10  
µA  
ISC  
ICC  
Output Short-Circuit Current  
Supply Current  
VOUT = 0.5 V, VCC = Max (Note 3)  
–30  
–130  
mA  
mA  
VIN = 0 V, Outputs Open (IOUT = 0 mA)  
235  
VCC = 5.0 V, f = 25 MHz, TA = 25°C  
(Note 4)  
Notes:  
1. These are absolute values with respect to device ground and all overshoots due to system and/or tester noise are included.  
2. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH).  
3. Not more than one output should be shorted at a time. Duration of the short-circuit should not exceed one second.  
VOUT = 0.5 V has been chosen to avoid test problems caused by tester ground degradation.  
4. This parameter is measured with a 16-bit up/down counter pattern. This pattern is programmed in each PAL block and  
capable of being loaded, enabled, and reset.  
8
MACH230-10 (Com’l)  
CAPACITANCE (Note 1)  
Parameter  
Symbol  
Parameter Description  
Test Conditions  
Typ  
6
Unit  
pF  
CIN  
Input Capacitance  
Output Capacitance  
VIN = 2.0 V  
VCC = 5.0 V, TA = 25°C  
COUT  
VOUT = 2.0 V f = 1 MHz  
8
pF  
SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges  
-10  
Parameter  
Symbol  
Parameter Description  
Min  
Max  
Unit  
ns  
tPD  
Input, I/O, or Feedback to Combinatorial Output  
10  
D-type  
T-type  
6.5  
7.5  
0
ns  
tS  
Setup Time from Input, I/O, or Feedback to Clock  
ns  
tH  
Register Data Hold Time  
Clock to Output  
ns  
ns  
tCO  
6.5  
tWL  
tWH  
Clock  
Width  
LOW  
HIGH  
4
4
ns  
ns  
D-type  
T-type  
D-type  
T-type  
77  
72  
100  
91  
125  
8
MHz  
MHz  
MHz  
MHz  
MHz  
ns  
External Feedback  
Maximum  
fMAX  
Frequency  
Internal Feedback (fCNT  
)
No Feedback  
tSL  
tHL  
Setup Time from Input, I/O, or Feedback to Gate  
Latch Data Hold Time  
0
ns  
tGO  
Gate to Output  
7.5  
14  
ns  
tGWL  
tPDL  
Gate Width LOW  
4
ns  
Input, I/O, or Feedback to Output Through Transparent  
Input or Output Latch  
ns  
tSIR  
tHIR  
tICO  
tICS  
Input Register Setup Time  
2
ns  
ns  
ns  
ns  
ns  
Input Register Hold Time  
2.5  
Input Register Clock to Combinatorial Output  
Input Register Clock to Output Register Setup  
15.5  
D-type  
T-type  
11  
12  
tWICL  
tWICH  
Input Register  
Clock Width  
LOW  
HIGH  
4
4
ns  
ns  
fMAXIR  
tSIL  
Maximum Input Register Frequency  
Input Latch Setup Time  
125  
2
MHz  
ns  
tHIL  
Input Latch Hold Time  
2.5  
ns  
tIGO  
Input Latch Gate to Combinatorial Output  
17  
18  
ns  
tIGOL  
Input Latch Gate to Output Through Transparent  
Output Latch  
ns  
tSLL  
Setup Time from Input, I/O, or Feedback Through  
Transparent Input Latch to Output Latch Gate  
10  
ns  
9
MACH230-10 (Com’l)  
SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (continued)  
-10  
Parameter  
Symbol  
Parameter Description  
Min  
11  
4
Max  
Unit  
ns  
tIGS  
Input Latch Gate to Output Latch Setup  
Input Latch Gate Width LOW  
tWIGL  
tPDLL  
ns  
Input, I/O, or Feedback to Output Through Transparent  
Input and Output Latches  
16  
18  
ns  
tAR  
tARW  
tARR  
tAP  
Asynchronous Reset to Registered or Latched Output  
Asynchronous Reset Width  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10  
10  
Asynchronous Reset Recovery Time  
Asynchronous Preset to Registered or Latched Output  
Asynchronous Preset Width  
18  
tAPW  
tAPR  
tEA  
10  
10  
Asynchronous Preset Recovery Time  
Input, I/O, or Feedback to Output Enable  
Input, I/O, or Feedback to Output Disable  
15  
15  
tER  
Note:  
1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the designis modified where  
capacitance may be affected.  
10  
MACH230-10 (Com’l)  
ABSOLUTE MAXIMUM RATINGS  
OPERATING RANGES  
Storage Temperature . . . . . . . . . . . –65°C to +150°C  
Commercial (C) Devices  
Ambient Temperature  
Ambient Temperature (TA)  
With Power Applied . . . . . . . . . . . . . –55°C to +125°C  
Operating in Free Air . . . . . . . . . . . . . . 0°C to +70°C  
Supply Voltage with  
Respect to Ground . . . . . . . . . . . . . –0.5 V to +7.0 V  
Supply Voltage (VCC  
with Respect to Ground . . . . . . . . +4.75 V to +5.25 V  
)
DC Input Voltage . . . . . . . . . . . . –0.5 V to VCC + 0.5 V  
Operating ranges define those limits between which the func-  
tionality of the device is guaranteed.  
DC Output or I/O  
Pin Voltage . . . . . . . . . . . . . . . . –0.5 V to VCC + 0.5 V  
Static Discharge Voltage . . . . . . . . . . . . . . . . 2001 V  
Latchup Current  
(TA = 0°C to 70°C) . . . . . . . . . . . . . . . . . . . . . 200 mA  
Stressesabove those listed under Absolute MaximumRatings  
may cause permanent device failure. Functionality at or above  
these limits is not implied. Exposure to Absolute Maximum  
Ratings for extended periods may affect device reliability. Pro-  
gramming conditions may differ.  
DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified  
Parameter  
Symbol  
Parameter Description  
Test Conditions  
Min  
Typ  
Max  
Unit  
VOH  
Output HIGH Voltage  
IOH = –3.2 mA, VCC = Min  
2.4  
V
VIN = VIH or VIL  
VOL  
VIH  
VIL  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
IOL = 16 mA, VCC = Min  
VIN = VIH or VIL  
0.5  
V
V
V
Guaranteed Input Logical HIGH  
Voltage for all Inputs (Note 1)  
2.0  
Guaranteed Input Logical LOW  
Voltage for all Inputs (Note 1)  
0.8  
IIH  
IIL  
Input HIGH Current  
Input LOW Current  
VIN = 5.25 V, VCC = Max (Note 2)  
VIN = 0 V, VCC = Max (Note 2)  
VOUT = 5.25 V, VCC = Max  
10  
–10  
10  
µA  
µA  
µA  
IOZH  
Off-State Output Leakage  
Current HIGH  
V
IN = VIH or VIL (Note 2)  
VOUT = 0 V, VCC = Max  
IN = VIH or VIL (Note 2)  
IOZL  
Off-State Output Leakage  
Current LOW  
–10  
µA  
V
ISC  
ICC  
Output Short-Circuit Current  
Supply Current (Typical)  
VOUT = 0.5 V, VCC = Max (Note 3)  
–30  
–130  
mA  
mA  
VCC = 5 V, TA = 25°C, f = 25 MHz  
235  
(Note 4)  
Notes:  
1. These are absolute values with respect to device ground and all overshoots due to system and/or tester noise are included.  
2. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH).  
3. Not more than one output should be shorted at a time. Duration of the short-circuit should not exceed one second.  
VOUT = 0.5 V has been chosen to avoid test problems caused by tester ground degradation.  
4. Measured with a 16-bit up/down counter pattern. This pattern is programmed in each PAL block and is capable of being  
loaded, enabled, and reset.  
11  
MACH230-15/20 (Com’l)  
CAPACITANCE (Note 1)  
Parameter  
Symbol  
Parameter Description  
Test Conditions  
Typ  
6
Unit  
pF  
CIN  
Input Capacitance  
Output Capacitance  
VIN = 2.0 V  
VCC = 5.0 V, TA = 25°C  
COUT  
VOUT = 2.0 V f = 1 MHz  
8
pF  
SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)  
-15  
Min  
-20  
Min  
Parameter  
Symbol  
Parameter Description  
Max  
Max Unit  
tPD  
Input, I/O, or Feedback to Combinatorial Output (Note 3)  
15  
20  
ns  
ns  
ns  
D-type  
T-type  
10  
11  
0
13  
14  
0
tS  
Setup Time from Input, I/O, or Feedback to Clock  
tH  
Register Data Hold Time  
Clock to Output (Note 3)  
ns  
ns  
tCO  
10  
12  
tWL  
tWH  
Clock  
Width  
LOW  
HIGH  
6
6
8
8
ns  
ns  
D-type  
T-type  
D-type  
T-type  
50  
40  
MHz  
MHz  
MHz  
MHz  
MHz  
ns  
External Feedback  
1/(tS + tCO)  
47.6  
66.6  
62.5  
83.3  
10  
38.5  
50  
Maximum  
Frequency  
(Note 1)  
fMAX  
Internal Feedback (fCNT  
)
47.6  
62.5  
13  
No Feedback  
1/(tWL + tWH  
)
tSL  
tHL  
Setup Time from Input, I/O, or Feedback to Gate  
Latch Data Hold Time  
0
0
ns  
tGO  
Gate to Output (Note 3)  
11  
17  
12  
22  
ns  
tGWL  
tPDL  
Gate Width LOW  
6
8
ns  
Input, I/O, or Feedback to Output Through Transparent  
Input or Output Latch  
ns  
ns  
ns  
ns  
ns  
ns  
tSIR  
tHIR  
tICO  
tICS  
Input Register Setup Time  
2
2
3
Input Register Hold Time  
2.5  
Input Register Clock to Combinatorial Output  
Input Register Clock to Output Register Setup  
18  
23  
D-type  
T-type  
15  
16  
20  
21  
tWICL  
tWICH  
Input Register  
Clock Width  
LOW  
HIGH  
6
6
8
8
ns  
ns  
fMAXIR  
tSIL  
Maximum Input Register Frequency 1/(tWICL + tWICH  
Input Latch Setup Time  
)
83.3  
2
62.5  
2
MHz  
ns  
tHIL  
Input Latch Hold Time  
2.5  
3
ns  
tIGO  
Input Latch Gate to Combinatorial Output  
20  
22  
25  
27  
ns  
tIGOL  
Input Latch Gate to Output Through Transparent  
Output Latch  
ns  
tSLL  
tIGS  
Setup Time from Input, I/O, or Feedback Through  
Transparent Input Latch to Output Latch Gate  
12  
16  
15  
21  
ns  
ns  
Input Latch Gate to Output Latch Setup  
12  
MACH230-15/20 (Com’l)  
SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)  
(continued)  
-15  
-20  
Parameter  
Symbol  
Parameter Description  
Min  
Max  
Min  
Max  
Unit  
ns  
tWIGL  
tPDLL  
Input Latch Gate Width LOW  
6
8
Input, I/O, or Feedback to Output Through Transparent  
Input and Output Latches  
19  
20  
24  
25  
ns  
tAR  
tARW  
tARR  
tAP  
Asynchronous Reset to Registered or Latched Output  
Asynchronous Reset Width (Note 1)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
15  
10  
20  
15  
Asynchronous Reset Recovery Time (Note 1)  
Asynchronous Preset to Registered or Latched Output  
Asynchronous Preset Width (Note 1)  
20  
25  
tAPW  
tAPR  
tEA  
15  
10  
20  
15  
Asynchronous Preset Recovery Time (Note 1)  
Input, I/O, or Feedback to Output Enable (Note 3)  
Input, I/O, or Feedback to Output Disable (Note 3)  
15  
15  
20  
20  
tER  
Notes:  
1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified  
where frequency may be affected.  
2. See Switching Test Circuit for test conditions.  
3. Parameters measured with 32 outputs switching.  
13  
MACH230-15/20 (Com’l)  
ABSOLUTE MAXIMUM RATINGS  
INDUSTRIAL OPERATING RANGES  
Ambient Temperature (TA)  
Storage Temperature . . . . . . . . . . . –65°C to +150°C  
Operating in Free Air . . . . . . . . . . . . –40°C to +85°C  
Ambient Temperature  
with Power Applied . . . . . . . . . . . . . –55°C to +125°C  
Supply Voltage (VCC) with  
Respect to Ground . . . . . . . . . . . . . . +4.5 V to +5.5 V  
Supply Voltage with  
Respect to Ground . . . . . . . . . . . . . –0.5 V to +7.0 V  
Operating ranges define those limits between which the func-  
tionality of the device is guaranteed.  
DC Input Voltage . . . . . . . . . . . . –0.5 V to VCC+ 0.5 V  
DC Output or  
I/O Pin Voltage . . . . . . . . . . . . . –0.5 V to VCC+ 0.5 V  
Static Discharge Voltage . . . . . . . . . . . . . . . . . 2001 V  
Latchup Current  
(TA =–40°C to +85°C) . . . . . . . . . . . . . . . . . . 200 mA  
Stressesabove those listed under Absolute MaximumRatings  
may cause permanent device failure. Functionality at or above  
these limits is not implied. Exposure to Absolute Maximum  
Ratings for extended periods may affect device reliability.  
Programming conditions may differ.  
DC CHARACTERISTICS over INDUSTRIAL operating ranges unless otherwise specified  
Parameter  
Symbol  
Parameter Description  
Test Conditions  
Min Typ Max Unit  
VOH  
Output HIGH Voltage  
IOH = –3.2 mA, VCC = Min  
VIN = VIHor VIL  
2.4  
V
V
V
V
VOL  
VIH  
VIL  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
IOL = 16 mA, VCC = Min  
VIN = VIH or VIL  
0.5  
Guaranteed Input Logical HIGH  
Voltage for all Inputs (Note 1)  
2.0  
Guaranteed Input Logical LOW  
Voltage for all Inputs (Note 1)  
0.8  
IIH  
IIL  
Input HIGH Leakage Current  
Input LOW Leakage Current  
VIN = 5.25 V, VCC = Max (Note 2)  
VIN = 0 V, VCC = Max (Note 2)  
10  
–10  
10  
µA  
µA  
µA  
IOZH  
Off-State Output Leakage  
Current HIGH  
VOUT= 5.25 V, VCC = Max  
VIN = VIHor VIL (Note 2)  
IOZL  
Off-State Output Leakage  
Current LOW  
VOUT= 0 V, VCC = Max  
VIN = VIH or VIL (Note 2)  
–10  
µA  
ISC  
ICC  
Output Short-Circuit Current  
Supply Current (Typical)  
VOUT= 0.5 V, VCC = Max (Note 3)  
–30  
–130 mA  
mA  
VCC = 5 V, TA = 25°C, f = 25 MHz (Note 4)  
235  
Notes:  
1. These are absolute values with respect to device ground and all overshoots due to system and/or tester noise are included.  
2. I/O pin leakage is the worst case of IIL and IOZL(or IIH and IOZH).  
3. Not more than one output should be shorted at a time. Duration of the short-circuit should not exceed one second.  
VOUT= 0.5 V has been chosen to avoid test problems caused by tester ground degradation.  
4. Measured with a 16-bit up/down counter pattern. This pattern is programmed in each PAL block and is capable of  
being loaded, enabled, and reset.  
14  
MACH230-18/24 (Ind)  
CAPACITANCE (Note 1)  
Parameter  
Symbol  
Parameter Description  
Test Conditions  
Typ  
6
Unit  
pF  
CIN  
Input Capacitance  
Output Capacitance  
VIN = 2.0 V  
VCC = 5.0 V, TA = 25°C  
COUT  
VOUT= 2.0 V f = 1 MHz  
8
pF  
SWITCHING CHARACTERISTICS over INDUSTRIAL operating ranges (Note 2)  
-18  
Min  
-24  
Min  
Parameter  
Symbol  
Parameter Description  
Max  
Max Unit  
tPD  
Input, I/O, or Feedback to Combinatorial Output (Note 3)  
18  
24  
ns  
ns  
ns  
ns  
ns  
D-type  
T-type  
12  
16  
17  
0
tS  
Setup Time from Input, I/O, or Feedback to Clock  
13.5  
0
tH  
Register Data Hold Time  
Clock to Output (Note 3)  
tCO  
12  
14.5  
tWL  
tWH  
Clock  
Width  
LOW  
HIGH  
7.5  
7.5  
10  
10  
ns  
ns  
D-type  
T-type  
D-type  
T-type  
40  
38  
53  
44  
66.5  
12  
0
32  
MHz  
MHz  
MHz  
MHz  
MHz  
ns  
External Feedback  
1/(tS + tCO)  
30.5  
38  
Maximum  
Frequency  
(Note 1)  
fMAX  
Internal Feedback (fCNT  
)
34.5  
50  
No Feedback  
1/(tWL + tWH  
)
tSL  
tHL  
Setup Time from Input, I/O, or Feedback to Gate  
Latch Data Hold Time  
16  
0
ns  
tGO  
tGWL  
tPDL  
Gate to Output (Note 3)  
13.5  
20.5  
14.5  
26.5  
ns  
Gate Width LOW  
7.5  
10  
ns  
Input, I/O, or Feedback to Output Through Transparent  
Input or Output Latch  
ns  
tSIR  
tHIR  
tICO  
tICS  
Input Register Setup Time  
2.5  
3.5  
2.5  
4
ns  
ns  
ns  
ns  
ns  
Input Register Hold Time  
Input Register Clock to Combinatorial Output  
Input Register Clock to Output Register Setup  
22  
28  
D-type  
T-type  
18  
24  
19.5  
25.5  
tWICL  
tWICH  
Input Register  
Clock Width  
LOW  
HIGH  
7.5  
7.5  
10  
10  
ns  
ns  
fMAXIR  
tSIL  
Maximum Input Register Frequency 1/(tWICL+ tWICH)  
Input Latch Setup Time  
66.5  
2.5  
50  
2.5  
4
MHz  
ns  
tHIL  
Input Latch Hold Time  
3.5  
ns  
tIGO  
Input Latch Gate to Combinatorial Output  
24  
30  
ns  
tIGOL  
Input Latch Gate to Output Through Transparent  
Output Latch  
26.5  
32.5  
ns  
tSLL  
Setup Time from Input, I/O, or Feedback Through  
Transparent Input Latch to Output Latch Gate  
14.5  
18  
ns  
tIGS  
Input Latch Gate to Output Latch Setup  
Input Latch Gate Width LOW  
19.5  
7.5  
25.5  
10  
ns  
ns  
ns  
tWIGL  
tPDLL  
Input, I/O, or Feedback to Output Through Transparent  
Input and Output Latches  
23  
29  
MACH230-18/24 (Ind)  
15  
SWITCHING CHARACTERISTICS over INDUSTRIAL operating ranges (Note 2)  
(continued)  
-18  
-24  
Parameter  
Symbol  
Parameter Description  
Min  
Max  
Min  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAR  
tARW  
tARR  
tAP  
Asynchronous Reset to Registered or Latched Output  
Asynchronous Reset Width (Note 1)  
24  
30  
18  
12  
24  
18  
Asynchronous Reset Recovery Time (Note 1)  
Asynchronous Preset to Registered or Latched Output  
Asynchronous Preset Width (Note 1)  
24  
30  
tAPW  
tAPR  
tEA  
18  
12  
24  
18  
Asynchronous Preset Recovery Time (Note 1)  
Input, I/O, or Feedback to Output Enable (Note 3)  
Input, I/O, or Feedback to Output Disable (Note 3)  
18  
18  
24  
24  
tER  
Notes:  
1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified  
where frequency may be affected.  
2. See Switching Test Circuit for test conditions.  
3. Parameters measured with 32 outputs switching.  
16  
MACH230-18/24 (Ind)  
TYPICAL CURRENT VS. VOLTAGE (I-V) CHARACTERISTICS  
VCC = 5.0 V, TA = 25°C  
IOL (mA)  
80  
60  
40  
20  
VOL (V)  
–1.0 –0.8 –0.6 –0.4 –0.2  
–20  
.2  
.4  
.6  
.8 1.0  
–40  
–60  
–80  
14132I-4  
Output, LOW  
IOH (mA)  
25  
1
2
3
4
5
VOH (V)  
–3 –2 –1  
–25  
–50  
–75  
–100  
–125  
–150  
14132I-5  
Output, HIGH  
II (mA)  
20  
VI (V)  
–2 –1  
1
2
3
4
5
–20  
–40  
–60  
–80  
–100  
14132I-6  
Input  
MACH230-10/15/20  
17  
TYPICAL ICC CHARACTERISTICS  
VCC = 5 V, TA = 25°C  
300  
275  
250  
225  
200  
175  
MACH230  
150  
ICC(mA)  
125  
100  
75  
50  
25  
0
0
10  
20  
30  
40  
50  
60  
70  
Frequency (MHz)  
14132I-7  
The selected “typical” pattern is a 16-bit up/down counter. This pattern is programmed in each PAL block and is capable of  
being loaded, enabled, and reset.  
Maximum frequency shown uses internal feedback and a D-type register.  
18  
MACH230-10/15/20  
TYPICAL THERMAL CHARACTERISTICS  
Measured at 25°C ambient. These parameters are not tested.  
Typ  
Parameter  
Symbol  
Parameter Description  
PLCC  
Units  
θjc  
Thermal impedance, junction to case  
5
°C/W  
θja  
Thermal impedance, junction to ambient  
20  
17  
14  
12  
10  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
θjma  
Thermal impedance, junction to  
ambient with air flow  
200 lfpm air  
400 lfpm air  
600 lfpm air  
800 lfpm air  
Plastic θjc Considerations  
The data listed for plastic θjc are for reference only and are not recommended for use in calculating junction temperatures. The  
heat-flow paths in plastic-encapsulated devices are complex, making the θjc measurement relative to a specific location on the  
packagesurface. Testsindicatethismeasurementreferencepointisdirectlybelowthedie-attachareaonthebottomcenterofthe  
package. Furthermore, θjc tests on packages are performed in a constant-temperature bath, keeping the package surface at a  
constant temperature. Therefore, the measurements can only be used in a similar environment.  
MACH230-10/15/20  
19  
SWITCHING WAVEFORMS  
Input, I/O, or  
VT  
Feedback  
tPD  
Combinatorial  
Output  
VT  
14132I-8  
Combinatorial Output  
Input, I/O, or  
Feedback  
Input, I/O,  
or Feed-  
back  
VT  
VT  
tH  
tS  
tSL  
tHL  
Gate  
VT  
VT  
Clock  
tCO  
tPDL  
tGO  
VT  
Latched  
Out  
Registered  
Output  
VT  
14132I-9  
14132I-10  
Registered Output  
Latched Output (MACH 2, 3, and 4)  
tWH  
Clock  
Gate  
VT  
tGWS  
tWL  
14132I-12  
14132I-11  
Clock Width  
Gate Width (MACH 2, 3, and 4)  
Registered  
Input  
VT  
Registered  
Input  
VT  
tSIR  
tHIR  
Input  
Register  
Clock  
Input  
Register  
Clock  
VT  
tICO  
VT  
tICS  
Combinatorial  
Output  
VT  
Output  
Register  
Clock  
VT  
14132I-13  
14132I-14  
Registered Input (MACH 2 and 4)  
Input Register to Output Register Setup  
(MACH 2 and 4)  
Notes:  
1. VT = 1.5 V.  
2. Input pulse amplitude 0 V to 3.0 V.  
3. Input rise and fall times 2 ns–4 ns typical.  
20  
MACH230-10/15/20  
SWITCHING WAVEFORMS  
Latched  
In  
VT  
tSIL  
tHIL  
Gate  
VT  
tIGO  
VT  
Combinatorial  
Output  
14132I-15  
Latched Input (MACH 2 and 4)  
tPDLL  
Latched  
In  
VT  
Latched  
Out  
VT  
tIGOL  
Input  
Latch Gate  
tSLL  
tIGS  
VT  
Output  
Latch Gate  
14132I-16  
Latched Input and Output  
(MACH 2, 3, and 4)  
Notes:  
1. VT = 1.5 V.  
2. Input pulse amplitude 0 V to 3.0 V.  
3. Input rise and fall times 2 ns–4 ns typical.  
MACH230-10/15/20  
21  
SWITCHING WAVEFORMS  
tWICH  
Input  
Latch  
Gate  
Clock  
VT  
VT  
tWICL  
tWIGL  
14132I-18  
14132I-17  
Input Register Clock Width  
(MACH 2 and 4)  
Input Latch Gate Width  
(MACH 2 and 4)  
tARW  
tAPW  
Input, I/O, or  
Feedback  
Input, I/O,  
or Feedback  
VT  
VT  
tAR  
tAP  
Registered  
Output  
Registered  
Output  
VT  
VT  
tARR  
VT  
tAPR  
Clock  
Clock  
VT  
14132I-19  
14132I-20  
Asynchronous Reset  
Asynchronous Preset  
Input, I/O, or  
Feedback  
VT  
tER  
tEA  
VOH - 0.5V  
VOL + 0.5V  
Outputs  
VT  
14132I-21  
Output Disable/Enable  
Notes:  
1. VT = 1.5 V.  
2. Input pulse amplitude 0 V to 3.0 V.  
3. Input rise and fall times 2 ns–4 ns typical.  
22  
MACH230-10/15/20  
KEY TO SWITCHING WAVEFORMS  
WAVEFORM  
INPUTS  
OUTPUTS  
Must be  
Steady  
Will be  
Steady  
May  
Change  
from H to L  
Will be  
Changing  
from H to L  
May  
Change  
from L to H  
Will be  
Changing  
from L to H  
Don’t Care,  
Any Change  
Permitted  
Changing,  
State  
Unknown  
Does Not  
Apply  
Center  
Line is High-  
Impedance  
“Off” State  
KS000010-PAL  
SWITCHING TEST CIRCUIT  
5 V  
S1  
R1  
Output  
Test Point  
R2  
CL  
14132I-22  
Commercial  
Measured  
Specification  
tPD, tCO  
S1  
CL  
R1  
R2  
Output Value  
Closed  
1.5 V  
tEA  
Z H: Open  
Z L: Closed  
35 pF  
5 pF  
1.5 V  
300 Ω  
390 Ω  
tER  
H Z: Open  
L Z: Closed  
H Z: VOH – 0.5 V  
L Z: VOL + 0.5 V  
*Switching several outputs simultaneously should be avoided for accurate measurement.  
MACH230-10/15/20  
23  
fMAX PARAMETERS  
The parameter fMAX is the maximum clock rate at which  
the device is guaranteed to operate. Because the flexi-  
bility inherent in programmable logic devices offers a  
choice of clocked flip-flop designs, fMAX is specified for  
three types of synchronous designs.  
The third type of design is a simple data path applica-  
tion. In this case, input data is presented to the flip-flop  
and clocked through; no feedback is employed. Under  
these conditions, the period is limited by the sum of the  
datasetuptimeandthedataholdtime(tS +tH). However,  
a lower limit for the period of each fMAX type is the mini-  
mum clock period (tWH + tWL). Usually, this minimum  
clock period determines the period for the third fMAX, des-  
ignated “fMAX no feedback.”  
The first type of design is a state machine with feedback  
signals sent off-chip. This external feedback could go  
back to the device inputs, or to a second device in a  
multi-chip state machine. The slowest path defining the  
period is the sum of the clock-to-output time and the in-  
put setup time for the external signals (tS + tCO). The re-  
ciprocal, fMAX, is the maximum frequency with external  
feedback or in conjunction with an equivalent speed de-  
vice. This fMAX is designated “fMAX external.”  
For devices with input registers, one additional fMAX pa-  
rameter is specified: fMAXIR. Because this involves no  
feedback, it is calculated the same way as fMAX no feed-  
back. The minimum period will be limited either by the  
sum of the setup and hold times (tSIR + tHIR) or the sum of  
the clock widths (tWICL + tWICH). The clock widths are nor-  
mally the limiting parameters, so that fMAXIR is specified  
as 1/(tWICL + tWICH). Note that if both input and output reg-  
istersareuseinthesamepath, theoverallfrequencywill  
The second type of design is a single-chip state ma-  
chine with internal feedback only. In this case, flip-flop  
inputs are defined by the device inputs and flip-flop out-  
puts. Under these conditions, the period is limited by the  
internal delay from the flip-flop outputs through the inter-  
nal feedback and logic to the flip-flop inputs. This fMAX is  
designated “fMAX internal”. A simple internal counter is a  
good example of this type of design; therefore, this pa-  
be limited by tICS  
.
All frequencies except fMAX internal are calculated from  
other measured AC parameters. fMAX internal is meas-  
ured directly.  
rameter is sometimes called “fCNT.  
CLK  
CLK  
(SECOND  
CHIP)  
LOGIC  
REGISTER  
LOGIC  
REGISTER  
tS  
tS  
tCO  
fMAX External; 1/(tS + tCO  
)
f
MAX Internal (fCNT  
)
CLK  
CLK  
LOGIC  
REGISTER  
REGISTER  
LOGIC  
tS  
tSIR  
tHIR  
fMAXIR ; 1/(tSIR + tHIR) or 1/(tWICL + tWICH)  
fMAX No Feedback; 1/(tS + tH) or 1/(tWH + tWL  
)
14132I-23  
24  
MACH230-10/15/20  
ENDURANCE CHARACTERISTICS  
The MACH families are manufactured using our  
advanced Electrically Erasable process. This technol-  
ogy uses an EE cell to replace the fuse link used in  
bipolar parts. As a result, the device can be erased and  
reprogrammed, a feature which allows 100% testing at  
the factory.  
Endurance Characteristics  
Parameter  
Symbol  
Parameter Description  
Min  
Units  
Test Conditions  
10  
Years  
Max Storage  
Temperature  
Min Pattern Data Retention Time  
Max Reprogramming Cycles  
tDR  
N
20  
Years  
Max Operating  
Temperature  
100  
Cycles  
Normal Programming  
Conditions  
MACH230-10/15/20  
25  
INPUT/OUTPUT EQUIVALENT SCHEMATICS  
VCC  
100 kΩ  
VCC  
1 kΩ  
ESD  
Protection  
Input  
VCC  
VCC  
100 kΩ  
1 kΩ  
Preload Feedback  
Circuitry  
Input  
14132I-24  
I/O  
26  
MACH230-10/15/20  
POWER-UP RESET  
The MACH devices have been designed with the capa-  
bility to reset during system power-up. Following power-  
up, all flip-flops will be reset to LOW. The output state  
will depend on the logic polarity. This feature provides  
extra flexibility to the designer and is especially valuable  
in simplifying state machine initialization. A timing dia-  
gram and parameter table are shown below. Due to the  
synchronous operation of the power-up reset and the  
wide range of ways VCC can rise to its steady state, two  
conditions are required to insure a valid power-up reset.  
These conditions are:  
1. The VCC rise must be monotonic.  
2. Following reset, the clock input must not be driven  
from LOW to HIGH until all applicable input and  
feedback setup times are met.  
Parameter  
Symbol  
Parameter Descriptions  
Power-Up Reset Time  
Input or Feedback Setup Time  
Clock Width LOW  
Max  
Unit  
tPR  
tS  
10  
µs  
See  
Switching  
Characteristics  
tWL  
VCC  
4 V  
Power  
tPR  
Registered  
Output  
tS  
Clock  
tWL  
14132I-25  
Power-Up Reset Waveform  
MACH230-10/15/20  
27  
USING PRELOAD AND OBSERVABILITY  
Inordertobetestable, acircuitmustbebothcontrollable  
and observable. To achieve this, the MACH devices  
incorporate register preload and observability.  
Preloaded  
HIGH  
D
Q1  
In preload mode, each flip-flop in the MACH device can  
be loaded from the I/O pins, in order to perform  
functional testing of complex state machines. Register  
preload makes it possible to run a series of tests from a  
known starting state, or to load illegal states and test for  
proper recovery. This ability to control the MACH  
device’s internal state can shorten test sequences,  
since it is easier to reach the state of interest.  
Q
AR  
Preloaded  
HIGH  
The observability function makes it possible to see the  
internal state of the buried registers during test by  
overriding each register’s output enable and activating  
the output buffer. The values stored in output and buried  
registers can then be observed on the I/O pins. Without  
this feature, a thorough functional test would be  
impossible for any designs with buried registers.  
D
Q2  
Q
AR  
While the implementation of the testability features is  
fairly straightforward, care must be taken in certain  
instances to insure valid testing.  
Onecaseinvolvesasynchronousresetandpreset. Ifthe  
MACH registers drive asynchronous reset or preset  
lines and are preloaded in such a way that reset or  
preset are asserted, the reset or preset may remove the  
preloaded data. This is illustrated in Figure 2. Care  
should be taken when planning functional tests, so that  
states that will cause unexpected resets and presets are  
not preloaded.  
On  
Off  
Preload  
Mode  
Q1  
Another case to be aware of arises in testing combinato-  
rial logic. When an output is configured as combinato-  
rial, the observability feature forces the output into  
registered mode. When this happens, all product terms  
are forced to zero, which eliminates all combinatorial  
data. For a straight combinatorial output, the correct  
value will be restored after the preload or observe  
function, and there will be no problem. If the function  
implements a combinatorial latch, however, it relies on  
feedback to hold the correct value, as shown in  
Fugure 3. As this value may change during the preload  
or observe operation, you cannot count on the data  
being correct after the operation. To insure valid testing  
in these cases, outputs that are combinatorial latches  
should not be tested immediately following a preload or  
observe sequence, but should first be restored to a  
known state.  
AR  
Q2  
Figure 2. Preload/Reset Conflict  
14132I-26  
Set  
All MACH 2 devices support both preload and  
observability.  
Reset  
Contact individual programming vendors in order to  
verify programmer support.  
Figure 3. Combinatorial Latch  
14132I-27  
28  
MACH230-10/15/20  
PHYSICAL DIMENSIONS*  
PL 084  
84-Pin Plastic Leaded Chip Carrier (measured in inches)  
.062  
.083  
1.185  
1.195  
.042  
.056  
1.150  
1.156  
1.090  
1.130  
1.000  
REF  
Pin 1 I.D.  
1.185  
1.195  
1.150  
1.156  
.013  
.021  
.007  
.013  
.026  
.032  
.090  
.130  
.165  
.180  
.050 REF  
SEATING PLANE  
16-038-SQ  
PL 084  
DF79  
8-1-95 ae  
TOP VIEW  
SIDE VIEW  
*For reference only. BSC is an ANSI standard for Basic Space Centering.  
MACH230-10/15/20  
33  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY