LTC1688IS [LINEAR_DIMENSIONS]

100Mbps RS485 Hot Swapable Quad Drivers; 100Mbps的RS485热可插拔Quad驱动程序
LTC1688IS
型号: LTC1688IS
厂家: Linear Dimensions    Linear Dimensions
描述:

100Mbps RS485 Hot Swapable Quad Drivers
100Mbps的RS485热可插拔Quad驱动程序

驱动器 接口集成电路 光电二极管
文件: 总12页 (文件大小:229K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1688/LTC1689  
100Mbps RS485  
Hot Swapable Quad Drivers  
U
DESCRIPTIO  
FEATURES  
Ultrahigh Speed: 100Mbps  
The LTC®1688/LTC1689 are ultrahigh speed, differential  
bus/line drivers that can operate at data rates up to  
100Mbps. Propagation delay is guaranteed at 8ns ±4ns  
over the full operating temperature range. These devices  
operate over the full RS485 common mode range (7V  
to 12V), and also meet RS422 requirements.  
Guaranteed Propagation Delay: 8ns ±4ns  
Over Temperature  
Low Channel-to-Channel Skew: 500ps Typ  
Hot SwapTM Capable  
50Mbps Operation with VDD = 3V  
Low tPLH/tPHL Skew: 500ps Typ  
Driver Outputs Maintain High Impedance in  
Three-State or with Power Off  
Short-Circuit Protected: 3mA Typ Output Current  
for an Indefinite Short  
Thermal Shutdown Protected  
Single 5V or 3V Supply  
Pin Compatible with LTC486/LTC487  
The driver outputs are Hot Swap capable, maintaining  
backplane data integrity during board insertion and  
removal. The drivers feature three-state outputs, maintain-  
ing high impedance over the entire common mode range  
(7V to 12V). Outputs also remain high impedance during  
power-up and with the power off. A short-circuit feature  
detects bus contention and substantially reduces driver  
output current. Thermal shutdown circuitry protects the  
parts from excessive power dissipation.  
U
APPLICATIO S  
The LTC1688 allows all four drivers to be enabled together,  
while the LTC1689 allows two drivers at a time to be  
enabled.  
High Speed RS485 Twisted-Pair Drivers  
High Speed Backplane Drivers  
Complementary Clock Drivers  
STS-1/OC-1 Data Drivers  
SCSI Drivers  
The LTC1688/LTC1689 operate from a single 5V or 3V  
supply and draw only 9mA of supply current.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Hot Swap is a trademark of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
20ns Pulse Across 100 Feet  
of Category 5 UTP  
2V/DIV  
2V/DIV  
50Mbps RS485 Data Connection  
CABLE DELAY  
100Ω  
100Ω  
DRIVER  
RECEIVER  
100 FT CATEGORY 5 UTP  
2V/DIV  
5V/DIV  
1/4 LTC1688  
1/4 LTC1518  
1688/89 TA01  
20ns/DIV  
1688/89 TA02  
16889fa  
1
LTC1688/LTC1689  
W W W  
U
W
U
ABSOLUTE AXI U RATI GS  
/O  
PACKAGE RDER I FOR ATIO  
(Note 1)  
Supply Voltage (VDD)................................................ 7V  
Enable Input Voltages ................. 0.5V to (VDD + 0.5V)  
Enable Input Currents ..................... 100mA to 100mA  
Driver Input Voltages .................. 0.5V to (VDD + 0.5V)  
Driver Output Voltages ................. (12V + VDD) to 12V  
Driver Input Currents ...................... 100mA to 100mA  
Short-Circuit Duration (VOUT: 7V to 10V) ...... Indefinite  
Operating Temperature Range  
LTC1688C/LTC1689C ............................. 0°C to 70°C  
LTC1688I/LTC1689I .......................... 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
TOP VIEW  
ORDER PART  
NUMBER  
DI1  
DO1A  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
DD  
DI4  
LTC1688CS  
LTC1689CS  
LTC1688IS  
LTC1689IS  
DO1B  
DO4A  
DO4B  
ENB (EN34*)  
DO3B  
DO3A  
DI3  
EN (EN12*)  
DO2B  
DO2A  
DI2  
GND  
S PACKAGE  
16-LEAD PLASTIC SO  
*LTC1689 ONLY  
TJMAX = 150°C, θJA = 90°C/ W  
Consult factory for parts specified with wider operating temperature ranges.  
DC ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C.  
SYMBOL PARAMETER  
CONDITIONS  
= 5V, Per Driver, T = 25°C, Unless Otherwise Noted (Note 2)  
A
MIN  
TYP  
MAX  
UNITS  
V
V
V
DD  
Differential Driver Output (Unloaded)  
Differential Driver Output (With Load)  
I
= 0  
V
DD  
V
OD1  
OD2  
OUT  
R = 50(RS422)  
R = 25(RS485), Figure 1  
2
1.5  
V
V
3.0  
0.2  
V  
OD  
Change in Magnitude of Driver Differential  
Output Voltage for Complementary  
Output States  
R = 25or 50, Figure 1  
V
V
Driver Common Mode Output Voltage  
R = 25or 50, Figure 1  
R = 25or 50, Figure 1  
2
2
3
V
V
OC  
V  
Change in Magnitude of Driver Common  
Mode Output Voltage for Complementary  
Output States  
0.2  
OC  
V
V
Input High Voltage  
Input Low Voltage  
Input Current  
EN, ENB, EN12, EN34, DI  
EN, ENB, EN12, EN34, DI  
EN, ENB, EN12, EN34, DI  
V
V
IH  
IL  
0.8  
±1  
I
I
µA  
µA  
IN1  
OZ  
Three-State (High Impedance)  
Output Current  
V
= 7V to 12V  
±2  
±200  
OUT  
I
I
I
Supply Current of Entire Device  
No Load, Digital Input Pins = 0V or V  
9
18  
mA  
mA  
mA  
DD  
DD  
Driver Short-Circuit Current, V  
Driver Short-Circuit Current, V  
= HIGH  
= LOW  
V
V
= 7V to 10V  
= 7V to 10V  
±
±
20  
20  
OSD1  
OSD2  
OUT  
OUT  
OUT  
OUT  
V
V
V
= 3V, Per Driver, T = 25°C, Unless Otherwise Noted (Note 2)  
A
DD  
Differential Driver Output (Unloaded)  
Differential Driver Output (With Load)  
I
= 0  
V
V
OD1  
OD2  
OUT  
DD  
R = 50(RS422)  
R = 25(RS485), Figure 1  
1.5  
0.1  
V
V
0.65  
2.0  
V  
Change in Magnitude of Driver Differential  
Output Voltage for Complementary  
Output States  
R = 25or 50, Figure 1  
V
OD  
V
Driver Common Mode Output Voltage  
R = 25or 50, Figure 1  
1.3  
V
OC  
16889fa  
2
LTC1688/LTC1689  
The denotes the specifications which apply over the full operating  
DC ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V  
Change in Magnitude of Driver Common  
Mode Output Voltage for Complementary  
Output States  
R = 25or 50, Figure 1  
0.1  
V
OC  
V
V
Input High Voltage  
Input Low Voltage  
Input Current  
EN, ENB, EN12, EN34, DI  
1.4  
V
V
IH  
IL  
EN, ENB, EN12, EN34, DI  
0.5  
±1  
I
I
EN, ENB, EN12, EN34, DI (Note 3)  
µA  
µA  
IN1  
OZ  
Three-State (High Impedance)  
Output Current  
V
= 7V to 10V (Note 3)  
±1  
±200  
OUT  
I
I
I
Supply Current of Entire Device  
No Load, Digital Input Pins = 0V or V  
5
mA  
mA  
mA  
DD  
DD  
Driver Short-Circuit Current, V  
Driver Short-Circuit Current, V  
= HIGH  
= LOW  
V
V
= 7V to 8V (Note 3)  
= 7V to 8V (Note 3)  
±20  
±20  
OSD1  
OSD2  
OUT  
OUT  
OUT  
OUT  
U
The denotes the specifications which apply over the full operating  
SWITCHING CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C.  
SYMBOL PARAMETER CONDITIONS  
= 5V, T = 25 C, Unless Otherwise Noted (Note 2)  
MIN  
TYP  
MAX  
UNITS  
V
°
DD  
A
t
, t  
Driver Input-to-Output Propagation Delay  
Driver Output-to-Output Skew  
Driver Rise/Fall Time  
R
= 50, C = C = 25pF,  
4
8
500  
2
12  
ns  
ps  
ns  
PLH PHL  
DIFF  
L1  
L2  
Figures 2, 4  
t
R
DIFF  
= 50, C = C = 25pF,  
SKEW  
L1  
L2  
Figures 2, 4  
t , t  
R
DIFF  
Figures 2, 4  
= 50, C = C = 25pF,  
r
f
L1  
L2  
t
t
t
t
Driver Enable to Output High  
Driver Enable to Output Low  
Driver Disable from Low  
C = 25pF, S2 Closed, Figures 3, 5  
10  
10  
25  
25  
35  
35  
ns  
ns  
ZH  
ZL  
LZ  
HZ  
L
C = 25pF, S1 Closed, Figures 3, 5  
L
C = 15pF, S1 Closed, Figures 3, 5  
L
65  
ns  
Driver Disable from High  
C = 15pF, S2 Closed, Figures 3, 5  
L
65  
ns  
C
Maximum Output Capacitive Load  
Maximum Data Rate  
(Note 3)  
(Note 3)  
(Note 3)  
200  
pF  
L(MAX)  
100  
Mbps  
ns  
Maximum Driver Input Rise/Fall Time  
500  
V
= 3V, T = 25°C, Unless Otherwise Noted (Note 2)  
A
DD  
t
, t  
Driver Input-to-Output Propagation Delay  
Driver Output-to-Output Skew  
Driver Rise/Fall Time  
R
= 50, C = C = 25pF,  
11  
1
ns  
ns  
ns  
PLH PHL  
DIFF  
L1  
L2  
Figures 2, 4  
t
R
DIFF  
= 50, C = C = 25pF,  
SKEW  
L1  
L2  
Figures 2, 4  
t , t  
R
DIFF  
= 50, C = C = 25pF,  
4
r
f
L1  
L2  
Figures 2, 4  
t
t
t
t
Driver Enable to Output High  
Driver Enable to Output Low  
Driver Disable from Low  
C = 25pF, S2 Closed, Figures 3, 5  
25  
25  
50  
50  
ns  
ns  
ZH  
ZL  
LZ  
HZ  
L
C = 25pF, S1 Closed, Figures 3, 5  
L
C = 15pF, S1 Closed, Figures 3, 5  
L
ns  
Driver Disable from High  
C = 15pF, S2 Closed, Figures 3, 5  
L
ns  
C
Maximum Output Capacitive Load  
Maximum Data Rate  
(Note 3)  
200  
500  
pF  
L(MAX)  
50  
Mbps  
ns  
Maximum Driver Input Rise/Fall Time  
(Note 3)  
Note 2: All currents into the device pins are positive; all currents out of the  
device pins are negative.  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 3: Guaranteed by design or correlation, but not tested.  
16889fa  
3
LTC1688/LTC1689  
U W  
TYPICAL PERFORMANCE CHARACTERISTICS  
Propagation Delay  
vs Temperature  
Propagation Delay  
vs Load Capacitance  
14  
12  
10  
8
14  
V
= 3V  
= 5V  
DD  
DD  
V
= 3V  
= 5V  
12  
10  
8
DD  
V
DD  
V
6
6
4
4
V
= 0V TO 3V  
DIFF  
= 25°C  
V
= 0V TO 3V  
DIFF  
= 25pF  
DI  
DI  
R
T
= 50Ω  
R
C
= 50  
2
2
A
L
0
0
0
10  
20  
30  
40  
50  
60  
0
20  
40  
60  
80  
100  
LOAD CAPACITANCE (pF)  
TEMPERATURE (°C)  
1688/89 G02  
1688/89 G01  
Three-State Output Current  
Supply Current vs Data Rate  
250  
200  
150  
100  
50  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 5V  
DD  
4 DRIVERS  
SWITCHING  
V
= –7V  
OUT  
V
= 5V  
DIFF  
= 25pF, PER DRIVER  
= 25°C  
DD  
R
= 50, PER DRIVER  
C
T
L
A
1 DRIVER  
SWITCHING  
V
= 12V  
OUT  
0
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
DATA RATE (Mbps)  
TEMPERATURE (°C)  
1688/89 G03  
1688/89 G04  
VOD2 vs Temperature  
IDD vs Temperature  
2.5  
2.0  
1.5  
1.0  
0.5  
0
180  
160  
140  
120  
100  
80  
4 DRIVERS LOADED  
V
= 5V  
= 3V  
DD  
1 DRIVER LOADED  
V
DD  
60  
40  
V
= 5V  
DIFF  
DD  
R
= 50, PER DRIVER  
20  
R
0
= 50Ω  
0.1Mbps  
DIFF  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1688/89 G05  
1688/89 G06  
16889fa  
4
LTC1688/LTC1689  
U
U
U
PIN FUNCTIONS  
DI1 (Pin 1): Driver 1 Input. Do not float.  
DO1A (Pin 2): Driver 1 Noninverting Output.  
DO1B (Pin 3): Driver 1 Inverting Output.  
DI3 (Pin 9): Driver 3 Input. Do not float.  
DO3A (Pin 10): Driver 3 Noninverting Output.  
DO3B (Pin 11): Driver 3 Inverting Output.  
EN (Pin 4, LTC1688): High True Enable Pin, enables all  
four drivers. A low on Pin 4 and a high on Pin 12 will put  
all driver outputs into a high impedance state. See  
Function Tables for details. Do not float.  
ENB (Pin 12, LTC1688):Low True Enable Pin, enables all  
four drivers. A low on Pin 4 and a high on Pin 12 will put  
all driver outputs into a high impedance state. See  
Function Tables for details. Do not float.  
EN12 (Pin 4, LTC1689): Enables Drivers 1 and 2. A low on  
Pin 4 will put the outputs of drivers 1 and 2 into a high  
impedance state. See Function Tables for details. Do not  
float.  
EN34 (Pin 12, LTC1689): Enables Drivers 3 and 4. A low  
on Pin 12 will put the outputs of drivers 3 and 4 into a high  
impedance state. See Function Tables for details. Do not  
float.  
DO2B (Pin 5): Driver 2 Inverting Output.  
DO2A (Pin 6): Driver 2 Noninverting Output.  
DI2 (Pin 7): Driver 2 Input. Do not float.  
DO4B (Pin 13): Driver 4 Inverting Output.  
DO4A (Pin 14): Driver 4 Noninverting Output.  
DI4 (Pin 15): Driver 4 Input. Do not float.  
GND (Pin 8): Ground Connection. A good ground plane is  
recommended for all applications.  
VDD (Pin 16): Power Supply Input. This pin should be  
bypassed with a 0.1µF ceramic capacitor as close to the  
pin as possible. Recommended: VDD = 3V to 5.25V.  
U
U
FU CTIO TABLES  
LTC1688  
LTC1689  
INPUTS  
OUTPUTS  
INPUTS  
OUTPUTS  
DI  
H
L
EN  
H
H
X
ENB  
X
OUTA  
OUTB  
DI  
H
L
EN12/EN34  
OUTA  
H
OUTB  
L
H
L
L
H
H
H
L
X
L
H
H
L
L
H
L
X
HI-Z  
HI-Z  
X
L
L
H
X
L
H
HI-Z  
HI-Z  
TEST CIRCUITS  
EN (EN12)  
DRIVER  
A
S1  
S2  
C
L1  
R
V
DD  
A
B
V
OD  
500Ω  
OUTPUT  
UNDER TEST  
DI  
R
R
DIFF  
V
OC  
B
C
L
C
L2  
1688/89 TC01  
1688/89 TC02  
1688/89 TC03  
ENB (EN34)  
Figure 1. Driver DC Test Load  
Figure 2. Driver Timing Test Circuit  
Figure 3. Driver Timing Test Load  
16889fa  
5
LTC1688/LTC1689  
U W  
W
SWITCHI G TI E WAVEFOR S  
3V  
f = 1MHz; t < 3ns; t < 3ns  
DI  
1.5V  
1.5V  
PHL  
r
f
0V  
B
t
t
PLH  
V
O
A
t
1/2 V  
t
SKEW  
1/2 V  
SKEW  
O
O
V
O
O
90%  
90%  
V
= V(A) – V(B)  
DIFF  
10%  
10%  
–V  
1688/89 F04  
t
t
f
r
Figure 4. Driver Propagation Delays  
3V  
f = 1MHz; t 3ns; t 3ns  
EN  
r
f
1.5V  
1.5V  
LZ  
0V  
5V  
t
ZL  
t
A, B  
V
OUTPUT NORMALLY LOW  
OUTPUT NORMALLY HIGH  
1/2 V  
DD  
DD  
0.5V  
0.5V  
OL  
V
OH  
A, B  
1/2 V  
0V  
1688/89 F05  
t
t
HZ  
ZH  
Figure 5. Driver Enable and Disable Times  
U
W U U  
APPLICATIONS INFORMATION  
The LTC1688/LTC1689 family of RS485 quad differential ElectricalCharacteristicstablefor3VDCandACspecifica-  
drivers employs a novel architecture and fabrication pro- tions). Figure 6 shows waveforms of an LTC1689 driving  
cess that allows ultra high speed operation (100Mbps) a receiver using 100 feet of Category 5 UTP. Both parts are  
andHotSwapcapabilitywhilemaintainingtheruggedness operating at 3V supply.  
of RS485 operation (three-state outputs can float from  
7V to 12V with a single 5V supply). Unlike typical CMOS  
drivers whose propagation delay can vary as much as  
LTC1689 OUTPUT  
500%, the propagation delay of the LTC1688/LTC1689  
2V/DIV  
drivers will only vary by ±50% (a narrow ±4ns window).  
FAR END OF CABLE  
This performance is achieved by designing the input stage  
2V/DIV  
of each driver to have minimum propagation delay shift  
over temperature and from part to part.  
RECEIVER OUTPUT  
The LTC1688/LTC1689 have an ESD rating of 6kV human  
body model.  
5V/DIV  
50Mbps with 3V Operation  
20ns/DIV  
1688/89 F06  
The LTC1688/LTC1689 are designed to operate with a 3V  
power supply and still achieve 50Mbps operation (see  
Figure 6. 3V High Speed Data Transmission  
16889fa  
6
LTC1688/LTC1689  
U
W U U  
APPLICATIONS INFORMATION  
Hot Swap Capability  
VDD/2, this circuitry shuts off the big outputs and turns on  
3mA current sources instead (the converse applies to the  
“B” output). Note that these 3mA current sources are  
active only during a short-circuit fault. During normal  
operation, the regular output drivers can sink/source  
>50mA.  
With the LTC1688/LTC1689 outputs disabled but con-  
nectedtothetransmissionline,theusercanturnon/offthe  
power to the LTC1688/LTC1689 without inducing a differ-  
ential signal on the transmission line. Due to capacitive  
coupling, however, there can be a small amount of com-  
mon mode charge injected into both disabled outputs,  
whichisnotseenasadifferentialsignal(seeFigure7). The  
disabled outputs can be hooked/unhooked to a transmis-  
sion line without disturbing the existing data.  
A time-out period of about 50ns is required before a short-  
circuit fault is detected. This circuitry might falsely detect  
a short under excess output capacitive load (>200pF).  
Additionally, a short might go undetected if there is too  
muchresistance(userinsertedorcableparasitic)between  
the physical short and the actual driver output.  
Output Short-Circuit Protection  
Inadditionto100MbpsoperationandHotSwapcapability,  
the LTC1688/LTC1689 employ voltage sensing short-  
circuit protection that reduces short-circuit current by  
over an order of magnitude. For a given input polarity, this  
circuitry determines what the correct output level should  
be. If the output level is different from the expected, the  
circuitry shuts off the big output devices. Much smaller  
devices are instead turned on, thus producing a much  
smaller short-circuit output current (3mA typical). For  
example,ifthedriverinputis>2V,itexpectstheAoutput  
to be >3.25V and the “B” output to be less than 1.75V. If  
the “A” output is subsequently shorted to a voltage below  
For cables with the recommended RS485 termination (no  
DCbiasonthecable, seeFigure8), theLTC1688/LTC1689  
willautomaticallycomeoutofshort-circuitmodeoncethe  
physical short has been removed.  
To prevent permanent damage to the part, the maximum  
allowable short is 10V (not 12V). Note that during a short,  
the voltage right at the pin should not ring to a voltage  
higher than 12V. Instability could surface if the short is  
made with long leads (parasitic inductance). Once the  
short is removed, the instability will disappear.  
A OUTPUT  
B OUTPUT  
Figure 7. Common Mode Charge Injection During Hot Swapping  
16889fa  
7
LTC1688/LTC1689  
U
W U U  
APPLICATIONS INFORMATION  
Cable Termination  
Enable Pins  
The recommended cable termination for use with the  
LTC1688/LTC1689isasingleresistoracrossthetwoends  
of a transmission cable (see Figure 8). When PC traces are  
used as the transmission line, its characteristic imped-  
ance should be chosen close to 100in order to better  
matchthespecifiedtimingcharacteristicsoftheLTC1688/  
LTC1689. Category 5 unshielded twisted pair can be used  
overshortdistancesatthemaximumdatarates(100Mbps).  
For point-to-point configurations (see Figure 9), a single  
resistor across the cable at the receiver end is sufficient.  
A single resistor termination lowers power consumption  
and increases the differential output signal. See Enable  
Pins section for cable terminations with a DC bias.  
For cable terminations with a DC bias (such as High  
Voltage Differential SCSI, see Figure 10), the driver out-  
puts must be disabled for at least 200ns after power-up.  
This ensures that the driver outputs do not disturb the  
cable upon power-up. It also ensures the correct output  
start-up conditions. When there is an output short fault  
condition and the cable has a DC biased termination, such  
as Figure 10, the driver outputs must be disabled for at  
least 200ns after the short has been removed. Recall that  
for transmission lines that have the recommended RS485  
singleresistortermination(Figures8and9),theLTC1688/  
LTC1689 will come out of a short-circuit fault condition  
automatically without having to disable the outputs.  
1/4 LTC1519  
100Ω  
100Ω  
100Ω  
1/4 LTC1688  
1/4 LTC1518  
1/4 LTC1689  
1/4 LTC1518  
1688/89 F08  
1688/89 F09  
Figure 8. Multipoint Transmission  
Figure 9. Point-to-Point Transmission  
TERM POWER  
TERM POWER  
DE  
DI  
330Ω  
150Ω  
330Ω  
150Ω  
1/4 LTC1688  
1/4 LTC1518  
330Ω  
330Ω  
1/4 LTC1518  
1688/89 F10  
Figure 10. DC-Biased Termination  
(Recommended for SCSI Applications Only)  
16889fa  
8
LTC1688/LTC1689  
U
W U U  
APPLICATIONS INFORMATION  
High Speed Twisted-Pair Transmission  
High Speed Backplane Transmission  
Data rates up to 100Mbps can be transmitted over short  
distancesusingCategory5UTP(unshieldedtwistedpair).  
The cable distance will determine the maximum data rate.  
Figures 11 and 12 show an 8ns pulse propagating over 25  
feetofCategory5UTP.Noticehowthecableattenuatesthe  
signal. Lucent Technologies’ BRF2A and BRS2A receivers  
are recommended for these ultrahigh speed applications.  
TheLTC1688/LTC1689canbeusedinbackplanepoint-to-  
point and multipoint applications. At high data rates,  
signals should be routed differentially and PC traces  
should be terminated (see Figure 13). Note that the RS485  
specificationcallsforcharacteristicimpedancesnear100;  
therefore, PC trace transmission lines should be designed  
with an impedance close to 100. If trace impedance is  
much less than 100, and the trace is double terminated,  
the part will experience excess heating. The propagation  
delay could then fall outside the specified window. The  
LT1720 dual UltraFastTM comparator is a good choice for  
high data rate backplane applications.  
2V/DIV  
DRIVER INPUT  
2V/DIV  
2V/DIV  
DRIVER OUTPUT  
UltraFast is a trademark of Linear Technology Corporation.  
RECEIVER INPUT  
+
5V/DIV  
100  
100Ω  
RECEIVER OUTPUT  
DRIVER  
RECEIVER  
25 FT CATEGORY 5 UTP  
10ns/DIV  
1/4 LTC1688  
1688/89 F11  
1688/89 F12  
Figure 12. 100Mbps Differential Data Connection  
Figure 11. 8ns Pulse Over 25 Feet Category 5 UTP  
1/4 LTC1688  
DRIVER  
1/2 LT1720  
BACKPLANE  
100Ω  
RECEIVER  
TRANSMISSION LINE  
1688/89 F13  
Figure 13. 100Mbps Backplane Transmission  
16889fa  
9
LTC1688/LTC1689  
U
W U U  
APPLICATIONS INFORMATION  
Layout Considerations  
Driver and receiver bandwidth affects the maximum data  
rateonlyoverdistancesoflessthan100', evenforthebest  
cables. The LTC1688/LTC1689 RS485 drivers and  
LTC1518/LTC1519 52Mbps RS485 receivers are the fast-  
est in the industry. The LTC1688/LTC1689 drivers can  
reach speeds over 100Mbps, with a rise and fall time of  
just 2ns. At speeds in excess of 52Mbps, the non-RS485  
Lucent Technologies’ BRF2A receiver is recommended.  
A ground plane is recommended when using high fre-  
quency devices like the LTC1688/LTC1689. A 0.1µF  
ceramic bypass capacitor less than 0.25 inch away from  
the VDD pin is also recommended. Special care should be  
taken to route the differential outputs very symmetrically  
inordertoobtainthesameparasiticcapacitancesandthus  
maintain good propagation delay skew.  
Detailed information on data rate vs cable length is pro-  
vided by the cable manufacturer. They characterize their  
cables for bit rate and 0% to 50% rise time vs cable length,  
allowing a rapid comparison of various cable types.  
Parasiticcapacitancefromeachinputtoitscorresponding  
outputs should also be minimized. Any excess capaci-  
tance could result in slower operation or even instability.  
Channel output pairs should be kept away from other  
output pairs to avoid parasitic coupling.  
The following oscilloscope waveforms illustrate how a  
cable attenuates the signal and slows its rise time at  
different lengths. Also shown are the driver input and  
receiver output.  
Data Rate vs Cable Length  
Cable length and quality limit the maximum data rate in a  
twisted pair system. Category 5 unshielded twisted pair is  
a good choice for high speed data transmission, as it  
exhibits superior bandwidth over other cables of similar  
cost.  
DRIVER INPUT  
CABLE DELAY  
RECEIVER INPUT  
2V/DIV  
RECEIVER OUTPUT  
100Ω  
100Ω  
DRIVER  
RECEIVER  
CATEGORY 5 CABLE  
UNDER TEST  
1/4 LTC1688  
1/4 LTC1689  
2µs/DIV  
1688/89 F15  
1688/89 F14  
Figure 14. Test Circuit for Cable Speed Evaluation  
Figure 15. 4000 Feet, 0.5Mbps, LTC1518 Receiver  
DRIVER INPUT  
CABLE DELAY  
RECEIVER INPUT  
2V/DIV  
2V/DIV  
RECEIVER OUTPUT  
2µs/DIV  
1688/89 F16  
500ns/DIV  
1688/89 F17  
Figure 16. 4000 Feet, 1Mbps, LTC1518 Receiver  
Figure 17. 1000 Feet, 2Mbps, LTC1518 Receiver  
16889fa  
10  
LTC1688/LTC1689  
U
W U U  
APPLICATIONS INFORMATION  
2V/DIV  
2V/DIV  
2V/DIV  
2V/DIV  
500ns/DIV  
1688/89 F18  
1µs/DIV  
1688/89 F19  
Figure 18. 1000 Feet, 5Mbps, LTC1518 Receiver  
Figure 19. 1000 Feet, 1Mbps, LTC1518 Receiver  
RECEIVER INPUT  
2V/DIV  
100ns/DIV  
1688/89 F20  
50ns/DIV  
1688/89 F21  
Figure 20. 200 Feet, 20Mbps, LTC1518 Receiver  
Figure 21. 200 Feet, 33Mbps, LTC1518 Receiver  
RECEIVER INPUT  
2V/DIV  
50ns/DIV  
1688/89 F22  
10ns/DIV  
1688/89 F23  
Figure 22. 100 Feet, 50Mbps, LTC1518 Receiver  
Figure 23. 25 Feet, 100Mbps, BRF2A Receiver  
16889fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
11  
LTC1688/LTC1689  
PACKAGE DESCRIPTION  
U
S Package  
16-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
.386 – .394  
(9.804 – 10.008)  
.045 ±.005  
NOTE 3  
.050 BSC  
16  
N
15  
14  
13  
12  
11  
10  
9
N
1
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
2
3
N/2  
N/2  
8
.030 ±.005  
TYP  
RECOMMENDED SOLDER PAD LAYOUT  
2
3
5
6
7
1
4
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0° – 8° TYP  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
.016 – .050  
(0.406 – 1.270)  
S16 0502  
NOTE:  
1. DIMENSIONS IN  
INCHES  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
RELATED PARTS  
PART NUMBER  
LTC486/LTC487  
LT®1394  
DESCRIPTION  
COMMENTS  
Low Power Quad RS485 Drivers  
110µA Typ Supply Current, 10Mbps, 7V to 12V Common Mode Range  
6mA Typ Supply Current, Ground Sensing on Single Supply  
52Mbps, Pin Compatible with LTC488/LTC489  
7ns UltraFast Single Supply Comparator  
High Speed, Precision Quad RS485 Receivers  
High Speed, Precision Quad Differential Line Receiver  
High Speed, Precision RS485 Transceiver  
LTC1518/LTC1519  
LTC1520  
Single Supply, 18ns Propagation Delay, 100mV Threshold  
52Mbps, Pin Compatible with LTC485  
LTC1685  
LTC1686/LTC1687  
LT1720  
High Speed, Precision RS485 Full-Duplex Transceivers 52Mbps, Pin Compatible with LTC490/LTC491  
Dual 4.5ns UltraFast Single Supply Comparator 4mA per Comparator, Optimized for 3V or 5V Operation  
16889fa  
LT/TP 1003 1K REV A • PRINTED IN THE USA  
12 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
LINEAR TECHNOLOGY CORPORATION 1999  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY